United States Patent |9

Uczekaj et al.

US005920718A
(11] Patent Number:

5,920,718

451 Date of Patent: Jul. 6, 1999

[54] METHOD AND APPARATUS FOR CREATING
EXECUTABLE CODE FOR OBJECT-
ORIENTED OBJECTS HAVING FINITE
STATE MACHINE

|75] Inventors: Stephen A. Uczekaj, Bellevue; Michael
J. Wilke, Snohomish, both of Wash.

| 73] Assignee: The Boeing Company, Secattle, Wash.

21] Appl. No.: 08/821,937

22| Filed: Mar. 21, 1997
51] Int. CLO e, GO6k 9/44
52] US.CL o, 395/702; 395/701; 701/101
58] Field of Search 395/701, 702,
395/703; 707/101
[56] References Cited
U.S. PATENT DOCUMENTS
5,542,070 7/1996 LeBlanc et al.coovvveennnnn.n. 395/500
5,724,406 3/1998 JUSLET ..ccevvvvvieiriiieeieiiieeeriaienenn, 379/67

OTHER PUBLICAITONS

Primary Fxaminer—Tariq R. Hafiz
Assistant FExaminer—Iuan Q. Dam

Attorney, Agent, or Firm—Christensen O’Connor Johnson
& Kindness

57 ABSTRACT

A graphical control system for automatically generating
application program shell code 1n an object-oriented system.
The graphical control system allows a user to easily enter
object mnformation and associated control information 1n a
single graphical user interface. The system automatically
ogenerates application shell code according to the operating

system environment 1n which the system 1s running and the

user entered object and object control information. The
invention eliminates the need to program 1n or edit control
application code by hand for each object defined 1n the
application. Also, the control code for each object 1s directly
associated with the object during construction and therefore

1s created 1n the same desired location as that of the object

Chung—Shyan Liu “An object—based approach to protocol data.

software 1implementation” ACM, pp. 307-316, 1994.
Liu et al. “An FSM-based program generator for commu-
nication protocol software” IEEE, pp. 181-186, 1884.

27 Claims, 31 Drawing Sheets

START

ASSIGN
MACHINE(S)

150

ASSIGN SERVER(S) 152

TO MACHINE(S)

CREATE
CLASS(ES)

154

SAVE ALL ENTERED 157

INFORMATION

GENERATE APPLICATION CODE (ALL 156

DEFINED CLASSES, SHELL CODE FOR USER
AND TRANSITION METHODS AND ANY
NETWORK INTERFACES) AND MAKEFILE(S)
FOR ALL ASSIGNED MACHINES

ENTER CODE FOR USER METHODS
AND TRANSITION METHODS INTO
THE AUTOGENERATED SHELL CODE

159

RUN AUTOGENERATED
MAKEFILE TO COMPILE AND
LINK THE APPLICATION CODE

160

END

U.S. Patent Jul. 6, 1999 Sheet 1 of 31 5,920,718

l TRADITIONAL CLASS
DATA

100

Fig. 1

(PRIOR ART)

CLASS

| 104

DATA

U.S. Patent Jul. 6, 1999 Sheet 2 of 31 5,920,718

110

“/r“JOZ

112
112

110 110

112

Fig. 3

U.S. Patent Jul. 6, 1999 Sheet 3 of 31 5,920,718

132

130 1

138

U.S. Patent Jul. 6, 1999 Sheet 4 of 31 5,920,718

. —— I S—p———) S S — ——— . ——————————— 1

144

Fig. 5

U.S. Patent Jul. 6, 1999 Sheet 5 of 31 5,920,718

START

Fig. 6

ASSIGN
MACHINE(S)

150

ASSIGN SERVER(S) 152

TO MACHINE(S)

CREATE

CLASS(ES)
SEE FIG. 7

154

SAVE ALL ENTERED 157

INFORMATION

GENERATE APPLICATION CODE (ALL 158
DEFINED CLASSES, SHELL CODE FOR USER
AND TRANSITION METHODS AND ANY
NETWORK INTERFACES) AND MAKEFILE(S)
FOR ALL ASSIGNED MACHINES

ENTER CODE FOR USER METHODS
AND TRANSITION METHODS INTO
THE AUTOGENERATED SHELL CODE

159

RUN AUTOGENERATED 160

MAKEFILE TO COMPILE AND
LINK THE APPLICATION CODE

END

U.S. Patent Jul. 6, 1999 Sheet 6 of 31 5,920,718

TART FOR EAC
CLASS

Y 165
ASSIGN CLASS NAME: SELECT
INHERITED BASE CLASS, SERVER
NAME, AND AUTOSTART ON/OFF
(SEE FIG. 19)

166
ASSIGN DATA ELEMENTS (BASIC DATA e
TYPE OR CLASS AGGREGATE) FOR CLASS
(SEE FIG. 20)

h 4
ASSIGN USER 168
METHOD(S) FOR CLASS

\ 4

ASSIGN STATES 170
FOR CLASS

h 4

ASSIGN TRANSITIONS FOR CLASS:
DEFINE DATA CONDITIONS AND
TRANSITION METHODS FOR EACH
TRANSITION BETWEEN TWO STATES

172

. RETURN ’
— Fig. 7

U.S. Patent Jul. 6, 1999 Sheet 7 of 31 5,920,718

RETRIEVE SAVED
INFORMATION OF A CLASS
(MACHINE, SERVER, DATA, USER
METHODS, CONTROL)

1/4

176
EDIT INFORMATION OF A

CLASS (MACHINE, SERVER,
DATA, USER METHODS OR
CONTROL)

178
SAVE EDITS

180

AUTOGENERATED
CODE EXIST FOR THE
RETRIEVED CLASS

NO

YES

Y

EXTRACT
PREVIOUSLY
AUTOGENERATE
D CODE

182

184

GENERATE CODE FOR
THE EDITED CLASS

5,920,718

Sheet 8 of 31

Jul. 6, 1999

U.S. Patent

214

744

99¢
£9¢C
79C

$)001g XML :a.uu&muamw Avydsiq 192190 X

POYIIIA] HOLJISUDL]
aurfad
KC————— I K
I VAN D..ﬁ
Y vIL
POYIIA] 425
aurfad

HOLJISUDA]T
sutfoq

1043100 302lq00 —

vIv(]
aurfod

—— aovfaajug 302190

ajosuo)) Snqaq [:suorpdo uoyvorddy juaiin)

auvuYyIv J uoyvorlddy juaiin))

uoyviomnug || |aouvgriayuy|| YuwviSviq agvis|| |saumpovnr| | ss2a40s || | sa121 11| §5102190 INOA po))
aurfa(q Avydsiq Avyidsiq uLfa(] aurfa(J asSmoig ISMO4 2]V42UI)
d19f asmodg s]oo] Avpdsiq wond(aurfaq g
6 .%ﬁh 96 09— 9z

8.C

U.S. Patent Jul. 6, 1999 Sheet 9 of 31 5,920,718

[290

= Machine Definition

291 Machine Name
293 OS Types
294 I Library Path
285

Orbix Path .
296 : : : - 297

Compiler Options Orbix Options
X Support Nested Classes X' Support Multiple Thread
I

Machine List

292

| OK I I Apply | New Cancel I I Delete I

| _ |

Fig. 10

U.S. Patent

312
313

311

Jul. 6, 1999 Sheet 10 of 31 5,920,718
[310
Server Definitiﬂon : o o
Server Name
Machine Name

Server List

Fig. 11

Cancel I Delete I l

U.S. Patent Jul. 6, 1999 Sheet 11 of 31 5,920,718

[316

= Class Definition

317 Class Name Auto Start 318

319 Include Path

520 I Base Class

9

22 Server Name

Machine Name

323

324
Headers and Macros M

Fig. 12

U.S. Patent Jul. 6, 1999 Sheet 12 of 31 5,920,718

325

= Data Definition

Class Name

326 |

327

\ Data Member

328

@ Array || [?] @' Sequence |Bound|

330
Data Type Initial Values 531

& boolean

O unsigned short
325
& short

& unsigned long

O long

& float
@ double

& string | Bound I
& enumeration

& any
225 ContainedClass | ,

l OK I | Apply | New | Cancel I | Delete I l

| I
HHHHHUEDU

Fig. 13

U.S. Patent Jul. 6, 1999 Sheet 13 of 31 5,920,718

200
1

219 7\ 221
222 -—
DRILL CONTROLLER
s L N0
21

0 III 218
216 212

RN T

214

TRANSPORT CONTROLLER 202 ‘1
—

=s)

L=
AU = —
SYSTEM CONTROLLER

Fig. 14

U.S. Patent Jul. 6, 1999 Sheet 14 of 31 5,920,718

400
DRILLWORKCELL
414
1404
402
DRILL TRANSPORT
414 14
VARIABLE
ELEVATOR SPEED DRILL TRﬁgz%%RT SENSOR(S)
MOTOR
406 410 412

5,920,718

Sheet 15 of 31

Jul. 6, 1999

U.S. Patent

._ C—— 1 [RC——————— D B}
A AN B [IMN/(2SIP] = pauosodafivd) f WA A0 Surgy
. (uonapduoDiioday) §d umvds/asipy = papqougiiid) f SutjjliQ
| pd TIMN/(3n4] = pajquug 1) J J1quu o Sunw
vy8C uoyajdwonLoday] | (20UNbaSILITPUMMOT)) P UmpdS/(ani] = pauoi1sodianvd) fi 12110 J40{ U118
aauanbagiiTpunuioy | (douanbagipgpurnuey) s umvds/(ani] = pauonisoqiajvd) §
_ \V; 13110 J 1541320212393 | (19110 1541301232)) $J umvds/(asip] = pauoizisoqiaivd) §! Jile
pPOYIITN UOIJISUVA] UO1JISUDL]T V1S
aurfa(q JuLfa(J auLfa(q
1043107 122190
i e rrrp— I-HI'I.||_
RC_———— b O/] KC———
=~ _l — = ——————— — —————
l
polquudii4
V V R 120440 MI1H
POYIIIN 435N vivqg SSV1))
vHLT aurfo(q aurfod aurfad
aovfaaquy 192190 .
v — ~
P9 sy0019 AL wondaoxg [fAvydsia 199490 ajosuo) snqaq O :suondQ uoyvoyddy juain)
v/9¢
auvuyv J uoryvoyddy juaiin))
pF9z 1 N

KONV IIUNUT IIUDILLYUT wpisvi] 21v38 || |sauryovpy|| | s420435 sant 1ar || 15102190 INOA PO’}
aurfa(q Avpdsiq Avydsiq uLfa(y uLfa(q ISMoig ISMmoig IJVAIUIT)
d19 asmodg sjo0] Avidsiq uond(ourfa] g
97 .M&M v862 09z— 792

08¢
bEsc

b8LT

pOLC

v89¢c

beld
vg9c

veE9gC

be&e
v98¢

U.S. Patent Jul. 6, 1999 Sheet 16 of 31 5,920,718

[2905!
= Machine Definition

291a l Machine Name SystemController
293a I OS Types Solaris 2.x
294a | Library Path onme/wilke/dome_dev/
295
“ Orbix Path Vusrﬂocal/opt/Orbix_2.0MT/corbcIZ/dema
296
; Compiler Options ————— Orbix Options 297a
X Support Nested Classes X\ Support Multiple Thread
Machine List
DrillController
ransportController
2024 ystemController

rig. 17

U.S. Patent

312a
313a

311a

Server Name

Jul. 6, 1999

Sheet 17 of 31

5,920,718

[3103

= Server Definition

klatul

Machine Name }SystemContmller

Server List
klatul

--

klatu?
klatu3

OK l Apply I

New

Cancel I

U.S. Patent

Jul. 6, 1999 Sheet 18 of 31 5,920,718

[3161:1

= Class Definition

Class Name |DrillWorkCell Auto Start-{318a
Include Path
Base Class dome_ DataClass |
Server Name [latul

Machine Name SystemController

324

kil iyl bl eloonliinieh

Headers and Macros

<

Clear I

>

l OK I l Apply I

New | Cancel I ' Delete I

Fig. 19

U.S. Patent Jul. 6, 1999 Sheet 19 of 31 5,920,718

325a
= | Data Definition
326a Class Name DrillWorkCell
3278 I Data Member iCellensport
328a | I
& Scalar A Array || [2] & Sequence | Bound

3304 | Data Type Initial Values >

& char I:I

@ octet l:l

& boolean I:I

& unsigned short |:|

O short]

& unsigned long I__—_J

O long L

O float l |

& double]

Owns [] [owd] |

Oemumeration []
@tmy I:I
3374 <> Contained Class Efmnsport | L]

l OK I | Apply I New l Cancel I | Delete I

Fig. 20

5,920,718

Sheet 20 of 31

Jul. 6, 1999

U.S. Patent

Qv.c

q91L¢

Q8L

Qc8 ¢ _—m_

qQr8c

(Y

»
L

POYIIIN UOLIISUDL]
aufod

JUIISI(JPUDIULIO
UOA0ION PUBLULIO

uoyaduwoyroday] |

QIO PUBIILLO -
“wmmwum?ﬁ LT

POYIIIN 435N
susfoq

(Uo1331du10 14042)F J umvds/(and] = pauor1sod1a|jvd)i
(O 1030 punIULLO Y B UmpdS/(ana] = pauon1soJ1alvd)
(JU2OSY putitoD) g umvds/(asip] = pauontsodiafvd i
P IMN/(9114 L = pauon1sodia]iod Mi

(FU22SITPUBILOD) T J UMPdS/(00E =< paadSi010N)/i
(UOA0JONPUTUIILOD) fpd UMDdS/(aN4] = paIquUT [!

JUAOSY 403U

740100317401 8Uj1Y

JU2IS3(]40]3ULJID

[103003)F 408U 1}1D
paadgL0j0N 40] SUNIIEM
JJc

UO1JISUDL] 21V18
auLfa(q ULfa(T
1043100 192190

— S R | —

V(] SSV1))
aurfa(aurfo(q
aavfaagug 322490

s¥001q X1 uoydaoxg | Avidsiq 102iq0 X

N —

ajosuo) Snqaq [:suonndQ uonvoyddy jusiin)

auvuyvJ uoryvor]ddy jusiin)

uoyvisamnug || |aouvgriayuy|| Qumvidviq aavis|| fsauryovpy| | ss2a4as santg 1ar \l 15192190 INOdA | apoD
autfo(q hvydsig Avydsiq uLfa(J autfa(y ISMOLE ISMOo4Y 3]PAIUIT)
d1og asmodg sjo00] Avpdsyq uonyd(ourfoq a1

17 *S1]

908¢

B

98.LC

90LC

Qclc

I8¢

5,920,718

TS
1125 do1s
}]28H 1407

\/

POYIIN UOIISUDA]
211
_ o
e
T
= -
=~ 4 3 >
—
-
b
-
77
R pPOYI3IN 49S
= 0%/ T aufo(q
6....,
=
—

bd IN/(2510] = payoojguvag) f
(11994018)5 d umpds/(ani] = pryoojguivag) f
(11291401S)P Uvds/(and] = payrojguivag puv andj = pajqruiiodsuvi]) §i
(112414018)b d - UMvdS/ (a8 = payoojquivag pup ‘and] = pajqrugiodsuni]) §i

HO1ISUVL]
urfa

j04310)) 193190

viv(
aurfa(q

s¥201g XML nonpdaoxgy | Awpdsiqg 193lq0 X

v faagur 30290 ——

PaYI0]gUDIG
pajquugiiodsuviy| (<7

21018
aurfoa

110dsuny

ajosuo) snqaq) :suorzdQ uwoyvoyddy juasin)

auivuylv J uovonddy juaiin))

uoyyviamnuy || §aouvjriayuy || uwwvadvyq ayvis|| Ysourypovpyl | s42atag | | so121 1a1ll 85122090 INO A ap0o)
297 aurfacq Avidsig Avidsicq aurfo(q aurfa(ISMOo4g aSmo4g 21 DAIUIT)
d1oF] asmoig Sj00] Avidsi uoyd) auifoq oy

AR 1% |

U.S. Patent

08¢

I8/ C

0LE

ICLC

5,920,718

Sheet 22 of 31

Jul. 6, 1999

U.S. Patent

I > | I

(8¢ = =
mu _— - (POIIPH)T .xau&m\ﬁ Q“&ma pod wm%hﬂ..m. => ﬁ:&mﬁ poJIUu24dnTy) .\. : 3 HIPUHIISY PO
pogiw (POJ3IPH) umvds/(yidacrpogi1adiv] =< yidaqpodiuaiin))) f Surpu3asa(Ipo,
pPr8cC pojasivy| | (POJasivy] Yy umvds/(yidaqpog1odiv], =< idaqpodiuaiing)) f1 |
poJ1amory (POJA2m0T)F J Umvds/(yidaqpogi1adin] > yidagpogiuaiin))) ALpUO01IDIS PO
yrdaqpodaduivy |7 (ydaqpodaduns)pqumvds/() A 7 Jit
POYIINT UOIJISUDAL] UO1JISUVA]T 1V1G
aurfoq aurfo(q aurfa(q
104340 192190
A [| _ NC———————
_ :
i HOLJOW L] PO
_ 3da(JpoJuaiin
\V; . pdagpodiasiv]| [F A01102]
POYIIIN 43S v SSV1)
PPLT urfo(] aurfoq ourfod
ovfiaquy alq) —————
s¥001g XL vondaoxg Xl Avidsiq 102190 X ajosuo)) Snqaq [:suondQ uonworddy juasin)
quwvuyiv g uonvonddy juaisin))
uoyviawnuy || {aouvyroyuy|l Quvisvi aavis|| Ysauyovpy| | siaalag santg 1ar || ¥51202190 INOA 2P0
PSSt uyed hvjdsia Avjdsiq aurfog || | auyfoqg || | asmosg asmoug 23p49U20)
d1of] asmoig sjoo] Avydsyq wuwond(ourfoq aJ

€z o1

PO8C

P8LC

POLC

piLc

5,920,718

Sheet 23 of 31

Jul. 6, 1999

U.S. Patent

J
— s>
9T8T E__ E A
2597 -_- Fd [IMN/(2517] = payoojguvag) f payo0]guivag
@ Bd NN/ (3N4] = payoojgquuvag) | AD3IUBIG
V, ISUIS . (asuag)pd umeds/() i <7 file
POYIIIA UOLIISUDA] UOJISUVA] I1V1S
aurfo(q aurfo o
1043100 322190 —
— | —— ———] [fC——7
_ — —_ P3Y20] DI 108U
pOYIIIN 43S vIv(] SSY1)
LT ourfod aurfod urfod
2ovfaa3u] 3192[90
s¥201g XL voydarxgy X Avydsiqg 102iq0 X ajosuo)) Snqag [:suondQ uoryvorddy juaisin)
Juvuyly J uovoilddy juaiin)
uoyviawinug || |aouvjrioyuyi| Quwvidvi(q agvis|| |sauryovpy|| | S42243§ santg 1ar i §s12290 INO QA po))
29CT aurfa(q Avydsig Avydsiq auLfa(q aurfa(q asmoig asSmoig 3] VAIUIT)
d1ofg asmosg S100] Avpdsiq wond(oaurfoq apg

g ‘01

208¢

I8LL

20LC

a¢LC

5,920,718

Sheet 24 of 31

Jul. 6, 1999

U.S. Patent

5L

Ry
LM
qut |

POYII]N UOIIISUDA]
aurfod

R

A

pOYIIN 4251
aurfo(q

sy201q XYL uoydaxy K

Fd IIMN/(3SIP4 = pajquugi010) J] -

B IINN/(214] = paguigi010]) /3 it

UO1JISUDL]
aurfa(q

jo43u0)) 192[90)

———— 20pf423u] 192190

Avidsiq 192190 |

viv(g
sufoq

Palqun 74030 A0JON40dSupL

SSV1)
auLfaq

ajosuo)) snqa([:suorpdQ uoyvoyddy juaiin)

auvuyivJ uorgvonddy juaiin)

uonvsamnuy || | 2ouvariayuy
aurfa(q hvydsi(q

WPASVI(] IIVIS
Avydsi

sauryovpr| | ssoaiag
aurfa(g uLfa(]

sajig 1al || §s#03/90 INOA

ISMOIg

POy
ISMoLg 9IVL2UIT)

diag

asmodg Sj00] Ahvpdsiq uond(aurfoq o

6z S1y

J08z

18/C

Jose

fULT

378T -—_-

SP8T E
\/

(P22dS401031d1uBS Yo J UMvdS/() 4

AVIIIUUDIY

44| T—308¢

POYIIIN HOIJISUVL] UOLJISUVL] 21v18
aurfay aurfaq aurfoq
— 38/¢
- j043u0)) 192190
S
. K — .
H | _—I|||
-
—
S lL_
2adca030 010N 1114(TPI2dGa1gutiy
- , paads. 10J0W 114 p2dSa]qY S0/7
=\ poyzap 435 55 %Eu
= Sp/7 auLfa(] mﬁ\mQ mEKmQ
,m.a . 2ovfad3u] 392190 32LT
= - —
=

sy001g XL uondaoxg [Avpdsiq 102190 X ajosuo) snqgaq)

:suoydQ uonvoyddy Juaian)

auvuyIv J uoryvoiyddy juaiin))

97 *31q

U.S. Patent

uoyviawmnuy || §aouviriayur|| QuviSviq agvis|| Isauryovpy| | s4a242g sary 1air || 15122190 INO apo))
Sgcy UL Avidsiq Avidsi1(q uLfa(q aurfa(q ISMmoLg ISMo4g 31V42UID)
diog asmoig Sjoo] hvydsyq wuond(p aurfo(q 211

5,920,718

Sheet 26 of 31

Jul. 6, 1999

U.S. Patent

A01v231q 1JVH 40 3SIVY] “43m07]
0 U() A010JN Uin
#0 40 40 4030 1N] y1da(4031vaalg Juaiin)) auriaa]a(q
97F 494 4
S A d
8CY
1013150 paadg 1010 2UIULIIII(]
1911vd uitidjod dogg 40 1438
01 L puviuio’) d035 40 14D]S UOI]OJA 40]V22]] 2]qPU]
01 W.L puviaio) 1017150 40110217 1984V] 198
ji0dsuviy a1quug puv $7
uopisod 1a11vJ 39S 19110 320N
A4 4
1447 ji0dayy
12110 J 200N [114d 219vud
SHIV1S 1714
ji0dsuvay a1qvuy s Em hm%
o IMA
LT *OK]
1r4

5,920,718

Sheet 27 of 31

Jul. 6, 1999

U.S. Patent

05€

AVIIIOLATIVAAOIINLLIVM

NOLLTTINOILAOITI NMVdS/ASTVI=AITdVNITIIIA -

INI'TIIIA

TINN/ANAL=ATTIVNITITFNAUA

TTAVNITITHAAOIONILIVM

TINN/ISTVI=dd

v 43

SO NMVdS/ANAL=dd

(SAD)IININOIASTITIANVINNOD NMVIS/ANIYL=dd

N\

LATIVAISHIIIATIIDTI NMVIS/ASTVI=(dd)AINOILISOdLATIVd

= 410
1743 . —

LLITIVd JOLINILIVM

442

cre

5,920,718

Sheet 28 of 31

Jul. 6, 1999

U.S. Patent

INAIDSVIOIINILLIVM

AIOJOLOWANYINWWOI NMVAS/ATRLL=dd

CAOLVATTIAOIINILIVM

INIIDSVANVIWINOI NMVdS/ASTVI=dd

INIISTAJMOIINILIVM

TINN/ANJML=dd

LAIOLVATZTTIOIdINILIVM

INFISTAANVININO I NMVAS/00€=<dIISdAOLOWNW

(AdAdSHAOLOWHIOIIONILIVM

NOFNOLOWANVINWOI NMYJS/ANAL=AITTdVNITIFMUd

140

=2

N
20

L

C9¢

09¢

NOILLTTdWNOILIOdITI NMYVdS/ANAdL=dd

§6¢€

9G¢€

413

A%}

5,920,718

Sheet 29 of 31

Jul. 6, 1999

U.S. Patent

0¢ o1

ONIANTS
__‘ 59t TINN/ISTVI=94
LT13919V.IS NMVdS/ANII=99'INI1=11
ONIAITOTI
LTIILIVIS NMVIS 79t
/ASTVI=(A)ATIDO 1INV 1739d01IS NMVdS/ANIL=99

‘ANMAL=(FL)ATTIVNILIOJISNVIL

_ d1dI

79¢€

5,920,718

Sheet 30 of 31

Jul. 6, 1999

U.S. Patent

[€ 51

8¢

INIANIISVUOd

dOdISIVI NMVJS/UdL=<ddD 743

INIANIDSIAAOd

AOdIIMOT NMVIS/H(AdLHIdIAAOdLIIDAVI>(AdI)HLdIAAOdINIIIND

AOdLIVH NMVdS/ddL=>ddD

/

UAOdLITVH NMVdS/AddL=<ddD

AdJVNOILLV.LSUOd

CLE
HIJIAAOdITIWVS NMVIS/()

1440

0LE

U.S. Patent Jul. 6, 1999 Sheet 31 of 31 5,920,718

380 2
- Fig. 32
387 ()ISPAWN SENSE
BEAMCLEAR
BB-FALSE/NULL 394 BB=TRUE/NULL

BEAMBLOCKED

Fig. 33

MOTORENABLED=FALSE/NULL MOTORENABLED=TRUE/NULL

ng- <

(JSPAWN SAMPLEMOTORSPEED

BEAM CLEAR

5,920,718

1

METHOD AND APPARATUS FOR CREATING
EXECUTABLE CODE FOR OBJECT-
ORIENTED OBJECTS HAVING FINITE
STATE MACHINE

FIELD OF THE INVENTION

This 1invention relates to methods and apparatus for cre-
ating executable code for objects and, more particularly,
methods and apparatus for creating executable code for
objects having user defined characteristics.

BACKGROUND OF THE INVENTION

An object, 1 the framework of object-oriented computer
programming, 1s an 1nstance of a class that includes pieces
of code called data and methods. Typically, the methods
operate on private data, also called mstance data, that the
object owns. Objects provide a programming paradigm for
creating 1intelligent software that mirrors physical things.
Objects exhibit three properties that make them incredibly
useful: encapsulation, inheritance, and polymorphism.
Encapsulation means the object’s implementation 1s hidden
from public view. Inheritance 1s the passing of class
resources or attributes from a parent class downstream 1n a
class hierarchy to a child class. Polymorphism means 1den-
tical methods located 1n different objects can act differently.

As shown 1n block diagram form 1n FIG. 1, traditional
classes 100 include data and methods. However, control
information 102, which 1s part of the code embodied 1n a
computer program application, 1s not directly associated
with the class, as illustrated by the control infornation’s
disassociation from the class 100.

FIG. 3 1illustrates one form of control information 102
(FIG. 1). The three ovals 110 represent the different data
states an object of a particular class experiences during
execution of application program code. “State” 1s the cumu-
lative results of the behavior of an object, wherein at any
grven point 1n time, the state of an object encompasses all of
the (usually static) properties of the object plus the current
(usually dynamic) values of each of these properties. A
minimum of one data state 1s required for describing control
information. The arrowed lines 112 connecting the data state
ovals 110 indicate state transitions which include a transition
method(s) executed when a specified data condition(s) is
met. A state may have a single state transition or multiple
unique transitions to other states. Essentially, the state
diagram, FIG. 3, 1s an abstract representation of object
operation as determined by the underlying application pro-
gram code.

Despite object usefulness, 1n the past, abstract notions
such as state-based control have not been directly related to
objects (FIG. 1). In the past, state-based control has been
created at the application program code level by a highly
skilled programmer.

Software 1s available for allowing a user to easily define
data without requiring the user to know the particulars of the
programming code, such as C++, of the objects. The proper
code 1s generated according to user entered object informa-
tion. However, the objects created must still rely on the
state-based control programmed 1n the application program
code. In the past, there existed no easy way to create new
objects or edit old objects that execute state-based control
different than that programmed 1n the application program
code. Therefore, 1n order to change or create state-based
control, reprogramming, or adding to, the original applica-
fion program code was required.

Likewise, distributed objects, €.g., objects defined by data
and methods used 1n client/server environments, have state-

10

15

20

25

30

35

40

45

50

55

60

65

2

based control embedded within the application program
code. An object-oriented messaging system, such as Object
Management Group’s Common Object Request Broker
Architecture (CORBA) or Microsoft’s Component Object
Model (COM), provides management of distributed objects
on heterogeneous client/server networks. Essentially, dis-
tributed objects are either on a client or a server’s side of the
network. Application programmers build a main routine/
application program code for controlling execution flow and
for coding client distributed objects to request service from
static server distributed objects. The messaging system
detects clients” object requests and passes these requests to
a server object that, 1n turn, performs the service and
responds to the client with a result. Unfortunately, the
client/server approach described above fails to give objects
any abstract notion of behavior or control, forcing the
programmer to develop the complex finite state-based con-
trol code required to manage the use of any object used in
the client/server network. For example, there 1s currently no
way a standard C++ object can be defined to launch a remote
event handler routine when 1ts data elements match a certain
state without the programmer explicitly coding 1n the state
and transition data conditions 1n the main application pro-
oram code for monitoring the object’s data for a match
condition. In other words, manipulation of finite state-based
control 1s hidden from a creator of personalized objects
unless the creator 1s gifted with the programming knowledge
to manipulate state-based control 1n the application program
code. Creation of distributed objects and related control is
still essentially a programmer’s job. A non-programming
type client/server manager must understand programming
code 1n order to change the finite state-based control behav-
1or of an object. A simple to use interface for personalizing

or changing objects with object specific finite state-based
control behavior does not exist.

The present ivention 1s directed to overcoming the
foregoing and other disadvantages. More specifically, the
present 1nvention 1s directed to providing a method and
apparatus for easily generating executable code for objects
with finite state-based control behaviors.

SUMMARY OF THE INVENTION

In accordance with this invention, a method and apparatus
for automatically generating application program shell code
for a predefined object-oriented application that 1s execut-
able by an operating system 1s provided. A predefined
application can be any one of a number of different software
applications capable of being implemented by an object-
oriented program.

The apparatus 1s a machine which includes a processor
with an object-oriented operating system running thereon, at
least one user interface device, memory and a display
device.

The method 1s a specification process resulting 1n each
object having a unique set of data, methods and finite
state-based control. First, an object name that represents a
physical object or other type of object used 1n the predefined
application 1s assigned. Then, at least one data name and
method names are assigned to the named object according to
predetermined requirements. The assigned data and method
names represent data and methods associated with the object
represented by the object name. Next, control information 1s
assigned to the named object. The control information 1s
assigned according to the control functionality associated
with the object in the predefined application represented by
the assigned object name. Finally, application shell code

5,920,718

3

executable by an operating system 1s generated for the
named object based on the assigned data and method names
and the control information.

In accordance with other aspects of this invention, the
assigned control information 1s further defined by assigning
at least one state name and assigning an object state
transition, 1f more than one state 1s assigned. The object state
transition 1s assigned at least one data condition and action.
Assignment of an action includes assigning a transition
method name with at least one of a call function, or spawn
function to the assigned transition method name, or assign-
ing a nullification function according to the predefined
application. Each assigned state name represents a distinct
state of the object 1n the predefined application. The object
in the predefined application is represented by the assigned
object name and each assigned condition of the data and

transition method name. The data and transition method
name represents a transition of the object, represented by the
object name, between states as defined by the predefined
application.

In accordance with further aspects of this invention, the
generated application shell code 1s compatible with other

objects that communicate via an object-oriented messaging
network.

In accordance with yet other aspects of this invention, a
predefined application 1s mapped to a network of machines.
Each machine 1s assigned a machine name. A server name 1s
then assigned to the assigned machine name, which repre-
sents a server that 1s to be associated with the assigned
machine. Object names 1n the predefined application are
then assigned to the server name. The automatically gener-
ated application shell code 1s then associated with the object
assigned to the server and server assigned to the machine.

As can be readily appreciated from the foregoing
summary, the mvention provides a graphical control system
for automatically generating application program shell code
for an object-oriented system according to a predefined
application. The graphical control system allows object
information and associated control information to be easily
entered via a single graphical user interface. Upon comple-
fion of object-oriented 1nformation entry, the system gener-
ates application shell code according to the operating system
environment 1n which the system 1s running and the entered
object and object control information. The invention elimi-
nates the need to program 1n or edit control application code
by hand for each object defined in an application.

Also, the control code for each object 1s directly associ-
ated with the object during construction and therefore 1s
created 1 the same desired location as the object data.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken 1n conjunction
with the accompanying drawings, wherein:

FIG. 1 1s a block diagram of the associated object com-
ponents of the prior known art;

FIG. 2 1s a block diagram of the associated object com-
ponents according to the present invention;

FIG. 3 1s an example state diagram further illustrating the
control component of FIGS. 1 and 2;

FIG. 4 1s a schematic diagram 1llustrating a computer
system suitable for implementing the present invention;

FIG. 5 1s a schematic diagram 1illustrating a computer
network suitable for connecting together computer systems
of the type illustrated in FIG. 4;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 6-8 arc flow diagrams of a method of automatically
ogenerating shell code according to the present invention;

FIGS. 9-13 are display screen shots of a graphical inter-
face tool for inputting data suitable for use 1n automatically
ogenerating shell code according to the present invention;

FIG. 14 1s a schematic diagram illustrating a system
controlled by code constructs created by the present inven-
tion;

FIG. 15 1s a block diagram 1llustrating the class relation-

ship between the objects associated with the system depicted
i FIG. 14,

FIGS. 16-26 are display screen shots illustrating the
inputted data for the system shown 1n FIG. 14;

FIG. 27 1s a block diagram 1llustrating the etfect objects
have on other objects within the system shown 1n FIG. 14;
and

FIGS. 28-34 arc state flow diagrams for inputted data
shown 1n FIGS. 16-26.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

As will be better understood from the following
description, the present invention provides a graphical inter-
face tool that allows a user to extend the definition of a
standard object of the type used 1n a typical object oriented
program to 1nclude explicit finite state machine behavior.
See FIG. 2. Including a finite state behavior with object
definition allows a user to easily designate the speciiic
information of an application program that operates upon
object(s) defined by the user. The graphical interface tool,
which 1s user friendly, allows a user to enter objects with
state 1nformation and, based on the entered information,
ogenerates application shell code. While the example shown
in FIGS. 14-33 and described below explains the imnvention
in connection with creating objects and object control for a
dr1ll system, 1t 1s to be understood that the invention can be
used to describe objects 1n various other environments.

As shown 1n FIG. 4, the invention employs at the very
least a personal computer 130 including a display 132; a
central processing unit (CPU) 134 that includes a processor,
memory (RAM, ROM, hard drive etc.), interfaces, etc.; and
at least one user input device (e.g., keyboard 136, mouse
138, etc.). It will be apparent to those of ordinary skill in the
art that personal computer 130 may include many more
components, than those shown 1 FIG. 4. Such other com-
ponents are not described because they are conventional, and
an understanding of them 1s not necessary to an understand-
ing of the present mvention.

In addition to being operable on a single personal com-
puter 130 (FIG. 4), the invention is also operable in a
network environment. An example of a suitable network 1s
shown 1n FIG. 5, which depicts a plurality of workstation
140 connected directly or through a host server 142 to a
client/server-type network 144. The client/server network
144 1ncludes an object-oriented messaging system, such as
Object Management Group’s Common Object Request Bro-
ker (CORBA) or Microsoft’s Component Object Model
(COM), for controlling distributed object communication
between clients and servers. While the current embodiment
supports a standard ethernet bus, other types of networks,
including non-wired networks, can be employed in actual
embodiments of the invention.

In order to better understand the preferred embodiment of
the invention described below, certain aspects of object-
oriented programming relevant to the following discussion

5,920,718

S

are first discussed. The fundamental aspects of object-
oriented programming 1s that objects can be organized into
classes 1n a hierarchical fashion and that objects are inter-
pretable. Classes are abstract generic descriptions of objects
and their behaviors. A class defines a certain category or
grouping ol methods and data within an object. Methods
comprise procedures or code that operate upon data. Refine-
ment of the methods of a class 1s achieved by the creation of
“sub-classes.” A class can be thought of as a genus, and its
subclass as the species. Subclasses allow the mtroduction of
a new class 1nto the class hierarchy, subclasses inherit the
behaviors of the higher class, from which they depend, plus
new behaviors original with the subclass.

An 1nstance of a class 1s a specified individual entity,
something concrete having observable behavior. An instance
1s a speciiic object with the behaviors defined by its class.
Instances are created and deleted dynamically. The class,
however, 1s the broad, yet abstract, concept under which the
instance belongs. The instance inherits all the methods of its
class, but has particular individual values associated with 1t
that are unique. There 1s only one location 1n memory of a
computer for the class. There may, however, be numerous
mstances of the class, each of which has different values and
different physical locations in memory. The terms class and
object are used interchangeably throughout this description.

The invention allows an application programmer to
declare class definitions and state-based control for the
declared class. Class definitions include data and methods
accessible from outside a class. The state-based control
includes user defined class states and data conditions with
transition methods. The transition methods are 1naccessible
from outside the class, because transition methods are pri-
vate methods unlike user methods which are public meth-
ods. Transition methods are associated with the functioning
of the underlying application control. In other words, tran-
sition method execution of a class directly relates to the
environment or application program that the user defined
class 1s functioning 1in. An example of an environment or
application 1s a drilling cell of a computer networked
controlled assembly line, which 1s illustrated in FIG. 9 and
described below.

FIGS. 6 and 7 1illustrate the method of creating objects
with state-based control according to this invention. First, at
block 150, the user assigns the machines which will run the
application. In the assign machine step the user enters the
network node name of a machine and the IP address of the
user’s machine. In one embodiment of the present invention,
machines employ an operating system, such as UNIX or
Solaris. IP addresses 1dentify the machine’s location within
the operating system and network. A more detailed,
exemplary, 1llustration of machine assignment 1s shown 1n
FIG. 12 and described below. Next, at block 152, the user
assigns one Or more servers to a machine previously
assigned. The assigned server 1s a server designated to the
assigned machine. The assigned server handles
communication, object or application functions, with other
servers on the same machine or servers associated with other
machines connected together over a network. A server will
have one or more class objects assigned to 1t as described
below. Multiple servers allow an application program to use
parallel processing. A single server can only process a single
application thread of an application program at a time.
However, multiple servers with objects spread throughout a
network allow parallel thread processing of an application
program. The user can change the distributed topology of an
application by changing server assignment. See FIGS. 13
and 14 and the related description set forth below.

10

15

20

25

30

35

40

45

50

55

60

65

6

The user 1s now ready to create a class. At block 154, the
user creates a class simply by designating a name for the
class. Also at block 154 the user defines data, methods (user
methods) and states. The states include state names and
transitions between states. The transitions include data con-

ditions and transition methods or actions. The actions that
occur at block 154 are 1llustrated 1n more detail in FIG. 7 and
described below. At block 157, the user stores the entered
information for later retrieval and editing, described below
with respect to FIG. 8. At block 158, the user prompts the
system to generate application source code for: all of the
defined classes; all of the assigned servers and machines; all
of the data associated with the created classes; and any
operating system or network interfaces and to generate
MakeFile(s) for all assigned machines. Code generation is
automatically performed by a predefined algorithm that
retrieves the assigned and defined information and translates
the retrieved information into the required code and inter-
faces. The algorithm 1s essentially a compiler technique that
parses the information entered into the graphical interface
tool and translates the parsed items into application shell
code. Preferably, the recursive descent compiler technique 1s
used. In order for successtul algorithm operation, a grammar
or a set of rules 1s created by the compiler writer for
describing the information entered into the graphical inter-
face tool prior to parsing. The compiler writer also creates a
translation scheme for translating the parsed items into
application shell code. The generation step may be 1nitiated
after the user has completed information entry for a single
class or multiple classes. The generated code includes
method shell code files 1n which the user must enter a code
that defines user or transition methods in order for the
application program code to be complete, see block 159.
Compiling and linking the application source code 1s per-
formed by running the autogenerated MakeFile(s) as shown
in block 160. The step of running the MakeFile(s) is
preferably performed after exiting the user interface tool.

As shown 1n FIG. 7, class name 1s assigned, shown 1n
block 165. Included with assigned class name are a selection
of inherited base class(es), server name and autostart of class
option. Next 1s the assignment of publicly available data at
block 166 which includes basic data type or class aggregate
for the assigned class. Methods for the assigned class are
then assigned at block 168. At block 170, state names for the
assigned class are entered and at block 172 data conditions
and related transition methods that define transitions
between the entered state names are entered.

FIG. 8 illustrates the method steps for editing class
information of previously created and stored classes. At
block 174, the user retrieves the saved information of a class
the user wishes to edit. The saved information includes
assigned machine name, server name, data name(s), user
method name(s), and control information. At block 176, the
user edits the retrieved information of the class. Using a
oraphical interface tool of the type 1llustrated in FIGS. 9-13
and described below, the user edits any or all of the infor-
mation previously assigned to a specific class. The user may
reassign the class to another machine or redistribute server
assignment. This software development tool 1s a stmple and
quick object creating tool that allows a user to adapt objects
to physical components or application specific requirements
that change. The user then saves the edits at block 178. At
decision block 180, the system determines i1if code was
previously generated for the retrieved class. If no previously
ogenerated code exists, the system generates new code for the
defined class, see block 184. However, if previously gener-
ated code exists, the system merges the previously generated

5,920,718

7

code for the retrieved class, see block 182, and proceeds to
ogenerate code for the newly edited class, see block 184. As
will readily be appreciated by one of ordinary skill in the
object-oriented programming art numerous types of code
extraction and removal techniques can be applied at the step
depicted by block 182.

Graphical Interface Tool

FIGS. 9-13 1llustrate a graphical interface tool according
to one embodiment of this invention. The graphical interface
tool easily enables a programmer or someone of lesser skill
to enter the information required to describe classes and
classes control. The graphical user interface tool allows a
programmer or other user to perform the steps described in
FIGS. 6-8. For case 1n understanding, the information
entered mto the graphical user interface tool described
below defines a class. The class becomes an object when an
running program calls the class thus instantiating 1t as an
object. The graphical interface tool shown m FIGS. 9-13,
allows a user to define a machine, a server for the machine
or a server prestored within the machine from any worksta-
fion or computer connected across a network. The display-
able windows of the graphical interface tool include multiple
interactive icons, buttons, field blocks and menus to enable
case 1n use. As will be appreciated by one of ordinary skill
in the art similar but different interactive window displays
may be used to perform the tasks described below. Thus, the
following description 1s to be taken as exemplary, not
limiting. The graphical user interface tool’s main window
258 1s shown 1n FIG. 9 and described next.

A user must first define the machine and server. Defining
the machine and server designates the location a class and
where associated control information i1s stored and per-
formed. The activation of a define machines button 260,
located 1n a button bar at the top of the graphical interface
tool window 258, shown in FIG. 9 causes a machine
definition window 290 (FIG. 10) to appear. The machine
definition window allows a machine for storing and running
objects later defined i1n the graphical interface tool to be
defined. As shown 1n FIG. 10, the machine definition win-
dow 290 1includes a machine list section 292, a machine
name block 291, an operation system (OS) block 293,
library and Orbix path blocks 294 and 295 and compiler and
Orbix option areas 296 and 297. The machine list section
292 displays a list of machines attached to the network. After
the user has selected the machine name from the machine list
section 292, a machine name 1s displayed 1n the machine
name block 291. In OS block 293, the user enters the OS of
the designated machine by OS type. The OS type can be set
to a default or selected by the user form a list of available OS
types. Library path block 294 displays the location of library
f1les important to the operation of the graphical interface tool
and machine designation. The location of library files 1s only
of 1importance to the user, if the user must place the library
files 1n a location different from a default location. Orbix
path block 295 displays the location of Orbix files. The user
may relocate Orbix files, but these file generally are located
at a known default. Orbix 1s a commercial object request
broker (ORB) used by an embodiment of the present inven-
fion to provide a transport-layer encapsulator that shields
applications from the underlying transports of CORBA. In
this regard, as will be readily appreciated by those of
ordinary skill in the object oriented programming art if one
has to develop or use an object-oriented messaging system
similar to CORBA with the present invention, an application
for shielding applications from the underlying transports of
the ORB 1s required. Other commercial ORBs operable with
the present invention are International Business Machine

10

15

20

25

30

35

40

45

50

55

60

65

3

Corporation’s SOM, Digital Equipment Corporation’s
ObjectBroker, Sun Microsystem Corporation’s DOE and
Hewlett Packard Corporation’s ORB Plus.

In compiler options area 296, the user selects the option
displayed if the included C++ compiler can support nested
classes. Finally 1n Orbix options arca 297, the user chooses
the option displayed, if the Orbix or application used in
place of Orbix can support multiple application threads.

The user then designates a server for the designated
machine or a server prestored within the designated machine
by assigning a server name. To designate a server the user
first activates a define servers button 262 located 1n a button
bar at the top of the graphical mterface tool window 258
shown 1n FIG. 9. When this occurs, a server definition
window 310 (FIG. 11) opens. The server definition window
310 1ncludes a server list section 311, a server name block
312 and a machine name block 313. The server list section
311 provides a list of servers on or available for use with the
machine designated in machine definition windows 290
(FIG. 10). The machine name assigned in machine definition
window 290 1s displayed 1n machine name block 313. A user
selected name from server list section 311 1s displayed in
server name block 312.

Returning to FIG. 9, below the button bar section are
displayed three other sections: an application name and
objects section 263; an object interface section 268; and an
object control section 278. The application name and options
section 263 1ncludes a current application pathname window
264 and various on/off 1icons. The current application path-
name window 264 displays the location name of a program
that includes or will include the information entered into the
oraphical interface tool. The on/off icons include a debug
console 1con 265, an object display 1icon 266 and an excep-
tion TRY blocks 1con 267. Activation of these 1cons prior to
code generation adds various debugging qualities to the
ogenerated code. The debug console 1icon 2635, when activated
to the on position by the user, 1inserts debugeing code into
ogenerated code. The object display 1con 266, when activated,
adds code to the generated code for displaying class
attributes to one viewing the generated code. The exception
TRY blocks 1icon 267 also allows entry of extra code ito
cgenerated code. The code entered by an activated exception
TRY blocks 1con 267 adds code that allows a programmer to
casily 1dentily a cause 1f an error 1s experienced.

Object interface section 268 includes a define class button
270, a define data button 272 and a define user method
button 274. The arcas below each button displays user
selections. Selection of these buttons retrieve respective
interactive windows. As shown 1n FIG. 12, a class definition
window 316 opens upon activation of the defined class
button 270. The class definition window 316 includes a class
name block 317, a auto start selector 318, an include path
block 319, a base class block 320, a server name block 322,
a machine name block 323 and a headers and macros section
324. In class name block 317, the user enters a class name
that 1s associated with a property of the class that 1s being
described. This entry will be better understood from the
exemplary embodiment of the invention illustrated and
described below. Enabling the auto start selector 318 causes
the generated code of the class 1dentified to instantiate an
object of that class at start-up. The include path block 319
displays the stored location of the class name specified in the
class name block 317. In base class block 320, the user
specifles any mnheritance for the class 1dentified in the class
name block 317. The server selected 1n the server definition
window 310 1s displayed 1n server name block 322. The user
has the option of changing the name of the server designated

5,920,718

9

to the defined class name by retrieving a server list from a
pulldown menu. The machine name selected 1n machine
definition window 290 is displayed in machine name block
323 automatically after server selection. Finally, in the
headers and macros section 324, the user enters comments,
oglobal class definitions or similar code for execution or
display within the to-be-generated shell code.

Activation of define data button 272 (FIG. 9) opens a data
definition window 325, shown 1n FIG. 13. The data defini-

tion window 325 includes a class name block 326, data
member name block 327, a data parameter selection section
328, a data type selection section 330 and an initial value
definition section 331. The class name block 326 displays
the class name assigned 1n class definition window 316. In
data member name block 327, the user enters a name for one
type of data the user wishes to assign to the class name
displayed 1n class name block 326. In data parameter selec-
fion section 328, the user determines the parameter type of
data defined for the data member named 1n data member
name block 327. The data parameter selection section 328
options include a scalar parameter (a single value), an array
parameter (multiple values in an array setting), or a sequence
(a2 CORBA sequence unique to CORBA). In data type
section 330, the user selects the data type for the data
identified by the name entered in the data member name
block 327. The user can define the data as one of the
following: character; octet; Boolean; unsigned short; short;
unsigned long; long; float; double; string; enumeration; any
or Contained Class. All data types m section 330, except for
‘contained class,” are CORBA data types. When selected,
contained class, section 3324, 1s an aggregate class data
clement. As will be appreciated by one of ordinary skill in
this art, the underlying architecture determines the data types
available for use. After the user has selected one of the data
types from data type section 330, the user enters a value 1n
the 1nitial values section 331 of the selected data type. If the
user selects the Contained Class data type the user enters a
predefined class name into the Contained Class data type
initial value 332. The predetermined class name entered into
the Contained Class data type 1nitial value 332 1s an aggre-
cgate of the class name displayed 1n class name block 326.

Returning to FIG. 9, after selecting the define user method
button 274, the user enters names of user methods, thus
completing the basic definition of the class and 1its public
interface.

Also shown in FIG. 9, the object control section 278
mcludes a define state section 280, a define transition section
282, and a define transition methods section 284. Each
section of object control section 278 includes a button for
activating entry of information. In the define state section
280, the user enters the names of the states that are experi-
enced by the object class entered 1n define class section 270.
Preferably, the user enters state names that uniquely describe
states the defined class experiences. An example of this entry
1s shown 1n more detail in FIGS. 26—32 and described below.
In the define transition section 282, the user enters any
fransitions between states identified by the entered state
names. A transition includes a data condition and a corre-
sponding action. Essentially, the user 1s defining the action
performed on an object 1f a data condition 1s met when the
object 1s 1n a specific state. The data condition can be a
specific value of the data entered in the data definition
window 325 or an open set of data representing any data
condition. The designated Actions may be one or more of the
following functions: a call or spawn of a transition method,
or a null. A call calls an action that executes and returns. A
spawn causes the current application thread to fork into a

10

15

20

25

30

35

40

45

50

55

60

65

10

secondary thread with priority set by user, then performs an
action and returns. Finally, a null action automatically
unlocks the object’s data and returns, essentially performing
no action. Transition method names that are assigned to an
action are entered by the user in the define transition
methods section 284.

After the user has completed entry of the information into
object mterface section 268 and object control section 278,
the user can double-check the entered data specific to the
object control by displaying the state diagram of the defined
class. A display state diagram button 288 located in the
button bar of graphical mterface tool window 258, when
activated, allows a user to view a state diagram for the class
defined. The information entered into the windows associ-
ated with the graphical interface tool window 238 1s stored
in a GUI model that includes structures, linked list, etc. A
display generator retrieves the control information stored in
the GUI model and displays it in a predefined location on the
display for presenting a state diagram, 1.e., state names are

displayed 1n ovals representing object states. An example of
such a display 1s 1llustrated 1in FIGS. 28-33 and described

below.

Once the user i1s fully satisfied with the information
entered into graphical interface tool window 2358, the user
activates a generate code button 286 that causes application
shell code based on the information entered to be automati-
cally generated. The generated code 1s called application
shell code because all code 1s generated except the speciiic
code for any user method names entered 1n define user
method section 274 and any transition method names
entered 1n define transition method section 284. The speciiic
code for these two types of methods must be entered into
specific locations within the application shell code. The user
may ecither enter user and transition method code in the
oraphical interface tool through an edit function or outside
the graphical interface tool through a file editor that allows
a programmer to edit and enter code. The user and transition
method code entered 1n the graphical interface tool 1is
automatically entered into the application shell code upon
activation of the generate code button 286.

EXAMPLE

Embodiment

FIG. 14 1s a schematic illustration of an exemplary
application of the present invention. The 1llustration com-
prises a production system 200 for drilling holes 1n parts.
The production system 200 includes a transport 212 pow-
ered by transport motor 214. The transport transports a
palette 210 that supports part 208 to be drilled to a drll
assembly 219. The transport 212 includes one or more
sensors 216 for sensing when palette 210 1s properly posi-
tioned. The drll assembly 219 includes a vertical support
221 for receiving a horizontally mounted elevator 222 that
moves vertically on the vertical support 221. Attached to the
outer end of the horizontally mounted elevator 222 1s a drill
motor 220 that extends over the transport 212, at a pre-
defined position. The drill motor 210 rotates a vertically

11 218.

oriented drll

In operation, the transport motor 214 causes transport 212
to move the palette 210 until the sensor(s) 216 senses that
the palette 210 1s 1n the appropriate position. When the
palette 210 reaches the appropriate position, the transport
motor 214 shuts off stopping operation of the transport 212
and, thus, movement of the palette. It 1s assumed that the
position of the part 208 on the palette 210 1s precisely known
and that each time a part 1s placed on the palette the part 1s

5,920,718

11

placed 1n precisely the same position. Therefore stopping of
the palette 210 at a precise location places the part 208 at a
precise location relative to the drill assembly 219. In this
example, the transport motor 214 1s a single speed motor,
1.€., the transport motor 1s either on or off, and the drill motor
220 1s a varniable speed motor. After the palette 210 1s
positioned, the part 208 1s ready to be drilled by the drll
assembly 219. First the speed of the drill motor 220 1s set to
the proper drilling speed for the drill 218. Then the hori-
zontally mounted elevator 222 1s lowered. As the elevator
222 1s lowered, the drill 218 drills a hole 1n the part 208.
After drilling 1s complete, the horizontally mounted elevator
222 raises the drill 218 above that the part 208 and the drll
motor 220 1s turned off. Next, the transport motor 214 is
energized, causing the transport 212 to move the palette 210
away Ifrom the drill assembly 219. After the palette 1s
removed, system 200 waits for another palette to be placed

on the transport.

Also shown 1 FIG. 14 are computer work stations that
interact with various components of the production system
200 for controlling the operation described above. A trans-
port controller 204 is connected to the sensor(s) 216 and to
the transport motor 214. A drill controller 206 1s connected
to the horizontally mounted elevator 222 and to the drill
motor 220. A system controller 202 1s connected to the drill
controller 206 and transport controller 204. The system
controller provides overall production system control. Sys-
tem controller 202 1s also connectable to a client/server
network that may include other computer controllers that
control other operations (not shown) performed on part 208
or other parts associated with a final assembly.

It 1s well understood that an object-oriented program
operating on the computers 202, 204, and 206 can effectively
control the physical components of the production system
200. Once the programmer has determined the control
required for the application described above, the program-
mer creates classes that represent the physical components
of the production system 200. Then, the programmer gen-
crates the code necessary to perform the application speciiic
operations on the created classes.

FIG. 15 1s a class hierarchy diagram for the production
system depicted in FIG. 14 and implemented in the manner
shown 1 FIGS. 16-26 and described below. The highest
class 1s denoted DrillWorkCell 400. Two classes denoted
Drill 402 and Transport 404 are aggregates of the Drill-
WorkCell class 400. Two classes denoted Elevator 406 and
Variable Speed Drill Motor 408 are aggregates of Drill class
402 and two classes denoted Transport Motor 410 and
Sensor(s) 412 are aggregates of Transport class 404. Aggre-
cgate assignments are defined 1n the classes data definition
window(s) 325 (FIG. 13). Dashed line 416 illustrates the fact
that the Variable Speed Drill Motor class 408 has assigned
inheritance from the Transport Motor class 410. The graphi-
cal mterface tool depicted mn FIGS. 16-26 and described
below can be run on any of the controllers shown 1n FIG. 14,
namely the transport controller 204, the drill controller 206,
the system controller 202, or any compatible computer
system connected via the network to the system controller

202.

FIGS. 16-20 show the entered object mterface informa-
fion and object control information for class DrillWorkCell
400. For ease of understanding the reference numbers used
with the objects displayed 1in FIGS. 16-26 are the same as
those used 1 FIGS. 9-13 with the addition of an “a” to
distinguish between the FIGURES. As shown 1in FIG. 15 and
described above, DrillWorkCell 1s the class that represents

production system 200 (FIG. 14). Class DrillWorkCell

10

15

20

25

30

35

40

45

50

55

60

65

12

includes the PalettePositioned and DrillEnabled data and no
user methods. DrillWorkCell has five possible states defined
by state names entered in the define state section 280a. The
states are: Off; WaitingForPalette; WaitingForDrillEnable;
Drilling; and WaitingForPaletteClear. DrillWorkCell
includes six transitions between the states and four named
transition methods shown 1n sections 282a and 284a, respec-
tively. These transitions and transition methods are
described 1n more detail below 1n a state diagram shown in

FIG. 28.

FIGS. 17-20 show interactive windows similar to FIGS.
10-13 containing user entered and default information asso-
clated with DrillWorkCell class. The machine definition
window 290a shown i1n FIG. 17, opened when the define
machine button 260a (FIG. 16) is activated shows that the
user has selected the machine named SystemController from
the machine list section 292a. The machine list section 2924
includes the name of the machines shown in FIG. 14 and
described above. The OS block 293a designates Solaris 2.x
as the OS used 1n this example. The library path block 2944
and the Orbix path block 295a display default address
locations for the respective associated components. The
compiler options area 296a and the Orbix options arca 297a
are shown as selected for implementation.

The server definition window 3104 shown 1n FIG. 18 that
is opened when the define server button 262a (FIG. 16) is
activated shows klatul as the designated server. Klatul also
appears 1n the server list section 311a along with other
available servers.

The class definition window 316a shown in FIG. 19,
which opens when the class definition button 2704 1s acti-
vated displays information related to DrillWorkCell. Auto
start selector 318a has been selected, therefore DrillWork-
Cell will automatically be instantiated upon start-up of
production system 200. Include path block 3194 1s empty,
because DrillWorkCell class 1s defined 1n this application
and 1s not retrieved from another application. Base class
block 320a displays dome_ DataClass. Dome_ DataClass 1s
the base class for classes that do not have a formal parent
class. Similar to base classes in other object-oriented
environments, Dome DataClass contains the information
required for this embodiment of the present mnvention to be
operable. Server name block 3124 and machine name block
313a Iist klatul and SystemController, respectively. No
information has been entered into headers and macros
section 324a.

The data definition window 3254, shown in FIG. 20,
which opens when the define data button 272a (FIG. 16) 1s
activated, shows Cell Transport data 327a has been entered
and the array parameter 328a selected. In data type selection
section 330a the data PalletPositioned has been designated
as Transport in the type contained class. Therefore, instan-
tiation of Cell Transport data will instantiate Transport class,
because of the ageregate relationship assigned in the data
type selection section 330a.

FIGS. 21-26 1illustrate the information entered 1nto
ographical interface tool window 258 for all the other defined
classes for production system 200. For ease of illustration
and 1n order to avoid unnecessary repetition, the individual
windows that are opened when the above described buttons
are activated are not 1llustrated. FIG. 21 illustrates Drill class
403, which represents the drill 218. FIG. 22 illustrates the
Transport class 404, which represents the transport 212.
FIG. 23 illustrates the Elevator class 406, which represents
the elevator 222. FIG. 24 1llustrates the Sensor class 412,
which represents the sensor(s) 216. FIG. 25 illustrates the

5,920,718

13

Transport Motor class 410, which represents transport motor
214. FIG. 26 1llustrates the Variable Speed Drill Motor class
408, which represents the multispeed motor, drill motor 220.

The Drill class definition window 2586 shown 1n FIG. 21
displays user inputted information for the Drill class. As
shown 1n the defined data section 272b, Drill class includes
the DrillEnabled, MotorSpeed and PalletPosition data. As
shown 1n the defined state section 280b, the Drill class
exhibits five states defined by the state names: Off, Wait-
ingForMotorSpeed; WaitingForElevatorl; WaitingForDes-
cent; WaitingForElevator2; and WaitingForAscent. The
Drill class also includes transitions between states listed in
the defined transition section 282b. Five transition methods
and a null are listed 1n the defined transition section. The
defined transition method section 284bH defines the
transitions, which are also shown 1n parenthesis in the define
transition section 282a. These transitions are better shown 1n

a Drill state diagram (FIG. 29) and described below.

The Transport class definition window 288c¢ 1s shown in
FIG. 22. The defined class 270c¢ of this window notes that
the class 1in Transport. The define data section 272¢ includes
TransportEnabled and BeamBlocked data. The define state
section 280c notes that the Transport class includes the Idle,
Receiving and Sending states. The defined transition section
282c¢ of the Transport class lists two transitions and a null.
The defined transition method section 284c¢ identifies the
two transition methods. The states and transitions are better
illustrated 1n a Transport class state diagram shown in FIG.

30 and described below.

As shown 1n FIG. 23, the defined data section 272d of the
Elevator defined class 270d includes the TargetPodDepth
and CurrentPodDepth data. Pod corresponds to elevator. The
defined state section 280d of the Elevator class includes four
states: Off; PodStationary; PodDescending; and Pod Ascend-
ing. The defined transition section 282d of the Elevator class
lists user defined transitions between the Elevator class
states. Four transitions, which are defined 1n the transition
method section 284d are listed. They are: SamplePodDepth;
LowerPod; RaisePod; and HaltPod. These states and tran-
sitions are better 1llustrated the Elevator state diagram

shown 1n FIG. 31 and described below.

As shown 1n FIG. 24, the define data section 272¢ of the
Sensor defined class 270¢ includes BeamBlocked data. As
shown 1n the define state section 280e, the Sensor class
includes three states: Off; BeamClear; and BeamBlocked.
The Sensor class includes one transition method and two
nulls shown 1n the define transition section 282¢ listed 1n the
define transition method section 284¢. The states and tran-
sitions of the Sensor class are better 1llustrated 1n the Sensor
state diagram shown 1n FIG. 32 and described below.

As shown 1n FIG. 28§, the define class section 270/ of the
Transport Motor class window displays Transport Motor to
1dentify Motor class. The define data section 272f lists Motor
Enabled data. The Motor class includes two defined states,
Off and On, shown 1n the define state section 280 Two
transition nulls are listed 1n the define transition section 282f.
No ftransition methods are required for Motor class, as
shown 1n the define transition method section 284f. These
are better illustrated 1n the Transport Motor state diagram

shown 1n FIG. 33 and described below.

As shown 1n FIG. 26, the define class section 270g of the
Variable Speed Drill Motor class window 258¢ displays the
variable speed Dr1ll Motor class. As shown 1n the define data
section 272g, the Variable Speed Drill Motor class includes
MotorSpeed data. The define state section 280g of the
Variable Speed Drill Motor class includes two states: Off and

10

15

20

25

30

35

40

45

50

55

60

65

14

BeamClear. One state transition i1s listed in the define
fransition section 282g, which 1s defined i1n the define
transition method section 284g as Sample Motor Speed.
These are better 1llustrated 1n the Variable Speed Drill Motor

Starter diagram shown in FIG. 34 and described below.

Before describing the individual state diagrams, it is
important to get a better understanding of the interrelation-
ship the objects have with each other. Each oval represents
an object: DWC 420 1s DrillWorkCell; D 422 1s Drill; T 424
1s Transport; S 426 1s Sensor; E 428 1s Elevator; TM 430 1s
TransportMotor; V 432 1s VariableSpeedDrillMotor. As
shown 1 FIG. 27, the objects are represented in the same
hierarchical manner as FIG. 15. Also included are arrows

that show any aflects one object has upon other objects. The
arrows and attached fitles represent the execution of an
action which corresponds to a specific transition method(s).
For example, two arrows begin at DWC 420. A first arrow
extends to D 422. The first arrow includes the actions Enable
Drill and Report which indicates the DrillWorkCell object
determines when the drill starts operations and requests Drill
status. The actions Enable Drill and Report correspond to the
transition methods CommandDrillSequence and
ReportCompletion, respectiully. A second arrow extends to
T 424. The second arrow includes the action Enable Trans-
port which indicates the DrillWorkCell object determines
when the transport can begin operation. The action Enable

Transport corresponds to the transition method Receive-
FirstPallet created for the DrillWorkCell object.

D 422 has three arrows extending from 1it. A first arrow
with the action Determine Drill Status corresponds to the
ReportCompletion transition method. The first arrow
extends to DWC 420, thereby reporting drill status to the
Drill Work Cell. A second arrow with actions Set Target
Elevator Position and Enable Elevator Motion extends to E
428. According to the second arrow actions, D 422 sets the
target elevator position and enables elevator motion, respec-
tively. The Set Target Elevator Position action corresponds
to the CommandDescent transition method and the Enable
Elevator Motion action corresponds to the CommandAscent
transition method. The final arrow extending from D 422
extends to TM 430. As per the third arrow’s action, Com-
mand TM (transport motor) to Start or Stop, D 422 com-
mands the transport motor to begin or stop operation. The
commands 1ndicated by the third arrow correspond to the
CommandMotorOn and CommandMotorOff transition
methods of the Drill object.

T 424 also has three arrows extending from it. A first and
second arrow 1ncludes the action Move Pallet. The first
arrow extends to DWC 420 and the second to D 422. The
Move Pallet action corresponds to the StartBelt and StopBelt
transition methods. Essentially, the Transport reports to the
Drill and Drill Work Cell that the pallet 1s in motion. The
third arrow extends to TM 430 with the action Command
TM to Start or Stop. These actions also correspond to the
StartBelt and StopBelt transition methods.

S 426 has one arrow extending to T 424. The arrow
includes the action Determine Pallet Position which corre-
sponds to the Sense transition method. The Sensor 1s telling
the Transport where the pallets are presently located.

E 428 also has one arrow extending from 1it. This arrow
only affects E 428 as indicated by the arrow pointing back
at E 428. The actions performed are determining current
clevator depth and lowering, raising and halting the elevator.
The corresponding transition methods are SamplePodDepth,
LowerPod, RaisePod and HaltPod, respectively.

TM 430 also has a recursive arrow. The action associated
with the arrow indicates when to turn the motor on or off.

5,920,718

15

This action corresponds to the TurniMotorOn and TumMo-
torOff transition methods.

V 432 has one arrow extending to D 422. The arrow
action performed 1s a determination of the motor speed. This
action corresponds to the SampleMotorSpeed transition
method.

As noted above, state diagrams for the various classes are
illustrated 1n FIGS. 28—34. Each of the states of the related
class 1s displayed as an oval. The lines with arrows that
interconnect the oval states indicate transitions from one
state to the other in the direction of the arrows. The data
condition and action defined 1n the define transition section
of the related class interface (FIGS. 15 and 16-26) is
displayed at the midpoint of each transition line. For
example, as shown in FIG. 28, the transition line 340
between the Off state 342 and the WaitingForPalette state
344 of the Drill Work Cell class corresponds to the data
condition and corresponding action entered in define tran-
sition section 282 for the first defined transition from the Off
state 342. Transition line 340 1llustrates a transition from the
DrillWorkCell object Off state 342 to the WaitingForPalette
state 344. This transition occurs 1f the PalettePositioned data
1s false, 1.¢., Palette Positioned data indicates that the palette
1s not 1n position for drilling when the DrillWorkCell object
1s first turned on. The action performed in this first transition
1s a spawn of transition method ReceiveFirstPalette at pri-
ority 4, indicated by the words spawn.P4 in the define
transition section 282a of the Drill Work Cell class window
(FIG. 15). In this regard, any number of priority levels may
be made available—ten, for example. Preferably, level 1 1s
the highest priority level available. Setting a priority level
for an action determines the actions relative importance to
other actions being performed concurrently. For ease of
description and 1 order to avoid undue complexity, all
priority levels of the example of the application of the
invention being described are set at four, meaning that no
action 1S more 1important than another.

Turning now to a more detailed description of the Drll
Work Cell state diagram shown 1n FIG. 28, when production
system 200 1s started, the DrillWorkCell class 1s instantiated
by a user mput thus becoming DrillWorkCell object. The
DrillWorkCell object first enters the Off state 342. As soon
as a Palette Positioned data value 1s determined, the Drill-
WorkCell object’s state immediately transitions. If the Pal-
ettePositioned (PP) data value is false, the DrillWorkCell
object transitions to the WaitingForPalette state 344. This
transition spawns a transition method denoted ReceiveFirst-
Palette. Conversely, if the PalettePositioned data value 1is
true, the DrillWorkCell object transitions to the WaitingFor-
DrillEnable state 346. This transition spawns a transition
method denoted CommandDrillSequence (CDS). If the
DrillWorkCell object transitions to the WaitingForPalette
state 344, the DrillWorkCell object remains 1n this state until
the PalettePositioned data value becomes true. When this
occurs, the DrillWorkCell object transitions to the Waiting-
ForDrillEnable state 346. When this transition occurs, the
CommandDrillSequence transition method 1s spawned.

The DrillWorkCell object remains 1n the WaitingForDril-
1IEnable state 346, until a transition to Drilling state 348
occurs. A transition to Drilling state 348 occurs when the
DrillEnable data value becomes true. No action transition
method 1s spawned when the transition from the Waiting-
ForDrillEnable state 346 to the Drilling state 348 occurs
from the Drilling state 348, as indicated by the null notation.

The DrillWorkCell object transitions, to the WaitingFor-
PaletteClear state 350, when the DrillEnable data value

10

15

20

25

30

35

40

45

50

55

60

65

16

becomes false. This occurs when the drilling process 1s
complete. When the transition from Drilling to WaitingFor-
PaletteClear occurs, a ReportCompletion transition method
1s spawned. The DrillWorkCell object transitions from the
WaitingForPaletteClear state 350 to the WaitingForPalette
state 344, when PalettePositioned data value 1s false. When
this transition occurs, nothing occurs as signified by the
Null. The DrillWorkCell object state information is used to
control the generation of the code needed to control the
overall functionality of the production system 200.
Essentially, the system, as it relates to the DrillWorkCell
object, waits for a palette to be positioned. After the palette
1s positioned, the DrillWorkCell object waits for completion
of the drilling process. Next, the DrillWorkCell object waits
for the palette to be removed; and, then, waits for the next

palette.

A user 15 able to display the state diagram shown 1n FIG.
28 by activating the display state diagram button 288 1n the
button bar of the DrillWorkCell class window 258a (FIG.
16) prior to actuating the generate code button 286a. After
the user has reviewed the state diagram and all other
information entered into the window, the user 1s ready to
cause the code for the DrillWorkCell class to be generated.
To generate the code, the user simply activates the generate
code button 2864 located 1n the button bar of the graphical
interface tool window 258c¢. In the DrillWorkCell example
of FIG. 16, the class library for DrillWorkCell with the
included PalettePositioned and DrillEnabled data 1s gener-
ated. DrillWorkCell code 1s generated according to the
information entered 1n the object control section of 278. An
empty shell coat 1s created for inputting the specific code for
the transition method names assigned to the DrillWorkCell
class. No shell coat 1s created for user methods because no
user method names were entered 1nto the define user method
section 274a of the DrillWorkCell class window.

Preferably, the drilling system of FIG. 14 1s connected via
the system controller 202 to an object oriented messaging
system common object request broker architecture
(CORBA). In order for the drilling system of FIG. 14 to take
advantage of fully distributed object-oriented architecture,
in such a system, the code generated by the mnvention must
include interface code that allows the mvention to commu-
nicate in a CORBA environment. More specifically, the
ogenerated interface code must include a remote procedure
called (RPC) interface file, an mterface definition language
(IDL) interface file, an RPC server code file, a CORBA
server code file, Ada bindings for RPC files and a make file.
Further, the RPC 1interface file must be precompiled by an
RPC precompiler to generate a set of RPC files and the IDL
interface file must be precompiled by an IDL precompiler to
produce a set of CORBA files. RPC, CORBA, IDL and make
files and Ada bindings are commonly known files for
executing client/server distributive object communication in
a CORBA or RPC environment. The final files created are
application program interface (API) code files. The API code
files provide a level of abstraction between the generated
files (CORBA or RPC) and the created class information
with any associated class control. The API code files allow
state-based control to be directly associated with the an
object.

As shown m FIG. 29, the Drill class state diagram

includes all the information entered in the object control
section 278b of the Drill class window (FIG. 21). As shown

in FIG. 29, when the Drill class 1s instantiated the Drill

object immediately enters an Off state 352. The Drill object
remains 1n the off state until DrillEnabled data value 1s true.
When this occurs, the Drill transitions from the Off state to

5,920,718

17

a WaitingForMotorSpeed state 354. When this occurs, a
CommandMotorOn transition method 1s spawned. When the
MotorSpeed data indicates that the speed of the drill motor
1s equal to or 1s greater than some predefined value, such as
300 RPM, the Drill object transitions from the WaitingFor-
MotorSpeed state 354 to a WaitingForElevatorl state 356.
CommandDescent transition method 1s spawned. When the
PalettePositioned data value becomes true, the Drill object
transitions from the WaitingForElevatorl state 356 to a

WaitingForDescent state 358.

When the PalettePositioned data value becomes false, the
Drill object transitions the WaitingForDescent state 358 to a
WaitingForElevator2 state 360. When this transition occurs,
a CommandAssent transition method 1s spawned. When the
PalettePositioned data value shifts back to true, the Drill
object transitions from the WaitingForElevator2 state 360 to
a WaitingForAscent state 362. When this transition occurs,
a CommandMotorOfl transition method 1s spawned. Since
the PalettePositioned data value 1s true, immediately there-
after the Drill object transitions from the WaitingForAscent
state 362 to the WaitingForMotorSpeed state 354. When this
transition occurs, a ReportCompletion transition method 1is
spawned. Essentially, the process illustrated in the Drill state
diagram shown 1 FIG. 28 describes the performance of the
drill 218. The dnll 218 begins with its motor 1n an off state.
The drill motor 1s turned on when commanded. Then the
system waits for the speed of the motor to reach a predefined
limit. After the limit 1s reached and the palette 1s properly
positioned, the drill descends with the elevator 222. Next,
the drill rises with the elevator 222, the drill motor 1s turned
off, completion of the task 1s reported and the sequence of
operations 1s repeated.

FIG. 30 1s a state diagram for the Transport object. When
instantiated, the Transport object begins 1n an Idle state 364.
If the TransportEnabled data value 1s true and the sensor
BeamBlocked data value 1s false, the Transport object tran-
sitions from the Idle state to a Receiving state 366. When
this transition occurs, a StartBelt transition method 1s
spawned. If the TransportEnabled and SensorBeamBlocked
data values are both true, the Transport object transitions
from the Idle state to a Sending state 368. When this
transition occurs, a StartBelt transition method 1s also
spawned.

If the SensorBeamBlocked data value becomes true when
the Transport object 1s 1n the Receiving state 366, the
Transport object transitions back to the Idle state 364. When
this transition occurs, a StopBelt transition method 1is
spawned. If the Sensor’s BeamBlocked data value becomes
false when the Transport object 1s 1n the Sending state, the
Transport object transitions to the Receiving state 366. No
transition methods are spawned when this transition occurs,
as denoted by the null indication. Essentially the following
occurs, when enabled, the transport object checks to see it
the sensor beam 1s or 1s not blocked. If the sensor beam 1s
blocked, indicating that no palette 1s 1n position for drilling,
the transport motor 1s started to move a palette into position.
The transport motor 1s stopped when a palette 1s 1n position
for drilling. If the sensor beam 1s not blocked when the
transport object 1s enabled, indicating that a palette 1s 1n
position for drilling, the transport motor 1s started to move
the palette away from the drilling position.

FIG. 31 is a state diagram for the Elevator class (FIG. 23).
When the Elevator class 1s instantiated the Elevator object 1s
placed 1n an Off state 370, the Elevator object immediately

transitions from the Off state 370 to a PodStationary state
372. When the transition from the Off state 370 to PodSta-
tionary state 372 occurs, a SamplePodDepth transition

10

15

20

25

30

35

40

45

50

55

60

65

138

method 1s spawned. If the CurrentPodDepth data value 1s
less than the TargetPodDepth data value, the Elevator object
transitions from the PodStationary state 372 to a PodDe-
scending state 374. When this transition occurs, a LowerPod
transition method 1s spawned. If however the CurrentPod-
Depth data value 1s greater than or equal to the TargetPod-
Depth data value, the Elevator object transitions from the
PodStationary state 372 to a PodAscending state 378. When
this transition occurs, a RaisePod transition method 1s
spawned.

When the Elevator object 1s 1n the PodDescending state
374 and the CurrentPodDepth data value becomes greater
than or equal to the TargetPodDepth data, the Elevator object
transitions to the PodStationary state 372. When this tran-
sition occurs, a HaltPod transition method 1s spawned. When
the Elevator object 1s 1in the PodAscending state 378 and the
CurrentPodDepth data becomes less than the TargetPod-
Depth data, the Elevator object transitions to the PodSta-
tionary state 372. Again, when this transition occurs, a
HaltPod transition method i1s spawned. Essentially the
Elevator state diagram (FIG. 31) depicts the operation of the
elevator 222 (FIG. 14). The present elevation of the elevator
222 15 determined. If the position i1s higher than the target
position of the elevator, the elevator 222 1s lowered. If the
present position 1s equal to the target position of the elevator,
the elevator 222 1s raised. The elevator becomes stationary
when the elevator height 1s lower than or equal to the target
height.

FIG. 32 is a state diagram for the Sensor class (FIG. 24).

Upon 1instantiation of the Sensor class, the Sensor object
enters an Off state 380. The Sensor object immediately

transitions from the Off state 380 to a BeamClear state 382.
When this transition occurs, a Sense transition method 1s
spawned. When the Sensor object 1s in the BeamClear state
382 and the BeamBlocked data value becomes true, the
Sensor object transitions to a BeamBlocked state 384. No
transition method 1s spawned when this transition occurs, as
indicated by the null notation 1n FIG. 32. When the Beam-
Blocked data value becomes false, the Sensor object tran-
sitions from the BeamBlocked state 384 to the BeamClear
state 382. Again, no transition method 1s spawned when this
fransition occurs, as 1ndicated by the null notation.
Essentially, the sensor object (FIG. 14) determines if a
palette 1s 1 the drilling position based on the BeamBlocked
data value.

FIG. 33 1s a state diagram for the TransportMotor class
(FIG. 25). The TransportMotor object has two states—an
Off state 386 and an On state 388. The TransportMotor
object transitions from the Off state 386 to the On state 388
when the MotorEnabled data value 1s true. The Transport-
Motor object transitions from the On state 388 and the Off
state 386, when the MotorEnabled data value 1s false.
Neither transition spawns a transition method, as indicated
by the null notation i FIG. 32.

FIG. 34 15 a state diagram for the VariableSpeedDrillMo-
tor class (FIG. 26). The VariableSpeedDrillMotor object has
two states—an Off state 390 and a BeamClear state 392.
Starting 1n the Off state, the VariableSpeedDrillMotor object
immediately transitions to the BeamClear state 392 when
instantiated. When this transition occurs, a SampleMotor-
Speed transition method 1s spawned.

The FIGS. 33 and 34 state diagrams depict the functioning
of the transport motor 214 and the drill motor 220 (FIG. 14).
The transport motor 214 1s either on or off depending upon
enablement. The VariableSpeedDrillMotor object provides
continuous information regarding the speed of the drill
motor as evidenced by the SampleMotorSpeed transition
method.

5,920,718

19

While the presently preferred embodiment of the mven-
tion has been 1llustrated and described, 1t 1s to be understood
that various changes can be made therein without departing
from the spirit and scope of the invention as defined by the
appended claims.

The embodiments of the mvention 1n which an exclusive
property or privilege 1s claimed are defined as follows:

1. A method for automatically generating application
program shell code for a predefined application 1in an object-
oriented system, said system comprising a processor with an
operating system running thereon, at least one user interface
device, memory and a display device, said method compris-
ng:

(a) assigning an object name, wherein the object name
identifies an object operable 1n the predefined applica-
tion;

(b) assigning at least one data name to the assigned object
name according to predetermined requirements for the
object;

(¢) assigning a method name to the assigned object name
according to predetermined requirements for the
object;

(d) assigning control information to said assigned object
name according to said predefined application, wherein
said assigning control information includes:

(1) assigning at least one state name, wherein each state
name 1dentifies a distinct state of the object; and
(1) assigning an object state transition, if more than one

state 1s assigned; and

(¢) generating application shell code according to the
operating system and the assigned names and control
information.

2. The method of claim 1, wherein said object state
fransition assigning comprises assigning a data condition
and an action.

3. The method of claim 2, wherein said action comprises
assigning a transition method name with at least one of a call
function, signal function, or spawn function to the transition
method name, or assigning a nullification function according
to the predefined application.

4. The method of claim 1, wherein said generated appli-
cation shell code i1s operable with other object-oriented
systems via an object-oriented messaging system.

5. The method of claim 4, further comprising:

assigning a machine name to an assigned object name
wherein said machine name 1dentifies an object-
oriented system connected to the object-oriented mes-
saging system; and

assigning a server name to the assigned machine name.

6. The method of claim 5, wherein said server name
identifies a server on the object-oriented system represented
by said assigned machine name.

7. The method of claim 5, wherein said generated appli-
cation shell code 1s operable 1n the assigned server.

8. An object-oriented system for automatically generating,
application shell code, said system comprising a processor
with an operating system running thereon, at least one user
interface device, memory and a display device, said system
further comprising:

(a) a graphical interface tool, operating in the operating
system and displayed on the display device, for creat-
ing object-oriented objects for use in a predefined
application, wherein said graphical interface tool com-
PIriSEs:

(1) a first assigning means for assigning an object
name;

10

15

20

25

30

35

40

45

50

55

60

65

20

(2) a second assigning means for assigning data names
to the assigned object name according to predeter-
mined requirements;

(3) a third assigning means for assigning method names
to the assigned object name according to predeter-
mined requirements; and

(4) a fourth assigning means for assigning control
information to said assigned object name according
to said predefined application, wherein said fourth
assigning means of the graphical interface tool
includes:

(1) means for assigning at least one state name,
whereln each state name represents a distinct state
of the object; and

(i1) a means for assigning an object state transition,
if more than one state 1s assigned; and

(b) an automatic shell code generating tool, activated
through said graphical interface tool and operating in
the operating system, for generating application shell
code according to the operating system and the
assigned names and control information.

9. The system of claim 8, wherein an assigned object state

transition comprises a data condition and an action.

10. The system of claim 9, wherein said action comprises
at least one of a call function, signal function or spawn
function of a transition method, or a nullification function.

11. The system of claim 8, wherein said system 1s con-
nected to other object-oriented systems via an object-
oriented messaging system.

12. The system of claim 11, wherein said graphical
interface tool further comprises:

a fifth assigning means for assigning a machine name to
an assigned object name, wherein said machine name
represents an object-oriented system connected to the
object-oriented messaging system; and

a sixth assigning means for assigning a server name to the
assigned machine name.

13. The system of claim 12, wherein said generated

application shell code 1s operable 1n the assigned server.

14. The system of claim 12, wherein said assigned server
name 1dentifies a server on the object-oriented system rep-
resented by said assigned machine name.

15. A computer-readable medium for automatically gen-
crating application shell code, said computer-readable
medium operable with a processor with an operating system
running thereon, at least one user 1nterface device, memory
and a display device, said computer-readable medium fur-
ther comprising;:

(a) a graphical interface tool, operable in the operating
system and displayed on the display device, for creat-
ing object-oriented objects for use in a predefined
application, wherein said graphical interface tool pro-
oram COMPIISES:

(1) a first assigning means for assigning an object
name;

(2) a second assigning means for assigning data names
to the assigned object name according to predeter-
mined requirements;

(3) a third assigning means for assigning method names
to the assigned object name according to predeter-
mined requirements;

(4) a fourth assigning means for assigning control
information to said assigned object name according
to said predefined application, wherein said fourth
assigning means of the graphical user interface tool
includes:

(1) means for assigning at least one state name,
whereln each state name represents a distinct state
of the object; and

5,920,718

21

(11) means for assigning an object state transition, 1f
more than one state 1s assigned; and

(b) an automatic shell code generating tool, activated
through said graphical interface tool and operable 1n the
operating system, for generating application shell code
according to the operating system and the assigned
names and control information.

16. The computer-readable medium of claim 15, wherein
an assigned object state transition comprises a data condition
and an action.

17. The computer-readable medium of claim 16, wherein
said action comprises at least one of a call function, signal
function or spawn function of a transition method, or a
nullification function.

18. The computer-readable medium of claim 15, wherein
said computer-readable medium located 1n an object-
oriented system 1s connectable to object-oriented systems
via an object-oriented messaging system.

19. The computer-readable medium of claim 18, wherein
said graphical interface tool further comprises:

a fifth assigning means for assigning the name of an
object-oriented system connected to the object-oriented
messaging system; and

a sixth assigning means for assigning a server name to the
assigned object-oriented system name.

20. The computer-readable medium of claim 19, wherein
said server name 1dentifies a server on the object-oriented
system represented by said assigned machine name.

21. The computer-readable medium of claim 19, wherein
sald generated application shell code 1s operable 1n the
assigned server.

22. An object-oriented system for automatically generat-
ing application shell code, said system comprising a pro-
cessor with an operating system running thereon, at least one
user 1nput device and a display device, further comprising:

10

15

20

25

30

22

a graphical interface tool, operating 1n the operating
system, displayed on the display device, for entering
object class mnformation for an object-oriented object
operating 1 a predefined application environment,
wheremn said object class information includes an
object class name, data name, method name, action
name, at least one state name, and at least one data
condition with a resulting transition; and

an automatic shell code generating tool operating 1n the
operating system for generating application shell code
according to the object class information entered in the
oraphical interface tool.

23. The system of claim 22, wherein a transition 1s
assigned at least one of the following commands:

a call to an action name;
a signal to an action name;
a spawn to an action name; and

a null according to predefined application environment.

24. The system of claim 22, wherein the application shell
code generated by the automatic shell code generating tool
1s compatible with the operating system.

25. The system of claim 22, wherein said system 1is
connected to other object-oriented systems via an object-
oriented messaging system.

26. The system of claim 25, wherein said class informa-
tion for an object class name further includes an object-
oriented system name of an object-oriented system con-
nected to the object-oriented messaging system and a server
name.

27. The system of claim 26, wherein said server name 1s
assigned to the object-oriented system of the included
object-oriented system name.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,920,718
DATED . July 6, 1999

INVENTOR(S) : S A. Uczekaj et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

COLUMN LINE
[54] Title After "MACHINE" insert --BEHAVIOR--
1. col 1
[56] Refs. Cited "1884." should read --1994 --
1. col 1 (Other Publs.,
item 2)
] 4 After "MACHINE" insert --BEHAVIOR--

Attesting Officer Actx'ng Commiissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

