US005915104A
United States Patent 119] 11] Patent Number: 5,915,104
Miller (45] Date of Patent: Jun. 22, 1999
[54] HIGH BANDWIDTH PCI TO PACKET 5,761,450 6/1998 Shah ...coovvvvvnriviniiiiiiiiiiiinnne, 395/287
SWITCHED ROUTER BRIDGE HAVING 5,761,461 6/1998 Neal et al. eoveveeeeeveeeeeereennee. 395/309
MINIMIZED MEMORY LATENCY 5,771,359 6/1998 Galloway et al.ooeeeeneeenennens 395/308

Primary Examiner—Ayaz R. Sheikh
Assistant Examiner—Raymond N. Phan
Attorney, Agent, or Firm—Wagner, Murabito & Hao

|75] Inventor: Steven C. Miller, Livermore, Calif.

73] Assignee: Silicon Graphics, Inc., Mountain View,
Calif. |57] ABSTRACT

In a computer system, a mechanism for minimizing memory

[21] Appl. No.: 08/750,751 latencies. An improved, high-speed packet switched router 1s

991 Filed: Jan. 9, 1997 used to route packets quickly and efficiently between the
- microprocessor and the main memory. The computer system
51 Int. Cl.6 .. GO6F 13/42 also Supports PCI devices by implemen‘[ing 9 brldge which
52] US.CL o, 395/309; 395/308; 395/872; acts as an 1nterface between the PCI bus and the packet

395/585 switched router. In order to minimize the memory latencies
[58] Field of Searchcccccccooo 395/306, 308, for PCI based memory accesses through the bridge, a

395/309, 311, 287, 292, 842, 848, 847, plurality of read and write buffers are implemented. Write

856—857, 858—859, 881, 872, 584, 585, cgathering 1s used to gather a plurality of write transactions

586, 587; 711/118, 140, 141-146 on the PCI bus mto the write buffers and sent by the bridge

as one cache line sized transfer to the routing mechanism.

[56] References Cited For PCI based read operations, data is pre-fetched from the
US. PATENT DOCUMENTS glaip memory and stored 1n th? read bg:ferg. Thereby, PCI

evices can access the read buifers multiple times to retrieve

5,594,882 1/1997 Bell woververeereeereereereerereereererens. 711/212 the requested data.
5664117 9/1997 Shah et al. «ooooevevveveeeererrersn, 395/281
5,673,399 9/1997 Guthrie et al.oveveevnneennnnnnn. 395/308 16 Claims, 4 DI'aWillg Sheets
—— | r- —
106 | | 03]l
S CACHE ||+ I 107 108
i nP GRAPHICS 2ND GRAPHICS
L_H SUBSYSTEM SUBSYSTEM
L n F Y Y l
— 118
101 [——
1 2 || EXPANSION
102 | —
Bu%@-@ MEMORY | SWITCHED VIDEO! L
. CONTROLLER ROUTER COMPRESSION
" | — 110
«— BRIDGE
* 19 | | l114
104 = — |11
ORAN EXPANSION | | BRIDGE o cogl
- ! l >
11 —
— 112
EXTRA — e
L]

U.S. Patent Jun. 22, 1999 Sheet 1 of 4 5,915,104
] — | |
106 103 _
S CACHE | 107] | 108
) uP | GRAPHICS 9ND GRAPHICS
| SUBSYSTEM SUBSYSTEM
101 18
! T 11 expansion
102 —
| Bu;ﬁ‘_'l MEMORY | SWITCHED — vao:m
' H
CONTROLLER ROUTER COMPRESSION
L — 110
- | BRIDGE |
1 | EXPANSl%Jﬁg ansfm B
DRAM :‘} Wikt L | | scsl
I 112
EXTRA

FIGURE 1

5,915,104

v VY
SSRAM INTERFACE

FIGURE 2

PCI/GIO
BUS

201

U.S. Patent Jun. 22, 1999 Sheet 2 of 4
PCI/GIO
ARB
210 211
DEVICE REGS o)
WIDGET > MASTER
204 DATAPATH
P>
REQUEST DISPATCHER 707
LLP 4 ”| GI0 MASTER
—» SSR oy —» (CRP 207
> DATA BUFFERS
LLP) 2 293
1880 1o (€1 CTP O, REQUEST GENERATOR Gl0 SLAVE
- 213
206 4 PCI SLAVE
PREFETCHER DATAPATH
212
MISC REGS
JTAG CLOCK) v208 209 214
CONTROLLER| | RESETS SSRAM INT REGS INTERRUPT SUS PLL
A A i A
v A 4

U.S. Patent

Jun. 22, 1999

NO

ND

FIGURE 3

Sheet 3 of 4 5,915,104
(" START)
¥
301
| NORMAL OPERATIONS
NO
REQUEST CACHE LINE 304
ND |
CONTINUE SENDING READ REQUESTS 306
FOR SEQUENTIAL CACHE LINES
s YE
READ BUFFERS S >
FILLED?
208 YES
PAGE BOUNDARY? >
. 310
READ BUFFERS
YES

3N
LAST WORD?
NO

314

REUSE BUFFER

| _

U.S. Patent Jun. 22, 1999 Sheet 4 of 4 5,915,104

(START)
v

401
> NORMAL OPERATIONS [

PCI

«NO WRITE TRANSACTION |
? 406
ol WRITE DATA TO
MAIN MEMORY
-
DEVICE DESIGNATED
FOR WRITE NO
GATHERING?
YES
404
STORE IN WRITE BUFFER
< NO

407
ISSUE SINGLE WRITE
TRANSACTION TO MEMORY

l

FIGURE 4

5,915,104

1

HIGH BANDWIDTH PCI TO PACKET
SWITCHED ROUTER BRIDGE HAVING
MINIMIZED MEMORY LATENCY

FIELD OF THE INVENTION

The present invention pertains to a high bandwidth bridge
mechanism which minimizes memory latencies for optimal
performance.

BACKGROUND OF THE INVENTION

In the past, computers were primarily applied to process-
ing rather mundane, repetitive numerical and/or textual tasks
involving number-crunching, spread sheeting, and word
processing. These simple tasks merely entailed entering data
from a keyboard, processing the data according to some
computer program, and then displaying the resulting text or
numbers on a computer monitor and perhaps later storing
these results 1n a magnetic disk drive. However, today’s
computer systems are much more advanced, versatile, and
sophisticated. Especially since the advent of multimedia
applications and the Internet, computers are now commonly
called upon to accept and process data from a wide variety
of different formats ranging from audio to video and even
realistic computer-generated three-dimensional graphic
images. A partial list of applications involving these multi-
media applications include the generation of special effects
for movies, computer animation, real-time simulations,
video teleconferencing, Internet-related applications, com-
puter games, telecommuting, virtual reality, high-speed
databases, real-time interactive simulations, medical diag-
nostic 1maging, etc.

The reason behind the proliferation of multimedia appli-
cations 1s due to the fact that much more mnformation can be
conveyed and readily comprehended with pictures and
sounds rather than with text or numbers. Video, audio, and
three-dimensional graphics render a computer system more
user Iriendly, dynamic, and realistic. However, the added
degree of complexity for the design of new generations of
computer systems necessary for processing these multime-
dia applications 1s tremendous. The ability of handling
digitized audio, video, and graphics requires that wvast
amounts of data be processed at extremely fast speeds. An
incredible amount of data must be processed every second in
order to produce smooth, fluid, and realistic full-motion
displays on a computer screen. Additional speed and pro-
cessing power 1s needed 1n order to provide the computer
system with high-fidelity stereo, real-time, and interactive
capabilitiecs. Hence, speed 1s of the essence 1n designing
modern, state-of-the-art computer systems.

One of the major bottlenecks 1n attaining faster, greater
bandwidth computer systems pertains to the current bus
architecture. The standard bus architecture found 1n most
personal computers today 1s the Peripheral Component
Interconnect (PCI) bus. A PCI bus is comprised of a set of
wires that 1s used to electrically interconnect the various
semiconductor chips and input/output devices of the com-
puter system. Electric signals are conducted over the bus so
that the various components can communicate with each
other. This type of bus architecture offers a simple, efficient,
and cost-effective method of transmitting data. For a time, 1t
was also sufficient to handle the amount of data flowing
between the various devices residing within the computer
system. However, as the demand for increased amounts of
data skyrocket, the PCI bus is rapidly becoming inadequate

to handle the increase 1n data transmissions.

In light of the shortcomings inherent to the PCI bus
architecture, designers have to find ways to improve the

10

15

20

25

30

35

40

45

50

55

60

65

2

speed at which bits of data can be conveyed. For example,
onc such solution 1s to implement a switched router as
described 1n the patent application entitled “Packet Switched
Router Architecture For Providing Multiple Simultaneous
Communications,” Ser. No. 08/717580, filed on Sep. 23,
1996, and assigned to the assignees of the present invention.
Rather than having a shared bus arrangement, a central
“switchboard” arrangement 1s used to select and establish
temporary links between multiple devices. Packets of data
are then sent over the links. By selecting and establishing,
multiple links, the central switchboard allows multiple pack-
ets to be simultancously sent to various destinations. This
results 1n significantly greater bandwidth. There exist many
different, improved bus architectures to meet the high band-
width requirements.

However, a common problem with any new bus archi-
tecture 1s that various peripheral devices designed specifi-
cally for connection to a PCI bus are now rendered incom-
patible. Existing PCI devices (e.g., modems, disk drives,
network controllers, printers, etc.) are designed specifically
for a PCI type bus scheme. As such, they are incompatible
with and cannot be connected to any non-PCI based bus
design. Of course, the computer industry could establish a
new, faster bus standard. However, this 1s a lengthy,
complicated, highly contentious, and extremely expensive
process. The entire computer industry would have to make
a wholesale switch over to the new bus standard. And until

a new bus standard 1s adopted, computer manufacturers are
hobbled by the outdated PCI bus architecture.

An alternative option 1s to implement a PCI bus 1n
conjunction with a new, faster bus architecture (e.g., a packet
switched router architecture). A bridge device is interposed
between the two different bus schemes and acts as an
interface. This approach works fine, except that an extra
delay 1s incurred when data 1s routed through the bridge. In
particular, the main memory and CPU are coupled to the
new bus structure on one side of the bridge to take advantage
of i1ts higher bandwidth, whereas the PCI devices are
coupled to the PCI bus on the other side of the bridge.
Consequently, read/write operations mvolving PCI devices
require that data be routed to/from a PCI device via the PCI
bus, through the bridge, to the new bus, and to/from the main
memory. These memory accesses through the bridge result
in added memory latencies. The extra memory latencies
assoclated with the bridge may exceed the tolerances of
some PCI devices. Thus, there 1s a need for some mechanism
to hide or minimize this memory latency so that high speed
PCI devices may be serviced. The present mvention pro-
vides a novel, effective solution for minimizing latencies in
a way that allows standard PCI devices to operate and yet
keeps up with higher data rates. The present invention
accomplishes this feat by implementing a combination of
special write gathering/buffering, read prefetching/
buffering, flushing, interrupt, and virtual device operations.

SUMMARY OF THE INVENTION

The present i1nvention pertains to a mechanism 1n a
computer system for minimizing memory latencies. An
improved, high-speed packet switched router 1s used to route
packets quickly and efficiently between the microprocessor
and the main memory. The computer system also supports
PCI devices by implementing a bridge which acts as an
interface between a PCI bus and the packet switched router.
In order to minimize the memory latencies for PCI based
memory accesses through the bridge, a plurality of read and
write buffers are implemented. Write gathering 1s used to
cgather multiple write transactions on the PCI bus into the

5,915,104

3

write buifers and sent by the bridge as one cache line sized
transfer to the routing mechanism. This write gathering
technique 1s performed on a per device basis rather than on
a bus basis. Consequently, the bridge may select particular
devices to perform write gathering, while exempting other
devices.

For PCI based read operations, data i1s pre-fetched from
the main memory and stored in the read buifers. Thereby,
PCI devices can access the read buffers multiple times to
retrieve the requested data. Furthermore, there are three
different types of read operations: precise reads, non-precise
reads, and pre-fetched reads. Other features of the present
invention include a virtual device, whereby one or more
specific bits are used to differentiate between multiple
streams running on a single PCI controller. Buffers are
allocated according to these bits. Thereby, multiple streams
will not interfere with each other while data integrity 1s
preserved. Another aspect of the present invention pertains
to a novel use of interrupts. Specific buffers may be flushed
under the control of an interrupt signal. These and other
features of the present invention are claimed and described
in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example,
and not by way of limitation, 1n the figures of the accom-
panying drawings and 1in which like reference numerals refer
to similar elements and 1n which:

FIG. 1 shows an exemplary computer system upon which
the present invention may be practiced.

FIG. 2 shows a detailed block diagram of the currently
preferred design for the bridge.

FIG. 3 shows a flowchart describing the steps for per-
forming read operations with pre-fetching.

FIG. 4 shows a flowchart describing the steps for per-
forming write gathering.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present mnvention. It will be
obvious, however, to one skilled 1n the art that the present
invention may be practiced without these specific details. In
other 1nstances, well-known structures and devices are
shown 1n block diagram form 1n order to avoid obscuring the
present invention. It should further be noted that there exists
many different computer system configurations to which the
present invention may be applied. One such exemplary
computer system 1s shown in FIG. 1. Switched packet router
101 has a pair of direct point-to-point connection to memory
controller 102. Memory controller 102 facilitates the trans-
fer of data between one or more microprocessors 103 and
main memory 104, which 1s comprised of DRAM SIMMs.
A high-speed (e.g., 1 GBytes/sec) memory bus 105 is used
to couple memory controller 102 with the actual main
memory 104. To improve performance, the microprocessors
103 can temporarily cache data in the SRAMs 106. Other
“widgets” or devices which may be connected to switched
packet router 101 include one or more graphics subsystems
107-108. The graphics subsystems 107-108 perform func-
fions such as scan conversion, texturing, anti-aliasing, etc.
Furthermore, a video board 109 having compression/
decompression capabilities can be connected to switched
packet router 101. Additional devices may also be connected
to the switched router 101. Each of the devices connected to

10

15

20

25

30

35

40

45

50

55

60

65

4

switched router 101 has 1ts own dedicated transceiver for
transmitting and receiving digital data. Each device also has
two links: one for transmit (source link) and one to receive
(destination link). A link is defined as the physical connec-
tion from the switched router 101 to any of the connected
devices. A link may be uni-directional or bi-directional.

The currently preferred bus architecture employs a high-
speed, packet-switched protocol. A packet of data refers to
a mmimum unit of data transfer over one of the links.
Packets can be one of several fixed sizes ranging from a
double word (i.e., 8 bytes) to a full cache line (i.e., 128
bytes) plus a header. Packets are comprised of a 32-bit
command word and some or all of the following: a 48-bit
address, 16-bit remote map field, data field, and a data
enable word. The command word contains destination and
source 1dentification numbers, packet type, transaction
number, data size, arbitration and control bits. The packets
can be grouped into two functional types: request packets
and response packets. A request packet 1initiates an
operation, whereas response packets are those which reply to
a request packet. One or more packets of data are transmitted
from one or more source devices over the established links
through the switched router 101 to one or more destination
devices. Afterwards, switched router 101 can be commanded
to establish different links between different devices.
Thereupon, packets of data may be transmitted from any of
the 1mterconnect devices. With this new routing architecture,
bandwidth 1s increased to the desired degree merely by
establishing additional links. The switched router 1s
described 1n detail 1n the patent application entitled “Packet
Switched Router Architecture For Providing Multiple
Simultaneous Communications,” Ser. No. 08/717580, filed
on Sep. 23, 1996, and assigned to the assignees of the
present 1vention.

A bridge device 110 may also be connected to switched
router 101. The bridge 110 acts as an interface so that
various off-the-shelf PCI devices (e.g., printers, monitors,
modems, disk drives, etc.) may be coupled to the computer
system via standard SCSI 111, IOC 112 and audio 113 ports.
A second bridge 114 may be added to provide expansion PCI
slots 115-117. Ports 118 and 119 are used to provide future

crowth and upgradeability for the computer system.

FIG. 2 shows a detailed block diagram of the currently
preferred design for the bridge. The bridge 1s implemented
as an ASIC chip for providing communications with the
system through an 8-bit interconnect link to the packet
switched router and a standard PCI bus.

The PCI Local Bus 201 1s a 32-bit or 64-bit bus with
multiplexed address and data lines. The synchronous bus can
operate at a speed up to 33 MHz in burst mode which
provides a very high host/memory to peripheral transfer rate.
The bus 1s processor independent and devices are coniig-
urable by the host. PCI devices can act as a bus master to
transfer data to and from the host or they can access other
local PCI devices or devices on another side of the packet
switched router. Supporting PCI Bus allows the user to have
a large number of third party high performance, low cost
peripheral devices to choose from to provide most function-
alities and best I/O throughput. GIO Bus is very similar to
PCI Bus. They both have multiplexed address/data buses,
device dedicated bus request/grant lines, and both support
burst transter mode. The Bridge supports a 64-bit pipelined
GIO Bus. The Bridge functions as both master 202 and slave
203 to the GIO Bus.

The request dispatcher 204 decodes and distributes all
incoming requests to the different functional units. It 1s also

5,915,104

S

responsible for returning the response from those requests,
providing any address ftranslation, and error checking.
Packet switched router to PCI/GIO bus translation mecha-
nism consists of generating a PCI/GIO bus address from the
packet switched router address. This translation occurs using,
fixed regions defined 1n device slot space and auxiliary I/O
space. The request generator 205 1s responsible for request
packet generation, address translation, and response bufler
management. The request generator translation mechanism
uses two mapping techniques, a direct map scheme for a
portion of system memory and a page mapped scheme for
the rest. The direct map scheme uses internal registers and
predefined areas to perform mapping. The page map scheme
uses a Page Mapping Unit (PMU) to perform address
franslation on a page basis. To speed up the read access
performed by the PCI/GIO devices to data residing across
the packet switched router Bus, the Prefetcher circuit 206
decides whether to prefetch more data following current
address. This enables faster read response time when
sequential reads are performed by the PCI/GIO I/0O devices.

Data Buffers 207 provide speed and data buffering
between packet switched router Interconnect and PCI/GIO
circuit. It off loads read/write packets from high speed,
non-stallable Switched packet router Bus to the lower
performance, two-way handshaking PCI/GIO buses 201.
When the command 1s from PCI/GIO to Switched packet
router, address and data are first gathered at Data Buifers 207
before they are read by the PCI/GIO PMU. The SSRAM/
FLLASH controller 208 supports local SSRAM used by the
PMU for storage of address translation entries and FLASH
for boot support. The internal registers 209 1 the Bridge
reside 1n a Switched packet router address region known as
“widget space”. Every widget has a 16 MByte widget space
located 1n system address space based on widget 1d number.
The Bridge ASIC can occupy any widget 1d number from
Ox2 through Oxi. All registers in the Bridge are 32-bits or
less 1n size and are aligned to a double-word boundary. The
registers are located on data bits 31:0 of the double word.
The registers can be accessed by Switched packet router
double-word packet type with 4 data enables only (32-bit
load/store only). Access by other packet type results in an
address error exception. There are two device registers 210
for each of the eight devices on the PCI/GIO bus, one
register for read response buffer allocation and the other for
general control and mapping.

The Bridge ASIC also contains special buflering for two
different data paths. The one path i1s used for operations
generated from a widget as a master (pio mode). An example
of those operations are such things as load/store operations
from the processor. The other path 1s for operations 1nitiated
by a bus master from the PCI/GIO bus (dma mode). An
example of these operation would be a SCSI DMA. The
buffering 1n the Bridge ASIC allows peak performance on
both the PCI/GIO buses and the Switched packet router
Interconnect. The next few sections define the operational
flushing policies, programming and use of the buflers i the
ASIC. The widget master buffers consist of a request fifo (in
the request dispatcher 204), a request ping-pong (in the PCI
master 211), and a response ping-pong buffer (in the request
dispatcher 204). These buffers allow smooth flow of request
operations through the bridge. The request fifo holds 1nitial
requests until the request dispatcher 204 can route the
request to the proper section of the Bridge ASIC. This fifo
can hold three cache line or quarter cache line write requests
or up to fifteen, read or double word write requests. The
Bridge automatically handles the packing and proper credit
management of smaller packets. If the operation 1s to the

10

15

20

25

30

35

40

45

50

55

60

65

6

PCI/GIO bus, the ping-pong builer provides an additional
two operation buifer. If the operation requires a response, the

PCI/GIO bus and the SSRAM/FLLASH share the ping-pong
response bulifer.

There are two types of PCI master buffers used in the
Bridge ASIC, read response buifers and write buifers. Read
response buffers are used to hold the data returned from a
read request made by the PCI master or the prefetcher. Write
buffers are used to hold the data from a PCI master write

operation until 1t can be sent on the Switched packet router
interconnect.

The bridge ASIC contains sixteen read response buflers,
split 1nto two groups: the even device group and the odd
device group. The read response buflers are hard allocated to
a PCI master device by using the even/odd device response
buffer registers. The PCI device number 1s based on which
physical bus request/grant pair 1s used. The Bridge ASIC
PCI bus supports eight bus request/grant pairs. To allocate a
buffer to a given device, the bufler must have its enable bit
and the two most significant bits of the device number set.
The LSB of the device number 1s implied by the use of even
or odd read response register. The reason for the even/odd
buffer 1s to reduce the compare logic required. This does
limit the maximum number of buffers which can be used
with any single bus request/grant pair to eight. In addition,
cach device can have two virtual request/grant pairs within
a single bus request/grant pair. The Bridge ASIC provides
three kinds of PCI to Switched packet router request map-
ping which effect read response bufler operations: precise,
non-precise, and prefetched. All read operations require at
least one buifer to be allocated to that bus request/ grant pair.
Those devices which can use multiple buifers, a buffer must
be ready to be assigned to the current transaction. If all the
buffers for a given device are 1n use, then the transaction 1s
retried and no information 1s stored. Since all PCI operations
which are retried with no data transfer will be repeated there
1s no data loss problems.

A precise PCI read operation causes the Bridge ASIC to
issue a retry on the PCI bus and generate a double word
Switched packet router operation requesting only those
bytes selected by the PCI byte enables. The PCI device
continues to request the bus and perform the read operation.
The Bridge ASIC will continue to issue retries until the
response arrives and then the next read operation will
provide the requested data. The Bridge ASIC compares
exact address and byte enables 1n this mode. After the read
1s complete, the buffer 1s ready for another transaction.

FIG. 3 shows a flowchart describing the steps for per-
forming read operations with pre-fetching. Initially, the
computer system performs its routine operations until a read
transaction generated from a PCI device 1s detected, steps
301-302. Thereupon, a determination 1s made as to whether
this particular read request 1s the first one 1ssued by the PCI
device, step 303. If 1t 1s not the first read request, then the
requested data 1s retrieved from the read bulifers, step 310.
Otherwise, for a first read request, a request 1s made to
retrieve an entire cache line from the memory, step 304. A
determination 1s made as to whether the prefetch attribute
was set for this particular PCI device, step 305. If the
pre-fetch attribute was not selected, the data 1s retrieved
from the read buflers, step 310. Otherwise, sequential cache
lines from the memory are loaded into the read buifers, step
306. This process continues until either the read buflers
become full (step 308), a page boundary is encountered (step
309), or the buffers are caused to be flushed (step 309). Next,
the buffers are read, step 310. Subsequent read transactions
can access the same buflers because data had been subse-

5,915,104

7

quently prefetched. Subsequent bulfer accesses can continue
until either the last word has been retrieved (step 311), the
buffers are caused to be flushed (step 312), or the end of the
page is encountered (step 313). Thereupon, the read buffers
can be reused, step 314.

Read response buffers filled by a precise operation are
flushed based on the following rules: 1) When a write from
the same master and an address match occurs; 2) When an
interrupt occurs from a interrupt pin assigned to the device
associated with the buffer; 3) Single access to the buffer

(normal completion); 4) PCI master write access to Ox3fff
0000 through Ox3fff ffff; and 5) PIO flush.

A non-precise PCI read operation behaves like the precise
fransaction except that the Bridge ASIC generates a
Switched packet router cache line address bits are used for
the compare. Accessing the buifer at any address within the
cache line provides a response and will continue (bursting)
until either the end of the cache line 1s reached or the PCI
cycle 1s terminated by the master. At this point, the buffer is
ready for reuse. Read response buifers filled by a non-
precise operation are flushed based on the same rules given
above for precise operations.

A prefetched PCI read operation starts similar to the
previous operation. First, a retry 1s 1ssued on the PCI bus; a
Switched packet router cache line request 1s 1ssued, and the
prefetcher 206 1s enabled for this transaction. The prefetcher
206 stores the next cache line address and looks for addition
free bullers currently assigned to the requesting device. It
additional assigned buffers are free, then the prefetcher 206
will launch incremental cache line read requests until all the
buffers are 1n use. The prefetcher 206 can be enabled to stop
at either a 4K or 16K page boundary. The prefetcher 206 will
continue to search for free bullers and posting read request
until either a page crossing or a flush condition 1s reached.
The prefetcher 206 can only increment linearly on physu:al
addresses. Prefetched reads also effect when a builler is
available for the next transaction. Both the precise and
non-precise operation only allow a single bus tenure to
access the buffer then the buffer free for use in the next
transaction. The prefetched buffer allows multiple bus ten-
ures to access the buffer until the last (most significant word)
single/double word 1s accessed (32-bit/64-bit bus). With the
last access, the buffer 1s ready for another transaction. In the
currently preferred embodiment, the Bridge 1s optimized for
a burst length of 128 byte boundary. The cache line size on
this machine 1s 128 bytes. By doing transfers that are exactly
one cache line the cache coherency operations are much
more cflicient. The memory system 1s also optimized for
blocks of this size and alignment. Other size transfers will
work, but they will not be as efficient.

Read response buffers filled by a prefetch operation are
flushed based on the following rules: 1) When any non-
sequential read 1s performed by the PCI master (breaking
stream); 2) When a write from the same master occurs; 3)
When an interrupt occurs from a interrupt pin assigned to the
device associated with the buffer; 4) Access to the last word
of data in the buffer (normal completlon) 5) PCI master

write access to Ox3fff 0000 through Ox3fff ffff; and 6)
PIO flush.

Now, the PIO(Processor) Flush operation i1s discussed.
The read response buflers can be cleared with a PIO by
setting the corresponding enable bit 1n the even/odd read
response butfer registers 212 to zero, then checking the read
response buifer status register. If the RRB__INUSE bit 1s set
then, one must wait until the RRB VALID bit 1s set and the
RRB__INUSE bit 1s clear. A PIO to the corresponding

10

15

20

25

30

35

40

45

50

55

60

65

3

RRB__CLEAR bit clears the buffer. If both the RRB__
VALID and RRB__INUSE are dear then the buffer is
Cleared This 1s also the mechanism used to reasmgn buffers
“on the fly” to other devices. When a bufler 1s clear and
disabled, 1t can be reassigned to another device.

From the above rules of operation for the read response
buffers, a single PCI master device could have either a single
prefetch stream, or multiple random precise/non-precise
requests equaling the number of buffers allocated. This
functions well for some devices, but others (e.g., scsi
controllers) may have a large data stream which uses the
prefetch feature and an occasional dma descriptor read to an
unrelated address. Using the above rules, the data stream 1s
flushed on every descriptor read. This will negativity impact
performance. It 1s for cases like these, that the virtual request
feature solves. To use this feature, the PCI master must be
able to generate 64-bit PCI addresses. The Bridge uses PCI
address bit §7 to differentiate between the virtual read
streams. The even/odd read response buliler registers have a
bit for each buffer to select virtual buffer. This bit 1s
compared against address bit 57 1n selecting or clearing the

bufters.

Unlike the read response buffers, the seven write buflers
residing within the PCI slave datapath 213, are dynamically
allocated by the PCI slave logic. This allows the maximum
performance for the minimum amount of buffer ram. The
Bridge ASIC supports a dual ring arbitration scheme, allow-
ing PCI devices to be either real-time or not. Any non-real
time device must leave two write buifers free at all times. If
a write occurs and only two buflers are free, then the write
1s retried until more buifers are free. Any real time device
cannot use more than five buffers at a time, and must leave
at least one free 1f 1t already has write buifers 1n use.

These rules apply to all cache line aligned transfers.
Non-aligned transfers must be broken up 1nto quarter cache
transfers (on the Switched packet router interconnect) or
write gathered. PCI devices which are not able to burst an
entire 128 byte cache might use write gathering mode on the
write bulfers. By setting the write gather bits in the device
(x) registers, when a write occurs, the data is gathered into
larger units to be sent on Switched packet router. A PCI
device can only have a single write gather bulfer 1n use at
one time.

FIG. 4 shows a flowchart describing the steps for per-
forming write gathering. Initially, the computer system
performs 1its routine operations until a write transaction
generated from a PCI device 1s detected, steps 402.
Thereupon, a determination 1s made as to whether that
particular PCI device has been designated for write
cgathering, step 403. If 1t has not been selected to be write
cgathered, the data 1s written to the main memory via the
bridge, step 406. Otherwise, the data to be written 1s stored
in the write buifers, step 404. At that point, step 4035
determines whether a cache line has been filled. If an entire
cache line 1s full of data, a single write transaction to the
main memory from the bridge 1s executed, step 407. Normal
operations continue, step 401.

Flushing of the write buflers 1s done when the following
occurs: 1) A read from the device corresponding to the
gather buffer; 2) A non-contiguous write; 3) An interrupt
from the interrupt pins associated with the device; 4) A PIO
access to the write request bufler flush register; or 5) PCI
master write access to Ox31if_ 0000 through Ox3{f {ffl. In
the currently preferred embodiment, the interrupt controller
214 can also influence the buffer flush management for a
device. When a device finishes transferring data to or from

5,915,104

9

the Bridge, there may be partially filled data in the write
gathering buffer or unused prefetched data in the read buifer.
The device can initiate an mterrupt or do a memory write to
spemﬁed address to flush the buffer and invalidate all the
data 1n those buffers which are assigned to the device. If the
device uses an interrupt pin to flush/invalidate data butfers,
the interrupt packet will be sent after the data. The interrupt
pins must be assigned to each device using the interrupt
device register. Multiple pins can be assigned to a single
device.

The memory latency 1ssue 1s now described 1n further
detail. As described above, the Bridge ASIC connects the
PCI bus to the system bus. The system bus then connects to
main memory. This means that the latency to main memory
1s longer than 1n a computer whereby the PCI bus is directly
connects to main memory. By not connecting the PCI bus
directly to the main memory, a computer can have multiple
PCI buses, and the total I/O bandwidth of the system 1s not
limited to the bandwidth of a single PCI bus.

To mitigate this longer memory latency, the Bridge can
prefetch data from memory. When a PCI device first issues
a read the Bridge will retry the read since 1t does not have
any data for the read. Then the Bridge will send a request for
a cache line, 128 bytes, to the destination. If the prefetch
attribute 1s set then the Bridge will continue sending read
requests for sequential cache lines. If the device 1s accessing
data sequentially, the Bridge will have the data the device 1s
requesting for the next transaction. The Bridge will stop
sending requests for more cache lines when it runs out of
read buflers assigned to that device, gets to a page boundary,
or a condition has occurred that causes the read buifers to be
flushed. Conditions that cause the prefetch buifers for a
device to be flushed are: a non-sequential read 1s 1ssued, the
device 1ssues a write, software invalidates the prefetch
buffers, or the device generates an interrupt. Once the PCI
device has read the last word 1n a data buffer the buffer is
reused and the Bridge will send out another read request
unless the read bufl

ers have been flushed for some reason or
the prefetcher has reached the end of the page.

The Bridge also supports write gathering to make main
memory writes more eifi

icient. The write gatherer holds 128
bytes. Each coherent memory write needs to send an mvali-
date or intervention to the processor. Writes that are less than
a quarter cache line boundary will require a read-modify-
write sequence to write the data 1nto main memory. For these
reasons, the write gatherer tries to convert partial cache line
writes 1mto cache line writes to main memory so that they
can be handled much more efficiently. The write buifer is
flushed when the PCI device 1ssues a read, writes to a
non-contiguous address, generates an interrupt, or 1s flushed

by software.

For the first access to a region 1 main memory, the
latency will be very long. If prefetching 1s used however,
sequential accesses should be much faster since the data
should be 1n the Bridge most of the time before the PCI
device requests the data. The latency for the first access to
a region depends on many factors, such as the priority of the
device on the PCI bus, the number of PCI cards installed 1n
the system at the same PCI priority; and the number and
priority of devices connected to the system bus.

il

To maximize performance and efficiency of the whole
computer, PCI devices should transfer 128 byte blocks that
are aligned to a 128 byte boundary. Because the Bridge 1s
optimized for this size transfer, 1t disconnects when 1t 1s the
target of a read and gets to a 128 byte boundary even 1f it has
prefetched the next cache line. This also limits a device’s

10

15

20

25

30

35

40

45

50

55

60

65

10

time on the bus to approximately 1 us (i.e., the time to
transfer one cache line for a 32 bit device assuming neither
device stalls during the transfer).

During write transactions where the Bridge 1s the target,
the Bridge disconnects at 128 byte boundaries or whenever
a PCI device writes only part of a 32 byte aligned block. For
example 1f a PCI device wants to write 67 bytes starting at
address 32 with no data being transferred at bytes starting at
address 32 with no data being transferred at byte address 68
(using the byte enables), the Bridge accepts the first 32 bytes
from byte address 32 to 63 and 1t will accept the next 31
bytes from address 64 to 95, but then 1t will disconnect
because the second 32 bytes were not contiguous. Only 63
bytes will be transferred even though the master wanted to
transier 67 bytes because the second block of 32 bytes was

not contiguous.

It 1s therefore important that whenever possible a PCI
device transfer 128 byte blocks that are aligned to 128 byte
boundaries. This 1s very important when designing the
buffering on a PCI device. The loss 1n efficiency will not
only be 1n the memory system but also in arbitration, getting
on and off the bus, and the address cycle to data overhead.
Also, because the PCI arbiter 1s a round robin arbiter, a
device 1n a busy system will have to wait its turn 1f a transfer
takes multiple transactions.

It 1s also important to understand some of the address
attributes that are used by the Bridge. These attributes are
used to make ftransfers more efficient. If the prefetch
attribute 1s set, then the Bridge holds on to data 1t reads from
main memory until the PCI device that requested the data
reads a byte or more of the last double word of the cache
line, 128 bytes, or 1t 1s flushed for some reason. This attribute
bit also causes the Bridge to read sequential data before the
PCI device requests 1t. Prefetching 1s required to achieve any
reasonable bandwidth on the PCI bus.

There are two basic types of reads: prefetched and not
prefetched. The reads that are not prefetched are used when
a small amount of data from sequential addresses 1s to be
read. Prefetched reads are used when a lot of sequential data
will be accessed. Read prefetching is required for reads from
a PCI device to main memory in order to maintain reason-
able read memory bandwidth. When a PCI device tries to
read data from main memory which has not already been
read by the Bridge, 1t will terminate the read with a retry. The
Bridge will then 1ssue one or more cache line reads to main
memory 1f the prefetch attribute 1s set. The number of cache
lines 1t will request depends on the number of read buifers
software has assigned to that PCI device. There are 16 read
buffers that have to be shared by all of the PCI devices. A
PCI device can have a maximum of 8 read builers assigned
to 1it. Some time after the device was i1ssued a retry, it will
request the PCI bus again and try the read request again. The
Bridge will continue 1ssuing retries until it has the data from
memory. Once 1t has the data, 1t will transfer the data until
the 1nifiator terminates the transfer or when a cache line
boundary 1s crossed, the Bridge will 1ssue a disconnect. The
Bridge always disconnects on reads that cross cache line
boundaries even 1if it has prefetched the next cache line of
data.

The Bridge will continue 1ssuing read requests to main
memory reusing the buifers that the device has read to the
end of, until 1t reaches a page boundary, or an event occurs
that causes all of the buifers for that PCI device to be
flushed. The page boundary can be programmed to be 4 K
or 16 K bytes long.

For write gathering, the Bridge contains seven write
buffers that are dynamically allocated. The write gatherer’s

5,915,104

11

function 1s to combine multiple write transactions on the PCI
bus 1nto one cache line sized transier on the system bus. Four
of the buflers can be used as write gatherers. Write gathering
improves the system efliciency because it reduces the num-
ber of cache coherency operations to the processor since one
1s done for each system bus transaction if the coherency
attribute 1s set and the memory system 1s optimized for cache
line size operations. A PCI device can enable the write
cgatherer by setting the write gathering by setting the write
gathering attribute 1n the device register. This enables write
cgathering for all writes that the device does using direct
mapped space. A PCI device can only have one write
gathering operation 1n progress at a time. When a PCI device
writes to the end of a cache line, the buifer will always be

written to memory.

A write buffer gets written to main memory when: 1) The

PCI device that owns the write buffer issues a read; 2) The
write data 1s not contiguous in address or the byte enables
are not all asserted for each data transfer; 3) An interrupt
occurs for the PCI device that owns the write buffer; 4) The
processor accesses the write request buifer flush register; or
5) The PCI device writes anything to the reglon Ox3ttt 0000
to Ox3Mif . The data on the write to this region 1s dropped

by the Bridge.

Another attribute, known as the virtual request attribute,
1s for PCI devices that wish to have two outstanding
prefetched read streams at the same time. Because of the
rules of when the prefetch buil

ers get flushed, two outstand-
ing streams would just thrash each other without the virtual
request attribute. This attribute decouples the two streams so
that requests for one stream do not affect the prefetch buifers
for the other stream. Hence, the virtual request attribute 1s
for PCI devices that need to have two concurrent prefetched
read streams. Because of the rules of when the prefetch
buffers get flushed, two outstanding streams would just
thrash each other without the virtual request attribute. This
attribute decouples the two streams so that requests for one
stream do not affect the prefetch buflers for the other stream.

Hence, the virtual request attribute 1s for PCI devices that
need to have two concurrent prefetched read streams.
Because of the rules of when the prefetch buffers get flushed,
two outstanding streams would just thrash each other.
Hence, 1n light of this shortcoming, the virtual request
attribute was 1mplemented. This attribute effectively
decouples the two streams so that requests for one stream do
not affect the prefetch buffers for the other stream.

The wvirtual attribute can also support having one read
stream and one write stream. Normally, a write will cause all
of the prefetch read buflers for that PCI device to be
invalidated, but 1if the read stream and the write stream have
different virtual request attributes then the write will not
invalidate any of the read buffers with the opposite virtual
request attribute unless the cache line address of the read and
write are the same. When the write occurs all of the read
buifers with the same virtual request attribute will be 1mnvali-
dated. When a PCI device i1ssues a write, the address 1s
compared to the addresses of all of the read buffers owned
by that PCI device, including ones with the opposite virtual
request attribute and if there are any matches that read buffer
1s mnvalidated.

The wvirtual request attribute 1s only available for PCI
devices that 1ssue dual address cycles. This attribute 1s not
present 1n the page map or 1 direct mapped space. This
feature can be very useful for any PCI device that requires
two unrelated concurrent transfers. When read buffers are
assigned to a device the virtual request attribute 1s also

assigned to the buffer.

10

15

20

25

30

35

40

45

50

55

60

65

12

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, and obviously many modifications and variations
are possible 1n light of the above teaching. The embodiments
were chosen and described mm order to best explain the
principles of the invention and its practical application, to
thereby enable others skilled 1n the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It 1s
intended that the scope of the mvention be defined by the
claims appended hereto and their equivalents.

What 1s claimed 1s:

1. A computer system comprising;:

a routing mechanism for routing packets of data;

a processor coupled to the routing mechanism for pro-
cessing the data;

a memory coupled to the routing mechanism for storing
the data;

a PCI bus for conveying PCI format data;
a PCI device coupled to the PCI bus;

a bridge coupled between the routing mechanism and the
PCI bus for providing an interface between the PCI bus
and the routing mechanism;

a plurality of write buffers coupled to the bridge, wherein
a plurality of write transactions on the PCI bus are
combined into one cache line sized transfer to the
routing mechanism;

a plurality of read buil

ers coupled to the bridge, wherein
data fetched according to a read request from the device
1s stored 1n the read buffers and the device can access
the read buffer multiple times to retrieve the data;

a prefetcher coupled to the bridge, wherein when the PCI
device generates a read request and there 1s no corre-
sponding data contained 1n the read buifers, the bridge
reads sequential cache lines until the read buflers are
tull, a page boundary 1s encountered, or the read buffers
are caused to be flushed.

2. The computer system of claim 1, wherein the read
buflers are flushed when a non-sequential read 1s 1ssued, the
device 1ssues a write, or the buffers are invalidated.

3. The computer system of claim 1, wherein there are
different types of read operations including a precise read
operation.

4. The computer system of claim 1 further comprising an
interrupt controller coupled to the PCI bus, wherein the
interrupt controller performs buffer management for devices
coupled to the PCI bus by using an interrupt signal.

5. The computer system of claim 1 further comprising a
mechanism for performing write gathering, wherein a plu-
rality of write transactions on the PCI bus are combined into
one cache line sized transfer to the routing mechanism.

6. The computer system of claim 3, wherein the different
types of read operations include a non-precise read opera-
tion.

7. The computer system of claim 6, wherein the different
types of read operations include a pre-fetch read operation.

8. A computer system comprising;:

a routing mechanism for routing packets of data;

a processor coupled to the routing mechanism for pro-
cessing the data;

a memory coupled to the routing mechanism for storing
the data;

a PCI bus for conveying PCI format data;

5,915,104

13
a PCI device coupled to the PCI bus;

a bridge coupled between the routing mechanism and the
PCI bus for providing an interface between the PCI bus
and the routing mechanism;

I

a plurality of write buffers coupled to the bridge, wherein
a plurality of write transactions on the PCI bus are
combined mto one cache line sized transfer to the
routing mechanism;

a controller coupled to the PCI bus for controlling mul-

tiple streams of data and multiple virtual buffers so that

a bit 1s used to select or clear particular virtual buffers.

9. In a computer system, a method for minimizing

memory latencies corresponding to memory accesses

through a bridge coupled between a memory and a device,
comprising the steps of:

1ssuing a write request by the device;
transmitting the write request over a PCI bus to the bridge;
combining a plurality of write requests;

storing the write requests 1into a write buifer;

transmitting a single write transaction corresponding to
the combination of write requests from the bridge to the
memory through a routing mechanism;

pre-fetching data from the memory according to a read
request generated by the device;

storing the data 1n a plurality of read buffers coupled to the
bridge;

accessing the read buffer multiple times to retrieve the
data;

continuing to prefetch data until either the read bu
tull, a page boundary 1s encountered, or the read
are caused to be flushed.

ers are
buftters

10

15

20

25

30

14

10. The method of claim 9 further comprising the step of
flushing the read buflers flushed when a non-sequential read
1s 1ssued, the device 1ssues a write, or the buffers are
invalidated.

11. The method of claim 9, wherein there are different
types of read operations including a precise read operation.

12. The method of claim 9 further comprising the step of
performing buffer management for devices coupled to the
PCI bus by using an interrupt signal.

13. The computer system of claim 9 further comprising
the step of write gathering, wherein a plurality of write
transactions on the PCI bus are combined 1nto one cache line
sized transfer to the routing mechanism.

14. The method of claim 11, wherein the different types of
read operations 1nclude a non-precise read operation.

15. The method of claim 14, wherein the different types
of read operations include a pre-fetch read operation.

16. In a computer system, a method for minimizing
memory latencies corresponding to memory accesses
through a bridge coupled between a memory and a device,
comprising the steps of:

1ssuing a write request by the device;

transmitting the write request over a PCI bus to the bridge;
combining a plurality of write requests;

storing the write requests into a write bufler;

transmitting a single write transaction corresponding to
the combination of write requests from the bridge to the
memory through a routing mechanism;

controlling multiple streams of data and multiple virtual
buflfers, wherein a bit 1s used to select or clear particular
virtual buifers.

	Front Page
	Drawings
	Specification
	Claims

