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METHOD AND APPARATUS FOR
PROCESSING DATA FROM A
TOMOGRAPHIC IMAGING SYSTEM

This invention was made with government support under
Contract No. MIP9457397 awarded by the National Science
Foundation. The government has certain rights in the 1nven-
tion.

FIELD OF THE INVENTION

The invention relates to computer tomography (CT) imag-
ing. More specifically, the present invention describes a new
method and apparatus for use in CT scanning wherein the
wavelet transform 1s constructed directly from the tomo-
oraphic data for local image reconstruction from local
measurements 1 such a way as to reduce the required
radiation dosage while creating a faster 1mage output with
improved resolution.

BACKGROUND OF THE INVENTION

Computer tomography (CT) imaging is a relatively recent
development that has captivated the interest of those
involved 1n 1maging technology. CT has been most accepted
and adopted as standard procedure 1n the medical field, since
it provides a more detailed analysis of internal body parts
that do conventional X-rays, 1t offers more control for setting
variables according to the particular focus of the image, and
1s less costly since the results are immediately computerized,
thereby eliminating the time delay and cost involved 1n the
development of X-ray negatives. As a result, leading manu-
facturers of equipment incorporating CT technology have
emerged, such as General Electric’s Medical System’s Divi-
sion and Siemens, AG. In addition, numerous smaller com-
panies are now manufacturing CT equipment 1n this devel-
oping and competitive field.

CT equipment consists of apparatus largely incorporating
that of conventional X-ray systems, consisting of basis
components such as a radiation source for positioning above
the subject and a receptor negative plate positioned beneath
the subject (FIG. 20). The data generated at the receptor is
analyzed using various possible methods known 1n the field
to reconstruct the 1mage of the area targeted on the subject.
At the heart of CT equipment 1s the controller, being a
computer with specialized software for controlling the over-
all operation, including the processing of the generated data.

Some advances 1n this field fall short of achieving the
desired clarity of a reconstructed image. For example, the
patent to Katsevich, U.S. Pat. No. 5,550,892, describes a
method for determining the location and value of a discon-
tinuity between a first internal density of an object and a
second density of a region within the object. However, only
relative attenuation data of the radiation beam 1s determined
and used. While this 1s helpful in enhancing the local
tomographic 1image, the method does not actually recon-
struct the 1image. Its use of LAMBDA as the local tomog-
raphy function 1s an algorithm for taking the measurements
of the relative attenuation data and manipulating the mea-
surements via the algorithm for determining the location of
the discontinuity.

Along with the acceptance of CT into the mainstream of
the medical and other fields as well, has emerged the health
concern about the radiation dosage 1t imposes onto the
human body and the potential harmful effects of that expo-
sure. Two opposing factors immediately come 1nto play with
the use of CT: (1) high resolution and improved detailed
imaging 1s obtainable with CT that has not been achieved
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2

before. However, (2) to achieve these desired results that
help immensely 1n making a proper diagnosis and
evaluation, a larger dose of radiation i1s focused onto the
subject with CT technology that 1s used in other types of
imaging methods, such as conventional X-ray negative
imprints. The main problem with CT, therefore, has been the
potential danger it represents due to excessive radiation
exposure, and the technology has been grappling with the
delimina of how to maintain the superior diagnosis output of
CT while keeping the radiation exposure 1n control to ensure
its safety to the patient, or its user in any non-medical
application.

Conventional tomography 1s a global procedure in that the
standard convolution formulas for reconstruction of the
density at a single point require the line integral data over all
lines within some planar cross-section containing the point.
A desirable goal has been to reduce radiation exposure for
safety purposes while maintaining high quality i1mage
output, although this has heretofore not been achieved to a
satistactory level. While developments in CT 1imaging have
made marked improvements 1n 1ts technological capabilities,
the problem as to the radiation effects has not received the
same degree of attention and has remained an unsolved
concern 1n the use of computer tomography.

SUMMARY OF THE INVENTION

The present invention describes a new method of obtain-
ing the same high level of resolution currently available with
CT while reducing the amount of radiation exposure to the
subject 1n performing the CT. Additionally as a corollary,
this disclosed method allows for obtaining greatly improved
CT resolution of the subject by using the same amount of
radiation now used with conventional CT that gives a lower
degree of resolution 1n 1ts output image. The described
method accomplishes this by use of an algorithm developed
that reconstructs the wavelet coefficients of an 1mage form
the Radon transform data. The properties of wavelets are
used to localize the Radon transform, and these wavelet
properties are used to reconstruct a local region of the cross
section of a body, using almost completely local data which
significantly reduces the amount of exposure and computa-
tions 1n X-ray tomography. The algorithm of the invention is
distinguished from previous algorithms 1n that it 1s based on
the observation that for some wavelet bases with sufficiently
many vanishing moments, the ramp-filtered version of the
scaling function, as well as the wavelet function, has
extremely rapid decay. The variance of the elements of the
null-space 1s negligible 1n the locally reconstructed 1mage.
An upper bound for the reconstruction error in terms of the
amount of data used in the algorithm 1s also determined by
the algorithm, which, for example, requires 22% of full
exposure data to reconstruct a local region 16 pixels in
radius 1n a 256x256 1mage.

The algorithm of the mnvention allows computation of the
actual value of the density to a very high accuracy up to a
single additive constant depending on the 1mage. The actual
densities up to this additive constant, not just estimates of
jumps 1n relative densities, can be obtained with the algo-
rithm of this invention, which gives more accurate informa-
tion for diagnostic purposes.

The general method of this mnvention can be used as the
entire method of a given CT system, or it can be incorpo-
rated as part of an existing CT control system as a front end
software control program.

In accordance with the present invention, apparatus and
method are, therefore, provided for obtaining the wavelet
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transform from the tomographic data. The value 1n this new
disclosure 1s that 1n scanning a subject to construct 1ts CT
image, one can go straight to the wavelet transform without
the step of reconstructing the 1mage first. The described
algorithm can be applied to full data, to limited angle data,
or to local data, for obtaining the wavelet transtorm. With
the thus obtained wavelet transform, local image reconstruc-
fion 1s achieved with superior definition, 1n a shorter time,
and from the use of less radiation on the subject or patient.

Accordingly, it 1s an object of the present invention to
reconstruct with high accuracy and with few computations
the wavelet transtorm of an 1mage directly from the tomo-
ographic measurements of said 1mage.

It 1s a further object of the mmvention to compute to high
accuracy a small region of said image from measurements
on line passing only through the region, thereby reducing
computation time and radiation exposure.

It 1s a still further object of the present ivention to
reconstruct the density at a point using only line integral data
on lines that pas through a small region containing that
point, thereby achieving reduced radiation exposure.

According to the first aspect of the 1nvention, an apparatus
1s disclosed for synthesizing the data to produce an output
image with less radiation than previously known.

According to a second aspect of the present invention, a
method of processing data from a tomographic 1maging
system 1s provided comprising steps that include obtaining
tomographic data from a CT scanner; processing of the data
fo obtain the sampled parallel beam data; computing the
modified wavelet and scaling filters; and filtering of the
preprocessed data to obtain wavelet coefficients of the
original 1mage.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and form a part of the specification, illustrate the embodi-
ment of the present invention and, together with the
description, serve to explain the principles of the mnvention.
In the drawings:

FIG. 1(a) and 1(b) are block diagram representations of
wavelet filter banks, with FIG. 1(a) being a wavelet analysis
filter bank, and FIG. 1(b) being a wavelet synthesis filter
bank;

FIG. 2 1s a block diagram representation of a wavelet
reconstruction from the projection data, where the multi-

resolution reconstruction filter bank (MRFB) is the wavelet
synthesis filter bank of FIG. 1(b);

FIG. 3 1s a data table showing the spread of wavelet and
scaling functions;

FIGS. 4(a)~(d) are plots showing characteristics of a
wavelet, with FIGS. 4(a) and 4(b) being characteristics of
this wavelet’s scaling function and mother wavelet,
respectively, and FIGS. 4(c) and 4(d) being characteristics of
its rampled scaling function and ramped mother wavelet,
respectively.

FIGS. 5(a)~(d) are plots showing characteristics of a
wavelet with extremal phase and highest number of vanish-
ing moments with length 4, with FIGS. 5(a) and 5(b) being
characteristics of this wavelet’s scaling function and mother
wavelet, respectively, and FIGS. 5(c) and 5(d) being char-
acteristics of 1ts rampled scaling function and rampled
mother wavelet, respectively;

FIGS. 6(a) and (b) are graphs that present the normalized
error (23) versus the number of remaining coefficients, with
FIG. 6(a) being that of a biorthogonal wavelet with less
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dissimilar lengths (table III of M. Antonini, M. Barlaud, P.
Mathieu and I. Daubechies, “Image coding using wavelet
transtorm,” IEEE Trans. Image Proc., vol. 1, no. 2, pp.
205-220, April 1992), and FIG. 6(b) being that of an
orthogonal wavelet with extremal phase and highest number
of vanishing moments with length 4 (table 6.2 of I.
Daubechies, Ten lectures on wavelets. SIAM-CBMS series,
SIAM, Philadelphia, 1992);

FIG. 7 1s a graph showing the relationship between
exposure percentage versus the size of the region of interest.

FIG. 8 presents plots on the projection of a null-space

clement [ FIG. 8(a)] and the reconstruction of the null-space
clement [FIG. 8(b)].

FIG. 9 1s a graph containing two error data lines that show
maximum error and average error as a function of the
amount of non-local data used 1n the reconstruction scheme.

FIGS. 10(a)—f) are six graphs that show, in FIG. 10(a), a
sample projection of the Shepp-Logan head phantom; in
FIG. 10(b), the projection filtered by the conventional ramp
filter; in FIG. 10(c), the projection when non-local data 1s set
to zero; in FIG. 10(d), the filtered projection; in FIG. 10(e),
the projection extrapolated outside the region of interest; and
in FIG. 10()), the filtered projection. In all the graphs of FIG.
10, the marked area 1s the region of exposure.

FIGS. 11(a) and (b) show graphs depicting the complexity
of filtering part, and the total complexity, respectively.

FIG. 12 1s a flowchart diagram of the method disclosed
herein for processing general tomographic data.

FIG. 13 1s a flowchart diagram of the method disclosed
herein for processing local tomographic data in the parallel
beam format.

FIG. 14 1s a flowchart diagram of the method disclosed
herein for processing local tomographic data 1n the fan beam
format.

FIG. 15 1s a depiction of radiation beams of various angles
about a subject showing exposure of only the region of
interest.

FIG. 16 1s a pictorial depiction of a CT scanning system
focused 1n a medial environment on a patient.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The theoretical basis of the invention will first be
explained with reference to FIG. 1 and mathematical theo-
ries of 1mage reconstruction as known 1n the art.

I. Introduction

In Computerized Tomography (CT), a cross section of the
human body 1s scanned by a non-diffracting thin X-ray beam
whose 1ntensity loss 1s recorded by a set of detectors. The
Radon Transform (RT) is a mathematical tool which 1s used
to describe the recorded intensity losses as averages of the
tissue density function over hyper-planes which, in dimen-
sion two, are lines.

It 1s well known that 1n dimension two and in fact 1n any
even dimension the Radon transform 1s not local, that 1s, the
recovery of an 1mage at any fixed point requires the knowl-
edge of all projections of the image. Applying this to the use
of computer tomography (CT) in medial diagnosis means
that a patient would have to be exposed to a relatively large
amount of X-rays even if 1t was desired to view only a small
part of the patient’s body. Thus, searching for a means to
reduce exposure, and at the same time to be able to perfectly
reconstruct the region of interest, has been of great interest
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1In recent years. See for example, J. DeStefano and T. Olson,
“Wavelet localization of the Radon transform,” IEEE Trans.
Signal Proc., vol. 42, no. 8, August 1994.

The application of wavelet theory to the inversion of the
Radon transforms 1s known, being {fist proposed 1n
1991-1992. See M. Holschneider, “Inverse Radon trans-
forms through inverse wavelet transforms,” 1n Inverse
Problems, Vol. 7, 1991, pp. 853-861, and G. Kaiser and

Streater, “Windowed Radon transforms,” in Wavelets: A
Tutorial in Theory and Applications, C. K. Chui, ed., Aca-
demic Press, New York, 1992, pp.399-441. An inversion
formula based on the continuous wavelet transform was also
proposed around the same time by one of the present
inventors. See C. Walnut, “Application of Gabor and wave-
let expansions to the Radon transform,” 1n Probabilisiic and
Stochastic Methods in Analysis, with Applications, .
Byrnes, et al. eds., Kluwer Academic Publishers, Inc.,
187-205, 1992. This formula was based on an intertwining
between the one-dimensional continuous wavelet transform
of the projection data at each angle and the two-dimensional
wavelet transform of the original 1image. The fundamental
observation was that the admissibility or vanishing moment
condition that 1s characteristic of a wavelet 1s preserved
under the Hilbert transtorm. Moreover two years later, it was
noted that the Hilbert transform of a function with many
vanishing moments should decay very rapidly. See C. Ber-
enstein and D. Walnut, “Local mversion of the Radon

transform 1n even dimensions using wavelets,” 1n 75 Years
of Radon Transform, S. Gindikin, and P. Michor, eds.,

International Press Co., Ltd., 3858, 1994, and J. DeStefano
and T. Olson, “Wavelet localization of the Radon
transtorm,” IEEE Trans. Signal Proc., vol. 42, no. 8, August
1994, This 1s related to the notion that certain singular
integral operators are almost diagonalized by wavelets, an
observation discussed a few years earlier. See G. Beylkin, R.
Coifman, and V. Rokhlin, “Fast wavelet transforms and
numerical algorithms,” Comm. Pure Appl. Math., vol. 44,
141-183, 1991. Berenstein and Walnut used the intertwining,
formula described 1n the cited “Application of Gabor and
wavelet expansions to the Radon transtorm”™ article for local
recovery, and explicit error estimates on the recovered image
within the region of iterest were obtained. See “Local
inversion of the Radon transform 1n even dimensions using
wavelets,” cited above. In so doing, the authors noted that
high frequency features of an 1mage can be recovered locally
using the wavelet transform.

The development of two algorithms applied to wavelets
resulted from the above works.

(1) The first numerical algorithm using wavelets for local
reconstruction was implemented 1 1994. See “Wavelet
localization of the Radon transform,” as cited. This algo-
rithm reconstructs the local values of a function J directly
from the one-dimensional wavelet transform of R,J at each
angle 0.

(2) That same year, the two-dimensional separable wave-
let transform of a function was computed directly from the
projection data as a means to do local recovery from local
measurements. See A. H. Delaney and Y. Bresler, “Multi-
resolution tomographic reconstruction using wavelets,”
IEEE Intern. Conf. Image Proc., vol. ICIP-94, pp. 830-834,
November 1994. both algorithms take advantage of the
observation that the Hilbert transform of a function with
many vanishing moments has rapid decay; and both algo-
rithms recover the high-resolution parts of the image locally
(that is, by exposing the region of interest plus a small extra
margin) and obtain the low-resolution parts by global mea-
surements at a few angles. In this sense, these algorithms
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6

cannot accurately be described as local tomography algo-
rithms. Both of these algorithms exhibit similar savings in
exposure and similar quality of the reconstructed image in
the region of 1nterest. Recently, Olson 1n T. Olson, “Optimal
time-frequency projections for localized tomography”,
Annals of Biomedial Engineering, vol. 23, pp. 622-636,
September 1995, has improved his algorithm so as to reduce
exposure still further by replacing the usual wavelet trans-
form with a local trigonometric transform described in 1991.
See R. R. Coifman, and Y. Meyer, “Remarques sur’l analyse

de Fourier ’a feneétre,” série I. C. R. Acad. Sci. Paris ,
312:259-261, 1991.

By this disclosure, a wavelet-based algorithm 1s 1mple-
mented to reconstruct a good approximation of the low-
resolution parts of the 1image as well as the high-resolution
parts using only local measurements. The algorithm of the
invention 1s based on the observation that in some cases, the
Hilbert transform of a compactly supported scaling function
also has essentially the same support as the scaling function
itself. This phenomena 1s related to the number of vanishing
moments of the scaling function of an orthonormal or
biorthonormal wavelet basis. That is, if ¢(t) is such a scaling
function, and if ¢“’(0)=0 for j=1, 2, . . . , K, for some large
K, then the Hilbert transform of ¢ will have rapid decay. This
grves substantial savings 1 exposure and computation com-
pared to the methods described by DeStefano and Olson, and
by Delaney and Bresler, both cited above, and somewhat
greater exposure (though still fewer computations) than the
algorithm described by Olson.

The algorithm of the present disclosure reconstructs a
region of radius 16 pixels 1n a 256x256 1mage to within 1%
average error using 22% of the data, and to within 1%
maximum error using 30% of the data. This improvement 1s
significant, since the cited works of DeStefano and Olson,
and of Delaney and Bresler, require a higher exposure of
40% of the data for the same size region and 1% maximum
error. The method 1in Olson’s independent cited work uses
20% for the same case, and since Olson’s algorithm 1s not
truly local, the algorithm and 1ts application as described
herein 1s valuable even if the exposure 1s somewhat higher.

The goal of the algorithm described 1s to reconstruct the
function locally from local measurements up to the
nullspace of the interior Radon transform. That 1s, the
problem of recovery of local values of a function from local
projections only 1s not uniquely solvable. In F. Natterer, The
Mathematics of Computerized Tomography, New York,
Wiley, 1986, an example 1s given of functions that are
nonzero on a disk but whose projections on all lines inter-
secting that disk are zero (FIG. 7). Such a function is said to
be an element of the nullspace of the interior Radon trans-
form. Any algorithm that uses only local measurements
cannot reconstruct these nullspace elements. The advantage
1s that taking only local measurements 1s much easier to
implement in hardware. Natterer’s work showed that the
clements of the null-space of the interior Radon transform
do not vary much 1n the region of interest. In the algorithm
of this invention, this phenomenon appears as a constant bias
in the reconstructed image. Such a bias 1s commonly
observed 1n the local reconstruction problem. See Natterer,
ibid.; also A. K. Louis and A. Rieder, “Incomplete data
problem 1n x-ray computerized tomography,” Numeriche
Mathematik, vol. 56, 1989.

The algorithms described 1n the cited works of DeStefano/
Olson, Delaney/Bresler, and Olson, are not true local tomog-
raphy algorithms 1n that they use measurements far from the
region of interest to recovery the function exactly on the
region of interest. To the contrary, the algorithm described in
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this disclosure 1s more closely related to the technique of
A-tomography, which 1s used to reconstruct the function
Af-uA~'f rather than the density function f. See A.
Faridani, F. Kemnert, F. Natterer, E. L. Ritman and K. T.
Smith, “Local and global tomography”, 1n Signal
Processing, IMA vol. Math., Appl., vol 23. New York:
Springer-Verlag, New York, pp. 241-255, 1990, and A.
Faridani, E. Ritman and K. T. Smith, “Local tomography”,
SIAM J. Appl. Math., vol. 52,n0. 2, pp. 459-484, April 1992,
“Examples of local tomography,” SIAM J. Appl. Math., vol
52, no. 4, pp 1193-1198, 1992. The function Af has the
same singularities as f and is cupped where | is constant.
The addition of the cup correction factor uA™"f results in
good qualitative reconstructions of f. See A. Faridani, D.
Finch, E. L. Ritman and K. T. Smith, “Local tomography I1,”
SIAM J. Appl. Math, to appear.

The algorithm of this invention is structured to reconstruct
the wavelet and scaling coeflicients of an 1mage directly
from 1ts projections. This 1s of great benefit 1n applications
where the wavelet coeflicients of the reconstructed 1mage
are used, 1n that 1t saves the computations requlred to obtain
the wavelet coeflicients from the reconstructed 1 Image. The
oeneral application 1s shown by the steps listed in the
flowchart at FIG. 12. This novel reconstruction technique
leads to a local tomography algorithm which uses the
projections of the image on lines intersecting the local
region of interest plus a small number of projections, in the
immediate vicinity, to obtain a very good approximation of
the 1mage 1n the region of interest.

In summary, the main features of the described algorithm
are that 1t allows for:

Reduced radiation exposure compared to most previous
algorithms known 1n the art. With this algorithm, there
1s no need to obtain a rough estimate of the global
properties of the Radon transform by sparsely sampled

full exposure projections. Just a small number of pro-
jections are computed on lines passing close to the
reglon of mterest to reconstruct the local values of the
image up to a constant bias. Moreover, the number of
pixels in the margin 1s 1ndependent of the size of the
region of interest and 1s also independent of the reso-
lution of the measurements taken. Therefore, for the
same region of interest, a high resolution CT scan
would have a smaller region of exposure than a lower
resolution scan.

Computationally greater efficiency than other algorithms,
because 1t uses fewer projections overall to locally
reconstruct the 1mage.

Uniform exposure at all angles which allows for easier

implementation 1n hardware. In prior art algorithms
(such as those presented by DeStefano/Olson (1994),

Delaney/Bresler, Destefano/Olson (1992), and Olson,
all cited supra), different amount of projections have to
be computed with variable lengths for different angles.

Ability to reconstruct off-center or even multiple regions
of interest, as well as centered reconstruction.

Application to those cases where the wavelet basis 1s not
separable and there exists no multiresolution approach
to obtain the wavelet coefficients. For example, the
method proposed 1in Delaney/Bresler can only be used
for separable wavelet bases.

Reconstruction of the wavelet coeflicients of the 1mage
with the same complexity as the conventional filtered
backprojection method.

Effective reconstruction in both the parallel and fan-beam
geometries. See F. Rashid-Farrokhi, K. J. R. Liu, and C.
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A. Berenstein, “Local Tomography in Fan-beam

Geometry Using Wavelets,” Proc. IEEE Int’] Cont. on
Image Processing (ICIP-96), pp. II-709-712, 1996.

The description that follows briefly introduces, 1n section

I1, the Radon transform, and discusses the non-locality of the

Radon transform and the conventional reconstruction

technique, 1.e., the filtered backprojection method. Begin-

ning 1n section D after reviewing the basics of the wavelet
transform, a full-data reconstruction technique 1s described
based on the wavelet transform. In section B, the locality

property of the proposed algorithm 1s described. Section E
then details the implementation of this method and 1n section

H the simulation results are presented.

II. The Conventional Reconstruction Technique

The following notations are used 1n this disclosure: The d

dimensional Euclidean space is denoted by R?. Given a set
SCRY, 1 denotes the indicator function of S. The Fourier
transform in R? is defined by

HOE f f TR,
Rd

The inverse Fourier transform 1s defined by
1@ =Grv = [ f@e a5
R

both continuous and discrete convolution operators are
denoted by *

A. Radon Transform

The conventional reconstruction technique 1s the filtered
backprojection method, the theory of which starts with the

—
Radon transform. Given f( x ), restricted to a disc of radius
one, we define the Radon transform of J by

Rof (s) =

_:..
—}
x=s

f(EE)::ﬁ'FE:f flsb+y)dy
o

where ?=(COS 0, sin 6), 6ER and 6" is the subspace

perpendicular to G

The interior Radon transform such as discussed by P.
Maass 1 “The interior Radon transform,” SIAM J. Appl.
Math, vol. 52, No. 3, pp. 710724, June 1992, and also by
Louis/Rieder, earlier cited, 1s the Radon transform restricted
to lines passing through the region of interest (ROI) which
is a circle of radius r (r<1) about the origin. It is defined by

Rgf(s)

The problem of recovery of f from the interior Radon
transform 1s called the 1nterior problem or region of interest
tomography. The interior problem 1n dimension two 1s not
uniquely solvable, 1.¢., there are functions which are not zero
in the region of interest but whose projections on lines
intersecting that region are zero. However, these functions
do not vary much 1nside the region of interest, and 1n fact a
crude approximation to the missing projections suifices to
approximate f well inside the region of interest up to an
additive constant (as discussed in Natterer, previously cited).

B. Reconstruction

The basic formula for mverting the Radon transform 1s
based on the fact that the Fourier transform of the Radon
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transform with respect to the variable s 1s the Fourier
transform of the function § along a line passing through the
origin. This property 1s known as the projection theorem or
Fourier slice theorem:

(Ref w) = f(wh), we R.

Thus the Fourier transform of the projections at enough
angles could in principle be assembled into a complete
description of the two dimensional Fourier transform of the
image and then simply inverted to arrive at the function f.
Using the polar Fourier inversion formula and the Fourier
slice theorem, we can reconstruct the function | from the
projection data Rgyf(s) by

&)= fw f C R )@@ ) | w) dwd. )
() — o0

The above formula, called the filtered backprojection
formula, can be implemented 1n two steps, the filtering step,
which i1n the Fourier domain can be written as

0y(w) = Rof(w) | w], 2)

and the backprojection step,

@) = LWQQ(EE-E)M.

(3)

Because || is not bounded and filtering by this filter tends
to magnify the high frequency noise, it 1s expedient in
practice to multiply this operator by a smoothing window
W(wm) as

Qg(iﬂ) = R;f(m)‘ iu‘ Wi(w). (4)

Therefore the reconstruction will result in an approximation
of § rather than f itself. Normally the approximation has the
form e*f, where e is an approximate delta function, called
the point spread function (described by K. T. Smith and F.
Keinert, “Mathematical foundation of computed
tomography,” Applied Optics, vol. 24, No. 23, December
1985). The point spread function e is related to W(w) by

W{w)=é(w cos 0,m sin 0).

C. Non-locality of RT Inversion
In (2) the Radon transform data is filtered by |w|. This

operation can be formulated in the space domain as

Qelt) =HIReJ (1),

where H 1s the Hilbert transtorm on R, and 9 i1s ordinary
differentiation. In the above equation the derivative part 1s a
local operator, but the Hilbert transform

(Hg)(w) = isign(w)§{w) (5)

introduces a discontinuity in the derivative of the Fourier
transform of a function at the origin. Hence the Hilbert
fransform of a compactly supported function can never be
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compactly supported. This means that RT inversion based on

(1) can not be accomplished locally, that is, in order to

) % . -
recover f exactly at a point x, all projections of f are

required and not just those on lines passing near x. It has
been noted that the above mentioned filtering will not
increase the essential support of a function if the function’s
Fourier transform vanishes to high order at the origin
(explained 1n Berenstein/Walnut and in DeStefano/Olson,
both as cited). Wavelets which are in general constructed
with as many zero moments as possible are good candidates
for these functions.

D. Continuous Wavelet Transform

The wavelet transform has been an increasingly popular
tool for signal and 1mage processing. The transform decom-
poses the signal onto shifts and dilate of a function called the
mother wavelet. In two dimensions, the wavelet transform 1s

defined as follows. Let g(?), 1 ER? satisfy

6
0 < inf (©)

o
r 12 (rcosh, rsin@)lzfﬁ y <
6<(0,2m), o

sup

f ! |g(rcosf, rsiné’)lzﬂﬂr < 00,
A [0,270/ 0

let g}( t})’ g(—?), ?ERQ, and define the continuous wavelet
transform of f, on R, by

N 7
£ 22,(u71) "

W )= | fuglui - )i

R

where ucR\{0} and T=[X y]ER”, and gﬂ(T)=ﬂg(uT). In
order to reconstruct the function I from its wavelet
transform, we use

£(D) = fz fﬁWng; f)(?)ug(u?—?)::ﬂmﬂ?.
R2 JR

E. Multi-Resolution Wavelet Representation
In practice one prefers to write f as a discrete superpo-
sition of wavelets, therefore the discrete wavelet transtform

1s defined by

W3 (g £)i) = f zf(;)gzj (1-277H)d 1,

R

which is derived from (7) by setting u#=' and T=?, where

i€Z and n €72,
Below a multiresolution analysis approach 1s described to

reCOVer f(?) from its discrete wavelet transform (precise
definitions and further details on which can be found 1n S.
Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. on PAMI, vol. 11,
no. 7, July 1989). Let A,, be the operator which approxi-

mates a measurable function f(?) with finite energy (J(

?)ELQ(RQ)) at resolution 2. We consider the vector space
V.icL*(R?) as the set of all possible approximations at the
resolution of 2/ of functions in L*(R”), such that VjEZ,
V, &V, . For each multiresolution approximation V,,
there exists a unique function P(x)ELZ(R), called a scaling

function. Let h(n)=| ¢,1(t), p(1i—n)], the Fourier transform of
h(n), denoted by H(w), is defined as
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H(w) = Z hin)e 9"

The Fourier transform of ¢(x) is given by

dw) = | | HO 7w,
p=1

and

J
b,i(@) =) | HO" P w).

p=1

Define the function +e,sez v+ee (x), the mother Wavelet, by
+e,5¢z v+ee (0)=G(w/2)p(w/2), where G(w)=e™"H(w+m).
It can then be shown that

¢ J'_l

dGR T w)| | HQ'Pw) it j>1
p=1

(@) =<

kg’ﬁ(m)G(m) if j=1

Letting ®(X,y)=¢(x)P(y),

{@o(x=271,y=27"m) }(, pyez? (8)

forms an orthonormal basis for V., 1n a multiresolution
approximation in L*(R®), where @ (x,y)=2'®(2'x,2y)=¢.;
(X)P/(¥)=2""9p(2x)-2"*¢(2x). The projection of f onto V.
can therefore be computed 1n this case by

Ay fx )= i i (f (w0,

H=

b i(u=27"m)p, (v =2"Tm),;(x =27 n)p, i (y — 27 m).

The discrete approximation at resolution 2 is defined by

A%f (nm)=(f (0.v)*§/(W)$»(v))2 70,27 m), ©)

where (n,m)EZ” and ¢,{(u)=¢,(-u). The different between
the approximation A,if(x,y) and A, f(X,y), called the detail
signal at resolution 2, corresponds to the projection of J on

the orthogonal complement of V,; 1n V,+1, denoted by O.,.
Let

WY =p()+e,sez vHee (y), WI(xy)=tesez viee (X)O(y), ¥ (X,
y)=+e,8¢z v+ee (X)+e,sez v+ee (v), (10)

then the set of functions

W e (X=2_jnzy_2_jm): (I, (X=2_j pr_z_f m), RSV (X=2—in,y-2‘

jm)}(n,m)Ezzp

where ’,(X,y)=2}"(2’x,2y) is an orthonormal basis for O.;.
The projection of f(x,y) on the vector space O.; is given by
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B, — 27, (v =27 m)), j(x = 27 n ), (v — 27 m)

Daipl % )= Z Z (Fluy ), (= 27m)py (v =27 m))p,

H=00 N=—04

(x=27n)p,; (y =27/ m)

Dy Sy = ) > (f vty =27Tmy (v = 2 Im)

H=00 N=—04

(=27 (y =27 m).

The detail coeflicients are given by

Ddzj’1f(n:m)=(f(xpy)*Z_fq)zf(x):lie,,sez v+ee Li(y)(27n,27m)
D% of (n,m)=(f (x,y)*2~ +e,5ez Ve Li(X)pai(y))2 70,2 7 m)

D% f (n,m)=(f (x.y)*2 7 +e,sez viee ()2 70,2 7m), (11)

where (n,m)EZ? and +e,sez v+ee L(u)=+e,5¢z v+ee i(—u).
FIG. 1(a) shows the conventional filter bank which 1is
usually used to obtain approximation and details of a signal.

The discrete approximation at resolution 2*' can be
obtained by combining the detail and approximation at
resolution 2, i.e.,

Ay fln,m) =2 Z Z h(n — 2k)him — 2DA?; f(k, 1) +

f=—oa l=—0ca

[N
[N

2
k

hin — 2k)g(m — zz)Dg i fl D+

—o0 [=—o0

[N1e
[N12

2
k

g(n = 2k)h(m — zz)Dj j otk D+

— o0

—oo

Y Z Z g(n —2k)gm = 20D%; . f(k, D),

k=—o0 [=—00

Therefore 1n order to recover the approximation at level j+1,
the approximations at level j are filtered by h(m)h(n), and the
detail coefficients are filtered by h(n)g(m), g(n)h(m), and
g(n)g(m) respectively. These wavelet reconstruction filters
in the Fourier domain are given by

H* (@ ,0,)=H(w )H(w,)
H™!, (0,,0,)=H({0,)G(w,)
H"?,(004,0,)=G{0,)H(w,)

H"3 ,(0,,0,)=G{w,)G(0,). (13)

FIG. 1(b) shows the block diagram of the analysis filter
bank which obtains the approximation at level j from the
approximations and detail at level j—1. This block diagram
can be used in a pyramidal structure to reconstruct A%, f, the
approximation at resolution 1, from the set (A”,f, Dif)_
7=j=-1. In those applications that we are interested in,
namely recovering a local region of the 1mage from the
approximate and detail coeflicients, we have to calculate
these coeflicients for that region plus a margin for the
support of the wavelet reconstruction filters. That margin 1s
equal to half of the length of the filters h and g.
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III. The Present Invention

We now describe the algorithm of the invention which can
be used to obtain the wavelet coefficients of a function on R”
from its Radon transtorm data. In those apphcatlons for
which one 1s interested in the wavelet coeflicients of the
function, use of this algorithm involves fewer computations
than first reconstructing the function and then taking its
wavelet transform. Also using this method one can obtain
locally the wavelet coefficients of a function, which will
allow the local reconstruction of a function and the algo-
rithm’s use 1n local tomography. This property will be
explained 1n section B. We first introduce the main formulas
for the reconstruction of the continuous wavelet transform
directly from the Radon transform data.

A. Wavelet Reconstruction from the Projection Data

Given a real-valued, square integrable function g on R
which satisfies condition (6), let f be given on R>, and the
wavelet transform of function f can then be reconstructed
from 1ts 1-D projections by

Wit (g; /)00 = £ =g, (u) (14)

= yl/? fw (HORyZ, = Ry f)((u ' x)cosh +
0

(! y)sind)d &,

ﬁ . .
where v =[x y]ER”. In the discrete case the above equation
becomes:

W33 (g3 /)0 = f (HO Ry + Ref X2 Iy eosd + (2 Imyysindd 6, )
0

where Eﬁ.=[n1 n,|. The right-hand-side can be evaluated in
two steps, the filtering step,

Qi oey—rof THIRg2:)(271),

and the backprojection step,

W( }(g, fin) = f Q,; 9(n1c¢359+ 1o s1n8)d 6. (16)

The filtering step can be implemented 1n Fourier domain as

o,

Q2 j’g(m) = R; f(w)|w| ? (wcosd, wsind )W (w),

where

Ea

éj (D‘Jl, {UZJ:' sz’g(m) and Rgf({ﬂ)

are the Fourier transforms of the functions g/, Q.i g and Rgf,
respectively, and W(w) is a smoothing window. Therefore
(15) can be implemented using the same algorithm as the
conventional filtered backprojection method while the ramp

filter |w| is replaced by the wavelet ramp filter |w|+¢,otlg+ee
-{w cos 0, w sin 0).

If the wavelet basis 1s separable, the approximation and
detail coefficients are given by (9) and (11). These coeffi-
cients can be obtained from the projection data by (15),

replacing g(v) by Y(xy)=pX)p(X), W(x.y)=p(x)+e,sez
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vtee (X), PI(X,y)=+e,sez v+ee (X)P(X), and P (X,y)=+¢,se7
vi+ee (X)+e,sez v+ee (X), respectively. For example, the
approximation coellicients are obtained by

(17)

AS; f(n, m) = W2 (@; f)[n, m]) =

24/2 f’ (HOReD, ; + Ry f J(27/n)cosh + (2 /m)sind)d 6.
0

These coeflicients can be calculated using the standard
filtered backprojection method, while the filtering part in the
Fourier domain 1s given by

Qudz; o(0)=Rof(@)|o|+¢,0thp+ee (o cos B, ® sin B)W(w),
where +e,othp+ee (w cos 0,m sin 0)=+¢,otlp+ee (w cos O)

+e,otlp+ee (w sin 0). The detail coefficients can be found
In a similar way as

D% f =W f)([n m]) for i=1, 2, 3. (18)

To get the detail coeflicients, the filtering step 1s modified as

Qﬂdsziﬁ(mkfief(m)|m|+é,0ﬂ1p+ee ‘(o cos 0,0 sin 0)W(w) for
i=1. 2, 3.

This means that the wavelet and scaling coefficients of the
image can be obtained by the filtered backprojection method
while the ramp filter 1s replaced by

B—|1p|+e otld+ee Lj(w cos 0,m sin 0)=|w|+e,0tlp+ee Li(w cos 0)
+e,0tlp+ee Li(m sin 0)

HD1E,=|(1)|+E: crthp+ee Lilw cos 0,0 sin 0)=|o|+e,otlp+ee Li(w cos O
+e,0tl+e,sezv+ee +ee Hi(m sin 0)

HP1g=|w|+e,othp+ee 5(w cos 0,0 sin 0)=|w|+e,otl+e,sezv+ee +ee
-i(w cos 0)+e,otl+e,sezv+ee +ee Hi(w sin O)

HP1 g=|w|+e,othp+ee *4(w cos 0,0 sin 0)=|w|+e,otl+e,sezv+ee +ee
i cos B)+e,otl+e,sezv+ee +ee Si(w sin 0), (19

which are called the scaling and wavelet ramp filters. In
order to obtain pyramidal wavelet coefficients, the AZ./f and
DY, .f,1=1,2,3, -J=j=-1 are found using (18) and (17). To
reconstruct the 1mage from these coeflicients, we use the
multiresolution reconstruction formulas (12). FIG. 2 shows
the block diagram of the multiresolution reconstruction
system. The reconstruction part uses the conventional mul-
tiresolution reconstructionfilter bank (cf. FIG. 1) which
appear as black boxes in the block diagram.

B. Local Reconstruction

[t has been noted (be Berenstein/Walnut and DeStefano/
Olson, as previously cited) that if a function has a large
number of vanishing moments (or, equivalently, if its Fou-
rier transform vanishes to high order at the origin), then its
Hilbert transform will decay very rapidly at infinity. If a
compactly supported function has this property, then the
essential support of its Hilbert transform (5) should not be
large. This phenomenon 1s in part a manifestation of the
observation made by Beylkin/Coifman/Rokhlin, supra, that
an 1ntegral operator with singular kernel of Calderon-
Zygmund type 1s almost diagonalized 1n a wavelet basis.

More speciiically, the following holds:

Lemma 1: Suppose that f(t)=0 outside the interval [ -A,A]
and satisfies [t"f(t)dt=0 for n=0, 1, . N. Then for
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Is|>A,

1
|Hf (5)] < f Hlf(r)rw“lfﬁr-
H|S—A|N+2 _a

Proof: Assume that s>A. The arcument for s<—A 1s the same.
Since

1 _
o =time [ 579,
e—0 7

|t| =€ I

since f(t)=0 outside [-A,A], and since s>A,

] 5+ A —
HF () = —f S50 4,

T Js— A I

Fixing s, and expanding 1/t in a Taylor series about t=s gives
for some th &[s-A,s+A],

1 +A [N
=3 | reofy
T

5— A | k=0

s—0f  (s—nVL |

IN-FZ fﬂr
&

Sk+l

1M1 A 1 [s+A
=—Z k+1f fioidr+ —f VT s =Ds =V dy
(e _A 2ri S a

1 s+ A
=—f N s - —0V dr

Ts—A

Since 1, € [s—A,s+ Al |tV % <|s= A" 2, so that

1
|HF (5)| < Alf(r)r’“""“lrsﬂr,
S—A|N+2 _a

4

thereby completing the proof.

The significance of this observation for local tomography
is the following. If +e,sez v+ee (1) is the wavelet corre-
sponding to the scaling function ¢(t) for a Multiresolution
Analysis, then at least the zeroth moment of +e,sez v+ece
must vanish. It 1s possible to design wavelets which have
compact support and which have many vanishing moments.
In this case, the functions HORy'(t), where 1)’, i=1, 2, 3, are
given by (10), and will have very rapid decay for each O.
Numerically, even for wavelets with a few vanishing
moments, the essential support of HIRg®(t) is the same as
the support of R *(t) for each 6. This means that by (14),
the discrete wavelet coefficients (18) can be computed
locally using essentially local projections.

Rapid decay after ramp filtering 1s also observed in
scaling functions ¢(t) provided that ¢ has vanishing
moments. Specifically, if ¢(t) satisfies [p(t)dt=1 and [¥¢(t)
dt=0 for j=1, 2, . . . , N, then d¢ satisfies [¢(t)dt=0,
[tp(t)dt=1, and [¢¢(t)dt=0 for j=2, 3, . .., N+1. Therefore
as 1 Lemma 1, 1t follows that

1 1

Hip(s)| = — +
HO @) st s — AV

f|a@(r)r’*’+2|m

Even though the decay is dominated by the s term,

ramp-filtered scaling functions with vanishing moments
display significantly less relative energy leakage outside the
support of the scaling function than those without vanishing
moments.

In order to quantily this locality phenomenon, we define
the spread of a function | with respect to an interval I under
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ramp-filtering to be the normalized energy of the function
(|o[f(@))*(t) outside 1, i.e., with I denoting the complement
of I,

. v o) 1/2 00 . v 3 1/2
spread (13 0 = [ [l @) @ ar) /([ [l o ar)
! — o0

The rapid decay of the ramp-filtered scaling functions 1s
related to the number of vanishing moments of the scaling
function. Orthonormal wavelets corresponding to scaling
functions with vanishing moments have been called “coi-

flets” (by Daubechies in E. Daubechies, Ten lectures on
wavelets. SIAM-CBMS series, SIAM, Philadelphia, 1992 at

section 8.2). For coiflets with 1 and 3 vanishing moments,
supported on the interval [0,5], and [0,11], respectively, we
have measured spreads with respect to these intervals of
0.016 and 0.013 respectively. These scaling functions cor-
respond to scaling filters with 6 and 12 taps respectively.
Daubechies has also observed in Ibid., at section 8.3.5, that

the symmetric biorthogonal bases, constructed as taught in
M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies,
“Image coding using wavelet transform,” IEEE Trans.
Image Proc., vol. 1, no. 2, pp. 205-220, April 1992, are
numerically very close to coiflets. For the biorthogonal
“near-coiflet” scaling functions supported on the intervals
10,4], [0,8], and [0,12], we have measured spreads with
respect to these intervals of 0.29, 0.016, and 0.0095 respec-
tively. These scaling functions correspond to scaling filters
with 5, 9, and 13 taps respectively. When the algorithm 1s
used for optimum resolution 1s projecting an image, it 1S
most desirable to minimize both the spread of the scaling
function and the number of taps in the corresponding filter.
Under these criteria, the near-coiflet filter with 5 taps 1s near
optimal (see FIG. 3(a) and (¢), and FIG. 6(a)) and this is
therefore used 1n running the simulations under this algo-
rithm.

The measured spreads for various compactly supported
wavelet and scaling functions are given 1n Table I. We have
observed that even 1f g 1s replaced by scaling function given
by (8), HOR,g has essentially the same support as R,g for
cach 0. FIG. 3 shows the Daubechies’ biorthogonal wavelet
and scaling function (data on which is found at Table III in
the Antonini/Barlaud/Mathieu/Daubechies work, supra) as
well as the ramp filtered version of these functions. Observe
that the ramp-filtered scaling functions has almost the same
essential support as the scaling function itself.” Therefore, in
order to reconstruct the wavelet and scaling coeflicients for
some wavelet basis, we only need the projections passing
through the region of interest plus a margin for the support
of the wavelet and scaling ramp filters. Moreover, 1n order
to reconstruct the mmage from the wavelet and scaling
coeflicients, we have to calculate these coefficients i1n the
region of interest plus a margin for the support of the wavelet
reconstruction filters (13). Since wavelet and scaling ramp
filters and also the wavelet reconstruction filters get wider 1n
lower scales, we need to 1ncrease the exposure to reconstruct
the low resolution coeflicients in the region of interest. In the
algorithm of this invention, the scaling coeflicients can be
reconstructed locally, and only one level of the wavelet filter

bank used.

'This is not the case in general. For example, in FIG. 4 is plotted another
wavelet and scanning functions (taken from the data at table 6.2 of
Daubechies, previously cited) and their ramp-filtered versions, for compari-
son. The scaling function 1n this basis does spread significantly after ramp

filtering.
C. Error Analysis

It 1s mentioned by Natterer, supra, that the error in the
interior Radon transform 1s not negligible because the
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derivative Hilbert transform (the impulse response of the
filter |w|) is not local in space. This means that in order to
reconstruct even a small local region of interest, some data
outside the region of interest must be considered 1n order to
oet negligible reconstruction error. An upper bound 1s deter-
mined for the reconstruction error, 1n terms of the amount of
non-local data that 1s considered in the reconstruction. The
upper bound of the error 1in a locally reconstructed 1mage
using the described algorithm will also be compared to the
upper bound of the error when the standard filter backprojec-
tion method with local data 1s used. For simplicity of
notation, we assume that the region of interest, a disc of
radius r; pixels centered at the origin, will be denoted by
ROI, and the region of exposure, a disc of radius r_ pixels
centered at the origin, will be denoted by ROE. We further
assume that the ROI and ROE are centered at the center of
the image. Consider the filtered backprojection formula (1),
while the ramp filter |w| is replaced by a general angle
dependent filter hy(s)

frx, ) = fw (ho(s)+ Rof (s)(xcosd + ysind)d 6. (20)
0

We assume that for each angle 6&0,2]), the projection data
Rof(s) 1s sampled with a radial sampling interval of T, and
the support of f is a disk of radius R centered at the origin.
If hy(s) is chosen to be the impulse response of the ramp
filter (2), the reconstructed function f,(x,y) is an approxi-
mation of the function f; and if it is the impulse response of
the wavelet and scaling ramp filters (19), the reconstructed

function f (x,y) will be the approximation of the wavelet

and scaling coefficients. The discrete version of (20) is given
by

K

1 R
n=—=~g

k=1

where m=

e ROE,

[xm s + vsing
1 =
15

K 1s the total number of evenly spaced angles at which the
projections are measured, P (n) 1s the projection

7T

I
R — |, and 8, = k—.
Ekf(TS] k -

We can divide the mner summation into two parts, corre-
sponding to the ROE and 1ts complement ROE.

K
£l HE :
A - - .

y) - =
k=1

K

T 1
Ez :E
k=1

D Pa, (mhg, (m—n) +

n|=rg

> Po, (g, (m — )

n|>7r,
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Thus the magnitude of error using only ROE 1s given by

K
T |
Kz :R
k=1

D Po, (g, (m — ).

1|>7e

le(x, y)| =

To get an upper bound for the error we use the Cauchy-
Schwartz inequality as

K

|
le(x, y)| = %Z = D Pa(mhg (m—n)

1 7|>7e

K
T |
K: :R
k=1

IA

> 1Py (mhg, (m —n)| <

n|=7,
K s V2 y1/2
b4 | 5 5
= > 2| 2. 1P| | ) e, im = n)
b=1 k|”|}r€ y, L\|H|}F€ J

[f we assume that the support of f(x,y) is in the disc of radius
1, then [Pg (n)|=2max|f(x,y)|. Hence

. K 1/2
2\(2 T vV R - ¥, ( ; /
e(x. )| £ ———max|f(x, Yl — E > lhg, (m = n)
k=1 \|n[>re J
We define the relative error as
le(x, y)
|€r€£(-xa y)l — .
max| f(x, y)|
then
_ K 1/2 21
Z\fZH\/R—rE. ( ;f ()
rer(x, Y £ —— — E > lhg, (m—n)|
k=1 \|n|>7e J/

In the worst case the region of 1nterest 1s a single point. Thus
we may bound 21) by

K ¢ v1/2

Dol D

=1 \ml=re—r; /

2\(5?{ \/R—rﬁ.

K R

|€rf3£(-xa y)l =

We define h' 6,5 the truncated filter, as

ho, (n) |n| <re—r
g, (n) =

0 otherwise

Therefore
— K 1/2
2\(2 7 R- r, (R 5
e, Y)| < — . E ZH g, ()= g ()|
k=1 T

The 1nner sum can be written 1n the frequency domain. That
1S,
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K

V2 xR -7, R
=K - R : Z[Z Ha (0 - HE O
[=—R

k=1

(22)

1/2

|€r€£(-xa y)l

where Hg and H' o, are the Fourier transform ot hg and h' 0,5
respectively.

In order to calculate the upper bound of the error in
standard filter backprojection method we replace hg in (22)
by the ramp filter (2). The upper bound for the error in the
reconstructionof wavelet and scaling coeflicients can be
obtained by replacing Hg in (22) with (19). In our algonthm
the scaling and wavelet coefficients at resolution 2~ are
reconstructed directly from the projection data. The recov-
ered coellicients are then filtered by the reconstruction filters
(130 to obtain the original image. To consider the effect of
the wavelet reconstruction filter bank 1n the error upper

bound, we move these filters to the projection domain, 1.¢.,

K

Z Z ‘Egk (3)‘
=R

k=1

(23)

2\{5?? \/R—rﬁ.

K R

|€re.!(-xa y)l =

R , 1/2 R , 1/2 R . 1/2
1 2 3
(Sl | el | oY eger|
[=—R [=—R [=—R
where

B, (D=Fg,()-F* 4,(1)

EZ k(D)=Fo, (-F?" o (), i=1, 2, 3

where F*g —HA HA Al cos 6,1 sin §) and FD —HD HD (1
cos 0,1 sin 0), with H* ,,HJD 0, H”', and HJD bemg the
rampled scaling and wavelet filters (19) S HD , H” .
and H”’, the wavelet reconstruction filters (13) and F* 0,
F’D 0,5 1—1 2, 3 the truncated version of the filters F’*B and
Fo o,» 1=1, 2, 3. The normalized upper bound of the relative
€rror 1n the reconstructed 1mage, versus the amount of
non-local data (r_-r;), is depicted in FIG. §. These bounds
are given by (22) and (23) for the standard filter backprojec-
fion method and the novel algorithm, respectively. The
horizontal axis in FIG. § shows the amount of non-local data
that 1s collected 1n order to reconstruct the region of interest.

D. Interior Problem

The interior problem 1n even dimensions i1s not uniquely
solvable, since there are non-zero functions which have zero
projections on the ROE. Clearly, the novel algorithm will be
unable to reconstruct such a function. It has been noted that
these functions, which are in the null-space of the interior
problem, do not vary much well inside the ROE (as Natterer
explains, supra).

To 1llustrate this, an element of the null-space 1s recon-
structed and the variation of this element on the ROI 1is
measured. Assume that the ROI 1s the interior 32 pixels of
the 1mage and ROE 1s the ROI plus a margin of 22 pixels 1n
cach side. This margin shows the amount of nonlocal data
used in the reconstruction scheme. FIG. 7(b) shows a slice
of a circularly symmetric element of the null-space. The
projection of this element for each angle 1s shown 1n FIG.
7(a). The projections are zero inside the ROE, which is the
interior 76 pixel of the projections, and one 1n 16 pixels at
cach side of the ROE. The measured maximum variation of
the null-space on the ROI 1s less than 1 percent. Two
measurement criteria are considered for the error in the local
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reconstruction: the maximum error and the average error.
Since 1n the mvention’s approach most of the error occurs in
a small ring at the boundary of the region of interest, the
average error 15 an order of magnitude smaller than the
maximum error. The maximum error and the average error
of the null-space element on the ROI versus the amount of
nonlocal data (the diff

erence of the radius of the ROE and
ROI) is shown in FIG. 8. The size of extra margin to collect
the non-local data 1s determined depending on whether the
average error or the maximum error 1s to be limited. In order
to limit the maximum error to 1%, we require a margin of 22
pixels, and 1n order to limit the average error to 1%, we
require a margin of 12 pixels.

In the following Section E a method 1s described to reduce
the error at the boundaries of the ROI. In consequence, the
amount of error 1s much smaller than the upper bound
predicted by the null space element energy 1 the ROI. In
Section H, simulation results presented document that the
reconstruction of the ROI using only 12 pixels of extra
margin results 1n a reconstruction with negligible error 1n the
ROL.

Here the amount of exposure versus the size of ROI 1s
calculated 1n the method of the invention and compared to
previous methods. Let the support of reconstruction filters 1n
the wavelet filter bank be 2r, samples. Assume an extra
margin of 2r, samples in the projection domain, and denote
the radius of the region of interest by r.. The radius of the
region of exposure 1s r _=r+r, +r, pixels. The amount of
exposure 1n the mvention’s algorithm normalized to the full
exposure 1s given by

Ve by + 1
R

The amount of exposure in this algorithm with r,_+r =10
pixels and r, +r =22 pixels 1s plotted in FIG. 6.

In comparison, the amount of exposure using the
Delaney/Bresler algorithm, supra, 1s given by

L.
.+ 1., + R
L —g+lf T m :
+ 274 ( ]
Z R

g=1

where L 1s the number of levels 1n the wavelet filter bank.
Similar exposure 1s required i1n the DeStefano/Olson
algorithm, supra. FIG. 6 shows the relative amount of
exposure versus the size of the region of interest 1n a
256x256 1mage for r, +r,=12 pixels for these methods. Also
the amount of exposure for the algorithm used 1n Olson,
supra, 1s plotted for comparison. All of the exposures 1n FIG.
6 are divided by two 1f mnterlaced sampling 1s used.

E. Practical Considerations

In local reconstruction, artifacts are common close to the
boundary of the region of exposure. To illustrate this, and
with reference to FIG. 13, consider the Shepp-Logan head
phantom and an ROE of diameter 32 pixels at the center of
the 1mage. The projections outside the ROE are set to zero
(FIG. 9(c)) and filtering part of the filter backprojection
formula (2) 1s applied to the remaining projections. FIG.
9(d) shows the artifacts that appear at the borders of the
region of exposure. When the backprojection formula 1is
applied to the filtered projections, these artifacts cause large
errors at the borders of the region of exposure in the
reconstructed 1mage.

In order to avoid the artifacts, the projections are extrapo-
lated continuously to be constant on the missing projections.
The extrapolation scheme 1s the same even when the region
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of exposure 1s not centered. Let the region of exposure,
which is the subset of projections on which R,f is given, be
a circle of radius r, whose center 1s located at polar coor-
dinates (r,0,), 1.e.,

ROE: {s:s€[r cos (0-0,)-r,, r cos (0-0,)+r.]}. (24)
We use the constant extrapolation
[ Rols) if s e ROE (25)

(Ro)pcat () = Rg(rcos(@—8y) +r, if s € [rcos(@—0y) +r,, +00) .

| Rg(rcos(@—6y) —r, 1t s € (—o0, rcos(@ —8y) — r,]

FIG. 9(¢e) and FIG. 9(f) show an extrapolated projection and
its ramp-filtered version (2), respectively. When the ramp
filer 1s applied to the extrapolated projection, there 1s no
spike at the edge of the region of exposure. The comparison
with the ramp-filtered version of the projection using global
data (FIG. 9(b)) shows that the filtered projection has a
constant bias different compared to the one using global
data. This 1s natural 1n local tomography and, after back-
projection of all projections, 1t appears as a constant bias in
the locally reconstructed image (as the works of Natterer and
of Louis/Rieder, both supra, have recognized). Natterer, for
example, suggests to estrapolate the data outside the region
of 1nterest using a minimum norm approach which has the
same effect on the artifacts (cf. FIG. VI.8 in Natterer, supra).

F. Implementation of the Algorithm to Reconstruct and
Image

We assume the support of the image 1s a disc of radius R,
and the radius of the region of interest 1s r;. Aregion of radius
r_=r,+r,+r, 1s exposed, where r, and r_are the extra margins
due to the support of the decomposition filters in the
projection domain and the reconstruction filters in the 1mage
domain, respectively. Suppose the projections are sampled at
N evenly spaced angles.

Referring again to FIG. 13, there 1s presented a flow chart
showing the steps of the method of the mvention when the
wavelet 1s applied to local, or region-of-interest (ROI) data.

1. The region of exposure of each projection 1s filtered by
modified wavelet filters (19), at N angles. The com-
plexity of this part, using FFT, 1s 9/2Nr_ log r..

2. The bandwidth of the projections i1s reduced by half
after filtering with modified scaling filters. Hence we
use N/2 of the projections at evenly spaced angles.
These projections are extrapolated to 4r_ pixels, using
(25), and are then filtered by modified scaling filters.
The complexity of filtering part using FFT 1s 3N(4r )
log 4r..

3. Filtered projections are obtained in step 1 and 2 and are
backprojected to every other point, using (16), to obtain
the approximation (17) and detail (18) coefficients at
resolution 27'. The remaining points are set to zero.
The complexity of this part, using linear interpolation
is 7N/2(r42r,)".

4. The 1mage 1s reconstructed from the wavelet and
scaling coefficients by (12). The complexity of filtering
is 4(2r,)"(3r,).

The above description assumes that the data 1s collected
in a parallel beam format. The algorithm of the invention is
equally applicable to fan-beam data. Referring now to FIG.
14, there 1s presented a flow chart showing the steps of the
method of the invention for the described algorithm as
applied to fan-beam data. Since fan-beam data 1s known to
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those skilled m this art, i1t 1s unnecessary to detail its
characteristics here. See for example “Local Tomography in
Fan-beam Geometry Using Wavelets,” supra.

G. Comparison with Conventional Reconstruction

The complexity of the filtering part of the described
algorithm has been compared with the filtered backprojec-
tion method and the algorithm taught by Delaney/Bresler,
supra. FIG. 10(a) shows the complexity of each method as
a Tunction of the radius of the region of interest. The
complexity of the algorithm presented herein and the algo-
rithm proposed by Delaney/Bresler are both less than the
standard filtered backprojection method when the size of the
ROI 1s small. But as the radius of the ROI 1s increased, the
complexity of both algorithms exceeds that of filtered
backprojection, since 1n both methods filtering has to be
applied for different resolutions. However, the complexity of
this invention’s algorithm 1s smaller than Bresler/Delaney’s
algorithm because of smaller length of projections. If linear
interpolation 1s used at the backprojection part, the total
complexity depends on the backprojection part which is
almost the same in all of the above methods. FIG. 10(b)
shows the total complexity of different methods. If 1n the
backprojection step another method 1s used, like the nearest
neighbor, the total complexity mostly depends on the filter-
ing part and this 1nvention’s algorithm can reduce the
complexity compared to the method 1in Delaney/Bresler.

H. Simulation Results

We have obtained the wavelet and scaling coeflicients of
the 256x256 pixel image of the Shepp-Logan head phantom
using global data (FIG. 11). In this decomposition, the
Daubechies’ biorthogonal basis was used (table III of
Antonini/Barlaud/Mathieu/Daubechies, supra). The quality
of the reconstructed image 1s the same as with the filtered
backprojection method. An example 1n which a centered
disk of radius 16 pixels 1s reconstructed using the local
reconstruction method described 1n this disclosure. The
blow up of the ROI using both standard filtered backprojec-
tion using global data and local reconstruction for compari-
son was examined. In this example the projections are
collected from a disk of radius 28 pixels. Therefore, the
amount of exposure 1s 22% of the convention filtered
backprojection method. We have observed a constant bias 1n
the reconstructed 1mage which 1s natural in the interior
reconstruction problem (confirmed by Natterer, and Louis/
Rieder, both previously cited). In the above example, the
mean square error between the original image and the
locally reconstructed 1image after removing bias 1s computed
over the region of interest.” The error energy in the recon-
structed 1mage 1s the same as that when using the filtered

backprojection method with full exposure data.
“The means square error is calculated using this equation

2.

(n.mhiinm=sROS

| 2

(f(n, m)= f(n, m))

where J is the original image, f i1s the reconstructed image
with the constant bias removed, and N 1s the number of
pixels 1n the ROI.

The disclosed method 1s applied to the real data obtained
from a CT scanner. In the local reconstruction even with 12
pixels extra margin, the reconstructed 1mage has the same
quality as the filtered backprojection method. A 1024x1024
scan of heart reconstructed from projections was sampled at
720 angles over 180 degrees with each projection consisting
of 1024 samples covering a reconstruction diameter of 47.5
cm. Using the described algorithm, a local centered region
of radius 128 pixels of this scan has been reconstructed by
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using only 27% of exposure. The reconstruction in the
region of interest 1s as good as what can be obtained using
the filtered backprojection method which 1nvolves global
data and 100% exposure. The blow up of the region of
interest reconstructed by (1) the invention’s local method
and (2) the global standard filtered backprojection method
was compared.

In order to make an accurate comparison with other
methods, most notably those described by DeStefano/Olson,
Delaney/Bresler, and Olson, consider two measurement cri-
teria for the error in local reconstruction, (a) the maximum
relative error (21) and (b) the average relative error. Since
most of the error 1in our reconstructions occurs in a small ring
at the boundary of the region of interest, the average error 1s
an order of magnitude smaller than the maximum error. This
determination 1s based on the examination of a typical
clement of the nullspace of the interior Radon transform.
Based on the examination of this element, and on other
considerations, we f1x the size of the margin outside of the
region of 1nterest on which we collect data. In order to limit
the maximum error to 1%, a margin of 22 pixels 1s required,
and 1n order to limit the average error to 1%, a margin of 12
pixels is required (FIG. 8). Since extrapolating is being done
in addition to collecting non-local data, the actual error is
much smaller than the values predicted by examining the
nullspace element. Hence, the 1% average error criterion 1s
the most reasonable 1n light of the nature of this disclosed
algorithm. Therefore, the 12 pixel margin 1s used in the
simulations, but comparisons are also reported based on the
22 pixel margin.

Accordingly, the described algorithm reconstructs the
wavelet and scaling coeflicients of a function from its Radon
transform. Based on the observation that for some wavelet
bases with sufficiently many zero moments, the scaling and
wavelet functions have essentially the same support after
ramp filtering, a local reconstruction scheme has been devel-
oped to reconstruct a local region of a cross section of a body
with essentially local data. An upper bound for the local
reconstruction error 1s obtained 1n terms of the amount of
non-local data which 1s used 1n the reconstruction scheme.
Non-uniqueness of the interior problem appears as a con-
stant bias 1n the reconstructed image. The measured error
between the original 1mage and the reconstructed image
after removing this bias 1s negligible. This fact shows that 1f
a sufficient amount of non-local data 1s used in the
reconstruction, this bias 1s reasonably constant on the region
ol interest.

It 1s also envisioned that the present invention may be
used 1n conjunction with existing wavelet-based 1mage
processing algorithms including but not limited to 1mage
compression, noise reduction, edge detection, or singularity
detection as a means of more accurately and efficiently
constructing the wavelet transform of an 1mage directly from
the tomographic data without first reconstructing the i1mage.

It 1s further envisioned that the present invention may be
implemented 1n a format other than in software as presently
contemplated. Current and new technology development
may, for example, make practical the layered deposition 1n
integrated circuitry of the disclosure of this invention.

Although the 1nvention 1s described with reference to the
presently preferred embodiments, 1t 1s understood that the
invention as defined by the claims 1s not limited to these
described embodiments. Various other changed and modi-
fications to the invention will be recognizes by those skilled
in this art and will still fall within the scope and spirit of the
invention, as defined by the accompanying claims.
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We claim:

1. A method for processing data form a tomographic
system to obtain an 1mage of an object comprising the steps
of (a) collecting tomographic data from a CT scan of said
object; (b) processing said tomographic data to obtain
sampled parallel beam data (c) computing modified wavelet
and scaling filters; and (d) processing said sampled parallel
beam data using said modified wavelet and scaling filters to
construct an 1mage of said object.

2. A method of claim 1, wherein said object 1s contained
within a larger body.

3. A method of claim 1, wherein said output 1s displayed
as an 1mage of said object.

4. Amethod of claim 1, wherein said tomographic data (b)
1s selected from a larger data set obtained from said CT scan.

5. An apparatus for producing an 1mage of a region
contained within an object, said apparatus comprising: (a) a
radiation source focusable on a region contained within an
object and producing a focused radiation beam; (b) a recep-
tor means for receiving said radiation beam form said
radiation source, said radiation beam having passed through
said region positioned between said radiation source and
said receptor; (c) a converter means for converting said
received radiation beam at the receptor to digitized data; (d)
a computer means connected to said converter means com-
prising data processing means for converting said digitized
data into a visual image; and (¢) an output means connected
to said computer means for displaying the output of said data
Processing means.

6. An apparatus of claim 5, wherein said data processing
means 1S a computer source code.

7. An apparatus of claim 5, wherein said data processing,
means 1s a logic circuit.

8. An apparatus of claim 5, wherein said focusable

radiation source 1s effective to aim a fan-beam from said
radiation source at said receptor means.
9. An apparatus of claim 5, wherein said radiation source

1s an X-ray Source.
10. An apparatus of claim 5, wherein said region com-

prises an edge.

11. An apparatus of claim 5, wherein said data processing
means comprises wavelet and scaling filters.

12. An apparatus for producing an image of an object:

(a) a radiation source producing a radiation beam;

(b) a means for collecting data from said radiation source,
whereln said data 1s collected after said radiation beam
has passed through said object;

(¢) a first means for computing wavelet and scaling filters;

(d) a second means for processing said data using wavelet
and scaling filters effective to construct an image of
said object; and

(¢) a display means for displaying an image said object.

13. An apparatus of claim 12, wherein said data 1s
collected as parallel beam data.

14. An apparatus of claim 12, wherein said data 1s
collected as fan-beam data and said system further com-
prises a third means for converting fan-beam data into
parallel beam data, which parallel beam data 1s processed
using wavelet and scaling filters by said second means.

15. An apparatus of claim 12, wherein said radiation
source 1s focusable to produce a focused radiation beam.
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