US005950000A
United States Patent .9 111] Patent Number: 5,950,000
O’Leary et al. 45] Date of Patent: Sep. 7, 1999
[54] INTEGRATED OF A THIRD PARTY 5,710,926 1/1998 Maurerccooevvevevnnevvevvennnnnnn. 395/701
SOFTWARE TOOL. 5,754,858 5/1998 Broman et al.c.ooceenineninenl 395/701
5,758,160 5/1998 Mclnerney et al.ooeeeeeeenennens 395/701
|75] Inventors: Daniel J. O’Leary, Mountain View; gsggizggg 2? ggg ge“'s?at‘t:_haf ----------------------------- 34;%73@
: - , 764, 1 eJ1 130 F:11 1 AR
David A. Nelson-Gal, San Francisco, 5.765.162 6/1998 Blackman et al. wo.......oooooooo.... 707/103
both of Calif.
| _ | Primary Fxaminer—James P. Trammell
[73] Assignee: Sqn Mlcrpsystems, Inc., Mountain Assistant Examiner—Matthew Smithers
View, Calif. Attorney, Agent, or Firm—Sabath & Truong; Robert P.
Sabath; John F. Schipper
21] Appl. No.: 08/761,547 (57] ABRSTRACT
22| Filed: Dec. 6, 1996 .
cel TR e Methods, systems, and computer program products for inte-
51] Inmt. CLO e, GO6F 17/50 orating third party tools of an integrated software environ-
52] US. Cli oo 395/701 ~ ment with an integrated environment manager. The graphi-
58] Field of Searchooooooovoovoovooo.. 395/701; 345/333, cal user interface of the integrated environment manager 1s
- 345/334, 335, 348 augmented with an 1con representing a selected third-party
tool. Pulldown and pullright menus are controlled to show
[56] References Cited objects and files which have been used recently and by
which tools. The tools and the integrated environment
U.S. PATENT DOCUMENTS manager communicate through inter-process messaging to
5,220,675 6/1993 Padawer et al.ccccoooorrver... 345333 ~ coordinate control of picklists in menus of the integrated
5,361,360 11/1994 Ishigami et al. ..oovveeveeveennn. 395/712 environment manager and the tools mtegrated therewith.
5,642.511 6/1997 Chow et al. ..oceovvveiniiinnnnnnnn, 395/701
5,671,415 9/1997 HOSSAIN ..oovvvevvviiineiiniieeieneennnnen 395/701 25 Claims, 10 Drawing Sheets
RECEIVE
COMMAND
ICON SELECTED OPEN DELETE ICON ADD ADD OR
FOR APPLICATION | REQEUST REQUEST SELECTED FOR SELECTED | DELETE
THAT DOES NOT FROM MENU FROM MENU APPLICATION FROM MENU| REQUEST
SUPPORT "OPEN"; WHICH FROM A TOOL
OR NEW SELECTED SUPPORTS
FROM PU’EN-[J " OPENH
Y Y Y Y Y
LAUNCH FIND FILE DELETE ENTRY AND LAUNCH DETERMINE MODIFY LIST OF
CORRESPONDING REQUESTED BY BROADCAST ENTRY | [CORRESPONDING SELECTION CORRESPONDING
APPLICATION USER IN FILE TO BE DELETED IN APPLICATION FROM FILE APPLICATION
DIALOG OTHER TOOLS USING FIRST DIALOG
ENTRY IN
LAUNCH ADD ENTRY TO
CORRESPONDING ING
APPLICATION FOR CORREEII;(;I)’ND
OPENED FILE BROADCANST
ENTRY TO OTHER
TOOLS BROADCAST
ADD ENTRY TO ENTRY TO OTHER
CORRESPONDING TOOLS

LIST

BROADCAST
ENTRY

TO BE ADDED BY

OTHER TOOLS

5,950,000

Sheet 1 of 10

Sep. 7, 1999

U.S. Patent

> 001

5,950,000

Sheet 2 of 10

Sep. 7, 1999

U.S. Patent

vIc

(‘TVNSIA)
TOOL ADVAIAINI
MASN TVIOIHAVED

Z bl

0t
INHLSAHS DNLLVHAdO

" _
m 712 907 70T 002 m
-] 4ASMO¥d TOOL YADOVNVIA | |
" SSVID IAIVIN _ dO11d4d AdI | m
_III.I.IIIIIIIIIIIII.lIIIIIIIIIIIIII\ II =
10T
661 e

U.S. Patent Sep. 7, 1999 Sheet 3 of 10 5,950,000

300 310 310 310

\ /?j)i— 7324 ;)4 304 -Y-I) -A_I/ l:I/

FILE BUILD DEBUG BROWSE

\En1! }Btzl B3| [Bl4
308 308

308

06

5,950,000

Sheet 4 of 10

Sep. 7, 1999

U.S. Patent

90t

474 %

1A IVIN ALVIANTD STOYLNOD dTd L7

e ——————— 80¢ 30t

20y STOOI dsmodd ongad aTNd

€dl| |zdl] |idl
0t

140)%

14013 POt 140)3

14033

5,950,000

Sheet 5 of 10

Sep. 7, 1999

U.S. Patent

90¢

0§

G

AYINA NV HAOWHY

X ddv/DdS/1Vd/TNOH/

axX ddV/DuS/1V /TNOH/

NddO

POS N\

MAN

DI

<] €100l dL

£dL

m@@, wow.

<] YAZATYNY
<] TVNSIA
1001 V IAONTI

—

1001 vV ddV
STTO0L

Mmkwomm DNgdd

FW \ i

14013

S0¢ S0¢
S »lJ
a1iNng 11 |

5,950,000

D14

Sheet 6 of 10

- RUING NV dAONTY
TILATIVIN/ONGAAd/1LV /TNOH/
TTLIDIVIN/OIS/LV I/TANOH/NI ddV

tar| [car] [rar “ AAINA aaV ﬁ

m @ E S 7001 aSmodd Hngdd qund F1d

Sep. 7, 1999

U.S. Patent

5,950,000

/ bl

Sheet 7 of 10

AdINA NV AAOWHA
cddvV/ONddd/LVd/ANOH/

ddV/D¥S/LVd/ANOY/ |
NAdO

Sep. 7, 1999

30t 80t

20t [car] [car] [rar] MAN %
%ﬂl F % Wwomm NDNgdd W.WSM AT

14417 14043 14033 14033 14013

L4

U.S. Patent

5,950,000

Sheet 8 of 10

Sep. 7, 1999

U.S. Patent

90t

8

“INOYd SLNHNTYHdXH/HAOWHY

a4 1" LSdL

08

td.L

S| N

DI

<] €I100LdlL
<] MAZATYNV

< IvNSIA
T00L v HAOWHY i S G
1001 V Qv [vig] [cg] [zig] [us
S100I dasmoud ongad aqund gTd
bOP bOE yOg bOE OE

U.S. Patent Sep. 7, 1999 Sheet 9 of 10 5,950,000

START IPE MANAGER, BUILD MENUS FOR INTEGRATED 902
TOOLS, AND ADD ICONS TO ICON PALETTE.

READ CONFIGURATION FILES FOR REGISTERED 904
THIRD-PARTY TOOLS.

BUILD MENUS FOR REGISTERD THIRD-PARTY TOOLS. 906

908
NO

WORKSETS
SUPP(gRTED

YES

910~/ LOAD REFRENCES TO RECENTLY USED OBJECTS
INTO PICKLISTS OF MENUS FOR THIRD-PARTY AND
INTEGRATED TOOLS.

912 INVOKE THIRD-PARTY AND INTEGRATED TOOLS, OPEN
FILES. CREATE NEW FILES, AND ADD/DELETE
REFERENCES, AS REQUESTED.

14 RECEIVE SHUTDOWN REQUESTS

916
NO

WORKSETS
SUPP(%RTED

YES

920_] WRITE REFERENCES TO RECENTLY USED OBJECTS
TO WORK/SET FILE

&
Fig. 9

5,950,000

Sheet 10 of 10

Sep. 7, 1999

U.S. Patent

0L bi4

STOOL ¥HHLIO |
A9 qdAqyv 74 OL
AMINT |
1Svoavoud
LSIT |
STOOL DONIANOdSHIHOO |
YHHIO OL AYINA OL AYLNH Aav
1Svoavodd | STOOL
YHHLO OL AYINA
1STT Ly avor MO NOLLYOTIddV
ONIANOJSTITIOD ONIANOISHIIOD
OL AUINH dav TTAVIVA HONNVT
V SV LSI'TIDId
NI LY INA
DOIVIA 1SIId ONISN STO0L YdHIO DOIVIA
NOLLVOI'lddV T WOYA NOLLVOI'lddV NI Q413740 39 OL 04 NI ¥48SN NOLLVOr1lddV
DONIANOdSTIIOD NOLLOATHS ONIANOdSTNIO0D | | AULNA ISVOAVOodd | | A9 ALSANOTY | | ONIANOISTIAOD
10 LST'1 AAIAONW ANDAIALAA HONNV'] ANV AYINA 41973d T4 ANIA HONNV'T
) A A
NAdO, NNAW WO
SIOddNS AALOT TS MAN ¥O
TO0L V WOUA HOIHM N2dO. 1d0ddNS
LSANOTY |NNIN WOYA NOLLVOI'TddV NNAN WO¥A ANAN NOYA | LON SH0d LVHL
1T | QILOFTAS ¥04 QILOFTAS LSHNOTA LSNAOTA | NOILVOIr'lddV 04
d0 Aav aav NOOI | Ak g (el NAdO | daLDFTAS NOOI
ANVININOD
cINERER

5,950,000

1

INTEGRATED OF A THIRD PARTY
SOFTWARE TOOL

CROSS-REFERENCE TO RELATED
APPLICATTION

Related applications include “METHODS, SYSTEMS,
AND COMPUTER PROGRAM PRODUCTS FOR
STORING, LOADING ANALYZING AND SHARING
REFERENCES TO RECENTLY USED OBIECTS,” US.
patent Ser. No. 08/761,546 to Daniel J. O’Leary and Robin
Jeflries and “METHODS, SYSTEMS, AND COMPUTER
PROGRAM PRODUCTS FOR CONTROLLING
PICKLISTS,” U.S. patent Ser. No. 08/759,654 to Daniel J.
O’Leary. Both applications are filed on even date herewith,
and their contents are expressly incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to the field of software
development environments and more particularly to
methods, systems, and computer program products for inte-
orating third party tools into an integrated programming
environment (IPE) which supports control and data integra-
tion.

BACKGROUND OF THE INVENTION

Current non-integrated software development environ-
ments are of limited support 1n completing software devel-
opment projects. A lack of transition support between the
development environments and the disconnected tools slows
completion of projects. Inadequate integration includes
inability to access particular software development tools,
inability to track tool objects used and relied upon, and
inability to track the impact of tool actions upon subse-
quently used software development tools. One kind of
access problem occurs in ftransitioning from building a
particular program to debugging it. If after building a
particular program, debugging 1s desired, a completely dit-
ferent program invocation must separately be undertaken. It
the user forgets the debugger name or location, the transition
between building and debugging 1s blocked and software
production stops.

Inefficiency and ineffectiveness further result when a
particular programming environment fails to track objects
pertaining to a recently used software tool. Text-based
compilers, for example, do not remember most recently
compiled files. Graphical tools similarly do not track file or
macro objects which were recently used. The user 1s thus
forced to enter particular object references for the earlier-
used tool by manipulating a file chooser dialog box, for
example, each time a follow-on tool 1s 1nvoked. Thus, if a
user wants to add desired new buttons to a graphical user
interface (GUI) housed in an existing GUI builder file, the
user typically must first bring up the GUI builder and
“browse” its file hierarchy to get the path to the GUI builder
file. This takes time and creates errors, consuming valuable
rESOUrces.

Tool tracking problems further occur when a tool per-
forms an action such as creating a file as a prelude to
follow-on action by another tool. Multiple tools need to
interact, such as when a make tool invokes a compiler linker
to produce a program to be separately debugged. Tool
interdependence 1s palpable when a collector produces an
experiment to be processed separately by an analyzer, or
when a GUI builder produces a make file to be processed

10

15

20

25

30

35

40

45

50

55

60

65

2

separately by a make tool. The first acting tool does tradi-
tionally not inform follow-on tools operating on newly
created objects of results of earlier processing. Accordingly,
the user must 1ntervene to specify applicable objects and
object information tool by tool. In the meantime, the follow-
on program tool languishes unproductively.

Known integrated software development environments
such as Symantec’s integrated C development environment
or Borland’s Turbo C environment, permit invocation of tool
sets. However, the sets of tools invoked in such environ-
ments are pre-specified and already integrated within an
applicable development environment by the creator of the
development environment ab 1nitio. The mntegration of addi-
tional tools which a user may want to use 1n connection with
the particularly selected integrated software development
environment 1s not permitted. A Sun Microsystems product
called SPARCworks Manager, for example, puts severe
restraints on third party tool integration. Limited integration
of this product exists to allow centralized tool mvocation
and coordination between particular tools and a small set of
actions including Restore, Minimize, Hide and Show mes-
sages. In X Windows, messages are sent by a window
manager to applications to inform them that an X Windows
session 1s ending. However, such minor information passing
1s of limited significance.

SUMMARY OF THE INVENTION

According to the present mnvention, third-party tools are
included 1n an mtegrated programming environment having
an 1nter-process messaging capability which distributes
imnformation from a first tool to other tools, when the first tool
references or creates particular objects. According to an
embodiment of the present invention, a micCroprocessor 1s
operable according to software code for registration of third
party tools and performance of inter-process communica-
tions to coordinate tool references to corresponding objects,
to inform other tools when a first tool has generated a new
object or reference to an object, and to integrate third party
tools into a graphical user interface (GUI) for an integrated
programming environment (IPE) manager.

According to the present invention, an integrated pro-
cramming environment tracks how a software developer
uses particular software programming environments, how
the developer anticipates future user requests, and how the
developer provides a flexibly and extensively customizable
environment for tools to become available 1n the future.
These and other aspects of the present invention will become
clear to those skilled in the art 1n view of the description of
the best presently known mode of carrying out the invention
and the industrial applicability of the preferred embodiment
as described herein and as illustrated 1n the several figures of
the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic illustration of a current computer
system for performing the method of the present invention;

FIG. 2 1s a block diagram of an integrated programming,
environment;

FIG. 3 1s a schematic illustration of a graphical user
interface of an integrated programming environment for
operation of the present invention before any third-party
tools have been added,;

FIG. 4 1s a schematic illustration of a graphical user
interface of an integrated programming environment accord-
ing to the present invention after three third-party tools have
been added in accordance with the present invention;

5,950,000

3

FIG. 5 1s a schematic 1illustration of a graphical user
interface of an integrated programming environment 1n
accordance with the present invention after the Visual
ographical user 1nterface tool has been selected from the third
party Tools menu;

FIG. 6 1s a schematic 1illustration of a graphical user
interface of an integrated programming environment 1n
accordance with the present invention after the build tool has
been selected from the portion of the menu bar reserved for
integrated applications;

FIG. 7 1s a schematic 1illustration of a graphical user
interface of an integrated programming environment 1n
accordance with the present invention after the debug tool
has been selected from the portion of the menu bar reserved
for integrated applications;

FIG. 8 1s a schematic 1illustration of a graphical user
interface of an integrated programming environment 1n
accordance with the present invention after the Analyzer tool
has been selected from the third party Tools menu;

FIG. 9 1s a flowchart showing the method of using an
integrated programming environment in accordance with the
present mvention; and

FIG. 10 1s an 1llustration of a decision tree showing
commands to which an integrated programming environ-

ment responds 1n accordance with the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 1s a schematic illustration of a computer system
100 for tracking references to recently used objects and for
integrating third party tools into a graphical integrated
programming environment(IPE) according to the present
invention. Computer system 100 includes a computer hous-
ing 102 which contains a motherboard 104 holding a central

processing unit (CPU) 106, a memory 108, such as DRAM,
ROM, EPROM, EEPROM, SRAM and Flash RAM, con-
nected to CPU 106, and other optional special purpose logic
devices, application specific integrated circuits (ASICs), and
configurable logic devices such as GAL and reprogram-
mable FPGA. Computer system 100 also includes a display
card 110, a hard drive 112, a disk drive 114, a disc drive 118,
a compact disc 119, a monitor 120, and nput devices such
as a keyboard 122 and mouse 124. Display card 110 controls
monitor 120. Other removable media devices including
removable magneto-optical media (not shown) and other
fixed, high density media drives can be interconnected with
computer system 100 with an appropriate device bus such as
a SCSI bus or an Enhanced IDE bus. Although compact disc
119 1s shown 1 a CD caddy, 1t can be inserted directly into
CD-ROM drives which do not require caddies. Also con-
nected to the same or other device bus are high density
media drives (not shown). Computer system 100 may addi-
tionally include a compact disc reader/writer unit (not
shown), and a compact disc jukebox (not shown). Further, a
printer (not shown) can be connected to provide printed
listings of any of the referenced objects (e.g., files) used in
the mtegrated software environment. Computer system 100
further includes at least one computer readable medium.
Examples of computer readable media usable in connection
with the present invention are compact discs 119, hard disks
112, floppy disks, tape, magneto-optical disks, PROMS,
EPROM, EEPROM, Flash EPROM, DRAM, SRAM, and
the like. Stored on any one or a combination of selected
computer readable media, according to the present
invention, 1s software for controlling both the hardware of
computer system 100 and for enabling computer system 100

10

15

20

25

30

35

40

45

50

55

60

65

4

to 1nteract with a human user. Such software 1n accordance
with the present invention may include, but 1s not limited to,
device drivers, operating systems and user applications, such
as development tools. Such computer readable media further
include computer program products 1in accordance with the
present nvention for tracking references to recently used
objects and for integrating third party-tools into an inte-

grated program environment (IPE).

The present 1invention 1s implemented on computer sys-
tem 100 as implements the creation and maintenance of
programs 1n an integrated programming environment using
selected tools and facilities including an editor such as, for
example, a vi editor, an Emacs editor, or a text tool editor),
or other facilities including an assembler, a compiler (e.g., a
compiler for C, C++, or Fortran), a linker, a make utility, a
debugger, a profiler, a graphical user interface tool, and a
version control system. The complexity of handling large
software projects requires computer assistance for software
maintenance 1n an integrated programming environment or
“Workshop,” which combines the individual tools under the
control of an IPE manager. Integration eases transitions
between separate kinds of programming tasks. According to
the present invention, integration of software-based suite
environments, mcluding suites of applications such as a
Lotus SmartSuite-type environment, for example, 1s
facilitated, to assist manager control of multiple applications
and coordination of data sharing between various end-user
selected software applications. According to the present
invention, coordinating and controlling application 1s an
environment manager which includes a central graphical
user interface (GUI). User level applications are referred to
herein as environment applications, distinguishing them
from the pure software development environment and from
the tools or applications used for software development. The
terms “tool” and “application” herein are used
interchangeably, and they refer to both binary representa-
tions of the files atfected, and to the process which 1s loaded

and scheduled on the CPU.

FIG. 2 1s a process block diagram representing tools used
in development of computer software applications 1n an
integrated programming environment (IPE) according to the
present invention. IPE 199 includes an IPE manager 200 and
an operating system 202, and selected development tools
including an editor 204, a make tool 206, a compiler linker
208, a debugger 210, a class browser 212, a graphical user
interface (GUI) builder 214, and an analyzer (not shown).
IPE manager 200 includes a graphical user interface (GUI)
300 shown 1n FIG. 8. Of these tools, IPE manager 200, make
tool 206, compiler linker 208, debugger 240, and class
browser 212 are part of selected integrated tools 201 of
integrated development environment 199. Each of these
tools 1s “bundled” with IPE manager 200 which has been
informed a priori of the capabilities of the respective tools.
File editing 1s central to software development, and many
software development systems 1nclude a selected editor 204
through which a user can specity a preferred editor. Each
such editor 1s an integrated tool 201 of IPE 199. A typical
maintenance cycle for a software project begins by editing
a source file to correct particular errors and to add code
enhancements. Creating a new file version sets off a chain of
events mcluding invocation of make tool 206 to determine
which files need to be recompiled and linked by compiler
linker 208, based on the edited source file, to create a new
program; and debugging the newly created program with
debugger 210 to test effectiveness of the program fix or
enhancement. This cycle 1s repeated several times until the
fix or enhancement 1s correct.

22

5,950,000

S

FIG. 3 shows a first window of graphical user interface
300 for IPE manager 200. IPE manager 200 includes inte-

ograted built-in 1icons BI1 through BI4. GUI window 300
includes imtegrated menu items 304 and an icon palette
region 306 including a plurality of integrated icons 308.
Integrated 1cons 308 represent the integrated tools 201

which are bundled with the IPE manager 200. GUI 300
further shows window control buttons 310 to control
minimizing, maximizing, and closing GUI window 300.
Although not shown, the frame of GUI window 300 can also
include a menu for controlling window manager functions
such as moving, sizing, minimizing, maximizing, and clos-
ing GUI window 300. IPE manager 200 also can be
extended to support a session, 1.€., a set of running appli-
cations under the control of a single IPE manager 300. Using
sessions, IPE manager 200 can implement a control protocol
fo cause all the applications 1 a session to “Restore,”
“Minimize,” “Hide,” “Show” and “Quit” simultaneously.

However, integrated tools 201 do not necessarily repre-
sent all the tools that a developer will use 1n building a
particular application. Other useful development tools such
as graphical user interface builder 214 and a database
manager (not shown) also assist in application development.
For convenience, all tools that are not integrated tools 201
will herein be collectively referred to as “third-party tools.”
These third-party tools may be sold by the same or a
different publisher as the mtegrated tools. In either case, 1t 1s
beneficial to integrate these third-party tools with IPE man-
ager 200 to avoid having to switch between IPE manager
200, when working with integrated tools, and a command
shell or X terminal, when working with the third-party tools.

The degree of integration varies according to the present
invention depending upon the degree desired. User access to
a publisher vendor’s tool may be suilicient integration. For
vendors willing to 1mvest 1n writing code, a tight level of
integration 1s achieved by writing “glue code” to ensure
reliability of third-party tool integration with IPE manager
200. Such custom integration can be achieved via vendor
libraries dynamically loaded by IPE manager 200 upon
invocation of corresponding tools from the 1con palette 306.
Third party developers can tightly integrate their applica-
tions with IPE manager 200 to match the specific needs of
several developers with different third-party tools. To allow
tighter integration of the IPE, third-party tool integration 1is
supported by extending the GUI window 300 of IPE man-
ager 200 1n accordance with the present invention by adding
icons and menu items. Thus, tools to be added register with
the IPE manager 200, and IPE manager 200 generates a
corresponding custom 1con 408 in 1con palette 306 for case
of mnvocation. Similarity, the menu bar 1s supplemented with
a “Tools” menu name item 404 which acts as the central
location for selecting third-party tools by menu. Registration
includes informing IPE manager 200 of the name of the
third-party tool to be added, informing IPE manager, 1n what
directory 1t 1s located, and informing IPE manager what icon
file should be added to the 1con palette 306 to represent the
tool 1n the i1con field.

To develop a GUI application by creating a new GUI
builder file, GUI 300 of IPE manager 200 1s supplemented
with a third-party “tools” menu 404 and third party buttons
408 (FIG. 4). IPE manager 200 is invoked to initially display
GUI 300. Then, GUI builder 214 1s invoked through a Tools
menu 404 located on GUI 300. The name of GUI builder 214
in this case 1s “Visual”. Using GUI 420 of GUI builder 214,
a shell or frame 1s created for the design, as well as a menu
bar 440 and work arca 444. The design 1s saved 1n a file

called “/home/pat/src/app.xd” by using file menu 424 of

10

15

20

25

30

35

40

45

50

55

60

65

6

GUI 420 of GUI builder 214. GUI builder 214 and IPE
manager 200 are then closed down.

FIG. 5 1s a schematic illustration of GUI 300 resulting
from the operations described above. When IPE manager
200 1s next brought up and the Visual menu item 1s selected
on Tools menu 404, on the pullright menu 504, there 1s a
menu 1tem with a reference to a file “/home/pat/src/app.xd”
created by Visual. The pullright menu further includes
entries labeled “New”, “Open . .. 7, and “Remove an entry”.
The “New” entries cause the IPE manager 200 to invoke
application Visual without command line parameters,
thereby indicating that Visual should start and generate a
new GUI file. The “Open . . . 7 entry speciiies that IPE
manager 200 should display a file chooser dialog box so that
the user can select a GUI file to be opened. Not all tools will
support the “Open . . . 7 entry. Tools that are not interactive,
such as the build/make tool 206, will have this entry omitted.
When a file 1s selected, the IPE manager invokes Visual and
specifies the selected file as a command line parameter. In
addition, the name of the selected file 1s broadcast 1n a
message so that applications which track references by
Visual, like the IPE manager 200 and other running copies
of Visual, can update their picklists and WorkSet informa-
tion accordingly. When selecting a file, a file type and file
filter are used to help reduce the number of files that the user
has to select from. The method of specitying the file type and
file filter are explained 1n greater detail below. The “Remove
an entry” 1indication specifies that the user wishes to remove
an entry from the picklist. This process removes a filename

and 1s described 1n more detail in co-pending U.S. patent
application Ser. No. 08/759,694, enfitled “METHODS,
SYSTEMS AND COMPUTER PROGRAM PRODUCTS
FOR CONTROLLING PICKLISTS”. In addition, the file
name of the entry which 1s selected to be removed 1s placed
in a message which 1s broadcast to other applications,
including Visual, to cause the applications to also remove
the entry from their respective picklist. Inter-process mes-
saging 15 described in greater detail below.

By selecting the menu item 3502, IPE manager starts
Visual and commands the previous day Visual to load the file
“app.xd” from directory “/home/pat/src.” Alter adding some
callbacks to the menu items and buttons, the “Generate

Makefile” feature shown 1n FIG. 4 1n the GUI 420 of the
GUI builder 214 1s invoked to create a makefile for the
application. The makefile 1s saved as “/home/pat/src/

Makefile™.

FIG. 6 1s a schematic illustration of the GUI 300 after the
GUI builder 214 generates a makefile. The Build entry on
the menu bar of GUI 300 is pulled down to disclose the
target of make “app 1 /home/pat/src/Makefile” as the top
reference on the build target picklist. In addition to saving
the makefile, Visual broadcasts the existence of the new
makedile 1n a message. When IPE manager 200 receives the
message, 1t 1s recognized as a message from a registered tool
and 1s added to the appropriate picklist. Next, the target
“app” 1s selected and the application builds using the com-
mands 1n the makefile corresponding to the target “app”.
Sclected syntax errors are fixed and build 1s reissued, either
by using the Build menu again, or by simply selecting the
BI2 Build button 308 on the 1con palette 306 of the GUI 300.
In general, when an integrated icon 308 or a custom 1con 408
1s selected, IPE manager 200 mvokes a corresponding
integrated or third-party tool using the top reference on the
corresponding picklist. For tools that do not support the
“Open . . . 7 syntax, the tool 1s invoked without any
additional parameters.

After a successtul build operation, debug of the program
1s undertaken. FIG. 7 1s a schematic 1llustration of the result

5,950,000

7

of successtully building the target “app” 1n “/home/pat/src/
Makefile”. The Debug menu 1s selected from the menu bar
and a reference to the program “/home/pat/src/app” appears
at the top of Debug picklist 702. This reference exists,
because the build tool broadcasts 1n a message the name of
cach target which 1s successtully built, if the target 1s an
application. As with messages received from Visual, IPE
manager 200 parses the message and adds the entry to a
corresponding picklist. This program 1s selected from the
picklist, and the debugger loads the program. Alternatively,
alteration of the BI3 Debug button 308 on the icon palette
306 on the GUI 300 additionally permits starting of debug-
ger to begin debut operation on the selected GUI application.

According to another embodiment of the present
invention, collector and analyzer tools in Workshop are
employed to analyze performance of a new application.
Accordingly, IPE manager 200 1s launched and the target
program 15 loaded into the debugger by selecting the BI3
debug button 308 on the icon palette 306 of GUI 300. To
collect performance data on the target application, the col-
lector window 1s brought up from the Windows menu of the
debugging window. The collector options are set up so that
proiile data 1s collected for anticipated function calls, and the
name of the experiment 1s changed from test.1.er to app.1.er.
During the program run, the collector puts performance data
in a set of files 1nside of the experiment directory. This
experiment can be viewed after the program run with the
analyzer tool. Through the debugger, the application 1s run
through 1ts performance bottleneck. The collector 1s then
turned off and the collector window 1s closed.

To view the performance data, Tools menu 404 1s entered
to 1dentify the Analyzer menu item. The Analyzer menu 1tem
to look at the pullright menu 1s selected and discloses the
experiment “/home/pat/src/app.l.er” entry appears first in
the analyzer picklist 802 (FIG. 8). This entry was added by
broadcast of a message from the collector when the collector
window was closed. This item on the picklist 802 1s selected,
and the analyzer tool appears loaded with the data from the
collector run.

Using the analyzer, the functions causing the poor per-
formance are found. The needed modifications are made and
the results are verified. A new release of the application 1is
created. As these two examples show, the present mnvention
not only can track references to recently used objects, 1t also
can notily a second tool that a first tool has generated a new
object or object reference that the second tool can use.
Theretfore, the present invention anticipates the steps used
by a developer 1n the development process. Additionally, a
tool vendor can integrate a third-party application with the
other elements of the IPE, according to the present inven-
fion.

A management tool, Release Constructor, 1s for example
selected for integration. Partial integration with the IPE is
enabled 1n accordance with the present invention by using a
configuration file and a custom icon previously created,
including an icon file containing a pixel 1image of the tool.
The configuration file specifies the name of the tool, the path
to the 1con file, and an indication that no messages are
handed by his application. The configuration file 1s placed in
the IPE manager directory with a special file name exten-
sion. The tool also can alternatively be added by selecting
the “Add a tool” menu item (as shown in FIG. 5). When
selecting this item, the user specifies a directory of where the
configuration file can be found. The manager 200 then
includes a reference to this file 1n its own 1nitialization file.
Therefore, even with minimal effort, tool integration 1is
possible which allows Release Constructor to be launched

10

15

20

25

30

35

40

45

50

55

60

65

3

by selecting the menu 1tem or custom 1con corresponding to
Release Constructor on the GUI 300 of the IPE manager
200.

According to the present invention, tighter integration 1s
possible for a Visual GUI builder product shipped with the
Visual workshop. To produce a tight integration with the
Workshop and to take advantage of integration
opportunities, a configuration file for Visual 1s created. The
file filter and the file type for the application are specified,

and participation in the protocols which will allow Visual to
have both control and data integration with the workshop are
established. To participate 1n the control and data protocols,
Visual 1s altered so that it can handle seven inter-process
(e.g., ToolTalk) messages. The first four messages are con-
trol messages which allow Visual to act as part of the IPE 1n
terms of global environment operations. These operations
include window operations (maximize, minimize, show and
hide) and shutdown of the environment. In addition, the
application 1s updated to generate and respond to messages
that deal with the project server (or data) protocol. These
messages allow the IPE manager 200 and Visual to maintain
a list of objects used by the GUI builder when building files
for the user. This list 1s kept by the IPE manager 200 inside
the Visual section of the Tools menu 404. As the user opens
files using Visual, Visual broadcasts a message which 1is
received by the IPE manager 200. The message includes the
file reference for the file that Visual opened. In addition, it
Visual 1s maintaining a list of recently used files, Visual
receives 1ts own message and adds the file reference to its
own picklist of recently used files. In this way, the IPE
manager 200 and Visual build lists of references 1n parallel.

The application 1s extended to enable transmission of
messages to add references to other tools. Visual allows the
user to create a makefile to be used to compile a GUI
program. Code 1s added to Visual so that whenever a
makefile 1s written by Visual, Visual broadcasts a message,
to be received by IPE manager 200, indicating the name of
the makefile. In response, as was described with reference to
FIG. 6, the IPE manager 200 adds the reference to the Build
menu. This message allows the user to easily transition to
building the GUI program by clicking the BI2Z Build tool
icon 308 button from the 1con palette 306 on the GUI 300 of

the IPE manager 200. Afterwards, the program can be
debugged by clicking the BI3 debug 1con 308.

After implementing the two messages described above,
integration with the edit server 1s desired so that the user can
use an editor of choice to specilty and change code for widget
callbacks. The edit client library 1s thus built into Visual and
editor integration 1s tested. After editing callbacks, the edit
server will send a message to the Build menu to indicate that
the application target needs to be rebuilt. The user has been
permitted to use the same edit session to create callbacks in
Visual, to fix syntax errors resulting from compiling the
callbacks, and to step through the callback code using the
debugger.

Turning now to the general process of using the present
invention, the flowchart of FIG. 9 shows the overall process
of utilizing an IPE manager 200 with integrated and third-
party tools. When IPE manager 200 1s started, it builds GUI
300 using the menus and icons for the integrated tools 201,
as shown 1n step 902. According to step 904, IPE manager
200 reads the configuration {files for registered third-party
tools. According to step 906, menus are built for the regis-
tered third-party tools found in step 904. According to step
908, a determination 1s made whether WorkSets are
supported, and 1if so, the process continues with step 910.

According to step 910, IPE manager 200 loads the WorkSet

5,950,000

9

and populates the picklists with corresponding entries from
WorkSet, as described 1n more detail in co-pending U.S.
patent application Ser. No. 08/761,546, entitled
“METHODS, SYSTEMS AND COMPUTER PROGRAM
PRODUCTS FOR STORING, LOADING ANALYZING
AND SHARING REFERENCES TO RECENTLY USED
OBJECTS.” Control passes to step 912 where IPE manager
200 fields requests using the GUI 300 and receives messages
from 1ntegrated tools and third-party tools. This process is
shown 1n greater detail in FIG. 10. When the user 1s finished,
control passes to step 914 when a shutdown request is
received. Step 916 determines 1if WorkSets are supported. It
so, the process continues with step 920. According to step
920, recently used references are written out to a WorkSet to
describe recent interactions by a user with several of the

tools.

In light of the general process described above, the
following sections provide an overview of the tool integra-
fion architecture according to the present mvention, includ-
ing the formats for tool mtegration protocol and the con-
figuration file. The overview begins by showing the process
and protocol map for the tool mntegration architecture. Here,
the function of the messages for the control and data
protocols are described. Next the role of the configuration
file 1s discussed. Finally, the impact of the tool integration
feature on the startup process for the IPE manager 200 and
other components of the mtegrated tools 201 1s presented.

As described above, the relationship between IPE man-
ager 200 and the integrated or configured third-party tool
processes 1s 1llustrated 1n FIG. 2. Messages flow for the data
and control protocols between the IPE manager and the
integrated and third-party tools. The transport mechanism
for the protocol i1s the ToolTalk messaging library. Where
possible, a standard ToolTalk message 1s used to implement
a protocol message. The ToolTalk message specification 1s
published by Sun Microsystems, Inc., of Mountain View,
Calif. and 1s described 1n Toolialk and Open Protocols by
Astrid M. Julienne and Brian Holtz (SunSoft Press 1994).
These references are incorporated herein by reference in
their entirety.

The control protocol allows IPE manager 200 to 1ssue
requests to mtergrated tools and to third party tools, which
permits the tools to act as an integrated part of the IPE. This
protocol also 1s used for global environment operations such
as window operations (including, but not limited to, restore,
minimize, show, and hide) and shutdown of the environ-
ment. The messages to do this are Set_Iconified, Set-
Mapped, and Quit. Tools only receive these messages from
IPE manager 200 and do not send them. The last message in
the control protocol 1s the “Started” message. This message
1s used by the tools to indicate their presence to the IPE
manager 200. The Started message 1s used for session
management and to signal the initiation of the data protocol
between the IPE* manager and the tools. This message 1s
discussed further 1n below.

The data protocol 1s a bidirectional message stream used
to transmit object references between the IPE manager 200
and each tool. This protocol particularly permits tools to
transmit object references to each other and to track object
references so that a WorkSet for the current project can be
created. Inter-tool messaging 1s useful 1n situations where
the output of one tool serves as the input to another, as was
discussed above. Messages supporting this protocol include
“AddToolDataRefs” for adding tool files, “Delete ToolDa-
taRefs” for deleting specified tool files and “Delete AllTool-
DataRefs” for clearing out the list of files appearing 1n the
tool picklist and project section viewer. The “AddToolDa-

10

15

20

25

30

35

40

45

50

55

60

65 -

10

taRefs” message occurs 1n response to a user opening a file
from the tool, adding a file to the project section using the
project viewer or when a project file 1s opened. Project files
are opened when a WorkSet 1s opened as 1s discussed 1n the
above-referenced and incorporated co-pending application
Ser. No. 08/761,546 “METHODS, SYSTEMS, AND COM-
PUTER PROGRAM PRODUCTS FOR STORING,
LOADING, ANALYZING, AND SHARING REFER-
ENCES TO RECENTLY USED OBIJECTS”. The “Dele-
te ToolDataRefs” message occurs when the user deletes files
from a picklist appearing in either the tool or the IPE
manager 200, or when a user deletes files from the project
viewer. The “Delete AllToolDataRefs” message 1s sent by
the IPE manager 200 before opening a new project (or
WorkSet) so that the menus can be cleared of the references
belonging to a previous WorkSet.

As was described above, a tool declares its participation
in IPE 1ntegration by placing a configuration file 1n a special
directory, e.g., the lib/<LOCALE>/toolConfig (where
<LOCALE> defaults to C) directory within the IPE instal-
lation. Within this file, each tool identifies itself and indi-
cates 1its level of participation in the integration protocol.

This section describes the core set of attributes each tool
must 1nclude, and then discusses variations of tool integra-
tion. The core set of attributes in the configuration file relate
to tool 1dentification and whether or not the tool supports the
“Open ... 1diom. These attributes are name, label, iconfile,
command, opensupport, TtVersion and helpstring. The tool
name attribute 1s an internal identifier used by the tool
integration mechanism. The label attribute 1s the string
presented to the user 1 the Tools menu. The iconfile
attribute 1s the name of the file containing the pixmap which
for display of the tool’s button on the tool bar. The command
attribute 1s the command line used to mmvoke the tool. The
format of the command attribute 1s discussed 1n more detail
in section on tool startup. The “opensupport” attribute 1s a
Boolean declaring whether or not the tool supports the
“Open ... 1diom. Finally, the TtVersion attribute indicates
which version of the mtegration message protocol the tool
supports. The help string 1s displayed in the GUI 300 of the
IPE manager 200 when the user positions the mouse over a
tool’s button 1n the icon palette 306. There are two tool
integration variations which are selected according to
whether or not the tool supports the “Open . . . ” 1diom. For
those tools which do support this 1diom, tools may or may
not support the data protocol. The first variation 1s for those
tools which do not support the “Open . . . 7 1diom. Release
Constructor described above 1s one such tool. Each tool 1n
this variation has an icon which appears on the 1con palette
306 and 1ts name appear on the tools menu 404. However,
it will not have a pullright for 1ts tools menu item, nor will
it have a section 1n the project viewer which displays
WorkSets. An example confliguration file for a second appli-
cation (Filemerge) which also does not support the “Open-
f1le” paradigm 1s shown below 1n Table I. The table structure
1s laid out similar to an X resource file.

TABLE 1
pwloolbox.version: 2.0
pwloolBox.tools: filemerge
pwloolBox.filemerge.name: filemerge
pWToolBox.lilemerge.label: File Merge
pwloolBoX.filemerge.vendor: SUNW
pwloolBox.lilemerge.version: 3.0
pwToolBox.filemerge.iconFile: filemerge.xpm
pwloolBox.filemerge.command: filemerge

5,950,000

11

TABLE I-continued

4.0

Filemerge - merge different
versions of files

False

False

pwloolBox.lilemerge. TtVersion:
pwloolBox.filemerge.helpString:

pwloolBox.filemerge.newSupport:
pwloolBox.lilemerge.openSupport:

The second variation 1s for those tools which support the
“Open . .. 1diom. These tools may optionally support the
data message protocol. Tools that do support the data
message protocol process incoming data protocol messages
in their message callback and send them out at the appro-
priate time. In addition to the core set of attributes, tools of
this embodiment of the present invention specily at least the
type of file chooser used 1n both the Open menu item on the
tools menu pullright and 1n the project viewer to add files.
This 1s done using the “filetype” and “filefilter” attributes.
The filetype attribute can have the values “File” or “Direc-
tory”. The filefilter attribute 1s used to filter the file chooser
viewer using a regular expression string.

After specitying the file chooser specification, tools
according to that representation customize their command
attribute to allow for the passing of the file arcument when
the tool 1s invoked with a file to open. The “file ArgFormat”
attribute 1s a printf string used to format the file arcument to
allow for command switches used to indicate a file to open.
The default format for this attribute 1s “%s”. The formatted
result of this attribute 1s appended to the command string
before mvocation. If a command line flag were required, the
flag would also be specified 1n the same string. For example,
“-file %s” generates a “-file” command-line argument before
the name of the file. An example of a tool of this variation
1s the Analyzer program. Its configuration file 1s listed below

in Table 1II.

TABLE 11
pwloolBox.version: 2.0
pwloolBox.tools: analyzer
pwloolBox.version: 2.0
pwloolBox.analyzer.name: SUNW__SPRO__Analyzer
pwloolBox.analyzer.label: Analyzer
pwloolBox.analyzer.vendor: SUNW
pwloolBox.analyzer. version: 2.0
pwloolBox.analyzer.iconFile: analyzer.xpm
pwloolBox.analyzer. helpString: Analyzer-analyze applica-

tion performance data

pwloolBox.analyzer. Tt Version: 4.0
pwloolBox.analyzer.command: analyzer
pwloolBox.analyzer.newSupport: True
pwloolBox.analyzer.openSupport: True
pwloolBox.analyzer-fileType: Dir
pwloolBox.analyzer.file ArgFormat: % s
pwloolSBx.analyzer.addObjectLabel: Add Experiment
pwloolBox.analyzer.deleteObjectsLabel: Delete Experiments
pwloolBox.analyzer.removeFromMenu- Remove experiments

Label: from menu...

Another example of a configuration file for a type of tool
such as the Visual program, appears below in Table III.

TABLE 111
pwloolBox.version: 2.0
pwloolBox.tools: Visual
pwloolBox.visual.name: SUNW__SPRO__ Visual
pwloolBox.visual.label: Visual
pwloolBox.visual.vendor: SUNW
pwloolBox.visual.version: 4.0

10

15

20

25

30

35

40

45

50

55

60

65

12

TABLE III-continued

pwloolBox.visual.iconFile: visual.xpm
pwloolBox.visual. TtVersion: 4.0
pwloolBox.visual.helpString: Visual - create visual
applications
pwloolBox.visual.command: Visual
pwloolBox.visual.newSupport: True
pwloolBox.visual.openSupport: True
pwToolBox.visual.fileType: File
pwloolBox.visual.fileFilter: *.xd
pwToolBox.visual.fileArgFormat: % s
pwloolBox.visual.addObjectlLabel: Add Design
pwToolBox.visual.deleteObjectsLabel: Delete Designs
pwloolBox.visual.removeFromMenulabel: Remove an entry...

Tool mtegration features according to the present mven-
fion are substantially active during startup of the IPE man-
ager 200 and associated integrated tools. This section
describes the sequences of events related to tool 1ntegration
when the IPE manager 200 and configured tools are invoked.
The first action of IPE manager 200 at startup 1s to read the
tool configuration files located underneath the configuration
directory, e.g., lib/sunpro__defaults directory. For each tool,
the following is done: 1) a button is added to icon palette 306
using the specified pixmap file, 2) a menu item 1s added to
the Tools menu 404, and if the tool supports the “Open ...~
1diom, then a pullright menu containing a New menu item,
and an Open menu item and a file picklist are created and
attached as tool menu items; and 3) the tool 1s added to the
tools registry, so that the tool type 1s registered and the tool
1s given 1ts own section 1n the Project/WorkSet {ile.

Once the tool configuration files have been processed, IPE
manager 200 opens up a project (WorkSet file) for the user.
This 1s either a new project or the project the user had open
the last time the IPE manager 200 was up. Before opening
the project, the IPE manager 200 sends a “Delete AllTool-
DataRefs” message to clear out 1ts picklists and the tool
picklists. After opening the project, the project section
viewer 1s populated along with the picklists for each tool.
The picklists mnclude those for the built-in and configured
tools, located on the tools menu 404 as pullrights). Next, IPE
manager 200 sends a “AddToolDataRefs” message for each
section belonging to a configured tool. This message allows
a list of files to be specified. Since IPE manager 200 registers
for this message, 1t will receive 1t and can use it to populate
the project viewer and 1ts tool pullright menu picklists.

To parficipate 1n a tool session managed by IPE manager
200, a tool must be invoked by the user selecting the tool
from the tools menu 404 in the GUI 300 (or by selecting the
tool’s button on the icon palette 306). Once the tool menu
item 1s selected, a command string 1s constructed using the
tool’s command attribute. The command string references
the name of the bound tool. Some tools which support a file
arcument can have the file arcument appended to the com-
mand line using the fileArgFormat attribute specified in the
tools configuration file. The file ArgFormat attribute allows
for file argument conventions specific to each tool.

After the command string 1s constructed by IPE manager
200, the tool 1s launched using the command string. Once the
tool comes up, it sends a “Started” message to the IPE
manager 200. IPE manager 200 uses the “Started” message
to register the tool with the current session associated with
the IPE manager 200 process. This allows IPE manager 200
to issue control messages to all the tools in its session (i.e.
Restore/Maximize/Hide/Show/Quit). If the tool supports the
data protocol, IPE manager 200 will send the tool its project
section data using the “AddToolDataRefs” message. The

5,950,000

13

tool can use this message to populate its picklist if it has
implemented 1it.

The following sections describe in greater detail the
messages sent according to the control protocol. The mes-
sages include the “started”, “stopped”, “Set-Iconified”, “Set-
Mapped”, and “Quit” messages. The Started Message 1s sent
from a tool to IPE manager 200 after the tool has been
launched by IPE manager 200. The message has the follow-
ing format:

Started <vendor> <toolName> <toolVersionz
Context: <grouplD> <pid>

This message has five arguments. The first arcument 1s the
vendor string. This indicates the organization which supplies
the tool. The second argument 1s the toolName string. It 1s
the same used by IPE manager 200 to determine which type
of tool has started. It should match the tool name in the tool
configuration {file. The third argument i1s the toolversion
string. It indicates the version of the started tool. The
crouplD and pid argcuments are passed via the ToolTalk
message context. The grouplD argument 1s used to allow the
IPE manager 200 to know 1if the tool belongs to its session.
The pid argument 1s the process 1d of the tool sending the

mMessage.

The “Stopped” message 1s sent from a tool to the IPE
manager 200 just before the tool quits (usually by the user’s
request). The message has the following format:

Stopped <vendor> <toolName> <toolVersion>
Context: <grouplD> <pid>

This message has five arcuments. The first argument 1s the
vendor string. This indicates the organization which supplies
the tool. The second argument is the toolName string. It 1s
the name used by the to determine which type of tool has
stopped. It should match the tool name 1n the tool configu-
ration {ile. The third argument 1s the toolversion string. It
indicates the version of the stopped tool. The grouplD and
pid arcuments are passed via the ToolTalk message context.
The grouplD argument 1s used to allow the IPE manager 200
to know 1f the tool belongs to its session. The pid arcument
1s the process 1d of the tool sending the message.

The “Set_ Iconified” message 1s sent by the IPE manager
200 to each tool to perform the Restore and Minimize
messages. The format of this message 1s:

Set-Iconified <iconify>
Context: <grouplD>

The 1conity argument 1s a boolean value. True means the tool
is to 1conify (Minimize) and False means the tool should
de-iconify (Restore). The grouplD argument is a context
arcument used to allow the IPE manager 200 to know if the
tool belongs to 1ts session.

The “Set_ Mapped” message 1s sent by the IPE manager
200 to each tool to perform the Show and Hide messages.
The format of this message 1s:

Set_ Mapped <map>
Context: <grouplD>

The map argument 1s a boolean value. True means the tool
is to map itself (Show) and False means the tool should

10

15

20

25

30

35

40

45

50

55

60

65

14

unmap itself (Hide). The group ID argument is a context
arcument used to allow the IPE manager 200 to know if the
tool belongs to 1ts session.

The “Quit” message 1s sent by the IPE manager 200 to
cach tool before the IPE manager 200 shuts down. The
format of the message is:

Quit <silent> <force> <operation2Quit>
Context: <grouplD>

I

The <silent> argument affects user nofification of termina-
tion. If silent 1s True, the tool 1s not allowed to block on user
input before terminating itself (or the indicated operation). If
it 1s False, however, the tool may seek such mput. The force
arcument 1s a Boolean value indicating whether the tool
should terminate itself (or the indicated operation) even if
circumstances are such that the tool ordinarily would not
perform the termination. The “operation2Quit” argument 1s
used to optionally indicate an operation to abort. When the
IPE manager 200 sends this message 1t will set this arcument
NULL since 1t wants the semantic which means to bring the
tool down. The grouplD arcument 1s a context argument
used to allow the IPE manager 200 to know if the tool
belongs to its session.

The set of messages for tool data integration are described
in more detail below and include: AddToolDataRefs, Dele-

teToolDataRefs and DeleteAllToolDataRefs. These mes-
sages are to be sent to the ToolTalk session as a broadcast
available to all processes currently joined to the ToolTalk
session. The “AddToolDataRefs” message 1s used to
announce a tool and a list of files which it can open. The
format of this message 1s:

AddToolDataRefs <grouplD> <toolname> <toollDataRefs>
<fileCount>

The grouplD argument 1s used to confine the message to just
those tools started by the IPE manager 200. The tool
arcument 1s a string used to identify the tool which can
operate on the list of files. The tool data refs argument 1s a
set of strings which represent files which the tool can operate
on. This message 1s sent by the tool when 1t opens a {ile. It
1s also sent by the IPE manager 200 after 1t opens a project
section owned by the tool. When a tool receives this message
it can populate its picklist with the list of files (if it supports
a picklist). When the IPE manager 200 receives this
message, 1t adds the list of files to the tool’s pullright picklist
menu and to the tool’s section 1n the project viewer.

The DeleteToolDataRefs message 1s used to announce a
tool and a list of files which are to be deleted from the
associated tool picklist. The format of this message 1s:

DeleteToolDataRefs <grouplD> <toolName>
<toolDataRefs> «FileCount>

The group ID argument 1s used to confine the message to just
those tools started by the IPE manager 200. The tool
arcument 1s a string used to identify the tool which can
operate on the list of files. The tool data refs argument 1s a
set of strings which represent files which are to be deleted.
This message 1s sent by the tool when a user has deleted files
from the tool picklist. It 1s sent by the IPE manager 200
when a user has deleted files from either the tool’s pullright
picklist menu or the tool’s section 1n the project viewer.
When a tool receives this message 1t deletes the files from

5,950,000

15

the picklist (if it supports a picklist). When the IPE manager
200 recerves this message, 1t deletes the list of files from the
tool’s pullright picklist menu and to the tool’s section 1n the
project viewer.

The Delete All'ToolDataRefs message 1s used to announce
that all tool files are to be deleted from the associated tool
picklist. The format of this message is:

Delete AllToolDataRefs <groupID> <toolName>

The grouplD argument 1s used to confine the message to just
those tools started by the IPE manager 200. This message 1s
sent by the IPE manager 200 before 1t opens a project. When
a tool receives this message, 1t deletes all the files.

The tool configuration file format i1s described below in
orcater detail. The file format used 1n the Xdefaults format
which supports an attribute-value scheme. The configuration
file can be used to specily one tool or a set of tools. The
ogeneral format of the file 1s shown 1n Table IV below.

TABLE IV

pwToolBox.version: 2.0

pwTloolBox.tools: <toolnamel> <toolname2> ...
<toolnameN:>

<toolnamel> attributes

<toolname2> attributes

<toolnameN> attributes

The first two attributes (version and tools) are generic
attributes. These attributes apply to everything within the
scope of the configuration file. The first attribute indicates
the version of the file. This allows the configuration file
reader to determine what attributes to look for. The version
for the IPE manager 200 has been described herein as
version 2.0. The second attribute lists the tools which are
contained 1n the file. Following this, the attributes for each
tool are listed. The format for the tool attributes follows:

pwloolBox. <toolname>.<attrname>: <attrvalue>

Each attribute value will typically be either a string or a
boolean. The strings can be interpreted 1n a variety of ways
based on the 1ntent of the attribute. A description and format
for each support attribute 1s described 1n more detail below.
The tool name attribute 1s the internal 1dentifier used by the
tool integration mechanism. It should be a string which 1s as
unique as possible (i.e. something like SUNW__
PROWORKS_ ToolName where SUNW represents the
company and PROWORKS represents the product line).
The format of this attribute 1s:

pwloolBox.<toolname>_ name:
<string>

The label attribute 1s the string presented to the user in the
Tools menu. The format of this attribute 1s:

pwToolBox. <toolnamex.label: <string>.

The version attributes 1s a string representing the version
of the tool described 1n the configuration file. This attribute

10

15

20

25

30

35

40

45

50

55

60

65

16

1s presented by the tool to the IPE manager 200 when 1t
sends the Started message. The format of this attribute 1s:

pwTloolBox.<toolname>.version: <string>

The default for this attribute 1s “1.07.

The vendor attribute 1s a string identifying the company
supplying the tool (i.e. SUNW) described in the configura-
tion file. This attribute 1s presented by the tool to the IPE
manager 200 when 1t sends the started message. The format
of this attribute 1s:

pwloolBox.<toolname>.vendor: <string>
The default of this attribute 1s “NoVendor”.

The 1confile attribute 1s the name of the file containing the
pixmap which will be displayed in the tool’s button on the
tool bar. If not supplied, a button will not be placed on the
button bar. However, if the label attribute i1s specified, a

menu 1tem will be placed 1n the Tool’s menu. The format of
this attribute is:

pwToolBox.<toolname:>.iconFile:
<filename>

The filename can either be a fully qualified path or the
basename of the file. The latter assumes that the icon file 1s
located 1n the workshop install area under the lib/icons
directory.

The command attribute 1s the command line used to
invoke the tool. This minimally includes the name of the tool
binary. Those tools which support the “Open . . . 7 1diom
should specity the fileArgFormat attribute if the file argu-
ment 1S specified 1n a nonstandard way. The format of this
attribute 1s:

pwloolBox.<toolname>.command: <cmdline>.

The TtVersion attribute indicates which version message
protocol the tool supports. The format of this attribute 1s:

pwloolBox.<toolname=.TtVersion: <VETS1ON-

string>.

The default for this attribute 1s “4.0.”

The helpstring attribute value 1s displayed in the IPE
manager 200 main window footer when the user positions
the mouse over a tool’s button in the IPE manager 200 tool
button bar. The format of this attribute is:

pwToolBox.<toolname:>.helpString:
<string>

The default for this attribute 1s “No help available for this
tool”.

The newSupport attribute 1s a boolean value declaring
whether or not the tool’s pullright menu will have the “New™
menu item. This attribute only makes sense when the tool
turns on the opensupport attribute. The “New” menu 1tem
launches the tool without any arcuments. The format of this
attribute 1s:

5,950,000

17

pwToolBox.<toolname>.newSupport:
<boolean>

The default for this attribute 1s False.

The opensupport attribute 1s a boolean declaring whether
or not the tool supports the “Open . . . 7 1diom. Those tools
which take a file or directory argument or support an Open
menu 1tem 1n their user interface should set this attribute to
True. The format of this attribute 1s:

pwloolBox.<toolname=.openSupport: <boolean>

The default for this attribute 1s False.

The fileArgbkormat attribute 1s a printf string used to
format the file argument to allow for command switches
used to indicate a file to open. The default format for this
attribute 1s “%s”. The formatted result of this attribute 1s
appended to the command string before invocation. It 1s
expected that the string contain the sub-string “%s” so that
the file to be opened can be properly substituted.

pwToolBox.<toolnamex>.fileArgFormat: <print>-strings.

The filetype attribute 1s used to configure the type of file
chooser used 1n both the Open menu item on the tool’s menu
pullright and m the project viewer to add files. The format
of this attribute 1s:

pwToolBox.<toolnamex>-FileType:
<File/Dir>

Values for this attribute can be “File” for a regular file
chooser and “Dir” for a directory chooser. The default for
this attribute 1s “File”.

The filefilter attribute 1s also used to configure the type of
file chooser used 1n both the Open menu item on the tools
menu pullright and 1n the project viewer to add files. The
format of this attribute 1s:

pwToolBox.<toolnamex>.fileFilter:
<string>.

Values for this attribute can be a regular expression string
used to filter the view for regular file choosers. Note this
filter 1s not used for a directory chooser. The default for this
attribute 1s “*”. The addObjectlLabel attribute 1s used to
indicate the label of the button in the project viewer window
which adds objects to the given project section. This
attribute only makes sense for those tools which turn on the
opensupport attribute. The format of this attribute 1s:

pwloolBox.<toolname>.addObjectLabel: <string>

The default for this attribute 1s “Add File™.

The openObjectLabel attribute 1s used to 1indicate the title
of the chooser which comes up from the tool menu pullright
when the “Open . . . 7 1tem 1s selected. This attribute only
makes sense for those tools which turn on the opensupport
attribute. The format of this attribute 1s:

5

10

15

20

25

30

35

40

45

50

55

60

65

138

pwloolBox.<toolname=-openObjectlLabel: <string>

The default for this attribute 1s “Open File”.

The deleteObjectsLabel attribute 1s used to indicate the
label of the button in the project viewer window which
deletes objects from the given project section. This attribute
only makes sense for those tools which turn on the open-
support attribute. The format of this attribute 1s:

pwToolBox.<toolname:>.deleteObjectsLabel:
<string>

The default for this attribute 1s “Delete Files™.

The removeFromMenulLabel attribute 1s used to indicate
the label of the menu 1tem 1n the tool menu pullright which
removes objects from the pullright picklist. This attribute
only makes sense for those tools which turn on the open-
support attribute. The format of this attribute 1s:

pwloolBox. <toolnamex>.removeFromMenul.abel:
<string>

The default for this attribute 1s “Remove files from
menu . . .~

In addition to the configuration file described above, the
IPE manager 200 can also support WorkSets as described 1n
oreater detail 1n co-pending U.S. application Ser. No.

08/761,546, entitled “METHODS, SYSTEMS AND COM-
PUTER PROGRAM PRODUCTS FOR STORING, LOAD-
ING ANALYZING AND SHARING REFERENCES TO
RECENTLY USED OBIECTS.” To support tools which
integrate with the Workshop, the project file format will
include a section for each configured tool nature of the data
for these tools 1s a list of files, the former of the tool’s project
section will use the existing project file format to contain this
data.

In general the section format appears in Table V below.

TABLE V

%% <toolname>
| <toolname>
(currentDirectory <directory>

(ObjectList

{

<Filel>

;:iTi.leN}
1]

By using this format, WorkSets which describe the interac-
tions of tools, can be generated and loaded to recreate the
recent process steps of a development cycle.

The above discussions have been described with reference
to the IPE manager 200 adding and deleting items based on
messages from tools. In addition, tools have been described
which respond to messages from the IPE manager 200 by
adding or deleting entries from their corresponding picklists.
However, if the IPE manager 200 and the tools perform
these processes independently, the picklists of the IPE
manager 200 and the individual tools can become mis-
matched. Co-pending application Ser. No. 08/759,694,
entitled “METHODS, SYSTEMS AND COMPUTER PRO-
GRAM PRODUCTS FOR CONTROLLING PICKLISTS,”

describes that it 1s possible to have entries which are not

5,950,000

19

textually equivalent but which are nonetheless equivalent. A
cited example 1s that a full electronic mail address and an
alias are synonymous and both entries should not be placed
in a picklist. However, if the intelligence for this “equiva-
lency” testing 1s contained solely within the internals of the
tools, IPE manager 200 will not have filtered out entries that
a tool has filtered out. Therefore, 1n another embodiment of
the present invention, the IPE manager 200 1s augmented
with dynamically loadable code 1n the form of a dynamically
linked library, a shared object, etc. IPE manager 200 can
then test messages 1n the same way as the tools to determine
if an entry 1s redundant with respect to another entry, even
though the two entries are not textually equivalent.

All of the above are only some of the examples of
available embodiments of the present invention. Those
skilled in the art will readily observe that numerous other
modifications and alterations may be made without depart-
ing from the spirit and scope of the invention. Accordingly,
the above disclosure 1s not intended as limiting and the
appended claims are to be interpreted as encompassing the
entire scope of the invention.

What 1s claimed 1s:

1. A method of integrating an integrated environment
application and a third-party environment application with

an environment manager, the method comprising the steps
of:

providing an environment manager having a graphical
user interface, (GUI) including an icon palette with an
integrated icon corresponding to an mtegrated environ-
ment application, and further including a menu bar with
an 1ntegrated menu for the integrated environment
application;

providing a mechanism for selecting a third-party envi-
ronment application for integration with the environ-
ment manager;

providing a mechanism for adding a third-party menu for
the third-party environment application to the menu
bar;

providing a mechanism for receiving a command from a
user based on an interaction with at least one of the 1con
palette, the integrated menu and the third-party menu;

providing a mechanism for launching at least one of the
integrated environment application and the third-party
environment application based on a command
received; and

providing a mechanism for adding an 1con for the third-
party environment application to the i1con palette.
2. The method according to claim 1, further comprising
the steps of:

reading a WorkSet of references to at least one recently
used object; and

populating said integrated menu and said third-party
menu with least one reference.
3. The method according to claim 1, further comprising
the steps of:

receiving a command that alters at least one of said
integrated menu and said third-party menu; and

altering the at least one of said integrated menu and said
third-party menu based on said command received 1n
the receiving step.

4. The method according to claim 3, wherein said step of
altering comprises at least one of a) adding an entry to the
one of said integrated menu and said third-party menu, b)
removing an entry from said at least one of said integrated
menu and said third-party menu, and c¢) reordering entries on
said at least one of said integrated menu and said third-party
menu.

10

15

20

25

30

35

40

45

50

55

60

65

20

5. The method according to claim 1, further comprising
the steps of:

receiving a message from said integrated environment
application; and

updating said third-party menu based on the message
received from said mntegrated environment application.

6. The method according to claim 1, further comprising
the steps of:

receiving a message from said third-party environment
application; and

updating said integrated menu based on the message
received from said third-party environment application.

7. The method according to claim 1, further comprising,
the steps of:

receving a message from a second third-party environ-
ment application; and

updating said integrated menu based on the message

received from said third-party environment application.

8. The method according to claim 1, further comprising,
the steps of:

receving a message from a second integrated environ-
ment application; and

updating said integrated menu of said first integrated
environment application based on the message received
from the second integrated environment application.
9. A system 1ntegrating an integrated environment appli-
cation and a third-party environment application with an
environment manager, the system comprising:

an integrated environment application;
a third-party environment application; and

an environment manager comprising:

a graphical user interface (GUI), including an icon
palette with an integrated icon corresponding to an
integrated environment application, and further
including a menu bar with an integrated menu for the
integrated environment application;

a third-party menu adder configured to add a third-party
menu to the menu bar for the third-party environ-
ment application;

a command receiver configured to receive a command
from a user based on an mteraction with at least one
of the 1con palette, the integrated menu and the
third-party menu;

a launcher configured to launch at least one of the
integrated environment application and the third-
party environment application; and

wherein the environment manager further comprises a
writer confligured to store a WorkSet of references to
at least one recently used object 1n a non-volatile
storage medium.

10. The system according to claim 9, wherein said envi-
ronment manager further comprises:

a reader configured to read a WorkSet of references to at
least one recently used object; and

a menu update device configured to populate said inte-
orated menu and said third-party menu with at least one
reference read by the reader.

11. The system according to claim 9, wherein said com-
mand receiver comprises a receiver conflgured to receive a
command that alters at least one of the integrated menu and
the third-party menu; and

wherein said environment manager further comprises a
menu update device configured to alter at least one of
said mtegrated menu and said third-party menu based
on the command received by the receiver.

5,950,000

21

12. The system according to claim 11, wherein said menu
update device comprises at least one of:

a) an entry adder configured to add an entry to said at least
one of said integrated menu and said third-party menu;

b) an entry remover configured to remove an entry the at
least one of said integrated menu and said third-party
menu; and

¢) a reordering device configured to reorder entries on
said at least one of said integrated menu and said
third-party menu.
13. The system according to claim 9, wherein said envi-
ronment manager further comprises:

a message receiver conligured to receive a message from
said integrated environment application; and

an update device conifigured to update said third-party

menu based on the message received from said inte-
orated environment application.

14. The system according to claim 9, wherein said envi-
ronment manager further comprises:

a message receiver configured to receive a message from
said third-party environment application; and

an update device configured to update said integrated

menu based on the message received from said third-
party environment application.

15. The system according to claim 9, wherein said envi-
ronment manager further comprises:

a message receiver conligured to receive a message from
a second third-party environment application; and

an update device coniigured to update said third-party
menu of said third-party environment application based
on the message received from the second third-party
environment application.
16. The system according to claim 9, wherein said envi-
ronment manager further comprises:

a message receiver configured to receive a message from
a second integrated environment application; and

an update device configured to update said integrated
menu of said integrated environment application based
on the message received from the second integrated
environment application.

17. A computer program product, comprising:

a computer storage medium and a computer program code
mechanism embedded 1n the computer storage medium
for causing a computer to integrate an integrated envi-
ronment application and a third-party environment
application with an environment manager, the environ-
ment manager having a graphical user interface (GUI)
including an icon palette with an integrated 1con cor-
responding to the integrated environment application
and further mncluding a menu bar with an integrated
menu for the integrated environment application, the
computer code mechanism comprising:

a first computer code device configured to add an icon
for the third-party environment application to the
icon palette;

a second computer code device configured to add a
third-party menu to the menu bar for the third-party
environment application;

a third computer code device configured to receive a
command from a user based on an interaction with at
least one of the 1con palette, the integrated menu and
the third-party menu;

a fourth computer code device configured to launch at
least one of the integrated environment application
and the third-party environment application; and

5

10

15

20

25

30

35

40

45

50

55

60

65

22

a fifth computer code mechanism configured to store a
WorkSet of references to at least one recently used
object 1n a non-volatile storage medium.

18. The computer program product according to claim 17,
wherein said computer program code mechanism further
COmMPrises:

a sixth computer code mechanism configured to read said
WorkSet of references to said at least one recently used
object; and

a seventh computer code mechanism configured to popu-
late at least one of said integrated menu and said
third-party menu with said references read by the sixth
computer code device.

19. The computer program product according to claim 17,
wherein said third computer code device comprises a sixth
computer code device configured to receive a command that
alters at least one of said mtegrated menu and said third-
party menu; and

wherein said computer code mechanism further com-
prises a sixth computer code device configured to alter
at least one of said integrated menu and said third-party
menu based on the command received by the sixth
computer code device.
20. The computer program product according to claim 19,
wherein said sixth computer code device comprises at least
one of:

a seventh computer code device configured to add an
entry to said at least one of said mtegrated menu and
said third-party menu;

an eighth computer code device configured to remove an
entry to said at least one of said mtegrated menu and
said third-party menu; and

a ninth computer code device configured to reorder entries
on said at least one of said integrated menu and said
third-party menu.

21. The computer program product according to claim 17,

wherein said computer code mechanism further comprises:

a sixth computer code device configured to receive a
message from said integrated environment application;
and

a seventh computer code mechanism configured to update
said third-party menu based on the message received
from said integrated environment application.

22. The computer program product according to claim 17,

wherein said computer code mechanism further comprises:

a sixth computer code device configured to receive a
message from said third-party environment application;
and

a seventh computer code mechanism configured to update
said 1ntegrated menu based on the message received
from said third-party environment application.

23. The computer program product according to claim 17,

wherein said computer code mechanism further comprises:

a sixth computer code device configured to receive a
message from a second third-party environment appli-
cation; and

a seventh computer code device configured to update said
third-party menu of said first third-party environment
application based on the message received from the
second third-party environment application.

24. The computer program product according to claim 17,

wherein said computer code mechanism further comprises:

a sixth computer code device configured to receive a
message from a second integrated environment appli-
cation; and

5,950,000

23

a seventh computer code device configured to update said
integrated menu of said first integrated environment
application based on the message received from the
second integrated environment application.

25. A method of integrating an integrated environment

application and a third-party environment application with
an environment manager, the method comprising the steps

of:

providing an environment manager having a graphical
user interface (GUI) including an icon palette with an
integrated icon corresponding to an mtegrated environ-
ment application, and further including a menu bar with
an 1ntegrated menu for the integrated environment
application;

10

24

selecting a third-party environment application for inte-
gration with the environment manager;

adding a third-party menu for the third-party environment
application to the menu bar;

receiving a command from a user based on an interaction
with at least one of the icon palette, the integrated menu
and the third-party menu; launching at least one of the
integrated environment application and the third-party
environment application; and

adding an icon for the third-party environment application
to the 1con palette.

	Front Page
	Drawings
	Specification
	Claims

