United States Patent |9

US005937424 A

(11] Patent Number:

5,937,424

Leak et al. 45] Date of Patent: Aug. 10, 1999
(54] METHOD AND APPARATUS FOR 5287.469 2/1994 TSUDOL wevevvevereereeererereereserna. 711/103
SUSPENDING THE WRITING OF A 5,351,216 9/1994 Salt et al. ..ccoeeeveevenennnnnn.. 365/230.01
NONVOILATILE SEMICONDUCTOR 5,355,464 10/1994 Fandrich et al.ccovveeeeennnnnnenn. 365/218
5,369,754 11/1994 Fandrich et al.ovveeen.... 711/103
MEMORY WITH PROGRAM SUSPEND e A A
5,414,829 5/1995 Fandrich et al.ccoovneeennnnneenn. 365/218
: : 5,418,752 5/1995 Harari et al. ..o.evvvevvvneennnnnnnnenn. 365/218
[75] Inventors: David A. Leak, Rancho Cordova; Fasil 5.422.843 6/1995 YAmada ..o 365/218
G. Bekele, San Francisco; Thomas C. 5424992 6/1995 Coffman et al. w.oovevveevvvvrnnn.. 365/218
Price, Fair Oaks; Alan E. Baker, 5424993 6/1995 Tee €t al. vovevereerrererrrererrrerrenns 365/218
Granite Bay; Charles W. Brown, 5,521,864 5/1996 Kobayashi et al. 365/185.22
Folsom; Peter K. Hazen, Auburn; 5,568,644 10/1996 Nelson et al.ccovvvviveiinnnnnn, 395/741
Vishram Prakash Dalvi, Fair Oaks; 5,590,073 12/1996 Arakawacccoccueeneenneee. 365/185.08
Rodney R. Rozman, Placerville; 5,687,121 11/1997 Lee et al.ceeevvvvnveennnnnn.... 365/185.11
Christopher JOhll Haid, FO]SOH]; JEI'I'y 5?7425787 4/998 Talre]a 711/103
Kreifels, E1 Dorado Hills, all of Calif. OTHER PURI ICATIONS
| 73] Assignee: Intel Corporation, Santa Clara, Calif. Macronix, Inc. “Memory Data Book,” pp. 451 to 45-2,
46—1 to 4635 and 47-1 to 47-2, (1995).
21] Appl. No.: 08/807,385
- T Primary Fxaminer—John W. Cabeca
22] Hiled veb. 27, 1997 Assistant Examiner—Tuan V. Thai
Related U.S. Application Data Attorney, Agent, or Firm—DBlakely, Sokoloff, Taylor &
Zalman
[63] iiggnéinuation—in—part of application No. 08/718,216, Sep. 20, 57] ABRSTRACT
51] Int. CL® o GO6F 12/00; G11C 11/34 A method and apparatus suspend a program operation in a
52] US. Cle oo 711/103; 711/2; 711/154; ~ nonvolatile writeable memory. lhe nonvolatile writeable
- 365/185.11: 365/185.29: 365}185.35' 365 /21é memory 1ncludes a memory array, a command register, and
58] Field of Search ’ ’ 112 100 103 memory array control circuitry. The command register
711/154 169166167365 /185 h 18’5 29’ decodes a program suspend command and provides a sus-
’ ’ ’ ’ 1 3 5’ 13 218"’ pend signal as an output. The memory array control circuitry
R 1s coupled to receive the suspend signal from the command
56] References Cited register. The memory array control circuitry performs a
program operation 1n which data 1s written to the memory
U.S. PATENT DOCUMENTS array. The memory array control circuitry suspends the
4,065,828 10/1990 Ergott, J1. et al. «oovveeerrrrrreeenn.. 711/103 ~ Program operation upon receving the suspend signal.
5,021,996 6/1991 Watanabec.oovevvevvnnniveneennnn. 711/103
5,255,314 10/1993 Applegate et al.ccuuen........ 379/212 16 Claims, 13 Drawing Sheets

178d PROGRAM | RUN 206
> RESOLUTION C >
1783 ERASE

» CIRCUIT
1782 PROG SUSPEND}

1780 ERASE SLISF'ENI;
178t PROG RESUME

>

178c ERASE HESUME} PROG IDLE 212
WE
1300
1722 176a ~178a
2 ERASE LATCH >
7op 1744 1760 ~178b
o» 2| ERASE SUSPEND LATCH >
DATA COMMAND 174b 178
0 DECODER [172¢ L 478
{12 — | ERASE RESUME LATCH "
L]
. 1794 174¢ r""1?6d

. PROGRAM LATCH l >
1721744 1708 1780

PROGRANM SUSPEND LATCf-II

(7011748 —1760 | e
2| PROGRAM RESUME LATCH C
174f .
L
172m . ~176m 178
X READ LATCH >
1720 1 74M 1760 ¥ _178n
170 READ STATUS LATCH AN
A K1?-*i1r|

COMMAND REGISTER 120

COMMAND RESET 148 /

COMMA

206
OSCILLATOR
~208
02
~210
< 212 MEMORY ARRAY
CONTROL CIRCUITRY 140
; WRITE STATE
: MACHINE 200
! ERASE
1788 1 CIRCUITRY 190
_' 1
| ERASE
(7 > SUSPEND
CIRCUITRY
> 192
(-'1?5{] f 142 f’f N
D14 0
178d . PROGRAM MEMORY
C > CIRCUITRY 184 ARRAY
1766 ’ ' PROGRAM
C 3| SUSPEND
CIRCUITRY
178 5 105
215I
READ CIRCUITRY
(1?Bn READ L\ 2 /
> STATUS STATUS
CIRCUITRY REGISTER
198 142
\. RY/BY#

ND RESET 148

5,937,424

Sheet 1 of 13

Aug. 10, 1999

U.S. Patent

(LIV JOrdd) ﬁ .MVH rYH

L NOddd HSY 1

0%

AVddV
AdONWIN

¢

— 4\ G/AH
) 2
09
OF
ug/
g/
VA%
H31S193Y
SNLYLS
@
®
&
AHLINDHID TeIET
TOHLNOD
HOWAN 08/ O/1V1va
a8/ Ot
— M
eg/ o
b HAQVY SSA ddA » JOA

5,937,424

Sheet 2 of 13

Aug. 10, 1999

U.S. Patent

0S
AvVdaV
AdOW3N

Ol

0¥ AHLINDOHID TOHLNOD

g 13534 ONVIWIWODO LAV AORd) N oUHrvH

0¢ d31SI1934 ANVININOD

ey 86
441S1934 AHLINJOHIO

SNLVYLS SNLVLS
dvVda

71N

HOLY1SNLVLS dvdd

ug/

% oo
AHLINOYHID Qv3ay ey HOLV1 Qv3d
Wg/

to

AHLINOdIO

AYHS0OHd o .

HOLY 1 AWVHD0OHd
L T

o)

AHLINOHID - HOLY1 INNS3Y ISYHI

ON3dSNS
35V4

¢l

O/l
V.1VQ

H3A093q
oL} anvwwo)d

HOLV'1 AN3dSNS 45Va-]

P
HOLV1 d5VH4 P

_ (8.
06 AHLINOHIO

A5V44
€8/

€9/
AVHEY AdOWdW 0e

IM

5,937,424

Sheet 3 of 13

Aug. 10, 1999

U.S. Patent

rl.mo_ Shd

901}

[viva]

WOdddd

140!

[3009]

NOddd HSV 14

Hwov oMY

12031

[viva]
3000

NOHdd HSV 1

(LYV JOrdd) ._u .UM rm

00t

H0554004d

¢}

NVYHS/ANVHA

(LYV JO1dd) m .UM rm

B 00
HOSSFO0Hd

WVYHS/WYAQ

5,937,424

Sheet 4 of 13

Aug. 10, 1999

U.S. Patent

80} SMNd

POl

[viva]

NOddd HSY 13

(LYV A

¢}

NVHS/WVHQ

O¥{d) m .Uﬂm

001
d055100dd

5,937,424

Sheet 5 of 13

Aug. 10, 1999

U.S. Patent

AVHdY
AHOWIN
Ol

9 DI

871 13S3H ANVININOD

0¢} HILSID3H ANYIWWOD

crl 861
431S1o34| JAELNOHIO

SNLVLS SNLVLS
dv3d

961}
AHLINOHIO dv3d

G6 1

Ad1INOHIO
ANJdSNS

oLl

HOLVY 1 NYH504dd
AVHDOK Té
ol AHLINOHID <
Al

¢l

O/l
V.1VQ

4400030
ANVIAWOO

DO HOLY] IWNSTH 3SYH3
261
AYLINOYID
AN3dSNS il
3SYH — HOLY1 AN3ASNS 3SYH3
g | ™
ISVH3 TGES >
eg/ |
07T AYLINOYID TOHLNOD -
AVHHY AHOWIN 08}

U.S. Patent Aug. 10, 1999 Sheet 6 of 13 5,937,424

RUN 2006

178d PROGRAM

— RESOLUTION
178a ERASE CIRCUIT
178e PROG SUSPENL
178b ERASE SUSPENC

OSCILLATOR OFF | (298

178f PROG RESUME ; ERASE IDLE 210
178¢c ERASE RESUMEE PROG IDLE 212
'WE
130
1722 176a 1 4784
< ERASE LATCH
A e [
— 2| ERASE SUSPEND LATCH FROM
DATA COMMAND m FIG.
/0 DECODER 178¢ 7B
112 | & | ERASE RESUME LATCH

1780

i RlR

PROGRAM LATCH

173e

i?

PROGRAM SUSPEND LATCH

178f
PROGRAM RESUME LATCH

174f o

1....___._...._:.__._._ — (—17’6m 178m
READ LATCH

m 178n

170 2] READ STATUS LATCH
174n

COMMAND REGISTER 12

FIG. 7TA commoreserrs”

U.S. Patent Aug. 10, 1999 Sheet 7 of 13 5,937,424

206
OSCILLATOR
208
202
~210
519 MEMORY ARRAY
CONTROL CIRCUITRY 140
. WRITESTATE
: MACHINE 200 .
! ERASE !
178a | | CIRCUITRY 190 | .
_ . ERASE !
TO/ 178D ; SUSPEND :
FIEllgM : CIRCUITRY !
. . , > |
7A 176c | /1 ; 192 :
214 . ; 0
1784 | PROGRAM MEMORY
— —>| CIRCUITRY 194 | - ARRAY
178¢e , PROGRAM !
C - SUSPEND ;
e |
178f , 195 |
216 B I e - -t -----
. READ 01\ gecuan
178n | READ J’
A STATUS STATUS
CIRCUITRY REGISTER
{ @ &

RY/BY#

COMMAND RESET 148

FIG. 7B

U.S. Patent Aug. 10, 1999
SYSTEM
INTERRUPT DRAM/SRAM
200
405

PROCESSOR
400

FIG. SA

/ SRAM/DRAM 405

DATA BUFFER
420

INTERRUPT
HANDLER ROUTINE

422

Sheet 8 of 13

5,937,424

FLASH EPROM

DATA

10

BUS 1082

/FLASH EPROM 410

SPARE BLOCK
432

U.S. Patent Aug. 10, 1999 Sheet 9 of 13 5,937,424

00
502

RECEIVE INTERRUPT SIGNAL
504
FETCH INTERRUPT HANDLER CODE

GENERATE PROGRAM SUSPEND 506
COMMAND TO FLASH EPROM
508
SUSPEND PROGRAM CYCLE
510
FETCH CODE FROM FLASH EPROM

GENERATE PROGRAM RESUME 512
COMMAND TO FLASH EPROM
514
RESUME PROGRAM CYCLE
G

U.S. Patent Aug. 10, 1999 Sheet 10 of 13 5,937,424

2
START FIRST NON-READ OPERATION v
604
SUSPEND FIRST NON-READ OPERATION

606
PERFORM OPERATION(S)

START SECOND NON-READ OPERATION b~ "
510
SUSPEND SECOND NON-READ OPERATION
612
PERFORM OPERATION(S)
614
RESUME SECOND NON-READ OPERATION
COMPLETE SECOND NON-READ OPERATION }~_/°

618

PERFORM OPERATION(S)

RESUME FIRST NON-READ OPERATION A~_%"
600
COMPLETE FIRST NON-READ OPERATION

FIG. 10

U.S. Patent

Aug. 10, 1999

702

—

YES

714

L NO ~ERASE DONE
?

READ ARRAY
e
706
| [
YES CHECK OTHER
L COMMANDS
'ERASE’ 210

Sheet 11 of 13 5,937,424

712 _
NO TAKE FLASH
ENGINE TO START
YE ERASE ALGORITHM
716
ERASE DONE 3>
?
NQ 718
ERASE SUSPEND
720
YES @
NO
(22
ENGINE NO
SUSPENDED?
YE
PROGRAM? -
YES CHECK OTHER
COMMANDS
TO FIG.11B

FIG. 11A

FROM FIG. 11B,
730

FROM FIG. 11B,
734

5,937,424

Sheet 12 of 13

Aug. 10, 1999

U.S. Patent

SIA
;ANOQ
ON - NVHD0Hd
Vel \ﬁ

VIL'Old4 02

M0018 Ol

0€L

NHLIHODTY
NVED04dd 1dVL1S Ol
ANIOND HSV'14 ST13L

VIOl 8L
MO018 OL

ON

¢ANOQ
AVHI0dd

SdA

¢l

NYHD0dd

:

Vil Dl
ANOH4 A3INNILNOD

SdA

AN3dSNS
ANYHO0dd

—gg/

8¢/

U.S. Patent

FI1G. 12

Aug. 10, 1999 5,937,424

802
‘ ERASE EXECUTE]’
04
YES
10
8
14

Sheet 13 of 13

3
ALMOST
?
DONE’ 806
NO
3
<G
YES
ERASE SUSPEND

8

YES @

L
\ 816

PROGRAM? NO

YE

ERASE
COMPLETE

608

:

822

PROGRAM
COMPLETE

318

PROGRAM EXECUTE

820
ALMOST ™~ YES
DONE?
NOL g4
i

YES 826

PROGRAM SUSPEND
YES @ NO

3,937,424

1

METHOD AND APPARATUS FOR
SUSPENDING THE WRITING OF A
NONVOLATILE SEMICONDUCTOR

MEMORY WITH PROGRAM SUSPEND
COMMAND

RELATED APPLICATIONS

The present application 1s a continuation-in-part of U.S.
patent application Ser. No. 08/718,216, filed Sep. 20, 1996.

FIELD OF THE INVENTION

The present invention relates to the field of memory
devices. More particularly, this invention relates to suspend-
Ing a program operation 1n a nonvolatile writeable memory
in order to perform other operations 1n the nonvolatile
writeable memory.

BACKGROUND OF THE INVENTION

One type of prior art nonvolatile writeable memory 1s a
flash Erasable and Electrically Programmable Read-Only
Memory (“flash EPROM” or “flash memory™). A typical
flash EPROM has the same array configuration as a standard
Electrically Programmable Read-Only Memory
(“EPROM?”) and can be programmed in a similar fashion as
an EPROM. Once programmed, either the entire contents of
the flash EPROM or a block of the flash EPROM can be
crased by electrical erasure 1n one relatively rapid operation.
An erasing voltage 1s made available to the sources of all the
cells 1n the flash EPROM or in one block of the flash
EPROM. This results in a full array erasure or a block

erasure. The flash EPROM or the erased block of the flash
EPROM may then be reprogrammed with new data.

Flash EPROMs differ from convention Electrically Eras-
able Programmable Read-Only Memory (“EEPROMSs”)
with respect to erasure. Conventional EEPROMSs typically
use a select transistor for individual cell erasure control.
Flash EPROMSs, on the other hand, typically achieve much
higher density with single transistor cells.

For a prior art single bit flash EPROM, a logical “one”
means that few, 1f any, electrons are stored on a floating gate
assoclated with a bit cell. A logical “zero” means that many
clectrons are stored on the floating gate associated with the
bit cell. Erasure of the flash EPROM causes a logical one to
be stored 1n each bit cell. Each single bit cell of the flash
EPROM cannot be overwritten from a logical zero to a
logical one without a prior erasure. Each single bit cell of
that flash EPROM can, however, be written from a logical
one to a logical zero, given that this entails simply adding
clectrons to a floating gate associated with the erased state.

Flash EPROMSs may be read, programmed (or written),
and erased. For a prior art flash EPROM, a program opera-
fion to write a byte of data typically takes on the order of 10
microseconds. Because, however, there 1s some margin
required for guaranteeing that the program operation has
properly completed, a maximum program time 1s specified
by the flash EPROM manufacturer. Thus, while the typical
program operation may take 10 microseconds, the system
may need to wait a maximum program operation time of 100
microseconds 1n order to guarantee that the program opera-
tion performed correctly.

Similarly, for a prior art flash EPROM, an erase operation
may take from 300—600 milliseconds 1n order to erase a 8
kilobyte block of data. However, the flash EPROM may
require up to a maximum erase operation time of 3 seconds
in order to guarantee that the erase operation of the entire
block of data has performed correctly.

10

15

20

25

30

35

40

45

50

55

60

65

2

Because the erase operation has such a long latency time,
a prior art flash EPROM includes an erase suspend com-
mand. When an erase suspend command 1s written to the
flash EPROM, the flash EPROM suspends the erase opera-
tion that 1s being performed. Other operations may then be
performed on the flash EPROM. Subsequently, when an
erase resume command 1s written to the flash EPROM, the
flash EPROM resumes the erase operation from where its
operation was suspended due to the erase suspend com-
mand. An implementation of the erase suspend circuitry 1s
described in U.S. Pat. No. 5,355,464, entitled Circuitry And
Method For Suspending The Automated Erasure Of A
Non-Volatile Semiconductor Memory, by Fandrich et al.,
and 1ssued to the common assignee of this application.

FIG. 1 shows a representation of a prior art flash EPROM
10. The flash EPROM includes a command register 20,
memory array control circuitry 40, and memory array 50.

A number of data input/output (I/O) pins 12 are coupled
from pins of the flash EPROM to a command register 20.
The number of data I/O pins 12 1s usually 8 pins or 16 pins,
which matches the size of data to be stored to the flash
EPROM. The data I/O pins 12 allow commands to be written
to the command register 20. For example, for one prior art
flash EPROM, the command decoder includes circuitry for
decoding the following commands: (1) erase, (2) erase
suspend, (3) erase resume, (4) program, (5) read, and (6)
read status. A write enable (WE#) pin 30 is coupled to
provide an 1nput to the command register 20.

The command register 20 1s coupled to memory array
control circuitry 40 via signal lines 78a—x. The memory
array control circuitry 40 mcludes a status register 42. The
memory array control circuitry 40 also includes read
circuitry, row and column decoder circuitry for accessing
and providing data to cells 1n the memory array 50, and a
write state machine, which includes program and erase
circuitry. The memory array control circuitry 40 provides the
appropriate signals to access the memory array S0 for
carrying out the commands provided by the command
register 20. The memory array control circuitry 40 receives
an address 1mput from address pins 44 of the flash EPROM.
A command reset signal 48 1s coupled from the memory
array control circuitry 40 to the command register 20.

The memory array 1s coupled to provide data to an output
multiplexer 60 for providing data to the data I/O pins 12 of
the flash EPROM responsive to a read operation. The status
register 42 1s also coupled to provide data to the output
multiplexer 60 for providing status data to the data I/O pins
12 of the flash EPROM responsive to a read status operation.
The status register 42 provides information about the current
operation being executed by the flash EPROM. The memory
array control circuitry 40 controls the output multiplexer 60
based upon the commands provided to it from the command
register 20. The memory array control circuitry 40 selects
the status register output to pass through the output multi-
plexer 60 1n response to a read status operation, and the
memory array control circuitry selects the memory array
output to pass through the output multiplexer 60 in response
to a read operation.

In a prior art flash EPROM, a Ready/Busy (RY/BY#) pin
62 of the flash EPROM provides a status indicator of
whether the flash EPROM 1s busy or not. The RY/BY# pin
1s “low” to indicate a busy state, which signifies that the flash
EPROM 1s performing a block erase operation or a byte
write operation. The RY/BY# pin 1s “high” to indicate a
ready state, which signifies that the flash EPROM 1s ready
for new commands, block erase 1s suspended, or the device

3,937,424

3

1s 1n a powerdown mode. The status register 42 1s coupled
to provide an output to the RY/BY# pin 62.

Additionally, a supply voltage Vcc, ground potential Vss,
and a programming voltage Vpp are provided to the flash
EPROM 10.

FIG. 2 shows a prior art block diagram of the command
register 20 and the memory array control circuitry 40. The

command register 20 includes a command decoder 70 and
command latches 76a—n. The command latches include an

crase latch 764, an erase suspend latch 76b, an erase resume
latch 76¢, a program latch 76d, a read latch 76m, and a read
status latch 76n.

The command decoder decodes the commands it receives
from the data I/O pins 12. Each of the commands are
provided to an associated command latch 76a—n via the
signal lines 72a—n. The command latches 76a—n latch the
command upon assertion of the write enable (WE#) pin 30.
The command latches 76a— provide the decoded command
to the memory array control circuitry 40 via the signal lines

78a—n.

The memory array control circuitry includes erase cir-
cuitry 90, program circuitry 94, read circuitry 96, and read
status circuitry 98. Erase circuitry 90 includes erase suspend
circuitry 92. Read status circuitry 98 is coupled to the status
register 42.

The erase latch 76a, erase suspend latch 76b, and the erase
resume latch 76c¢ are coupled to erase circuitry 90. The erase
suspend latch 76b and erase resume latch 76c¢ are coupled to
erase suspend circuitry 92 within the erase circuitry 90.

The program latch 76d 1s coupled to program circuitry 94.
The read latch 76m 1s coupled to read circuitry 96, and the
read status latch 767 1s coupled to read status circuitry 98.

The memory array control circuitry 40 1s coupled to
provide one or more command reset signals 48 to the
command decoder for clearing the command latches 76a—.
The command decoder uses the command reset signals 48 to
clear the command latches 76a—» via command latch reset
signals 74a—n. For one implementation, there are individual
command latch reset signals 74a—n coupled to each com-
mand latch 76a—x. For another implementation, one com-
mand latch reset signal 1s coupled to all of the command
latches.

Flash EPROMSs can be used to store both code and data.
In one prior art usage, code 1s stored 1n certain blocks of the
flash EPROM, and data 1s stored 1in other blocks of the flash
EPROM. This allows for erasing one block without disturb-
ing the contents of a different block. Additionally, some flash
EPROMSs provide for data blocks and code blocks of dif-
ferent sizes.

Although 1t 1s possible to store both code and data 1 a
flash EPROM and execute code provided directly from the
flash EPROM to a processor, a problem arises when a flash
EPROM 1s used 1n a system that requires servicing of code
fetches. This 1s due to the long latency times for program
operations and erase operations, as was previously dis-
cussed. For example, if a processor were performing a
program operation to write a byte of data to the flash
EPROM, and subsequently the processor requested that the
flash EPROM perform a read operation in order to perform
a code fetch, 1.e., a read of code to get new 1nstructions for
the processor to execute, the read operation may be delayed
up to 100 microseconds waiting for the program operation to
complete. This causes the processor to stall--the processor
remains 1dle until 1t receives new 1nstructions. Such a delay
to read code would be unacceptable 1n a system that requires
code fetches to be performed 1n less time than the maximum
program operation time.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 shows a prior art representation of a system
comprising a processor 100, a volatile memory 102, and a

flash EPROM 104 coupled together via a bus 108. The
volatile memory 102 and the flash EPROM 104, however,

could be coupled to the processor 100, via separate buses.
The flash EPROM 1ncludes both code and data, wherein the
code 1s executable by the processor. The code of the flash
EPROM 1s shadowed, or copied, to the volatile memory,
which may be either dynamic random access memory
(DRAM) or static random access memory (SRAM). After
the code 1s shadowed 1n the volatile memory, if the flash
EPROM 1s performing a program operation and the proces-
sor generates a code fetch request, then the processor can
satisly the code fetch request by reading the requested code
from the volatile memory. The processor does not need to
wait for the flash EPROM to finish its program operation in
order to perform a code fetch.

This scheme, however, may be expensive 1i the size of the
code stored 1n the flash EPROM 1s large, since the DRAM/
SRAM would need to be large enough to store the entire
code block 1n order to overcome the program operation
latency. One example of a system which might use the
configuration shown in FIG. 3 is a personal computer (PC).

FIG. 4 shows a prior art system 1ncluding a processor 100,
a volatile memory 102, a flash EPROM 104, and an
EEPROM 106. In this prior art system, the EEPROM 106
stores data and the flash EPROM 104 stores code. The
SRAM/DRAM 102 1s used for temporarily storing data
before providing the data to the EEPROM 106, 1.¢., the
SRAM/DRAM serves as a buller between the processor and
the EEPROM.

FIG. § shows another prior art system in which the
EEPROM 106 stores code, and the flash EPROM 104 stores

data. The SRAM/DRAM 102 1s used as a temporary buifer
between the processor and the flash EPROM.

Thus, FIGS. 3, 4 and 5 show prior art flash EPROM
systems that lack the ability to quickly and easily service a
processor’s code fetch requests while the flash memory 1s
performing a program operation.

SUMMARY OF THE PRESENT INVENTION

An object of this mvention 1s to provide a capability of
suspending a program operation 1n a nonvolatile writeable
memory 1n order to read code from the nonvolatile writeable
memory. A desire of this invention i1s to use a suspend
command to suspend a program operation responsive to an
iterrupt signal.

A method and apparatus for suspending program opera-
fions 1 a flash memory 1s described. The flash memory
includes a memory array, a command register, and memory
array control circuitry. The command register decodes a
program suspend command and provides a suspend signal as
an output. The memory array control circuitry 1s coupled to
receive the suspend signal from the command register. The
memory array control circuitry performs a program opera-
fion 1n which data i1s written to the memory array. The
memory array control circuitry suspends the program opera-
tion upon receiving the suspend signal.

Other objects, features, and advantages of the present
invention will be apparent from the accompanying drawings
and from the detailed description that follows below.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 shows a prior art representation of a flash EPROM.

FIG. 2 shows a prior art block diagram of the command
register and the memory array control circuitry of the flash

EPROM.

3,937,424

S

FIG. 3 shows a prior art representation of a system
comprising a flash EPROM, a processor and a volatile
memory coupled together via a bus.

FIG. 4 shows a prior art system that uses an EEPROM to
store data.

FIG. § shows another prior art system which uses an
EEPROM to store code.

FIG. 6 shows a block diagram of the command register
and the memory array control circuitry 1n accordance with
one embodiment of the invention.

FIGS. 7A and 7B shows a block diagram of another
embodiment of the command register and the memory array
control circuitry.

FIG. 8a 1s a block diagram showing a system including a
processor, SRAM/DRAM, and flash EPROM coupled
together via a bus.

FIG. 8b shows the contents of the SRAM/DRAM of FIG.
8a

FIG. 8¢ shows the contents of the lash EPROM of FIG.
8a.

FIG. 9 1s a flowchart showing exemplary steps taken by
a system having the configuration shown 1n FIGS. 8a, 8b,

and 8c.

FIG. 10 1s flowchart showing that multiple operations
may be suspended using a nesting technique.

FIGS. 11 A and 11B are a tlowchart showing the algorithm

that controls the command decoder user 1nterface operation
allowing for nested operations.

FIG. 12 1s a flowchart showing the algorithm that controls
the write state machine operation allowing for nested opera-
fions.

DETAILED DESCRIPTION

A method and apparatus for suspending a program opera-
fion 1n a nonvolatile writeable memory 1n order to read code
from the nonvolatile writeable memory 1s described.
Although the detailed description describes embodiments
using a flash EPROM, the invention may be used with any
nonvolatile writeable memory, including, but not limaited to
EPROMs, EEPROMSs, and flash memories, including tech-
nologies such as NOR, NAND, AND, Divided bit-line NOR
(DINOR), and Ferro-electric Random Access Memory
(FRAM).

FIG. 6 shows a block diagram of the command register
120 and the memory array control circuitry 140 in accor-
dance with one embodiment of the ivention.

The command decoder 170 decodes the following com-
mands: (1) erase, (2) erase suspend, (3) erase resume, (4)
program, (5) program suspend, (6) program resume, (7)
read, and (8) read status. The command decoder provides the
decoded command to a corresponding command latch
176a—n via signal lines 172a—n. The command latches are

latched using the write enable (WE#) pin 130.

The erase latch 1764 1s coupled to the erase circuitry 190
via the signal line 178a. The erase suspend latch 1765b 1s
coupled to the erase suspend circuitry 192 of the erase
circuitry 190 via the signal line 178b.

The program latch 176d 1s coupled to the program cir-
cuitry 194 via the signal line 178d. The program suspend
latch 176¢ 1s coupled to the program suspend circuitry 195
of the program circuitry 194 via the signal line 178e.

The read latch 176m 1s coupled to the read circuitry 196
via signal line 178m, and the read status latch 176xn 1s
coupled to the read status circuitry 198 via signal line 178#.

10

15

20

25

30

35

40

45

50

55

60

65

6

The read status circuitry 198 1s coupled to status register
142, which 1s coupled to provide status output to the data I/0
and RY/BY# pins.

The memory array control circuitry 140 1s coupled to
provide one or more command reset signals 148 to the
command decoder 170 for clearing the command latches
176a—n. The command decoder uses the command reset
signals 148 to clear the command latches 176a—n via com-
mand latch reset signals 174a—n. For one embodiment, there
are individual command latch reset signals coupled to each
command latch 176a—#, so that each command latch 176a—n
can be cleared independently. For another embodiment, one
command latch reset signal 1s coupled to all of the command
latches.

When a program suspend command 1s written to the
command decoder, the command decoder provides a pro-
ogram suspend command to the program suspend latch 176e.
When a program resume command 1s written to the com-
mand decoder, the command decoder 170 clears the program
suspend latch 176¢ by asserting the command latch reset
signal 174e.

For one embodiment, the program suspend command and
the program resume command are the same command, but
are distinguished from each other based on when they occur.
Each time the program suspend/program resume command
1s written to the command decoder, the command decoder
toggles between providing a program suspend command to
the program suspend latch 176¢ or clearing the program
suspend latch 176e.

For another embodiment, a single suspend command 1s
used for both program suspends and erase suspends. A
program suspend command and an erase suspend command
are distinguished from each other based on when they occur.
If an erase operation 1s being performed when the suspend
command 1s written to the command decoder, then an erase
suspend will be performed. If a program operation 1s being
performed when the suspend command 1s written to the
command decoder, then a program suspend will be per-
formed. Furthermore, the program resume and the erase
resume commands can be the same as the program suspend/
erase suspend commands. The command decoder 122 keeps
track of the last operation that was suspended. When the
“suspend-resume” command 1s written to the command
decoder while 1dle or a non-suspendable operation 1s being
performed, then the last operation that was suspended 1s

resumed. Suspended operations can be nested, as will be
described with reference to FIG. 10.

The memory array control circuitry 140 interprets the
command signals 178a—~ provided to 1t and performs a
corresponding operation 1n response to the command sig-
nals. The memory array control circuitry 140 includes
program suspend circuitry 195 for suspending a program
operation of the memory array 150. The memory array
control circuitry 140 also includes prior art erase suspend
circuitry 192 for suspending an erase operation of the
memory array 150. The memory array control circuitry
includes a means for storing the state of the suspended
non-read operation so that the non-read operation can be
resumed later. Non-read operations include program opera-
tions and erase operations in the following discussion. For
an alternate embodiment, however, other types of
operations, such as command operations and status retriev-
Ing operations, can be suspended.

A program suspend operation completes its suspend of a
program operation within a predetermined amount of time to
allow a read operation to be performed with a specified

3,937,424

7

latency. The program suspend operation 1s 1nitiated by
writing a program suspend command to the command
decoder 170. For one embodiment, the program suspend
completes within 7 microseconds. After this predetermined

amount of time, other operations can be performed on the
flash EPROM.

Similarly, the erase suspend operation completes within a
predetermined amount of time. The erase suspend operation
may be 1itiated by the prior art method of writing an erase
suspend command to the command decoder 122. For one
embodiment, suspending the erase operation completes
within 20 microseconds. After this predetermined amount of
fime, other operations can be performed.

For one embodiment, it 1s possible to determine whether
a program operation or an erase operation 1s being per-
formed by accessing the status of the flash EPROM using the
read status command. Status can also be determined by the
RY/BY# pin 162, as was described previously. Alternatively,
a separate pin could be used to provide an indication of
whether a program operation or whether an erase operation
were being performed.

FIGS. 7A and 7B show a block diagram of another
embodiment of the command register 120 and the memory

array control circuitry 140. The command register 120 of
FIGS. 7A and 7B are similar to that of FIG. 6, except that

the command decoder of FIGS. 7A and 7B mclude a erase
resume latch 176¢ and a program resume latch 176e. The
erase resume latch 176c¢ 1s prior art.

The erase resume latch 176¢ receives a decoded command
signal from command decoder 170 via signal line 172c¢. The
erase resume latch 176c¢ 1s latched upon assertion of the
WE# pin 130. The erase resume latch 176¢ 1s coupled via
signal line 178c¢ to the erase suspend circuitry 192 of the
erase circultry 190. A command latch reset signal 174c¢ 1s
provided from the command decoder 170 to the erase
resume latch 176c.

The program resume latch 176/ receives a decoded com-
mand signal from command decoder 170 via signal line
172f. The program resume latch 176/ 1s latched upon asser-
tion of the WE# pin 130. The program resume latch 176/ is
coupled via signal line 178f to the program suspend circuitry
195 of the program circuitry 194. A command latch reset
signal 1744 1s provided from the command decoder 170 to
the program resume latch 176/.

The program suspend latch 176¢ provides a signal to the
program suspend circuitry 195 1n order to suspend a pro-
gram operation, and the program resume latch 176f provides
a signal to the program suspend circuitry 195 1n order to
resume the suspended program operation.

FIG. 8a 1s a block diagram showing a system including a
processor 400, SRAM/DRAM 405, and flash EPROM 410
coupled together via a bus 108. A system interrupt 200 1is
coupled to provide an mput to the processor 400. For another
embodiment, the SRAM/DRAM 405 and the flash EPROM

410 are coupled to the processor 400 via different buses.
FIG. 8b shows the contents of the SRAM/DRAM 405 of

FIG. 8a, and FIG. 8c shows the contents of the flash EPROM
410 of FIG. 8a.

The SRAM/DRAM 405 includes a data buffer storage
arca 420. This data buffer storage area 1s used for tempo-
rarily storing data prior to storing it in a data arca 430 of the
flash EPROM 410. The temporary builer allows the data to
be written relatively quickly to the SRAM/DRAM 405, and

then transferred to the flash EPROM 410 when there 1s time
to do so.

The SRAM/DRAM 4035 also includes an interrupt handler

routine 422. The interrupt handler routine 422 provides the
processor 400 with code 1n response to a system interrupt

200.

10

15

20

25

30

35

40

45

50

55

60

65

3

The flash EPROM 410 includes a data area 430, a spare
block area 432, and a code arca 434. The spare block area
1s used for prior art block management. The code area is
used to store various routines which are executable by the
processor 400.

For one embodiment, the SRAM/DRAM size 1s 1 Mbit, or
128 KB, and the flash EPROM size 1s 8 Mbit.

FIG. 9 1s a flowchart showing exemplary steps taken by
a system having the configuration shown 1n FIGS. 8a, 8b,
and 8c. The flowchart begins at block 500 with the processor
performing a program operation. From block 500, operation
continues at block 502, at which the processor receives a
system 1nterrupt signal 200. At block 504, the processor
performs a code fetch from the interrupt handler routine 422.
For one embodiment, the interrupt handler 1s stored in the
SRAM/DRAM 4035. For another embodiment, the interrupt
handler 1s stored within the processor, for example, 1n a
cache or an internal ROM. The interrupt handler routine
includes 1nstructions for generating a program suspend
command to the flash EPROM 410. The processor 400
executes the interrupt handler routine 422 and generates the
program suspend command to the flash EPROM at block

506.

Operation continues at block 508 at which the program
operation that was being performed by the flash EPROM 1s
suspended. One or more code fetches are performed from
the flash EPROM code area 434 at block 510. Other opera-
tions 1 the flash EPROM are also optionally performed
while the program operation 1s suspended. Operation con-
tinues at block 512, at which the processor generates a
program resume command to the flash EPROM. The pro-
cessor 400 generates the program resume command, and at

block 514, the program operation 1s resumed. The flowchart
terminates at block 520.

Thus, a method of suspending a program operation using,

an 1nterrupt handler routine and a program suspend com-
mand 1s described with reference to FIGS. 8a, 8b, 8c, and 9.

FIG. 10 1s a flowchart showing that multiple operations
may be suspended using a nesting technique. The flowchart
starts at block 600. Operation continues at block 602, at
which a first non-read operation begins. For one
embodiment, only the erase operation may be suspended as
the first (or outer) nested suspended operation. For this
embodiment, the erase operation has a relatively low
priority, such that all other operations can preempt it. The
program operation has a higher priority, such that only
certain operations can preempt 1t. For another embodiment,
the outer nested suspended operation may be an erase
operation, a program operation, a read status operation, or a
command operation.

At block 604, the first non-read operation 1s suspended.
The suspend 1s 1nitiated by writing a suspend command to
the command decoder 170. The suspended operation 1s not
resumed until operations initiated during the suspended
operation have completed. For one embodiment, the
RY/BY# signal will transition to a high level to indicate that
the flash memory 1s ready. A bit 1n the status word accessed
via the read status command, however, indicates that an
operation 1s suspended. For one embodiment, the status
word 1ncludes one bit for indicating that an erase operation
1s suspended, one bit for indicating that a program operation
1s suspended, and one bit indicating whether the write state
machine 1s busy.

At block 606, one or more other operations may be
performed. For one embodiment, only certain operations are
allowed after the first non-read operation 1s suspended. For

3,937,424

9

example, 1f an erase operation has been suspended, then only
the following operations will be allowed: read, program,
program suspend, program resume, read status, and erase
resume.

At block 608, a second non-read operation begins. For
one embodiment, the second non-read operation 1s a pro-
oram operation. The RY/BY# signal transitions to a low
level to indicate that the flash memory 1s busy.

Operation continues at block 610, at which the second
non-read operation 1s suspended. The RY/BY# signal tran-
sitions to a high level to indicate that the flash memory is
ready.

One or more operations may be performed at block 612.
For one embodiment, only certain operations are allowed
while a program operation 1s suspended. For one
embodiment, read, read status, and program resume are the
only operations allowed.

At block 614, the second non-read operation 1s resumed.
This 1s accomplished by writing a resume command to the
command decoder 170. The steps corresponding to blocks
610-614 may be performed multiple times during the sec-
ond non-read operation, without limit.

At block 616, the second non-read operation completes.
Operation continues at block 618, at which one or more
operations may be performed.

At block 620, the first non-read operation 1s resumed by
writing a resume command to the command decoder 170.
The steps corresponding to blocks 604—620 may be per-
formed multiple times during the first non-read operation,
without limit.

At block 622, the first non-read operation completes. The
flowchart terminates at block 630.

With reference to FIGS. 7A and 7B, when suspending
multiple operations using the nesting technique of FIG. 10,
a requirement exists for conilict resolution between the
command decoder 170 and the write state machine 200. The
write state machine 200 comprises the erase circuitry 190,
the erase suspend circuitry 192, the program circuitry 194,
and the program suspend circuitry 195 of the memory array
control circuitry 140. The command decoder 170 accepts all
commands from the user and the write state machine 200
communicates with the command decoder 170 1n order to
determine which commands to execute. The command
decoder 170 and the write state machine 200 run 1indepen-
dently and asynchronously of each other. The conflict may
arise between the command decoder 170 and the write state
machine 200 because the user has the power to 1ssue suspend
and resume commands at any time irrespective of the state
of the write state machine 200.

Conflict resolution between the command decoder 170
and the write state machine 200 1s handled by the resolution
circuit 204 of the command register 120. The resolution
circuit 204 monitors select signals of the command decoder
170 and the write state machine 200. The command decoder
170 has priority 1n terms of deciding when the write state
machine 200 should continue executing instructions. The
write state machine 200 has priority 1n terms of suspending
write state machine 200 operations upon completion of
instruction execution. The decision on whether or not to
resume operation of the write state machine 200 is therefore
made 1n the resolution circuit 204. As a result of signals
input 1nto the resolution circuit 204 from the command
decoder 170 and the write state machine 200, the resolution
circuit 204 1ssues a run signal 206 to the oscillator 202 of the
write state machine 200 thereby controlling operation of the
write state machine 200. In one embodiment, the command

10

15

20

25

30

35

40

45

50

55

60

65

10

decoder 170 signals monitored by the resolution circuit 204
include program 1784, erase 178a, program suspend 178e,
crase suspend 178b, program resume 178, and erase resume
178c¢ signals. The write state machine 200 signals monitored
by the resolution circuit 204 include program 1dle 212, erase

idle 210, and oscillator off 208 signals.

A typical operation of one embodiment of the command
register 120 and the memory array control circuitry 140
illustrates conilict resolution by the resolution circuit 204.
The operation described herein details operation when the
user 1ssues a program command. The same description
applies, however, when the user 1ssues an erase command.

When a user 1ssues a program command to the command
decoder 170, this causes the program signal 1784 to be
asserted. When the program signal 178d 1s asserted, the
command decoder 170 causes the resolution circuit 204 to
assert the run signal 206 which activates the oscillator 202
of the memory array control circuitry 140, thereby turning
the write state machine 200 on.

Upon activation, the write state machine 200 first polls the
program signal 1784 and the erase signal 178a 1n order to
determine which 1s asserted. As the program command was
issued 1n this example, the program signal 1784 will be
asserted, and the write state machine 200 will execute the
program algorithm. While the program algorithm 1s execut-
ing 1n the write state machine 200, the user 1ssues a program
suspend command causing the command decoder program
suspend signal 176¢ to be asserted. As the write state
machine 200 1s executing instructions, 1t polls at specified
intervals for a program suspend signal 178¢. When the write
state machine 200 detects a program suspend signal 178e,
the write state machine 200 ceases execution of the program
algorithm 1nstructions, shuts down the memory array control
circuitry 140, and asserts the program 1dle signal 212.

For an alternate embodiment, the program suspend com-
mand and the erase suspend command are the same
command, but are distinguished from each other based on
when they occur. In this situation, as the write state machine
200 1s executing instructions, 1t polls at specified intervals
for a suspend command. When the write state machine 200
detects a suspend command, the write state machine 200
ceases execution of 1ts current instructions, shuts down the
memory array control circuitry 140, and asserts either an
erase 1dle signal 210 or a program 1dle signal 212 depending
on which algorithm was running at the time the suspend
command was received.

If while the write state machine 200 1s in the process of
suspending operations the user issues a program resume
command, then a conflict occurs because the command
decoder 170 wants the write state machine 200 to continue
executing instructions and the write state machine 200 wants
to suspend operations. To resolve this contlict, the resolution
circuit 204 polls the program 1dle signal 212 because the
resolution circuit 204 knows that the write state machine 200
1s running a program algorithm because the program signal
178d 1s asserted. If the write state machine 200 were running,
an erase algorithm, the erase signal 178a would be asserted
and the resolution circuit 204 would poll the erase 1dle signal
210. When program idle 212 1s asserted it signals the
resolution circuit 204 that the write state machine 200 1s
suspending an operation that 1s incomplete. Therefore, since
the write state machine 200 1s trying to suspend, the reso-
lution circuit 204 determines that this 1s the correct time to
resume because only a suspended operation can be resumed.
Consequently, the resolution circuit 204 will override the
write state machine oscillator 202 and prevent the write state

3,937,424

11

machine 200 from suspending program execution. When the
write state machine oscillator 202 1s reactivated by the
resolution circuit 204, 1t detects that the program signal 178d
1s still asserted which signals the write state machine 200
that this 1s not a new program and that the write state
machine 200 i1s to return to the suspended program, as
indicated by internal flags.

Conflict also arises when, as 1t oftentimes happens, a
suspend command 1s 1ssued too late 1n an 1nstruction execu-
fion cycle for the write state machine 200 to suspend
instruction execution before execution 1s completed. In this
case the write state machine 200 completes instruction
execution and shuts down, and no 1idle signal 1s asserted.
When a resume command 1s later 1ssued by the user who did
not know that the write state machine 200 completed the
instruction, the program signal 1784 or erase signal 178a 1s
asserted but a corresponding idle signal 1s not asserted.
Therefore, the resolution circuit 204 lets the write state
machine 200 shut off because instruction execution has been
completed.

When utilizing nested commands, the resolution circuit
204 1s necessary 1n order to prevent a user from resuming a
particular command without having first suspended that
particular command. As an example, assume an erase com-
mand 1s 1ssued and then suspended. This causes the erase
178a and erase 1dle signals 210 to be asserted. Next, the user
1ssues a program command. The user immediately suspends
the program command, but it 1s too late in the program
Instruction execution cycle to suspend, so the write state
machine 200 completes the mstruction. The user now 1ssues
a resume command which 1s meant to resume the program
operation. Without the resolution circuit 204, the resume
command meant for the program operation would resume
the erase operation.

This situation 1s avoided because the resolution circuit
204 only polls signals involving the most recently 1ssued
user command so as to prevent a user {rom resuming a
particular command without having suspended that particu-
lar command. Therefore, the 1ssuance of the program com-
mand will cause the resolution circuit 204 to disregard the
erase 178a and erase 1dle signals 210 and only poll the
program 1784 and program 1idle signals 212 1n the event of
a resume signal. This prevents confusing a resume command
for a completed operation with a resume command for a
suspended operation.

Contflict resolution 1s implemented 1n one embodiment
using two algorithms. One algorithm controls command
decoder user interface operation, and the other algorithm
controls write state machine operation. FIGS. 11A and 11B
are a flowchart showing the algorithm which controls com-
mand decoder user 1nterface operation allowing for nested
operations. The flowchart starts at block 700. Operation
continues at block 702 at which the command decoder reads
a data array mput to the command decoder as a result of user
commands. At block 704, the command decoder determines
if an erase command was received. If no erase command was
received, the command decoder checks for other commands
at block 706. If an erase command was received then
operation continues at block 708, at which an erase signal 1s
asserted. The erase signal 710 tells the write state machine
to begin executing the erase algorithm.

With the erase algorithm execution 1n progress, operation
continues at block 712, at which the command decoder polls
for a suspend command. If no suspend command 1s detected,
operation continues at block 714, at which the command
decoder polls to see 1f erase algorithm execution 1s complete.

10

15

20

25

30

35

40

45

50

55

60

65

12

If erase algorithm execution 1s complete then the command
decoder returns operation to block 704 to determine if an
erase command was received. If erase algorithm execution
1s not complete then the command decoder returns operation
to block 708 at which an erase signal 710 signals the write
state machine to begin executing the erase algorithm.

If a suspend command was detected at block 712, opera-
tion continues at block 716, at which the command decoder
polls to see 1f the erase algorithm execution 1s complete. If
erase algorithm execution i1s complete, then the command
decoder returns operation to block 702 where the command
decoder reads an mput array for a new instruction. If erase
algorithm execution i1s not complete then, 1n block 718, the
command decoder suspends erase algorithm execution.

Following suspension of erase algorithm execution,
operation continues at block 720, at which the command
decoder polls for a resume command. The flowchart dictates
that the only operation that can be resumed at this point 1s
the suspended erase algorithm. If a resume command 1is
detected, then the command decoder returns operation to
block 708 thereby directing the write state machine to
execute the erase algorithm. If a resume command 1s not
detected, then operation continues at block 722, at which the
command decoder polls to determine if operation of the
write state machine 1s suspended. If operation of the write
state machine 1s not suspended, then operation continues at
block 718, at which the command decoder 1ssues a signal
suspending erase algorithm execution. If operation of the
write state machine 1s suspended, then the command
decoder polls for a program command at block 724.

If the command decoder does not detect a program
command, operation continues at block 726, at which the
command decoder checks for other commands. If the com-
mand decoder detects a program command, operation con-
finues at block 728. At block 728, if a program command
was received, then a program signal 1s asserted. The program
signal 730 causes the write state machine to begin executing
the program algorithm.

Operation continues at block 732, at which the command
decoder polls for a suspend command. If no suspend com-
mand 1s detected, operation continues at block 734, at which
the command decoder polls to see 1f execution of the
program algorithm 1s complete. If program algorithm execu-
tion 1s complete, then the command decoder returns opera-
tion to block 720, at which the command decoder polls for
a resume command for the previous suspended operation,
the erase algorithm. If execution of the program algorithm is
not complete, then the command decoder returns operation
to block 728 thereby signaling the write state machine to
execute the program algorithm.

If a suspend command is detected at block 732, operation
continues at block 736, at which the command decoder polls
to determine 1if the execution of the program algorithm 1is
complete. If program algorithm execution 1s complete, then
the command decoder returns operation to block 718, at
which the command decoder issues suspends the erase
algorithm. If program algorithm execution is not complete,
then the command decoder 1ssues a signal, at block 738,
suspending execution of the program algorithm. Operation
continues at block 740, at which the command decoder polls
for a resume command. The flowchart dictates that the only
operation that can be resumed 1s the suspended program
algorithm. If a resume command 1s detected, then the
command decoder returns operation to block 728, thereby
signaling the write state machine to execute the program
algorithm. If a resume command 1s not detected, then

3,937,424

13

operation continues at block 738, at which the command
decoder continues to suspend execution of the program
algorithm. The command decoder continues suspension of
the last suspended algorithm until a resume command 1is
detected for that particular algorithm.

FIG. 12 1s a flowchart showing the algorithm which
controls write state machine operation allowing for nested
operations. The flowchart starts at block 800. Operation
continues at block 802, at which the write state machine
begins execution of an erase algorithm. Operation continues
at block 804, at which the write state machine determines 1f
execution of the erase algorithm 1s almost complete. If erase
algorithm execution 1s almost complete, operation continues
at block 806, at which erase algorithm execution i1s com-
pleted. Following completion of erase algorithm execution
by the write state machine, operation continues at block 808,
at which the write state machine shuts down its oscillator.

If erase algorithm execution 1s not almost complete at
block 804, operation continues at block 810, at which the
write state machine polls for a suspend command. If no
suspend command 1s detected, then operation continues at
block 802, at which the write state machine begins execution
of an erase algorithm. If a suspend command 1s detected,
then erase algorithm execution 1s suspended at block 812.

Following suspension of erase algorithm execution,
operation continues at block 814, at which the write state
machine polls for a resume command. If a resume command
1s detected, then operation continues at block 802, at which
the write state machine begins execution of an erase opera-
tion. If no resume command 1s detected, then the write state
machine polls for a program command at block 816. If no
program command 1s detected at block 816, then operation
continues at block 812, at which the erase algorithm remains
suspended.

If a program command 1s detected at block 816, then
operation continues at block 818, at which the program
algorithm 1s executed. Operation continues at block 820, at
which the write state machine determines if the program
algorithm execution 1s almost complete. If program algo-
rithm execution 1s almost complete, the program 1s com-
pleted at block 822, and operation continues at block 812, at
which erase algorithm execution remains suspended. If
program algorithm execution 1s not almost complete, opera-
tion continues at block 824, at which the write state machine
polls for a suspend command. If no suspend command 1s
detected, then operation continues at block 818, at which the
write state machine begins execution of a program algo-
rithm. If a suspend command 1s detected at block 824, then
program algorithm execution 1s suspended at block 826.

Following suspension of program algorithm execution at
block 826, operation continues at block 828, at which the
write state machine polls for a resume command. The
flowchart dictates that the only operation that can be
resumed at this point 1s the suspended program execution. If
a resume command 1s detected, then the write state machine
returns operation to block 818 thereby directing the write
state machine to continue program algorithm execution. If a
resume command 1s not detected at block 828, then opera-
tion continues at block 826, at which the write state machine
continues to suspend program algorithm execution. The
write state machine continues suspension of the last sus-
pended operation until a resume command 1s detected for
this operation.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however be evident that various modifica-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded 1n an 1illustrative rather than a
restrictive sense.
What 1s claimed 1s:
1. A nonvolatile memory comprising:
a MEmory array;
a command register, wherein the command register com-
prises a resolution circuit coupled to communicate with
a memory array control circuitry, the command register
capable of decoding a program suspend command
provided to the command register by a plurality of data

inputs to the nonvolatile memory, the command regis-
ter providing a suspend signal as an output; and

the memory array control circuitry coupled to receive the
suspend signal from the command register, the memory
array control circuitry coupled to provide control sig-
nals to the memory array to perform a program opera-
tion 1n which data provided to the nonvolatile memory
1s written to the memory array, the memory array
control circuitry suspending the program operation
responsive to receiving the suspend signal.

2. The nonvolatile memory of claim 1, wherein the

command register further comprises:

a command decoder coupled to receive the plurality of
data inputs to the nonvolatile memory, the command
decoder providing a decoded program suspend signal at

a command decoder output; and

a program suspend latch coupled to receive the decoded
program suspend signal from the command decoder,
the program suspend latch coupled to provide the
suspend signal to the memory array control circuitry.

3. The nonvolatile memory of claim 2, wherein the

command decoder decodes a program resume command to
provide a program resume signal, and the command register
further comprises:

a program resume latch coupled to receive the program
resume signal from the command decoder, the program
resume latch coupled to provide an input to the memory
array control circuitry.

4. The nonvolatile memory of claim 3, wherein the
resolution circuit controls operation of the memory array
control circuitry based on commands provided to the com-
mand register by the plurality of data inputs to the nonvola-
tfile memory and based on signals provided by the memory
array control circuitry.

5. In a system comprising a processor and a nonvolatile
memory coupled to the processor, wherein the nonvolatile
memory comprises a command register, the command reg-
Ister comprising a resolution circuit coupled to communicate
with memory array control circuitry, a method of reading
code from the nonvolatile memory, the method comprising
the steps of:

(a) suspending a first non-read operation being performed
in the nonvolatile memory;

(b) suspending a second non-read operation being per-
formed 1n the nonvolatile memory;

(c) providing code from the nonvolatile memory to the
ProCessor;

(d) resuming the second non-read operation; and

(¢) resuming the first non-read operation.
6. The method of claim 5, further comprising the step of:

(f) executing the code by the processor.

7. The method of claim §, wherein the first non-read
operation 1s a program operation, during which data is
written to a memory array within the nonvolatile memory.

3,937,424

15

8. The method of claim 5, wherein the first non-read
operation 1s an erase operation, during which a block of a
memory array within the nonvolatile memory 1s erased.

9. The method of claim 5, wherein only a suspended
operation can be resumed.

10. The method of claim 5, wherein operations are
resumed 1n the reverse order of which the operations are
suspended.

11. The method of claim 5§, wherein the first non-read
operation 1s suspended and resumed a plurality of times.

12. The method of claim 5, wherein the second non-read
operation 1s suspended and resumed a plurality of times.

13. The method of claim §, wherein a plurality of second
non-read operations 1s performed before resuming the sus-
pended first non-read operation.

10

16

14. The method of claim 5, wherein one of a plurality of
non-read operations 1s performed, suspended, and resumed
after resuming and completing the suspended second non-
read operation and before resuming the suspended first
non-read operation.

15. The method of claim 5, wherein a plurality of non-
read operations 1s performed, suspended, and resumed

before resuming the suspended first non-read operation.

16. The method of claim §, wherein a plurality of non-
read operations 1s performed after resuming and completing

the suspended second non-read operation.

	Front Page
	Drawings
	Specification
	Claims

