US005940616A
United States Patent 119] 111] Patent Number: 5,940,616
Wang 45] Date of Patent: Aug. 17,1999
[54] TRACKER CLASS FOR OBJECT-ORIENTED 5,652,888 T/1997 BUIZESS .ccoeeeerrririveineinieennennanes 395/683
PROGRAMMING ENVIRONMENTS 5,692,183 11/1997 Hapner et al.cccevvveevneene. 395/500
5,740,440 4/1998 WESE ovveveevereeeereeerereereseerersenen, 395/704
[75] Inventor: I-Shin Alldy Wﬂllg, San JOS@, Calif. OTHER PUBILICATIONS
[73] Assignee: International Business Machines Fiedler, Steven P; “Object-oriented unit testing”;
Corporation, Armonk, N.Y. Hewlett—Packard Jounal, v.40, n2, p.69(6), Apr., 1989.
Lamb, Charles; Landis, Gordon; orenstein, Jack; Weinreb,
21] Appl. No.: 08/656,445 Dan “The ObjectStore database system”; Communications
o of the ACM, v34, n10, p.50(14), Oct., 1991.
22| Filed: May 31, 1996
el e 47 2% Primary FExaminer—James P. Trammell
51] Int. CLO s GO6F 9/45 Assistant Examiner—Demetra R. Smith
52] US.CL ... oo 395/704; 395/703 Attorney, Agent, or Firm—Merchant, Gould, Smith, Edell,
58] Field of Searchoocooocovvovveceeeenn... 395/500, 700, Welter & Schmudt
395/701, 705, 683, 704, 710, 183.14, 183.18, 57 ABSTRACT
702; 364/280, 280.4, 281.3, 282.1, 284,
284.3; 7077/101 The present mvention discloses a method, apparatus, and
article of manufacture for providing object tracking capa-
[56] References Cited bilities in object-oriented programming environments using,
a tracker class and associated functions, and a memory for
U5 PALENT DOCUMENTS storing tracker objects. The tracker class, once defined as a
4,989,132 1/1991 Mellender et al.oovvenn..... 395/705 base class of any target class that needs the tracking
5,297,283 3/1994 Kelly, Ir. et al.coee 395/674 capability, automatically tracks all the objects instantiated
5?3035379 4/994 KhOYl et al. e, 395/710 from the target ClaSS in a hnked hSt Objects inStantiated
5,459,865 10/:995 Hfﬂ:nmger et al. .o 395/678 from classes derived from the tracker class are automatically
?g?gjgéé éﬁggg g“flh e; al S ;ggggi tracked when the target objects are 1nitialized, be 1t on a heap
5" S 42?078 . /T 006 h/}:ar?; Z: Zl A rerermemenenneenes 207101 or on a stack, because the constructor of the tracker class 1s
5.550.563 8/1996 Matheny et al. woooo................ 345/168 10VOked by the constructor of the target class. The tracker
5581760 12/1996 Atkinson et al. ... 395,702 classis defined as a template, so that it can be applied to any
5,581,765 12/1996 Muntoe et al. ..ceveveererererennnnns 395/677 type of target object.
5,603,030 2/1997 Gray et al.cooooiieniennennen.. 395/705
5,606,661 2/1997 Wear et al.cooeevvinnnnnnnnn, 395/183.14 31 Claims, 12 Drawing Sheets
Fixzed Removable
R s o
110a 1108
Computer 100
PIDTESSDI
Memory 104
Cperating System
112
Tracker
class
SCilllquCE '
- Chiject
Compiler program
118 120
Source
program
116
Kevboard Display

106

108

U.S. Patent

Aug. 17,1999 Sheet 1 of 12

Fixed
data storage

Removable
data storage

device
110a

device
110b

5,940,616

110c

Computer 100

Processor
102

Memory 104

Operating System

112

Complier
118
sSource
program
116
Kevyboard Display
106 108

FIG. 1

U.S. Patent Aug. 17, 1999 Sheet 2 of 12 5,940,616

200
Receilve

source language
statements

202

Translate
statements i1into
object code

204
store object

code as object
program

206

Execute
object program

U.S. Patent Aug. 17, 1999 Sheet 3 of 12 5,940,616

300
Initialize
tracker object
linked 1list
302
Next
function
304 306
Y
=2 FIG. 4
308 310
Y
=2 FIG. 5
3172 314
Tracker
object 1es FIG. 6
management?
NO
316

Perform other

functions

FIG. 3

U.S. Patent Aug. 17, 1999 Sheet 4 of 12 5,940,616

400
Create target

object in
memory

402
Create tracker

object in
memory

404

Cast tracker
object pointer
CO target
object

41006
Insert tracker

object 1in the
linked list

FIG. 4

U.S. Patent

Remove tracker
object from the
linked list

Delete target

object from
MEemory

Delete tracker
object from
memory

FIG. 5

Aug. 17,1999

200

502

004

Sheet 5 of 12

5,940,616

Traverse linked 600
list for
desired tracker
object
Perform an 6072

operation with

the tracker

object from the
linked list

FIG. 6

U.S. Patent Aug. 17, 1999 Sheet 6 of 12 5,940,616

Target
object #1
7102

Backward
polinter
(prev)

196 Target

object #1
Forward '" 710

polnter
(next)

704

Target
object #2
/02

Backward
polinter
(prev)
706

Target

object #2
Forward /10
polnter
(next)
704

FIG. 7

5,940,616

U.S. Patent Aug. 17, 1999 Sheet 7 of 12
1 // tracker.h
2 #ifndef TRACKER H
3 #define TRACKER H
4
5 #include <stddef.h>
6
7 typedef enum
3 {
9 TRACK, // Track the object
10 DONT_TRACK // Do not track the object
11 } TRACK FLAG;
12
13 class Tracker
14 {
15 friend class Tracker Iterator;
16 const void *p obj;
17 Tracker *next
18 lTracker *prev; public:
19 Tracker () ;
20 // avoid default member-by-member copying
21 Tracker (const Tracker &r):;
22 // avoid default member-by-member copying
23 Tracker &operator = (const Tracker &r);
24 ~Tracker () ;
25 vold insert (Trakcer *&root, const void *p_obj_, TRACK FLAG) ;
26 vold remove (Tracker *&root);
27 };
28
29 inline
30 Tracker: :Tracker ()
31 {
32 }
33
34 inline
35 Tracker::Tracker (const Tracker &r)
36 {
37 }
38
39 inline
40 Tracker::~Tracker ()
41 {
42 }
43
44 inline
45 I'racker &Tracker::operator =(const Trakcer &r)
46 {
477 return (Tracker &) *this;
43 }
49

FIG. 8A

U.S. Patent Aug. 17, 1999 Sheet 8§ of 12 5,940,616

50

o1 class Tracker Iterator
52 {
53 Tracker *next; public:

54 I'racker Iterator (const Tracker *root) ;
23 ~Tracker Iterator ();

56 const voild *get next();
o b s

58
55 inline

o0 Tracker_Iterator::~Trackerq1terator()
6l {

62 }

63

64 inline

03 Tracker_Iterator::Tracker Iterator(const Tracker *root)
06 {

G/ next = (Tracker *) root;

08 }

09

70 lnline const void *Tracker_ Iterator::get next ()
71 {

12 const Tracker *temp = next;
73

14 1f (next != NULL

75 {

76 next = next->next;

777 return temp->p obj;

78 }

79 return NULL;

80 }

81

82 #tendif

FIG. 8B

U.S. Patent Aug. 17, 1999 Sheet 9 of 12 5,940,616

1 // ttracker.h

2 #ifndef TTRACKER H

3 #define TTRACKER H

4

5 #include "tracker.h"

6

] template <class T> class TTracker : public Tracker
3 {

5 friend class TTracker Iterator<T>;

10 static Tracker *root; public:

11 TTracker (TRACK FLAG track flag = TRACK);
12 ~Tracker ();

13 ;s

14

15 template <classT>

16 Tracker *TTracker<T>::root = NULL;

17

18 template <class T> inline

19 TTracker<T>::TTracker (TRACK FLAG track flag)
20 {

21 // This casting is essential for obtaining the original address.
22 insert (root, (const T *) this, track flag);
23 }

24

25h template <class T> inline

26 TTracker<T>::~TTracker ()

27 {

28 remove (root);

29 }

30

31 template <class T> class TTracker Iterator : public
32 Tracker Iterator

33 { public:

34 TTracker Iterator();

35 ~TTracker Iterator();

36 const T *get next() const;

37 };

38

39 template <class T> inline

40 TTracker Iterator<T>::TTracker Iterator ()

471 : Tracker Iterator(T::root)

47 {

43 }

44

45 template <c¢lass T> inline

46 TTracker_Iterator<T>::~TTracker Iterator ()
477 {

48 }

49

50

FIG. 9A

U.S. Patent Aug. 17, 1999 Sheet 10 of 12 5,940,616

o1l

22 template <class T> inline const T *TTracker Iterator<T>::get next ()
53 const

oL\ {

55 return (const T *) ({(Tracker Iterator *)
56 this}—>Tracker_Iterator::get next () ; B

57} B

58

59 endilf

FIG. 9B

U.S. Patent Aug. 17, 1999 Sheet 11 of 12 5,940,616

1 // tracker.cpp

2 #include "tracker.h"

3

4 vold Tracker::insert (Tracker *&root,
2 const vold *p obj ,
6 TRACK_FLAG track flag)
L {

8 prev = NULL;

9 1f (track flag == TRACK)

10 {

11 Tracker *temp = root;

12

13 root = this;

14 p_obj = p obj;

15 1f (temp == NULL)

16 next = NULL;

17 else

18 {

19 next = temp;

20 temp->prev = this;

21 }

22 }

23 else

24 {

25 next = NULL;

26 p_obj = NULL; // do not track this object
27 }

28 }

29

30 void Tracker::remove (Tracker *&root)
31 {

32 // do nothing since it was not tracked on the list
33 1f (p obj == NULL) return;

34 1f (prev == NULL)

35 {

36 1f (next !'= NULL)

37 next->prev = NULL;

38 root = next;

39 }

40 else prev->next = next;

41 }

42

FIG. 10

U.S. Patent Aug. 17, 1999 Sheet 12 of 12 5,940,616

1 // main.cpp

2 // sample code for using TTracker<T> and I'Tracker Iterator<T:
3 #include <iostream.h>

4 #include "ttracker.h"

5

0 class A : public TTracker<aA>

7 {

3 int 1; public:

S A(int 1);

10 friend osream &operator << (ostream &0s, const A &r);
11 b

12

13 inline

14 A::A (int 1)

15 {

16 1 =1 ;

17 }

18

19 inline ostream &operator << (ostream &0S, const A &r)
20 {

21 0s <L r.i;

22 return os;

23 }

24

25 vold main ()

20 {

27

28 // 1lnstantiate objects on the stack

29 A aO(0Q), al(l), az(2);

30

31 // 1lnstantiate objects on the heap

32 A *p = new A(3), *q = new A(4), *r = new A(5) ;
33

34 // instantiate iterator "ai" for class A

35 ITracker Iterator<A> ai;

36

37 // define temp pointer

38 const A *temp;

39

40 // 1terate through all the objects tracked by TTracker<i>
41 while ((temp = al.get next()) != NULL)

42 cout << *temp << endl;

43

44 // cleanup objects on heap

45 delete p;

46 delete qg;

477 delete r;

48 }

FIG. 11

5,940,616

1

TRACKER CLASS FOR OBJECT-ORIENTED
PROGRAMMING ENVIRONMENTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to object-oriented
programming, and in particular, to a tracker class for man-
aging objects created 1n object-oriented programming envi-
ronments.

2. Description of Related Art

In C++ and other object-oriented programming
environments, programmers create classes that define data
members as well as a set of functions, typically referred to
as member functions, for manipulating the data members.
Each instance of a class, 1.€., each object, has its own set of
the data members and member functions of its class.

One significant drawback to object-oriented programming
environments 1s that all the instances of a class, 1.e., all the
objects, are not managed 1n any standard manner. Generally,
it 1s up to the programmer to define and program the
management of objects. As a result, there 1s a need 1n C++
and other object-oriented programming environments for a
tracker class that can be mherited by other objects, wherein
the tracker class provides data members and member func-
fions for managing objects mstantiated in the environments.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a method,
apparatus, and article of manufacture for providing object
fracking capabilities 1in object-oriented programming envi-
ronments using a tracker class and associated functions, and
a memory for storing tracker objects. The tracker class, once
defined as a base class of any target class that needs the
tracking capability, automatically tracks all the objects
instantiated from the target class in a linked list. Objects
instantiated from classes derived from the tracker class are
automatically tracked when the target objects are 1nitialized,
be it on a heap or on a stack, because the constructor of the
tracker class 1s defined as a template, so that it can be applied
fo any type of target object.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1s a block diagram illustrating an exemplary
hardware environment used to i1mplement the preferred
embodiment of the 1nvention;

FIG. 2 1s a flowchart illustrating the general flow per-
formed for the compilation of the above-identified source
language statements and the execution of an object program
120 to accomplish the present invention;

FIG. 3 1s a flowchart illustrating the steps performed by
the computer to use tracker objects in accordance with the
present mvention;

FIG. 4 1s a flowchart illustrating the steps performed by
the computer in creating a target object in the memory of the
computer 1n accordance with the present mnvention;

FIG. 5 1s a flowchart illustrating the steps performed by
the computer in deleting a target object in the memory of the
computer 1 accordance with the present mnvention;

FIG. 6 1s a flowchart illustrating the steps performed by
the computer 1n managing tracker objects in the memory of
the computer in accordance with the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 1s a block diagram 1illustrating the structure and
relationship of the target objects and tracker objects stored
in the memory of the computer 1n accordance with the
present 1nvention; and

FIGS. 8A—11 1illustrate source code.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference 1s made to the accompanying drawings which
form a part hereof, and in which 1s shown by way of
illustration a specific embodiment in which the mvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural and functional changes
may be made without departing from the scope of the
present 1vention.

OVERVIEW

The present invention comprises a method, apparatus, and
article of manufacture for providing a tracker class for
managing objects created in object-oriented programming
environments, and a memory for storing tracker objects. The
tracker class allows a programmer to manage all instances of
a class, 1.e., all objects, 1n a well-defined manner.

In the prior art, object-oriented programming,
environments, such as C++, do not provide the capability to
track objects of a class. Any number of objects may be
created, or istantiated, from a class, but there 1s no defined
way for the environment to automatically determine how
many such objects have been created. In effect, the man-
agement of objects 1s left to the design of the programmer.

The present invention enables object tracking capabilities
in object-oriented programming environments with a new
tracker class. The tracker class, once defined as a base class
of any class that needs the tracking capability, automatically
tracks all the objects of the class 1n a data structure, such as
a linked list or other data structure. A programmer need only
create a target object so that the target object inherits the
tracker class. A constructor function of the tracker class
insures that the target object is inserted into the data struc-
ture when the target object 1s created, so that the target object
may be tracked and managed 1n a well-defined manner. In
addition, a destructor function of the tracker class insures
that the target object 1s deleted from the data structure when
the target object 1s deleted. The constructor function of the
tracker class 1s automatically invoked by the constructor
function for the target object, and similarly, the destructor
function of the tracker class 1s automatically invoked by the
destructor for the target object.

Some of the features for the tracker class 1nvention
include the following:

1. A template tracker for customizing the tracker class to
the target class,

2. Static linked lists route built in the template tracker
class,

3. Operator overloading and copy constructor for solving,
member-by-member copy problems, and

4. Pointer casting for solving pointer offset problems.

The techniques of the present invention can be applied to
a number of different arecas which require object tracking
such as debugging, memory management, document and
view tracking, rule inferencing, efc.

HARDWARE ENVIRONMENT

FIG. 1 1s a block diagram 1illustrating an exemplary
hardware environment used to implement the preferred

5,940,616

3

embodiment of the invention. In the exemplary hardware
environment, a computer 100 may include, inter alia, a
processor 102, memory 104, keyboard 106, display 108, as
well as fixed and/or removable data storage devices and their
assoclated media 110a, 1105, and 110c. The computer 100
operates under the control of an operating system 112, such
as OS/2™_ Windows™, AIX™_ UNIX™, 6 DOS™, efc.
Those skilled 1 the art will recognize that any combination
of the above components, or any number of different
components, peripherals, and other devices, may be used
with the computer 100.

The present mvention 1s generally implemented by incor-
porating tracker class source code 114 1nto a source program
116 and compiling the tracker class source code 114 and
source program 116 using a compiler program 118 to create
an object program 120. In the preferred embodiment, the
tracker class source code 114, source program 116, and
compiler 118 conform to C++ language conventions,
although those skilled 1n the art will recognize that they
could conform to other object-oriented programming lan-
guage conventions without departing from the scope of the
present invention. Further, the compiler 118 may also
include such elements as pre-processors, linkers, etc.

The compiler 118 performs an analysis of the tracker class
source code 114 and source program 116 containing source
language statements, wherein the tracker class source code
114 and source program 116 are generally stored 1n a text file
on the data storage devices 110a—c or entered interactively
by a programmer from the keyboard 106. The compiler 118
then synthesizes an object program 120 from the source
language statements 1n the tracker class source code 114 and
source program 116.

Using standard language conventions, a programmer can
enter source language statements into the tracker class
source code 114 and source program 116 that specily a
tracker class and other classes that inherit the tracker class.
These source language statements, when recognized by the
compiler 118, result 1n the generation of an object program
120 containing nstructions for generating data members for
the tracker class and for performing the member functions
necessary to manipulate those data members according to
the present invention.

In creating the object program 120, the compiler 118 may
also 1nclude other source code, such as header files, libraries,
ctc. Further, the compiler 118 may link the object program
120 to other executable object code, such as libraries, etc.,
during compilation. In addition, the operating system 112
may link the object program 120 to other executable object
code, such as dynamic link libraries, etc., at run-time.

Generally, the operating system 112, tracker class source
code 114, source program 116, compiler 118, and object
program 120 are all tangibly embodied 1n a computer-
recadable medium, e.g., one or more of the fixed and/or
removable data storage devices and their associated media
110a—c. Moreover, the operating system 112, compiler 118,
and object program 120, are all comprised of instructions
which, when read and executed by the computer 100, cause
the computer 100 to perform the steps necessary to 1mple-
ment and/or use the present invention. Under control of the
operating system 112, the compiler 118, and object program
120 may be loaded from the data storage devices 110a—c into
the memory 104 of the computer 100 for use during actual
operations 1n 1mplementing and/or performing the present
invention.

DEFINING TRACKER OBIJECTS

Typically, a programmer would implement the present
invention by creating a source program 116 for an applica-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion. The source program 116 may include (via an
“#include” or other source language statement) one or more
files that store the tracker class source code 114. The
combined tracker class source code 114 and source program
116 arc then compiled by the compiler 118. As will be
discussed more fully below, the source program 116 includes
other objects from classes that have been specifically
selected or created to perform the functions of a desired
application. The source program 116 uses the tracker class
definitions and implementations from tracker class source
code 114 to manage all instances of the these other classes
through one or more tracker objects.

Tracker Class Definition

FIGS. 8A and 8B illustrate a source code file or module
named TRACKER.H and comprise an example of source
language statements that define the tracker class in the
tracker class source code 114 according to the present
invention. In this example, the tracker class 1s known as
“Tracker”. Objects of classes derived from the tracker class,
1.€., that inherit the tracker class, are automatically tracked
when the objects are mitialized, be 1t on a heap or on a stack.

Lines 2-3 of FIGS. 8A and 8B provide methods of
conditional compilation for the TRACKER.H module. The
directive “#ifndef tracker h” on line 2 indicates that if a
macro name “tracker_ h” 1s currently undefined in the
compiler 118 by a “#define” statement, then the following
block of code (until a corresponding, nested “#endif”
directive) is compiled. The directive “#define tracker h” on
line 3 defines the block under macro name “tracker__h” in
the compiler 118.

At line 5, a header file for standard class definitions 1s
included.

Lines 7-11 provide an enumeration or set of named
integer constants that specity the legal values TRACK and
DONT__TRACK for the variable TRACK FLAG. In this
example, the value TRACK 1ndicates to the tracker object
that the object 1s to be tracked, and the value DONT__
TRACK i1ndicates to the tracker object that the object 1s not
to be tracked.

Lines 13-27 are the class declaration for the tracker class,
wherein line 13 names the class Tracker and lines 15-26
comprise public data and functions for the class.

Line 15 1s the class declaration for the Tracker Iterator
class, which 1s declared as a “friend.” The “friend” mne-
monic means that the Tracker_ Iterator class can freely
access the data members of the Tracker class.

At line 16, a public pointer “p_oby” 1s defined. The
pointer p__obj points to a target object when a tracker object
1s allocated and defined.

At line 17, a pointer “next” 1s defined. The pointer next
points to the next tracker object 1n the linked list.

At line 18, a public pointer “prev” 1s defined. The pointer
prev points to the previous tracker object 1n the linked list.

A prototype for a constructor function of the tracker class,
Tracker, 1s declared at line 19. As 1s well known 1n the art,
the constructor function 1s called whenever an object of the
tracker class 1s 1nstantiated. According to the present
invention, the constructor function receives no arguments as
indicated by the empty parentheses () in the constructor
function’s prototype.

At line 21, a prototype of a copy constructor function 1s
declared. By default, when one object 1s used to 1nitialize
another, as 1n the present case with regards to the target class
inheriting and thus initializing each instance of the tracker

5,940,616

S

class, C++ performs a bit-wise copy, so that an identical
copy of the 1nitializing object 1s created 1n the tracker object.
However, a bit-wise copy must be avoided when a target
object allocates memory during creation, so that the tracker
object does not share the same memory. Using the copy
constructor, the bit-wise copy 1s bypassed, and the tracker
object does not share the same memory as the target object.

At line 23, an overloaded assignment operator 1s declared
as a member function prototype, so that member-by-member
copying 1s avoided.

A prototype for a destructor function of the tracker class,
~Tracker, 1s declared at line 24. As 1s well known 1n the art,
the destructor function 1s called whenever the object of the
tracker class 1s deleted. According to the present invention,
the destructor function receives no arguments as indicated

by the empty parentheses () in the destructor function’s
prototype.

At lines 25-26, prototypes for additional member func-
tions of the tracker class, named insert and remove, are
declared. These functions are also discussed more fully
below.

At lines 29-32, the constructor for the class 1s defined. As
can be seen, no 1itialization operations are provided at
creation of the object. Also, the “inline” directive means that
the function 1s not called; rather, the code 1s expanded inline
at the point of each ivocation by the compiler 118 1n order
to create more efficient code.

At lines 34-37, a copy constructor function for the class
1s defined, wherein a pointer to the object 1s passed as an
arcument. Again, no 1nitialization operations are provided.

At lines 3942, the destructor for the class 1s defined. As

can be seen, no other operations are performed at the
deletion of the object.

At lines 44-48, the overloaded assignment operator,
which 1s a member function, 1s defined. This function returns
a reference to the current tracker object i1dentified by the
“this” pointer.

Lines 51-57 are the class declaration for the Tracker
[terator class, wherein line 51 names the class Tracker
Iterator and lines 52—57 comprise private and public data,
and member functions for the class.

At line 53, a pointer “next” 1s defined.

At line 54, a prototype for a constructor function for the

Tracker Iterator class 1s declared.

At line 55, a prototype for a constructor function of the
Tracker_Iterator class 1s declared.

At line 56, a prototype for a member function, named
oget_ next, 1s declared.

At lines 59-62, the constructor function for the Tracker
Iterator class 1s defined. There are no initialization opera-
tions performed by this function.

At lines 64-80, the copy constructor function for the
Tracker Iterator class 1s defined. Within this function, the
pointer root 1s stored 1n the pointer next.

At lines 70-80, the get_ next member function 1s defined.
Within this function, the pointer next 1s stored into the
pointer temp. The value 1n next 1s then examined to deter-
mine whether 1t 1s null. If not, then the pointer next is
advanced to the next object in the linked list and the function
returns a pointer to the target object. Otherwise, a null 1s
returned.

Template Tracker Class Definition

FIGS. 9A and 9B are a source code file or module named
TTRACKER.H and comprise an example of source lan-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

cuage statements that define a template tracker class 1n the
tracker class source code 114 according to the present
invention.

In this example, the template 1s known as “TTracker” and
itself 1s a class definition. By using a template, a generic
tracker class 1s defined that includes all of the member
functions used by the tracker class, but the actual type of
data being manipulated 1s specified as a parameter when
objects of the tracker class are created. As described above,
a tracker object 1s instantiated when objects of a target class
that inherits the tracker class are created. As a result, objects
of target classes derived from the template tracker class are
automatically tracked when the target objects are 1nitialized,
be 1t on a heap or on a stack.

Lines 2-3 of FIGS. 9A and 9B provide methods of
conditional compilation for the TTRACKER.H module. The
directive “#ifndef ttracker__h” on line 2 indicates that if a
macro name “ttracker h” i1s currently undefined in the
compiler 118 by a “#define” statement, then the following
block of code (until a corresponding, nested “#endif”
directive) is compiled. The directive “#define ttracker h”
on line 3 defines the block under macro name “ttracker__h”
in the compiler 118.

At line 5, the tracker class definition from FIGS. 8A and
8B, which 1s stored 1n the file “tracker.h”, 1s included.

Lines 7-13 are a generic class declaration for the template
tracker class, wherein <class T> 1s the placeholder type
name that 1s specilied when the class 1s 1nstantiated,
TTracker names the class, and Tracker indicates that it
inherits from the tracker class definition described in FIGS.
8A and 8B. Lines 9-12 comprise public data and member
functions for the TTracker class.

At line 9, the class TTracker Iterator 1s declared as a
“friend.”

At line 10, a pointer root 1s defined for the T Tracker class.

A prototype of a constructor function of the template
tracker class, TTracker, 1s declared at line 11.

A prototype of a destructor function of the template
tracker class, TTracker, 1s declared at line 12.

At lines 15-16, the root pointer 1s 1nitialized to null.

At lines 1823, the constructor function for the class 1s
defined. The pomter “this” to the current object 1s cast,
depending on the type of object, during the call to the insert
member function to obtain the address of the first memory
location of the object being tracked.

At lines 25-29, the destructor function for the class 1s
defined. The pointer “root” 1s passed to the remove member
function to delete the current object.

At lines 31-37, the TTracker Iterator class 1s declared.
Lines 33-37 comprise public member functions for the
class, including declarations of a constructor, destructor and
oget_next functions.

At lines 39-43, the constructor function for the
TTracker Iterator class 1s defined.

At lines 4548, the destructor function for the TTracker
Iterator class 1s defined.

At lines 5257, the get__next member function 1s defined,
wherein the function returns the pointer to the next object in

the linked list.

Template Tracker Class Implementation

FIG. 10 1llustrates a source code file or module named
TTRACKER.CPP and comprises an example of source
language statements that define the template tracker class

5,940,616

7

implementation 1n the source code 114 according to the
present invention.

At line 2, the tracker class definition from FIGS. 8A and
8B, which 1s stored 1n the file “tracker.h”, 1s included.

At lines 4-28, an insert function 1s defined. The insert
function was declared m FIGS. 8A and 8B as a member
function of the Tracker class. Three argcuments are passed to
the insert function, mcluding the pointer root to the first
fracker object 1n the linked list, the pointer p_ obj to the
target object, and the variable TRACK__FILLAG indicating
whether the object should be tracked or not. In the insert
function, the tracker object 1s inserted at the beginning of the
linked list. In the 1nsert function, the pointer prev 1is first set
to null and the TRACK__FLAG variable 1s tested to see
whether or not tracking 1s enabled for the target object. If the
TRACK _FLAG variable 1s equal to TRACK, then the
following functions are performed. The root pointer 1s stored
in a temp pointer. The root pointer 1s then set to the current
object using the “this” pointer. The pointer p_ obj 1s set to
the target object 1n the passed parameter. If the pointer temp
1s null, then the pointer next 1s set to null; otherwise, the
pointer next 1s set to the value 1n the temp pointer and the
temp pointer 1s set to the value 1n the prev pointer, which
itself 1s set to the value of the current object using the “this”

pointer. If the TRACK __FLAG variable 1s equal to DONT_

TRACK, then the next pointer set to null, and the passed
pointer p_ obj 1s also set to null to indicate that the target
object 1s not being tracked.

At lines 30—41, a remove function 1s defined. The remove
function was declared 1n FIGS. 8A and 8B as a member
function of the tracker class. One argument 1s passed to the
function, 1.¢., the pointer root to the first tracker object in the
linked list. If the pointer p__obj to the current target object
1s null, mndicating the target 1s not being tracked, then control
1s returned to the calling instruction. Otherwise, if the prev
pointer 1s null and the next pointer 1s not null, then the next
pointer 1s set to the value of the prev pointer, which 1n turn
1s set to the value of null. The pointer root 1s then set to the
value of the next pointer. Otherwise, if the prev pointer 1s
null, then the prev pointer 1s set to the value of the next
pointer, which 1n turn 1s set to the value of the next pointer.

Instantiation of Target and Tracker Objects

FIG. 11 1llustrates an example of a partial listing of source
language statements for a source program 116 that define a
target class and then instantiate a tracker object, which 1n
turn 1nstantiates the tracker object and 1nvokes a constructor
function of the tracker class.

At line 3, the header file for the “1ostream” class decla-
rations 18 included, and at line 4, the class declarations for
the “TTracker” template are included.

Lines 6—11 are the class declaration for the class “A”,
which 1s based on the template TTracker. At line 8§, an
integer variable “1” 1s declared. At line 9, a prototype of a
constructor functlon for class A 1s declared. At line 10, a
prototype of a member function that overloads the <<
operator 1s defined, which allows the tracker class 1n A to be

copied to the stream output class for printing.

At lines 13-17, the constructor function for the A class 1s
defined. As can be seen, the variable “17 1

1s 1nitialized with
the passed parameter.

At lines 19-23, the overloaded << operator 1s defined.
This function creates an output function for the objects
instantiated from class A. The variable “1” from the object 1s
copied 1nto the output stream object and then the functions
returns the object.

10

15

20

25

30

35

40

45

50

55

60

65

3
At lines 25-39, the main procedure 1s defined.

At line 27, three objects from class A are instantiated on
the stack, 1.e., objects al), al, and a2.

At line 28, three objects from class A are instantiated on
the heap, 1.€., objects p, g, and r.

At line 30, an 1terator ed for class A.
At]

line 31, a pomnter “temp” 1s defined for class A.

Lines 33-35 1iterate through all the objects tracked by
TTracker<A>, wherein each object 1s outputted via the
“cout” function followed by an endline (endl) indicator.
These steps result 1n the printing of the objects, 1n linked list
order, which would result in a single column list “54321.”

e o2 2

al 1S Crcal

Finally, at lines 45—47, the objects on the heap, 1., p, g
and r, are deleted, and the main procedure ends.

COMPILATION LOGIC

FIG. 2 1s a flowchart 1llustrating the general flow per-
formed for the compilation of the above-identified source
language statements 1 FIGS. 8A—11 which comprise the
tracker class source code 114 and source program 116, and
the execution of an object program 120 to accomplish the
present invention. Block 200 represents the compiler 118
receiving the source language statements nto the memory
104 of the computer 100. Block 202 represents the compiler
118 translating the source language statements 1nto execut-
able or object code 1 the memory 104 of the computer 100,
wherein the object code includes instructions for generating,
data members for the tracker class and for performing the
member functions necessary to manipulate those data mem-
bers according to the present mvention. Block 204 repre-
sents the compiler 118 storing the executable or object code
as an object program 120 in the memory 104 of the computer
100 or on a data storage device 110a— of the computer.
Block 206 represents the computer 100 executing the object
program 120 in the memory 104 of the computer 100.

TRACKER OBJECTS LOGIC

FIG. 3 1s a flowchart 1llustrating the steps performed by
the computer 100 to use tracker objects 1n accordance with
the present 1nvention. These steps are embodied 1n 1nstruc-
tions 1n the object program 120 and provide for the tracking
of target objects 1n an object-oriented programming envi-
ronment.

Block 300 represents the computer 100 1initializing,
among other things, a tracker object linked list, wherein the
linked list 1s mitially empty and comprises only the alloca-
tion of a root pointer in the memory 104 of the computer

100.

Block 302 represents the computer 100 determining the
next function or instruction to be performed 1n accordance
with the instructions embodied 1n the object program 120.
These functions are idenfified and performed in following
Blocks 304-316. Those skilled 1n the art will recognize that
these are illustrative steps only, and the actual sequence of
operations of the computer 100 may comprise state transi-
tions within a message-driven or event-driven environment
embodied by the object program 120, or sequential mnstruc-
tions embodied by the object program 120, or any other
similar type of operation embodied by the object program

120.

Block 304 1s a decision block that represents the computer
100 determining whether the next function to be performed
comprises the creation of a target object in the memory 104
of the computer 100. If so, control transfers to Block 306
which represents the steps illustrated 1n FIG. 4 to perform

5,940,616

9

the function and then back to Block 302; otherwise, control
transfers to Block 308.

Block 308 1s a decision block that represents the computer
100 determining whether the next function to be performed
comprises the destruction of a target object in the memory

104 of the computer 100. If so, control transters to Block
310 which represents the steps illustrated m FIG. 5§ to
perform the function and then back to Block 302; otherwise,
control transfers to Block 312.

Block 312 1s a decision block that represents the computer
100 determining whether the next function to be performed
comprises some management function associated with a
tracker object 1n the memory 104 of the computer 100. If so,
control transfers to Block 314 which represents the steps
illustrated 1n FIG. 6 to perform the function and then back
to Block 302; otherwise, control transfers to Block 316.

Block 316 represents the computer 100 performing all

other functions of the object program 120. Thereafter, con-
trol transfers back to Block 302.

FIG. 4 1s a flowchart illustrating the steps performed by
the computer 100 1n creating a target object in the memory
104 of the computer 100 1n accordance with the present
invention.

Block 400 represents the computer 100 creating a target
object 1n the memory 104 of the computer 100.

Block 402 represents the computer 100 creating a tracker
object 1n the memory 104 of the computer 100 at the
instantiation or creation of the target object. As indicated
above, the target class inherits the tracker class and the
instantiation of the target object results 1n the instantiation of
the tracker object. Further, due to the use of the template
described above, the tracker object 1s customized for the
particular type of target object.

Block 404 represents the computer 100 casting the tracker
object pointer to the target object 1n the memory of the
computer 100. The casting step 1includes the step of 1inserting
a pointer to the target object into the data structure via the
constructor function for the tracker class, which, as
described above, 1s invoked by the constructor for the target
class. However, the constructor function for the tracker class
first “casts” the pointer to adjust the address for the target
object based on 1ts type. Further, the constructor function 1is
a copy constructor and thus prevents member-by-member
copying of target objects.

Block 406 represents the computer 100 inserting the
tracker object mto a linked list data structure 1n the memory
104 of the computer 100, so that the target object may be
fracked. In the preferred embodiment, the data structure
comprises a linked list, although other data structures such
as arrays, etc., could be used as well.

FIG. 5 1s a flowchart illustrating the steps performed by
the computer 100 1n deleting a target object in the memory
104 of the computer 100 1in accordance with the present
invention.

Block 500 represents the computer 100 removing an
assoclated tracker object from the linked list data structure
in the memory 104 of the computer 100. The removing step
1s achieved by the computer 100 traversing the linked list
looking for a pointer to the target object, removing the
assoclated tracker object from the linked list, and then
updating the linked list to reflect the removal of the tracker
object.

Block 502 represents the computer 100 deleting a target
object 1n the memory 104 of the computer 100.

Block 504 represents the computer 100 deleting the
tracker object from the memory 104 of the computer 100. As

10

15

20

25

30

35

40

45

50

55

60

65

10

indicated above, the target class inherits the tracker class and
so the destructor function of the target object results 1n the
invocation of the destructor function of the tracker object.

FIG. 6 1s a flowchart 1llustrating the steps performed by
the computer 100 1n managing tracker objects 1in the memory
104 of the computer 100 1n accordance with the present
invention.

Block 600 represents the computer 100 traversing the
linked list in memory 104 of the computer 100 looking for
the desired tracker object, wherein the tracker object is
identified by its characteristics or by its pointer to a desired
target object contained within the tracker object.

Block 602 represents the computer 100 performing some
operation with the tracker object located 1n the linked list 1n
the memory 104 of the computer 100.

TRACKER OBJECTS LINKED LIST

FIG. 7 1s a block diagram 1illustrating the structure and
relationship of the target objects and tracker objects stored
in the memory 104 of the computer 100 1n accordance with
the present invention. In the preferred embodiment, the
tracker objects comprise elements of a doubly linked list,
although a singly linked list may also be used. Further, those
skilled 1n the art will recognize that other data structures
such as arrays, etc., could be used as well without departing
from the scope of the present 1nvention.

A root pointer 700 points to the first tracker object 702 1n
the linked list. If the linked list 1s empty, then root pointer
700 contains an address of null (or some other pre-defined
value). Each tracker object 702 has a forward pointer 704
containing the address of the next tracker object 702 1n the
list (or a null value) and a backward pointer 706 containing
the address of the previous tracker object 702 in the list (or
a null value). The first tracker object 702 in the list has a
backward pointer 706 containing a null value (since there
are no previous objects) and the last tracker object 702 has
a forward pointer 704 containing a null value (since there are
no next objects). Each tracker object 702 also has a target
object pointer 708 containing the address of its associated
target object 710, wherein the target object poimnter 708 has
been cast, depending on the data type of the target object
710, to obtain the address of the first memory location of the
target object 710. Using methods well known 1n the art, the
linked list can be traversed or searched and tracker objects
702 can inserted or removed.

CONCLUSION

This concludes the description of the preferred embodi-
ment of the mvention. The following describes some alter-
native embodiments for accomplishing the present 1nven-
tion. The present invention may be implemented 1n any type
of computer, such as a mainframe, minicomputer, or per-
sonal computer. Moreover, the present invention 1s not
limited to the C++ programming language but extends to
cover other object oriented languages having similar prob-
lems with pointers.

In summary, the present invention discloses a method,
apparatus, and article of manufacture for providing object
tracking capabilities 1n object-oriented programming envi-
ronments using a tracker class and associated functions, and
a memory for storing tracker objects. The tracker class, once
defined as a base class of any target class that needs the
tracking capability, automatically tracks all the objects
instantiated from the target class 1n a linked list. Objects
instantiated from classes derived from the tracker class are

5,940,616

11

automatically tracked when the target objects are 1nitialized,
be 1t on a heap or on a stack, because the constructor of the
tracker class 1s invoked by the constructor of the target class.
The tracker class 1s defined as a template, so that 1t can be
applied to any type of target object.

The foregoing description of the preferred embodiment of
the mnvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the
above teaching. It 1s intended that the scope of the imnvention
be limited not by this detailed description, but rather by the

claims appended hereto.
What 1s claimed 1s:

1. A method of tracking objects 1n an object-oriented
programming environment executed by a computer, com-
prising the steps of:

(a) creating a target object and associated tracker object in

a memory of the computer, wherein the tracker object
1s associated with the target object through inheritance
of a tracker class that generates the tracker object by a
target class that generates the target object;

(b) storing a pointer to the target object in the associated
tracker object;

(¢c) inserting the associated tracker object into a data
structure 1n the memory of the computer, so that the
target object can be managed 1n a well-defined manner;
and

(d) performing a management function on the target
object using a member function of the tracker object.
2. The method of claim 1, wherein the creating step

comprises the step of performing a constructor function for
the target class in the memory of the computer to create the
target object, wherein the constructor function for the target
class invokes a constructor function for the tracker class that
1s performed by the computer to create the tracker object.

3. The method of claim 1, wherein the tracker class
comprises a template that 1s customized according to a data
type for the target class.

4. The method of claim 1, wherein the storing step further
comprises the step of casting the pointer to the target object
stored 1n the associated tracker object to adjust an address
for a first memory location of the target object.

S. The method of claim 1, wherein the data structure
comprises a linked list.

6. The method of claim 1, further comprising the step of
allocating a static root pointer for the data structure in the
memory ol the computer.

7. The method of claim 1, further comprising the step of
preventing member-by-member copying of the target
objects when creating the tracker objects.

8. The method of claim 1, further comprising the step of
deleting the target object from the memory of the computer.

9. The method of claim 8, wherein the deleting step
comprises the step of performing a destructor function for
the target class 1n the memory of the computer to delete the
target object, wherein the destructor function for the target
class invokes a destructor function for the tracker class that
1s performed by the computer to delete the tracker object.

10. The method of claim 9, wherein the performing step
comprises the steps of removing the associated tracker
object from the data structure in the memory of the
computer, deleting the target object from the memory of the
computer, and deleting the associated tracker object from the
memory ol the computer.

11. An apparatus for tracking objects 1n an object-oriented
programming environment executed by a computer, com-
prising:

5

10

15

20

25

30

35

40

45

50

55

60

65

12

(a) a computer having a memory;

(b) means, performed by the computer, for creating a
target object and associated tracker object 1n a memory
of the computer, wherein the tracker object 1s associ-
ated with the target object through inheritance of a
tracker class that generates the tracker object by a target
class that generates the target object;

(¢) means, performed by the computer, for storing a
pointer to the target object in the associated tracker
object;

(d) means, performed by the computer, for inserting the
assoclated tracker object into a data structure in the
memory of the computer, so that the target object can
be managed 1 a well-defined manner; and

(¢) means, performed by the computer, for performing a
management function on the target object using a
member function of the tracker object.

12. A program storage device, readable by a computer

having a memory and coupled to a data storage device,

tangibly embodying one or more programs of instructions
executable by the computer to perform method steps for
tracking objects 1n an object-oriented programming envi-
ronment executed by the computer, the method comprising
the steps of:

(a) creating a target object and associated tracker object in
a memory of the computer, wherein the tracker object
1s associated with the target object through inheritance
of a tracker class that generates the tracker object by a
target class that generates the target object;

(b) storing a pointer to the target object in the associated
tracker object;

(c) inserting the associated tracker object into a data
structure 1n the memory of the computer, so that the
target object can be managed 1n a well-defined manner;
and

(d) performing a management function on the target

object using a member function of the tracker object.

13. A memory for storing data for tracking objects 1n an
object-oriented programming environment executed by a
computer, comprising:

a data structure stored in a memory of the computer, the

data structure mcluding;

one or more tracker objects, each associated with a
target object residing in the memory of the computer,

wherein the tracker object 1s associated with the target
object through inheritance of a tracker class that
generates the tracker object by a target class that
generates the target object,

wherein the tracker object stores a pointer to the
assoclated target object, so that the target object can
be tracked, so that the target object can be managed
1in a well-defined manner, and

wherein the tracker object includes a method function
for performing a management function on the target
object.

14. The apparatus of claim 11, wherein the means for
creating comprises the means for performing a constructor
function for the target class in the memory of the computer
to create the target object, wherein the constructor function
for the target class mmvokes a constructor function for the
tracker class that 1s performed by the computer to create the
tracker object.

15. The apparatus of claim 11, wherein the tracker class
comprises a template that 1s customized according to a data
type for the target class.

16. The apparatus of claim 11, wherein the means for
storing further comprises the means for casting the pointer

5,940,616

13

to the target object stored 1n the associated tracker object to
adjust an address for a first memory location of the target
object.

17. The apparatus of claim 11, wherein the data structure
comprises a linked list.

18. The apparatus of claim 11, further comprising the
means for allocating a static root pointer for the data
structure 1n the memory of the computer.

19. The apparatus of claim 11, further comprising the
means for preventing member-by-member copying of the
target objects when creating the tracker objects.

20. The apparatus of claim 11, further comprising the
means for deleting the target object from the memory of the
computer.

21. The apparatus of claam 20, wherein the means for
deleting comprises the means for performing a destructor
function for the target class in the memory of the computer
to delete the target object, wherein the destructor function
for the target class mmvokes a destructor function for the
tracker class that 1s performed by the computer to delete the
tracker object.

22. The apparatus of claim 21, wherein the means for
performing comprises:

means for removing the associated tracker object from the
data structure 1in the memory of the computer;

means for deleting the target object from the memory of
the computer; and

means for deleting the associated tracker object from the

memory of the computer.

23. The program storage device of claim 12, wherein the
creating step comprises the step of performing a constructor
function for the target class in the memory of the computer
to create the target object, wherein the constructor function
for the target class invokes a constructor function for the
tracker class that 1s performed by the computer to create the
tracker object.

10

15

20

25

30

35

14

24. The program storage device of claim 12, wherein the
tracker class comprises a template that 1s customized accord-
ing to a data type for the target class.

25. The program storage device of claim 12, wherein the
storing step further comprises the step of casting the pointer
to the target object stored 1n the associated tracker object to
adjust an address for a first memory location of the target
object.

26. The program storage device of claim 12, wherein the
data structure comprises a linked list.

27. The program storage device of claim 12, further
comprising the step of allocating a static root pointer for the
data structure 1n the memory of the computer.

28. The program storage device of claim 12, further
comprising the step of preventing member-by-member
copying ol the target objects when creating the tracker
objects.

29. The program storage device of claim 12, further
comprising the step of deleting the target object from the
memory of the computer.

30. The program storage device of claim 29, wherein the
deleting step comprises the step of performing a destructor
function for the target class in the memory of the computer
to delete the target object, wherein the destructor function
for the target class invokes a destructor function for the
tracker class that 1s performed by the computer to delete the
tracker object.

31. The program storage device of claim 30, wherein the
performing step comprises the steps of removing the asso-
clated tracker object from the data structure in the memory
of the computer, deleting the target object from the memory
of the computer, and deleting the associated tracker object
from the memory of the computer.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,940,616
DATED : August 17, 1999
INVENTOR(S) ' I-Shin Andy Wang

It 1s certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Title page, item [56]

Page 1, Column 2, Other Publications, please add the following cited reference:

Hlava, A., "Ensuring Internal Consistency in a Set of Interconnected Classes," IBM Technical Disclosure
Bulletin, Vol. 37, No. 2B, pp. 697-698, February 1994

Signed and Sealed this
Fourth Day of July, 2000

Q. TODD DICKINSON

Attesting Officer Direcror of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

