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57 ABSTRACT

Apparatus generates a sequence of code instructions for
execution by a programmable processor to solve a problem.
In includes generating a sequence of variable value data
corresponding to postulate solutions to such problem; test-
ing the postulate solution data in a relationship to determine
whether or not they correspond to the solution to the
problem; and, in the event that the test cannot be logically
evaluated, storing data defining a decision forming part of
the sequence of instruction codes, and generating a plurality
of branches of the sequence to be performed depending upon
the results of the decision imncluding more than one possible
branch from the decision to be taken in the event of the same
outcome of the decision, and for selecting one of the

EVALUATOR

branches.
16 Claims, 20 Drawing Sheets
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1
INSTRUCTION CREATION DEVICE

FIELD OF THE INVENTION

This 1nvention relates to a device for creating a sequence
of 1nstructions for operating the same, or a different, target
device.

BACKGROUND ART

It 1s known to provide devices for translating a sequence
of instructions in a high level computer language (such as
FORTRAN) into a sequence of machine level instructions
for subsequent execution. Such a device comprises a pro-
crammable computer operating under control of a pro-
gramme (termed a “compiler”) which operates in accor-
dance with a fixed series of rules, and may produce code
which 1s repetitive and uses a large volume of memory, or
operates slowly.

Furthermore, the high level language imposes an algo-
rithmic structure speciiying an order 1n which operations are
to performed by the target device, which may 1n fact be
wasteful of the memory and other resources of the device.

SUMMARY OF THE INVENTION

The technical problem addressed by the present invention
1s to provide a device which creates a sequence of 1nstruc-
tions for subsequent execution which is efficient (for
example 1n execution speed or in number of mstructions and
hence required memory).

Accordingly, 1n one aspect, the invention provides a
device for creating instructions arranged to generate mul-
fiple alternative sequences of instructions performing the
same function, and to select one of said sequences.

In one aspect, the device may comprise 1mnput means for
accepting a function to be executed by the 1nstructions 1n the
form of one or more logical relationships. Alternatively, 1n
another aspect, the device may comprise input means which
can accept input from a user 1n the form of a human
language, and convert the mput to one or more logical
relationships.

In these aspects, the device can accept an input which
specifies the result to be achieved by the instruction
sequence, and not the algorithm for achieving the result.
This enables the device to produce a sequence of 1nstruc-
fions which 1s optimal without being constrained by the
particular order 1n which the 1nput 1s presented, as would be
the case with a normal compiler. Further, by specifying the
results to be achieved 1n the form of logical relationships, the
device 1s able to create the sequence of instructions by
converting the relationships into tests comprised within the
set of 1nstructions.

In another aspect, where the device 1s to produce 1nstruc-
tions for a target device (such as a digital signal processor
(DSP) chip) which has multiple addressing possibilities, the
device 1s arranged to generate plural mstruction sequences
making use of the addressing modes, and to select one of the
instruction sequences, for example to give the highest
execution speed.

In one embodiment, the device according to the invention
1s operable to generate and store a tree defining plural
different possible instruction sequences, and to search the
stored tree either to find the shortest instruction sequence or
to find the instruction sequence which can be expressed most
ciiiciently in an iterated structure.

In another embodiment, the device operates to generate
and store only a portion of the tree, utilising iteration whilst
generating and storing the tree.
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2

Other aspects and embodiments of the invention are as
described or claamed hereafter. The 1nvention will now be

illustrated, by way of example only, with reference to the
accompanying drawings, 1n which:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram showing schematically the
clements of a device according to a first embodiment the
invention for generating code sequences, together with a
target device for executing the code sequences;

FIG. 2a 1s a flow diagram showing schematically the
process performed by the apparatus of FIG. 1 1n a first
embodiment of the 1nvention; and

FIG. 2b 15 a flow diagram showing the operation of a sub
routine process called from the process of FIG. 2a to create
the contents of the code sequence store;

FIG. 3 shows the structure of one node record 1n the code
store of FIG. 1;

FIGS. 4a and 4b 1llustrate schematically the contents of

the code store forming part of the embodiment of FIGS. 1
and 2; and

FIG. 4c¢ corresponds to FIG. 4b, and indicates the corre-
sponding tree structure in the form 1n which 1t 1s stored 1n the
code store 5;

FIG. 5 corresponds to FIG. 4b and shows schematically
the structure of one sequence of 1nstructions derivable from
the code store;

FIG. 6 1s a flow diagram showing the operation of the
apparatus of FIG. 1 1n a second embodiment of the
invention, and corresponds generally to FIG. 2a;

FIG. 7 1s a block diagram showing schematically the
clements of a device according to the second embodiment,
and corresponding generally to FIG. 1;

FIG. 8 1s a flow diagram showing in greater detail a part
of the flow diagram of FIG. 6 in the second embodiment;

FIGS. 9a and 9b 1illustrate the correspondence between
types of code sequence structure within the code sequence
store 1n the second embodiment and corresponding iterated
code 1n the ¢ programming language.

FIG. 10 1s a flow diagram 1llustrating the modification of
the operation of the first embodiment 1n a third embodiment
of the invention;

FIG. 11 1s a block diagram showing schematically the
structure of a known target processor;

FIG. 12 1s a block diagram showing schematically the
clements of a device according to a fourth embodiment of
the 1nvention and corresponding generally to FIG. 1;

FIG. 134 1s a flow diagram showing the operation of the
apparatus of FIG. 12 in the fourth embodiment;

FIG. 13b 1s a flow diagram showing the operation of a
subroutine process called from the process of FIG. 13a to
create the contents of the code sequence store; and

FIG. 14 1s a diagram 1illustrating schematically the con-
tents of the code sequence store of the fourth embodiment in
one example.

FIRST EMBODIMENT

Referring to FIG. 1, the device of a first embodiment of
the present invention comprises input means 1 (for example,
a keyboard or terminal); an evaluation device 2@; a number
ogenerator 2b; a compiler store 3; a knowledge store 4; and
a target core store 5. As shown, the knowledge store 4 and
the code store 5 may form areas of read/write memory, such
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as RAM 6; and the compiler store 3 may form part of a read
only memory (ROM) 7. The evaluator 2a and generator 2b
may comprise an arithmetic logic unit (ALU) forming part
of a general purpose computing device 2 (such as a micro-
processor. Also provided is an output device 8 (such as an
RS-232 port) through which a set of instructions is trans-
mitted to a target device 10 for executing the instructions at
a subsequent point 1n time.

In this embodiment, the input means 1 1s for accepting a
specification of a problem for the solution of which a set of
instructions to be executed on the target device 10 1s to be
produced. The problem 1s specified 1n terms of a predicate
calculus expression (discussed in greater detail below). the
compiler store 3 stores a representation of a sequence of
instructions for executing the flow diagram of FIGS. 24 and
2b. Typically, the compiler store 3 1s a read only memory
(ROM). The instructions stored in the compiler store 3 are
performed by the evaluator 2a and generator 2b. The gen-
erator 2b generates successive values of mput variables, 1n
a predetermined order, for use by the evaluator 2a. The code
store S stores, during operation of the evaluator 2a. The code
defining several alterative sequences of code for executing
the function input in the input device 1, one of which 1is
subsequently selected as will be described 1n greater detail
below. The knowledge store 4 stores logical relationships
derived, during operation of the evaluator 2a, for subsequent
use by the evaluator 2a 1n deriving the sequences of code to
store 1n the code store 3.

The operation of this embodiment will now be described
in greater detail. In this embodiment, a user inputs (by
typing) a specification of a problem for the solution of which
code 1s to be generated 1n the mput means 1. The specifi-
cation 1s 1n the form of a predicate calculus expression; that
1s to say, an expression stating that:

“There exists a value of” (first expression) “such that, for
all possible values of” (universal variables), (second
expression) “is true”.

In such a predicate calculus expression, the first expres-
sion 1s 1n terms of one or more variables termed “existential
variables”, and the second expression 1s a logical expression
linking the function with the unmiversal variables.

For example, typically, the existential variables are vari-
ables which will be 1nputs to the target device 10 when 1t 1s
operating the code to be generated, and the first expression
corresponds to the function to be performed by the code on
the variables. The universal variables are, on the other hand,
utilised by the evaluator 2a 1in generating code and do not
themselves occur 1n the code generated. Further details of

the predicate calculus may be found 1 “Logic”, Wilired
Hodges, published by Pengiun Books, 1977.

To take a concrete example, one commonly occurring,
problem 1s to sort an array or vector of data mto ascending
numerical order. The definition of a sorted array 1s that, in
the sorted sequence, each value 1s less than or equal to the
value which follows 1t 1n the sequence. For an input array of
n elements, an], one way of sorting the array is, rather than
physically interchanging the positions of the array members
of the array a, to define a pointer array b[n], the first element
of which contains a number pointing, within the array a[n],
to the lowest occurring element of the array a[n], and so on.

Thus, 1n use, the generated code being performed by the
target device 10 would 1nput the values making up the array
aln| and find, and output, the values making up the array
b[n] indicating the order of the values in the array a[n].

Various numerical sorting algorithms are well known; for
example, the “bubble” sort, the “ripple” sort or the “shell”
SOTrT.
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4

The predicate calculus specification for the sorted array 1s:
sort(a[n])=a ?b[n]|((a[b[iT]<=alb{i+1]]) and ((b[p]<>b[q]) or
(p=q))) ]

In other words, the array b[n] is such that, for every value
of the universal variables 1,p,q, the value of the element of
array a indexed by a given element of the pointer array b 1s
less than or equal to the value of the array element of the
array a pointed to by the next element of the pointer array b.
The two following conditions merely ensure that there 1s a
one to one correspondence between the elements of the array
b and the array a.

The “|” character indicates “such that”, and the “?”
character indicates “there exists” 1in the foregoing; the vari-
ables on the left of the “|” character are the existential
variables, and those not declared as existential variables are
the universal variables.

At this point, 1t should be pointed out that this predicate
calculus expression 1s not a unique way of specitying the ort
function; for example, simple logical operations of inversion
and distribution may be applied to derive exactly equivalent
€Xpressions.

The second feature to note 1s that whilst this expression
specifies the result (i.e. the properties of the sorted array) it
does not specily any particular algorithm for sorting the
array. Several different algorithms, and corresponding code,
could be designed which would satisty the predicate calcu-
lus expression. Generally, a sort process operates by 1mput-
ting the values of the array a|n], assuming initial values of
the array b|n|, applying the inequality test forming part of
the predicate calculus expression, and varying values of the
array values of the pointer array are selected and tested
which defines the sort algorithm and the efficiency thereof.

FIG. 2 (formed of FIGS. 2a and 2b) illustrates the method
of operation of the device of FIG. 1, 1in this embodiment.

Referring now to FIG. 24, 1n a first step 100, the predicate
calculus expression 1s mput 1nto the mput device 1, and the
ranges of each of the variables are established and stored.
The ranges may be directly input together with the
expression, or may be derived from the expression. In this
case, the value of each element of the existential vector b
ranges between 0 and n—-1, as do the values of the universal
variables p and q (which are indexing b). The variable 1
ranges between 0 and n-2 since there 1s one fewer com-
parison between the sorted members of the array a than the
number of members (n—1) of the array. These ranges are then
supplied to the generator 2b.

Initially 1n step 102 the generator 2b generates a first set
of existential variable values (that is, values of the array
elements b(0), b(1), . . . b(n-1)). The initial values might
typically be O.

Next, the subroutine of FIG. 2b 1s called 1n step 104 to
store the tree (if any) for the initial existential variable value.
After this, the subroutine of FIG. 2b 1s called for each
successive existential variable value (steps 106 & 108), so
that evaluator 2a constructs a tree of possible 1nstruction
sequences for each value of the existential variables. Refer-
ring to FIG. 2b, in the tree-building subroutine, in step 110,
the values of the universal variables are initialised (e.g. to
zero) and 1n step 112 the evaluator 2a evaluates the predicate
calculus expression for these variables. Such an evaluation
can lead to three possible results. Either the expression
evaluates to “false”, or to “true”, or 1t 1s non manifest or
indeterminate. In this example, with all variables at O, the
first part of the expression evaluates as true (since b[0]=b
[1]=0); the second part of the expression evaluates as false
(since b[0]=b[0]) and the third part evaluates as true (as
p=q=0). Thus, the expression as a whole evaluates as true.
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Referring back to FIG. 2b, where (as here) the result of the
evaluation 1s true, the generator 2b then generates a next
value of universal variables (for example, by incrementing
q) in step 120.

Now the process returns to step 112 and, once more, the
new values of the universal and existential variables are
supplied by the generator 2b to the evaluator 2a, which once
more evaluates the expression. In this case, as before, the
first part of the expression is true, and the second part is
false. Now, the third part of the expression is also false (as
p 1s not equal to q) and so the expression as a whole 1s false.

Wherever the results of the evaluation are false, all ode
stored 1n the code store 5 derived from that set of existential
variable values (discussed in greater detail below; none in
this case) is erased in step 114, and control returns to FIG.
2a with no tree stored 1n code store 5. The generator 2b
ogenerates a next set of existential variable values in step 108
(for example, by incrementing the value of b[n-1]).

This 1s because 1f the expression 1s evaluated as false for
one value of the universal variables, the wvalue of the
existential variables concerned clearly cannot be such that
the expression evaluates to true for all values of the universal
variables, as 1s required by the predicate calculus form. In
the present case, 1t 1s 1n fact clear that the “sort” algorithm
can only work when the value of each element of b|n] is
different.

If the expression cannot be evaluated (as will be described
in greater detail below), the action of the apparatus is (in step
124) to store a decision node in the code store 5, consisting,
of code defining a logical test, and creating a branch between
two possible actions 1n dependence upon the test result.

Referring to FIG. 3, the structure of a node record 511 in
the code store 5 1s shown. It comprises a field 506 storing the
current values of the existential variables b[n]; a field 507
storing the currently unevaluable test; a field 508 storing a
THEN pointer, pointing to the address 1n the code store 5 of
a further node record 521, a plurality of ELSE pointer fields
509a—509m pointing to the addresses 1n the code store § of
further node records 521, 522, 523 . . ., and a field 510
storing a pointer to the address 1n the knowledge store 4 of
a record 411 containing the item of knowledge which was
most recently stored therein. As shown, the record 411 etc,
in the knowledge store 6 also contains a field 412 storing a
pointer to an earlier-stored record 401, so that the contents
of the knowledge store 6 can be read as a linked list.

The decision nodes within the code memory § build nto
a decision tree, from which each node has at least two
branches; a first branch obtained by assuming the results of
the logical test to be true, and one or more second branches
(in this embodiment one fewer than the total number of
possible values of existential variables) each corresponding
to a different existential variable value.

Each branch may, of course, contain further decision
nodes causing the further branches. Accordingly, the pro-
cessor 2 executes (in step 128) the process of FIG. 2b
recursively, each time such a decision node 1s reached, so as
to create the decision tree originating along each branch of
the decision node, before returning to complete the other
branches.

FIGS. 4a and 4b or 4c 1illustrate the form of the decision
tree stored 1n the code memory 5 1n this example with n=3.
FIG. 4a 1llustrates that the tree has six branches, one for each
of the six starting values of existential variables generated in
the process of FIG. 2a by the generator 2b which do not lead
to false evaluations (and hence represent possible starting
points for the sort algorithm). One tree branch is shown in
greater detail in FIGS. 4b and 4c¢ (for each of understanding,
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the knowledge from knowledge store 4 associated with each
node record 1s shown with that record in FIG. 4b, and 1s

absent in FIG. 4c).

The tree comprises a plurality of different sequences of
code, executing any one of which would solve the sorting
problem. Each sequence of code comprises one of the TRUE
paths (shown in thick lines) from the route node 500 to a
GOAL node, the path comprising a sequence of successive
tests, and one of the FALSE paths (shown in thin diagonal
lines) from the root node to a GOAL node.

The operation of the evaluator 2a will now be disclosed
in greater detail. As a first step, the evaluator operates, as
discussed above, to evaluate the expression which was input
via the mnput device 1. If this does not result 1n a true or false
value, 1in this embodiment the evaluator 2a proceeds to apply
some additional trivial rules such as:

X=X=true

x<x=lalse

x>x=lalse

x<>xX=lalse

X>=X={rue

X<=X={rue

and the following implications:

a=b -> b=a, T(a<>b), “(b<>a)
a>b -> b<a, T{a<=Db), “(b>=a)
a<b -> b>a, T{ax>=b), “(b<=a)
a<=b -> b>=a, T({a=b), “(b<a)
a>=b -> b<=a, T(a<b), “(b>a)
a<>b -> b<>a, T{a=b), “{b=a)
(a=b) and (b=c) -> a=C
(a<b) and (b<c) -> a<C
(a=b) and (b>c) -> a>C
(a<=b) and (b<=c) -> a<=C
(a==b) and (b>=c) -> a>=C
a=b -> (a<b), “(a=b)
a<b -> “{a=b), ~{a=b)
a>b -> (a<b), ~({a=b)
T(a<=b) -> b<=a, ~{a=b)
“(a>=b) -> b>=a, ~({a=b)

To apply each of these rules, the portion of the expression
which has been found not to be evaluable 1s examined to test
whether 1t has the form of any of the above relations, and if
50, the corresponding relations are substituted 1n turn and an
attempt 1s made to evaluate them. The evaluator 2a may
operate 1n the same manner as a conventional artificial
intelligence program or inference engine.

If this too 1s unsuccessful, the evaluation device 2a
accesses the knowledge store 4, to see whether there 1s a
match for the unevaluable part of the expression together
with the corresponding answer stored therein, or whether the
answer can be implied from the relationships stored therein.

The contents of the knowledge store, and the operation of
the evaluator 2a 1n writing thereto, will now be discussed in
orcater detail.

The contents of the knowledge store 4 comprise logical
relationships which were unevaluable and hence gave rise to
a decision node 1n the code store 5, and to which values have
subsequently been assigned for the purpose of constructing
cach tree branching from the decision node. To construct the
tree shown 1n FIG. 4b, referring once more to FIG. 2bon
reaching an unevaluable expression, the processor 2 creates
a decision node record 501 1n the code table 5 and stores the
current value of the existential variables b[n] in step 124.
Also stored is the test which proved not to be evaluable (in
this case “is a [b[0]]<=a[b[1]]), together with a “TRUE” or
“THEN” pointer (shown as a thick line) to the tree to be
constructed on the assumption that the result of the test is
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true, and a plurality of “FALSE” or “ELSE” pointers (shown
as thin lines) to a plurality of trees to be constructed on the
assumption that the outcome of the test 1s false and corre-
sponding to changed existential variables.

Next, 1n step 126 the processor 2 stores, 1n the knowledge
store 4, a record 411 comprising data indicating that the
relationship alO]<=a| 1] is true, together with a pointer field
in the record 511 pointed to by the “THEN" pointer stored
in the code store 5 so that this information will be available
in evaluating relationships 1n the decision tree pointed to by
the “THEN" pointer.

The processor 2 1s then operable to store the current state
of its internal registers and variables (e.g. in a stack, now
shown) and to execute a recursive call to the routine of FIG.
2b. The process formed by the routine of FIG. 2b would be
a repeftition of what has just gone before, except that now on
reaching the point of evaluating the relationship, the evalu-
ator 2a accesses the knowledge store 4 and finds that, using
the data stored therein, 1t 1s now possible to evaluate whether
al 0] 1s <=a| 1], and accordingly, at this point the result of the
evaluation 1s true, rather than unevaluable.

Since the 1nitial operations prior to this point are repeated,

it would be possible to re-design the process shown in FIG.
2b to omit such repetition; this modification has been
omitted for clarity.
The processor 2, under the operation of FIG. 2b then
proceeds to evaluate the “true” or “THEN” decision ftree,
possibly 1n the process encountering further unevaluable
expressions and consequentially storing further decision
nodes in the code table § and executing further recursive
calls to the process of FIG. 2b. At some point, unless a false
evaluation 1s reached, the process of FIG. 2b will return from
cach recursive call, to reach step 130 of FIG. 2b. Thereafter,
for each of the other values of existential variables, the
processor 2 creates an “ELSE” path mm a step 134 by
selecting a corresponding changed value of the existential
variables; stores, for that path, a record comprising data
defining a relationship consisting of the test which was
found to be unevaluable with the results set to false (i.e., in
this case, a [0]<=a]1]=false) with a pointer to that record
from the nodes 1 the code store 5 pointed to by each ELSE
pointer, so as to be available for all subsequent evaluations
in the decision tree based on that path (in step 132).

Next, as 1n step 128, m step 136 the current contents of
registers and variables are stored and a recursive call to the
process of FIG. 2b 1s performed, so as to construct the
decision tree corresponding to the changed values of the
existential variables set in step 134. When this process 1s
complete, 1t 1s terminated by the return step 116 on which the
stored contents of registers and variables are restored by the
processor 2, so as to confinue execution at step 130 to
construct the decision trees for each other possible value of
existential variables.

Unless terminated by a step 114, the subroutine of FIG. 2b
will ultimately reach a point where the 1nput relationship
becomes evaluable (and TRUE). At this point (labelled
GOAL in FIG. 4b), the values of the existential variables
constituted the solution to the input problem. Thus, such a
node defines the end of the code sequence to be generated
for the target processor 10, and will be 1terpreted thereby as
code 1nstructions to output the existential variable values
and stop execution. A GOAL node 1s therefore stored 1n the
code store § 1n step 119, comprising the current existential
variable values and a STOP or OUTPUT code imdicator.

If, in step 114, the evaluator 2a reaches a false result, then
all decision nodes stored 1n the code store 5 are erased back
to the nearest change of existential variable, since (as
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discussed above) only values of the existential variables for
which the expression 1s always true lead to correct code to
execute the function. As a result, once the process of FIG. 2b
has ceased and passed control back to the processor FIG. 24,
the code store 5 may have only a relatively sparse number
of decision nodes, compared to the total number which in
this embodiment have been created in the code table 5 and
subsequently erased 1n the step 114.

Once a decision tree has been created, by the process of
FIG. 2b, for each possible value of the existential variables
created by the generator 2b, the processor 2 proceeds to step
150. At this stage, the content of the code store 5 corre-
sponds to FIGS. 4a to 4c. At this point, the contents of the
knowledge store 4 are redundant and may be erased. From
the contents of the code store §, 1t 1s possible in general to
construct a plurality of different algorithms for solving the
problem corresponding to the predicate calculus statement
input at the mput device 1, since 1t 1s possible to start with
any of the six trees, and then at each decision node to use
only one of the THEN paths.

The code sequence for the target processor thus merely
consists of:

an 1nput code for inputting a[n]
a first test (corresponding to that stored in record 501],

and two branch instructions to be performed it the
results of the test are, respectively, true or false;

possible one or more further nodes each consisting of a
test and a pair of branch instructions; and

the end of each branch, an output statement outputting

the values of the existential variables bjn] at a GOAL
node.

Naturally, one of the branches may simply be to the next

instruction, avoiding the need for a separate second branch

instruction.

Thus, within the target device 10, the first step of the
generated code consists of an input of the array a|n] to be
sorted, and then the code detailed above. On reaching a
GOAL point, the current values of the pointer array b n] are
output, defining the correct sorted order of the input array
alnl|.

In this embodiment, the next step 1s to select the code
which will execute in the shortest time (i.e. would involve
the least number of in-line steps).

Referring to FIG. 5, one portion of the tree of FIGS. 4b
or 4c¢ 1s shown, which corresponds to code defining the
bubble sort algorithm starting on the assumption that the
vector array a[n] is correctly ordered (b=(012)). It can be
seen that this algorithm will sort a three member array a|n]
In a minimum of two tests or a maximum of three.

A high level representation of the code stored 1n code
table 5 1n relation to a four element sort corresponding to

FIG. 4 1s as follows:

at

alldiff vec[4] = exist|((vec[p]<>vec|qlor(p=q)).
sort a{j%=?b[4]|((a[b[i]]»::=a[b[i=1]]) and alldiff(b)).
sort al4|=
b:=(3 2 1 0)
if a|b]0]]<=a|b|1]]
then
if a|b]1]]<=a|b|2]]
then
if a|b[2]]<=a|b|3]]
then GOAL
else
b|3]:=1 b|2]:=0
if a|b]1]]<=a]b|2]]
then GOAL
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-continued

else
b[2]:=2 b]1]:=0
if a|b[O]]<=a|b|1]]
then GOAL
else b[1]:=3 b|0]:=0 GOAL fififi
else
b[2]:=2 b[1]:=1
if a]b]0]]<=a|b|1]]
then
if a|b|2]]<=a|b|3]]
then GOAL
else
b|3]:=2 b|2]:=0
if a|b]1]]<=a|b|2]]
then GOAL
else
b[2]:=1 b]1]=0
if a|blO]]<=a|b|1]]
then GOAL
else bl1]:=3 b|0]:=0 GOALffifi
else
b[1]:=3 b[0]:=1
if a|b|2]]<=a|b|3]]
then GOAL
else
b[3]:=2 b]2]:=0
if a|b]1]]<=a|b|2]]
then GOAL
else
b|2]:=3 b|1]:=0
if a|b[[0]]<=a|b[1]]
then GOAL
else b|1]:=1 b|0]:=0 GOALAffifififi
else
b[1]:=3 b[0]:=2
if a|b[1]]<=a|b|2]]
then
if a|b[2]]<=a|b| 3]]
then GOAL
else
b|3]:=1 b|2]:=0
if a|b|1]]<=a|b|2]]
then GOAL
else
b[2]:=3 b]1]:=0
if a|b[O]]<=a|b]1]]
then GOAL
else b|1]:=2 b|0]:=0 GOALIfififi
else
b[2]:=3 b|1]:=1
if a|b[0]]<=a|b|1]]
then
if a|b[2]]<=a|b| 3]]
then GOAL
else
b|3]:=3 b|2]:=0
if a|b]1]]<=a|b[2]]
then GOAL
else
b[|2]:=1 b[1]:=0
if a]b]O]]<«=a|b|1]]
then GOAL
else b|1]:=2 b|0]:=0 GOAL fififi
else
b[1]:=2 b]0]:=1
if a|b[2]]<=a|b|3]]
then GOAL
else
b[3]:=3 b]2]:=0
if a|b]1]]<=a|b|2]]
then GOAL
else
b|2]:=2 b|1]:=0
if a|b|0]]<=a]b|1]]
then GOAL
else b|1]:=1 b|0]:=0 GOALAffififififi

In this example, all the possible algorithms 1n the code
store 5 would execute 1n the same number of steps as that

shown 1n FIG. 4. However, this 1s not the case in many other
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situations. Accordingly, in this embodiment, in step 150, the
processor 2 evaluates the number of instructions required to
produce an in-line programme or sequence of instructions
for each possible algorithm represented within the code store
5, each algorithm consisting one of the THEN paths (shown
in thick lines in FIG. 3b) for one of the trees of FIG. 3a, and,
at each of the decision nodes thereon, one of the ELSE paths.
The algorithm having the lowest number of steps 1s then
output to the output device 8, comprising either a write head
to write the code to a record carrier (e.g. magnetic disk), or
an RS232 port, or other device for supplying the code direct
to the target processor device 10.

SECOND EMBODIMENT

In the above embodiment, the processor 2 1s arranged to
cgenerate 1n-line code having the shortest length from
amongst the possible code sequences contained in the code
store 3.

In this embodiment, referring to FIG. 6, exactly the same
process 1s followed to generate the contents of the code store
5. However, having done so, use 1s made of the capabilities
of 1teration and indexing offered by a target processor 10 to
select, 1n a step 160, the code sequence 1n the code store §
which 1s most readily converted to 1terative form and to
cgenerate therefrom a sequence of mstructions which include
iteration. This therefore makes effective use of the available
programme memory ol the target processor 10, typically
without substantial reduction 1n execution speed.

This 1s achieved by searching the decision tree stored 1n
the code store 5 to locate those sequences 1n which changes
in the value of the existential variables follow a regular
progression (e.g. a simple, incremental arithmetic
progression), and then creating code to cause an iteration to
provide the progression.

It will be observed from FIGS. 4b and 4c that in the above
example, a first record 511 and the second record 512 store
the same test step, and moreover that the structure of the tree
portions following the two records 511, 512 are the same and
the tests stored 1n the corresponding decision nodes of the
two tree portions are the same. What differs between the two
are the associated values of the existential variables b[n].

It would therefore be possible, instead of branching to the
node 512, and performing the test at that node and those of
the subsequent portions of the tree, to substitute an instruc-
tion changing the values of the existential variables b|n| and
then return to continue executing the instructions at decision
node 511 and the subsequent nodes 1n the tree thereafter.
Accordingly, a first step in reducing the amount of code
required to execute the desired process 1s to search the
contents of the code store 5, and on locating such examples
of duplicated tree portions, to flag them to 1indicate that they
may be replaceable with instructions to change the existen-
tial variables and return.

In the example shown 1 FIGS. 4b and 4c¢, 1t will be
apparent from inspection that the required instructions are
simply of the form that if the two elements tested do not
meet the test, then their positions are interchanged; this 1s, in
essence, the bubble sort process.

The apparatus of this embodiment (shown in FIG. 7)
corresponds to that of the first embodiment with the addition
of iteration function counters 9a, 95 (forming part of pro-
cessor 2).

In general 1n this embodiment, the processor 2 searches
the code table § to locate similar tree portions having tests
in which the existential variable values are in some simple
progression which can be iterated by an iteration function
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f(1). For example, the simplest (and probably the most usual)
case 15 where the existential variable values form an arith-
metic progression of the form f(i)=(m*i+c). However, other
simple progressions such as f(i)=(m*i+c)mod(a) may
cequally be used. Complex functions which consist of a
piecewise sequence of simple functions over different ranges
may also be employed.

Referring to FIG. 8, 1n this embodiment the step 160 of
selecting an 1terative portion of the tree consists of the steps
164 to 176 shown 1n FIG. 8. First, the processor 2 reads the
code store 5 1 a step 164. In a step 166, repeated code
portions (such as the portions 512 and 511 in FIG. 4¢ are
located and replaced with statements indicating a change in
the existential variables followed by a return (as discussed
above). In step 168, a first iteration function (1) is selected.
This 1s typically an arithmetic progression f(i)=m*i+c,
where m and ¢ are constant.

Next, a first possible sequence within the code store 1s
selected; starting at the first or root node 500 of the code
sequence data in the code store 5 (shown in FIG. 4a). The
initial value of the existential variables b are taken as the
constant ¢ in the function, and the change 1n existential
variable value from the first node to the second 1s used as the
scaling factor m. The value of this first function {,, 1ndexing
the existential variables, 1s maintained by the first counter
9. A second function f, 1s likewise maintained by the
second counter 96 to index the universal variables, which
appear as the indices within the tested expression (i.e.
a|b[1]]). Subsequent steps 1n the sequence are then tested to
sec whether the changes in the existential variables along the
“ELSE” paths, and the changes 1n universal variables at each
decision node, correspond to successive values of the func-
tions I, and 1, respectively. It they do so, the code sequence
concerned can be 1teratively generated by the tunctions t,, £,
concerned.

The processor 2 passes through the sequences 1n the code
store 5 1n steps 173 and 174 until all sequences have been
tested using the first type of iteration function (e.g. linear
extrapolation). At this point, if no code sequence has been
found which can be 1teratively constructed, the processor 2
selects a second type of iteration function (for example,
f(1)=(m™*1i+c) mod(a)) to be generated by the counters 9a, 9b.
Each possible sequence 1n the code store 5 1s tested against
the second (or, in general, a further) predetermined iteration
function by the processor 2 until a match 1s found, indicating
that the sequence can be 1terated.

On finding a sequence which can be 1iterated, control
returns to step 162 of FIG. 6, and the processor 6 utilises the
sequence from the code store 5 and the iteration function
found to correspond to the sequence to construct iterative
code 1n the code store 5, by constructing an 1iterative loop for
cach of the universal and existential variables, the loops
being the same length as the length of the sequence 1n the
code store 5, and embedding within the loop a generic “IF”
statement corresponding to the test in each decision node 1n
the sequence (indexed by the function £, of the loop counting
variable 1) and generic THEN and ELSE statements (the
latter including a change of the existential variables indexed
by the function f, by the loop counting variable 1). This
iterative code 1s then output 1n step 152 as before to the
target processor 10.

FIGS. 9a and 9b illustrate examples of tree structures
within the code store § which lend themselves to iteration
according to this embodiment, together with the correspond-
ing equivalent code generated by this embodiment 1n the
“C” programming language. In this diagrams the “testpaths”
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201-207 indicate the test decision stored at each node within
the code store 5, whereas the “falsepaths”, “actionpaths™ and
“elsepaths™ 208-216 indicate the actions taken following the
THEN pointers after each such decision stage. “RET” 1n
FIG. 9b indicates a “return” instruction substituted into the
code store 5 1n the step 166 of FIG. 8 (which may either be
a return from a call, or some other instructions such as

“g0t0” 1nstruction).

In this embodiment, 1t 1s therefore possible to produce
more compact, 1terated code having the same effect as the
“in line” code of the first embodiment, typically at a small
penalty 1n execution speed required to calculate the 1teration
indexing variables during execution by the target processor

10.

As described above, the processor 2 halts and outputs the
first 1terated code found in the code table 5. It would,
however, be possible 1n further variations of this embodi-
ment for the processor 2 to generate iterated code in the
manner described above and store the iterated code in the
code store 5, and then to continue searching for further
possible iterated code sequences. After the searching the
code store 5 completely for one or more possible iteration
functions {,, if multiple different iterated code sequences are
found and stored 1n the code store 5, the processor 2 then
would perform a step of selecting a preferred sequence, as
in the first embodiment, based (in one example) on the
amount of memory occupied by each iterated sequence to
select the shortest, or (in another example) on the execution
time which will be used by each 1iterated sequence. The
preferred sequence thus selected 1s then output 1n step 152
as before.

Although, 1n the above described embodiments, one
counter 9a has been used for the existential variables con-
sidered as a single vector and likewise one counter 95 has
been used for the universal variables, 1t 1s possible 1nstead to

provide a separate counter for each existential and/or uni-
versal variable.

In the above embodiment, in the event that the process of
FIG. 8 does not lead to the generation of any iterative code,
the processor may be arranged to perform step 150 of FIG.
2a of the first embodiment, to select the shortest in-line code
from the code store 5.

THIRD EMBODIMENT

In each of the above two embodiments, the entire code
possibility tree 1s generated 1n the code store 5 and a code
sequence 1s selected therefrom. In fact, 1t 1s not necessary to
ogenerate the entire tree, although generating a subset of the
tree will reduce the choice of code sequences or algorithms
available for selection. One possibility would be to simply
terminate the operation of FIG. 2a or FIG. 5 after a certain
number of existential variable values have successtully led
to the construction of a code tree portion. However, there 1s
no guarantee that the portion of the tree thus generated will
include preferred code sequences.

In this embodiment, the operation of the generator 2b 1s
modified so that, 1n generating changes to the existential
variables, 1t acts somewhat 1n the manner of the iteration
function counters 9a, 9b of the second embodiment. Thus,
the changes 1n existential variable value from decision node
to decision node forwards 1n the tree stored 1n code store 5
are forced to follow a regular progression which can be
converted to an iterative code sequence. As 1n the preceding
embodiments, more than one possible sequence 1s generated
in the code store 5 to enable a selection step between
sequences. It would be possible, 1n this embodiment, to
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generate only a single sequence (but this is not preferred,
since although 1t would generate an executable sequence 1t
would not necessarily generate a sequence of short length or
high execution speed relative to other possible sequences).

Referring now to FIG. 10, 1 this embodiment, the device
of FIG. 1 follows essentially the process of FIGS. 2a and 2b,

but the step of selecting the next existential variable 1n step
108 and step 134 1s modified so that the next value selected
follows a sequence which can be used to generate an
iteration loop.

In greater detail, in this embodiment the sequence gen-

erator 2b 1nitially generates a succession of existential
variable values, until such time as a first existential variable

value 1s generated which leads to the creation of a tree 1n the
code table 5 (i.e. the first existential variable value is reached

which represents a valid starting point of the solution of the
problem input at the input means 1). At the first decision
node 1n the tree generated 1n the code store 5, at the step 134,
the processor 2 stores a second existential variable value,
comprising the next-occurring existential variable value for
which a valid subsequent tree portion 1s generated. Then,
rather than continuing to generate, 1 turn, each existential
variable value 1n the step 134 1n an incremental sequence,
the processor 2 forms a linear extrapolation f(1)=m*i+c
between the first and second existential variable values (to
derive the scaling factor m) and applies the same change to
the existential variable values in the derivation of the FALSE
or ELSE paths 1n the successor tree generated in the code
table 5. Thus, for each FALSE or ELSE path from the first
decision node 500, an attempt 1s made to generate a tree
which 1s susceptible of iteration according to a linear 1tera-
tion function f(i)=m*i+c, as in the second embodiment.

Having completed the above described process, the pro-
cessor 1s then arranged, as in the second embodiment, to
perform the step 162 of converting the 1 line code
sequences 1n the code store 5 1nto 1terated code. In this case,
cach sequence stored in the code store § (if any) will be
susceptible of such conversion. Subsequently, the step 150
of the first embodiment of selecting a preferred code
sequence based on either on the length of the iterated code
or the execution speed thereot 1s performed by the processor

2.

Thus, 1n this embodiment, only a portion of the tree
ogenerated 1n the first or second embodiments 1s created 1n the
code store 5. This renders the execution of this embodiment
significantly faster, and requires less capacity in the code
store 3.

For some types of problem input in the input means 1, this
process will lead to only a small number of possible code
sequences in the code store § (i.e. a very sparse tree), or
possibly only a single solution. It may also lead to no
solution, if the problem 1s not susceptible of linear 1teration.

In such cases, the processor 2 1s arranged to repeat the
above described process by using a different iteration func-
fion than linear interpolation using a different operation in
step 184; for example, based on a different interpolation
function such as f(1)+(m*i+c) mod(a) (or on an interchange
of values of adjacent pairs of the existential variables). The
processor 2 may apply, 1n succession, a plurality of different
functions for generating sequence of shifted or changed
values of the existential variable, to generate a correspond-
ing plurality of different trees in the code store 5.
Subsequently, as before, a preferred sequence of code 1s
selected.

Thus, this embodiment permits either the location of a
successful iteration function f(i) or a choice between alter-
native iteration functions.
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In a variant of this embodiment, rather than performing
the step 184 of calculating a shift value which can be used
to generate code which will be susceptible of 1teration, the
processor 2 calculates a new existential variable value based
on the mimimum change from the preceding existential
variable value (for example, changing only one variable b,
at a time). Code produced 1n this manner is generally in-line,
rather than iterative. However, 1t will tend to be shorter, and
hence faster since a smaller number of assignment state-
ments to change the values of the existential variables will
be required.

FOURTH EMBODIMENT

Referring to FIG. 11, the target processor 10 1n this
embodiment comprises a digital signal processing (DSP)
device, such as the Western Electric DSP 32 device or other
devices 1n the same family. A detailed description of the DSP
32 will be found in “The DSP 32 digital processor and its
application development tools”, James R. Boddie et al,
AT&T Technical Journal, September/October 1986, Volume
65, Issue 5, pages 89-104 (and the references cited therein);
or in “WE DSP32C digital signal processor -information

manual” available from AT&T.

Such devices are well known 1n the art, and hence 1t 1s
unnecessary and 1nappropriate for the purposes of the
present 1invention to provide a complete description. Such
devices are typically used to process signals at high speed,
by performing real time execution of repetition multiplica-
tions and additions, typically on arrays, to perform opera-
tions such as fast fourier or other discrete digital transforms;

finite 1mpulse response or iniinite 1mpulse response filters;
or the like.

As shown 1n FIG. 11, together with other standard com-
ponents the DSP 32 comprises a digital arithmetic unit
(DAU) 10a comprising four accumulators (a,—a,), a floating
point multiplier and a floating point adder; and a control
arithmetic unit (CAU) 10b comprising a programme
counter, 21 registers (r1-r21) and an arithmetic logic unit.

The digital arithmetic unit 1s arranged to perform instruc-
tions of the type a=b+c*d, where a 1s one of the
accumulators, one of b, ¢ or d 1s an accumulator, and the
others are register or memory 1.€. a mathematical deduction
1s performed upon the two 1terative codes to deduce generic
iterative code from which the speciiic code for the 20
member array 1s derived.

The control arithmetic unit 105 performs some operations
on 1ts registers 1n parallel to the operations of the digital
arithmetic umt 10qa. Of the 21 registers or the control
arithmetic unit 10b, registers 1-14 are used as memory
pointers and registers 15—19 are used to hold address incre-
ments. A pointer register contains the address of an operand
iIn memory that 1s to be either read or written, and an
Increment register contains a number which 1s added to the
pointer to alter 1t. This addition 1s done 1n the ALLU, and does
not occupy processor time in the DAU. Registers 20 and 21
are of no relevance for the present explanation.

The DSP32C has two indexed addressing modes; normal
addressing 1n which the contents of one of the pointer
registers (written *rl) is used as a pointer to the location to
be read or written to in memory, which may be modified by
the value contained 1n a pointer register, and post modified
addressing, in which the content of the pointer register 1s
incremented by an amount held 1n the increment register
after the pointer register has been used (this 1s written as, for
example, *rl1++*rlS, where the contents of register 15 will
dictate the amount by which register 1 is incremented after
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the contents of the memory location to which 1t points have
been used). The post increment calculation is done by the
ALU within the CAU 10b 1in parallel with arithmetic cal-

culations on the DAU, and thus post incrementing can be

used to set up an iteration loop using a small number of 5

instructions to step through a number of addresses in
memory, by placing a post incremented statement within a

loop branching back to before the statement.

Referring to FIG. 12, 1n this embodiment the apparatus for
deriving code comprises an input device 301 (which might
be a keyboard, but could also be a storage device reader such
as a disk drive, or even a file receiving data receiving data
from another file); a processor 302; a compiler store 303
storing the process to be executed by the processor 302,
typically in read only memory (ROM) 307; a code sequence
store 303 for storing code generated by the processor 302; a
target processor code store 304 for storing details of the
instructions set of the target processor 10; the stores 304 and
305 typically being provided as areas within a random
access memory (RAM) 306; and an output device 208 for
outputting generated code to the target processor 10
(typically in the same manner as the output device 8 dis-
cussed above).

An overview of the process of operation performed by the
apparatus of FIG. 12 according to the process of FIG. 13 1s
as follows. The processor 302 allocates one of the registers
of the target device 10 to the first occurring variable in the
expression. Then, for the next occurring variable, there 1s a
choice as to whether to allocate a register pointer to the
address of that variable, or whether to re-use the existing

pointer register and add a post modified offset to it to access
the second variable.

Accordingly, referring to FIG. 14, the processor 302
creates a tree 1n the code sequence store 305 with code
corresponding to each of these possibilities; as shown, a first
node 601 1n the store 305 comprises an instruction assigning
the value of the address of the first variable v[0] to a first
pointer register r1; and, following this first node (and linked
thereto by pointers 1n a stmilar manner to that shown 1n FIG.
3) first and second alternative nodes 611, 612, forming the
next stages of respective alternative sequences of code. In
the node 611, the second variable v[2] 1s addressed by
assigning ts address to a second pointer register r2, allowing
the two variables to be added together 1in the accumulator. In
the node 612, on the other hand, the second wvariable 1s
addressed by assigning an offset (of 8 bytes) to the offset
register r15, and then using post modified indexing to access
the second variable v[2] in the accumulator statement.

aO="*rl1+*rl++r15;

in other words “take the contents of the memory location
pointed to by the contents of register 1 (i.e. v[0]); increment
the contents of register 1 to point to the address of v[2] by
the contents of register 15; and access the memory location
now pointed to by register rl (i.e. v[2]); and add the two
numbers together, storing the result in the accumulator™.
Likewise, from each of the nodes 611, 612, there are a
number of ways of addressing the third variable v[4]; in
node 613, a third register rd 1s assigned to point to the
address of v[4] and the result 1s added to the accumulator
(which already contains v[0] and v[2]); in node 614, an
address offset of 16 bytes (4 words) is allocated to offset
register 15, and post modified index addressing 1s utilised
to use the pointer register rl twice; firstly, to access v[0],
which is added to v[ 2] and stored in the accumulator, r1 then
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being incremented to point to v[4]; and secondly, to add v| 4]
to the accumulator.

In node 615, the next already allocated register r2 is
utilised, together with the offset register r15, to point to v[ 4],
an offset corresponding to one record (8 bytes) being stored
in offset register 135.

In node 616, which follows node 612, a new register 12 1s
allocated to point to v[4], and in node 617, the existing
register rl 1s re-used again, together with the existing offset
pointer register rlS, to access v[4]; the accumulator state-
ments:

aO=*pr1++r15+*r1+-+15

aO=a0+%*r1;

have the effect of accessing v[ 0]; incrementing rl to point to
v[2]; accessing v[2]; incrementing rl to point to v[4]; adding
v[O] and v[2] and storing the result in the accumulator;
accessing v[4]; and adding this to the sum in the accumu-
lator.

In FIG. 14, the code shown at each of the nodes 601-617
comprises, cumulatively, all the code making up the
sequence up to, and including, that node. It will be seen, by
comparing nodes 613 to 617, that nodes 613—616 cach
correspond to code 5 instructions long, whereas node 617
corresponds to code comprising only 4 instructions, due to
the re-use of registers 1 and 15 together with post indexed
addressing.

Having constructed the tree shown 1n FIG. 14 1n the code
store 3, the processor 2 then selects the code sequence with
the shortest length (in this case, that running from the root
node 601 to the terminal node 617).

The process executed by the processor 302 under the
control of the compiler stored 1n the compiler store 303 will
now be described 1n greater detail with reference to FIGS.
13a and 13b 1 one exemplary embodiment; it will be a
realised, however, that many other ways of achieving the
equivalent result are available to the skilled person.

Referring now to FIG. 13, comprising FIGS. 134 and 13b,
operation of this embodiment will be described 1n greater
detail.

The first step 402 1s to 1nput the expression to be repre-
sented by the code sequence. For example, a simple expres-
sion is v[O]+v[2]|+v][4]. In this context, this expression will
be understood not only to specity the sum of the three matrix
clements, but also to specity the order of addition; that 1s, to
specify that v[0] is added to v[2] and the result is added to
v[4]. The expression is input via the imput means 301. The
processor 302 locates the first variable (in this case, v[0] in
the expression, and locates, from the target processor code
store 306, a first register rl to which the variable address, in
memory, is to be allocated. Since v[0] is an array variable,
the address in memory to be loaded into rl 1s simply v.

Next, in step 404, the processor 302 calls the tree building
routine of FIG. 13b, to construct a tree of possible code
sequences 1n the code sequence store 3035.

If there are still unassigned variables (step 406), the next
variable 1n the expression input at the mput means 301 1s
located by the processor 302 (initially the first variable). To
create the forward paths shown 1n thick lines 1n FIG. 14, a
new register r (initially, the first register rl) is assigned in
step 410, and an instruction node (e.g. nodes 611, 613 or
616) is created including the assignment instruction and any
subsequent arithmetic operation within the expression (e.g.
an accumulate add) for which all the variables have now
been assigned registers (and are hence available), in step

412.
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Next, in step 414, the processor stores all existing variable
states and executes a recursive call to the start of the routine
of FIG. 13b, commencing once more at step 406. Thus, the
processor creates 1n turn the nodes 601, 611 and 613 of FIG.
14.

Having reached the last variable in the expression to be
compiled (i.e. the last node, in this case 613, in one branch
of the tree of the code store 5) the processor 302 branches
from step 406 to step 429, at which the processor 302 moves
back to the preceding node 611 in the tree 1n the code store
305, and then returns 1n step 430.

Accordingly, the processor then proceeds to create the
nodes 614, 615 by sclecting, at each step, one of the already
allocated variables held 1n the registers rl or r2 for modi-
fication; calculating an offset from the existing variable
address to the new variable address; determining whether an
existing offset register exists storing that offset; (steps 420,
422); and, if not, assigning a new offset register (r15 in this
case), in step 424, creating a new instruction node (initially
614 in this example) in step 426 and executing a call (in step
428) to the start of the routine of FIG. 13b.

The effect of this last call 1s, at this stage, to pass through
step 406 to step 429, and thus return to node 611, the
processor then executing step 430, and returning to step 416,
to modify the next existing variable (register 2 in this
example), to create the next alternative code sequence (node

615 in this example) and pass via steps 416428, 406, 429
and 430 back to step 416.

At this stage, there are no further existing variables (v[0]
and v| 2] and corresponding registers rl and r2 having being
used to create nodes 614 and 615), and hence control passes
to steps 429 and 430, the processor 302 therefore backing up
to node 601 1n the code store 305. Control then passes back
to step 416 and at this stage only the first existing variable
has been assigned a pointer register (V[O] and rl
respectively). The loop around step 416 is therefore
executed only once, to create node 612, but 1n this case, on
reaching step 428 and calling the start of the routine of FIG.
13b, control passes forward through 406 to step 408 to create
node 616, the processor 302 then returning to node 612 and
passing forward once more to create node 617, returning,
again to node 612 and then back to node 601 before exiting
the routine of FIG. 13b.

Thus, 1t will be seen that the effect of the routine of FIG.
13b 1s to create the code tree (illustrated in FIG. 14) 1n the
code sequence store 305, by moving to the end of each
branch of the code tree, then backing up and creating each
further branch working from the top left hand corner of FIG.
14.

Having exited FIG. 13b, control returns to step 440 of
FIG. 13a, in which the processor 2 searches the code
sequence store 305 for the shortest path through the mstruc-
tion sequence tree (in this case, that from nodes 601 to 617),
which 1s then output via output device 308 to the target
processor 10 for subsequent execution thereon.

It 1s worthy of note that a simple form of the post indexed
addressed mode, which increments or decrements a given
register by unity, 1s also available on the DSP 32 processor,
and 1s written as “++” or “—-=""respectively. In a modification
of the process of FIG. 13, a further test 1s performed around
step 432, to determine whether the offset 1s + or —1, 1n which
case this instruction 1s used instead of assigning an offset
register. This 1s advantageous 1n saving one assignment
statement.

In the foregoing embodiment, the order of operations 1s
specified 1n the mnput received at the input device 301.
However, in general, the order of operations may itself be
determined, 1n a first step, by a routine operating according
to (for example) the first embodiment of the invention.
Alternatively, an algorithm such as the Hu level algorithm
(C. Hu, “Parallel Sequencing and Assembly line Problems,
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Oper. Res. 9, 6 1961, pp 841-848) may be used to determine
in which order operations are to be performed.

A solution which 1s likelier to generate the most efficient
code (i.e. the shortest length or fastest code) may be achiev-
able by performing, according to this embodiment, not only
the generation of multiple alternative mstructions for execut-
ing the same sequence of operations (as described above)
but generating multiple sequences of operations as well.
Thus, 1n the example of FIG. 14, instead of merely gener-
ating multiple different code sequences for performing the
same arithmetic operations in the same order on the same
mnput data, further code sequences would be generated
starting by adding, for example, v[2] and v| 4] prior to adding
v[0]. Although in the example of FIG. 14, no benefit would
be achieved since the three variables are interchangeable,
with more complex mathematical processes the order of
performance of operations can make a difference 1n the
eficiency of the code for performing the operations. The
modifications to the algorithms of FIG. 13 will be apparent
to the skilled person 1n view of the foregoing embodiments.
As with the second and third embodiments, only a subset of
the total possible tree may be generated 1n the code store
305, using simple heuristics to select the paths to be gen-
erated to prevent, for example, stmple duplication.

It will be apparent that the above embodiments are merely
by way of example. In the light of the foregoing, many
modifications or alternative embodiments will suggest them-
selves to the skilled person.

For example, 1n the first embodiment, rather than search-
ing each possible sequence 1n the code store 5 and selecting
the sequence with the shortest length, 1t would be possible
for the processor 2 to maintain a count during the generating
of each sequence within the code store §, and to reject each
new sequence 1f it 1s not shorter than a possible sequence
already stored. In this manner, the computation time and
memory requirements of the store 5 may be reduced.

In the third embodiment, rather than generating in-line
code sequences within the code store § and then converting
these to 1terated sequences, 1t would be relatively straight-
forward to perform the storage of the sequences directly in
the code store 5 as 1terated code.

In the third embodiment, when a problem involves an
input a[n] of a high number of dimensions, in the second or
third embodiments, rather than directly constructing the tree
and thereby finding iterated code for a[n], in a modification
the apparatus may be arranged to construct first and second
trees 1 the code store 5, for much smaller dimensional
problems (e.g. aJ2] and a [3]), and then extrapolate the
ranges of the iteration indices to find the code sequence for
aln|; in other words, to sort a 20 member array, iterative
code for sorting a 2 member array and a 3 member array 1s
derived, and the ranges of the iteration index counters are
extrapolated.

The invention could be provided using dedicated pro-
crammed logic circuits, or a general purpose processor, or
the target processor 10 itself could derive code for its own
future use.

Accordingly, the present invention extends to any and all
such modifications and variants, and to any and all novel
subject matter contained herein, whether or not within the
scope of the accompanying claims.

I claim:

1. Apparatus for generating, from an i1nput expression
relating a plurality of variables 1n a predetermined math-
ematical relationship, a sequence of instruction codes,
referred to herein as the execution code, for execution by a
programmable processor, the apparatus comprising:

input means (1) arranged to receive an input expression

which specifies a mathematical relationship between a
plurality of variables;

means (2a) arranged to generate, in response to receipt of
a said input expression by said input means, unique sets
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of variable values postulated as satisfying said math-
ematical relationship;

means (2b) arranged to respond to the received input
expression and to the sets of variable values by testing
said sets of variable values to determine whether or not
said sets satisfy said mathematical relationship speci-
fied by the received 1nput expression and generating an
initial set of instruction codes 1n the form of a decision
tree (4) comprising a plurality of linked nodes, each
node, other than the root node and the leaf nodes,
constituting a decision node of the initial tree, each
decision node being generated 1n response to a respec-
five test of a said set of variable values being deter-
mined as being currently unevaluable, and comprising
data defining

(1) said current set of variable values being tested (506),

(i1) said currently unevaluable test (507),

(i11) a link (508) to a dependent node, the link being
assoclated with an assumed true test result of the
currently unevaluable test and being designated a
true dependent link, and

(iv) at least one link (509a to 509m) to a respective
dependent node, the or each link being associated
with an assumed false test result of the currently
unevaluable test and being designated a false depen-
dent link, and

cach leafl node comprising data defining a respective accu-
mulation of the assumed test results associated with the links
which extend from the leaf node towards the root node, each
respective accumulation satisfying the mathematical rela-
tionship specified by the received mput expression; and

means (2) for forming the execution code by selecting,
from the initial tree, a partial tree in which (a) its root
node 1s a dependent node of the root node of the 1nitial
tree, and (b) each decision node is linked to only one
dependent node by a true dependent link and to only
one other dependent node by a false dependent link.

2. Apparatus according to claim 1, arranged to output the
execution code as an iterated sequence.

3. Apparatus according to claim 2, in which said testing
and generating means (2b) is arranged to generate the
execution code as an in-line sequence, and further compris-
ing means (2) for converting a said in-line generated
sequence 1nto an 1terated sequence.

4. Apparatus according to claim 3, in which said testing
and generating means (2b) is arranged to respond to a
dimensional value 1n the 1nput expression by generating a
first 1nmitial set of instruction codes corresponding to a
dimensional value lower than the dimensional value 1n the
input expression, and a second 1nitial set of 1nstruction codes
corresponding to a different dimensional value lower than
the dimensional value 1 the input expression, and the
converting means 1s arranged to convert said first and second
initial sets of instruction codes into respective first and
second 1terated sequences and to produce an iterated
sequence corresponding to the dimensional value in the
input expression by performing mathematical deduction
upon said first and second 1terated sequences.

5. Apparatus according to claim 3, in which;

said testing and generating means 1s arranged to generate
said decision tree with a plurality of nodes directly
dependent from 1its root node,

the selecting means 1s arranged to provide to the convert-
ing means a plurality of said partial trees,

the converting means 1s arranged to convert said plurality
of said partial trees 1nto respective 1terated sequences,
and
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the selecting means 1s further arranged to perform the
selection of said partial tree by choosing one of said
converted sequences 1n accordance with a predeter-
mined criterion.

6. Apparatus according to claim 5, in which said prede-
termined criterion 1s the converted sequence having the
fewest 1nstructions.

7. Apparatus according to claim 1, 1n which the selecting,
means 1s arranged to determine the quantity of instructions
in each of a plurality of partial trees and to select the partial
tree on the basis of fewest mnstructions.

8. Apparatus according to claim 1, in which said testing
and generating means 1s arranged to cease generating
instruction codes when the number of nodes depending from
the root node of the imitial tree reaches a predetermined
value.

9. Apparatus according to claim 1, in which said testing
and generating means 1s arranged to respond to the creation
of a dependent decision node linked by a false dependent
link by determining the difference between its associated
variable values and the variable values associated with the
decision node from which it depends, and modifying the
sequence ol the generated variable values in accordance
with a predetermined function of said difference.

10. Apparatus according to claim 9, in which said prede-
termined function 1s a regular progression.

11. A compiler arranged to utilise a speciiication of a
function to be compiled which comprises a definition of the
result thereof, and to generate a plurality of proposed
solutions for said definition and to apply an inference engine
to each said solution 1n turn, and when the correctness of a
solution cannot be evaluated by the inference engine, to
create a decision node having a plurality of branches there-
from leading to respective dependent nodes of a decision
tree, one of the branches corresponding to a true determi-
nation of the decision at execution of said compiled code,
and the or each other of the branches corresponding to a
false determination of the decision at execution of said
compiled code, at least some said nodes having a plurality
of said branches corresponding to a false determination of
the decision at execution of said compiled code, only one of
which latter plurality of branches 1s used 1n said compiled
code and the remainder of said latter plurality of branches
being redundant.

12. Apparatus according to claim 11 arranged to accept
said specification 1n the form of a testable logical relation-
ship which 1s satisfied when the function 1s performed.

13. Apparatus according to claim 12 1n which said rela-
tionship 1s 1in the form of a predicate calculus expression.

14. Apparatus according to claim 12 or claim 13 which 1s
arranged to generate a sequence of variable values repre-
senting the inputs to said relationship; to test whether said
relationship 1s met for each generated variable value; and, in
the event that the relationship cannot be evaluated, to store
data defining a logical test instruction corresponding to the
unevaluable portion of said relationship, for subsequent
execution by said programmable processor, and data defin-
ing a change 1n said variable values.

15. Apparatus according to claim 14, in which the change
in said variable values 1s generated to correspond to a regular
progression which may be replaced with an 1iterative
sequence.

16. Apparatus according to claim 14 i which said
changes are arranged so as to minimise the number of
assignment statements required by said programmable pro-
cessor to 1implement said changes.
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