US005911054 A
United States Patent (19] 11] Patent Number: 5,911,054
Jahr et al. (451 Date of Patent: Jun. 8, 1999
[54] SINGLE-OPERATION LIST ENTRY UPDATE 5,200,959 4/1993 Gross et al. .ooovvvvvveiniiininnnnn, 371/21.6
METHOD IN MIXED BUS ENVIRONMENTS 5,463,772 10/1995 Thompson et al. w....o.ecoorer..... 305/281
5,644,784 T/1997 PEEK covevrreerererereeresrerereserennas 395/844

|75] Inventors: Steven J. Jahr, Granite Bay; Patrick
A. Bueb, Auburn, both of Calif.

Primary Examiner—Ayaz R. Sheikh

73] Assignee: Hewlett Packaged Company, Palo Assistant Examiner—Ario Etienne

Alto, Calif.

[57] ABSTRACT
[21] Appl. No.: 08/841,247
Atomic list insertion 1s provided for multi-master bus opera-

22| Filed: Apr. 29, 1997 fion where masters use different sized bus transactions that
51] Int. CL e GO6F 13/00 require special management techniques to prevent inter-
52] US.CL o, 395/307; 395/306; 395/308 leaved accesses from returning invalid data. The update of a
58] Field of Search 395/307, 308, list entry. Next field is made an atomic operation, where

395/306 atomic 1s defined as indivisible. To this end, the list entry.
56] Reforences Cited Next field 1s subdivided mto two parts and a terminator list

entry 1s provided.
U.S. PATENT DOCUMENTS

5,157,620 10/1992 ShAQr «eoveveeveeeeeeeeeeeeeeeeeeenene. 364/578 27 Claims, 1 Drawing Sheet

3/ I35

I/0 Controller Shared System RAM /44

ASIC 42
o] 50—_\ 45 - 51 43_\48_‘ 52 Terminator 47
| Control Registers | List Entry List Entry List Entry
- |
 [CorenListenty
i | Status | | Status | | Status
Ex A N\3g B 4 C \ 4

30

U.S. Patent

16/32 bit
Microprocessor

(eq: m68000)

Jun. §, 1999

5,911,054

Shared System
RAM

I/0 Controller
ASIC

(eq: Ethernet)

Bus Bridge 1z
— ASI —
17 16—-bi1t wide bus (eq: PgI) 39_hit wide bus
L
10/ FIG. 1
(PRIOR ART)
17 15
I/0 ig;ém”er Shared System RAM
e 24
- : N 254 23 26 \ 27-
E Control Reqisters | List Entry List Entry List Entry
- |
 [CurrentListEntry
= | | [states | [status | [Status
A\ 2g B\ C \3
20/ FIG. 2
37 35 (PRIOR ART)
I/0 igr%(t:roller Shared System RAM /4
Ie 18-
T 50—-\ 96 - 51 43_\ 72’3\ Terminator 47
| Control Registers | List Entry List Entry List Entry
I
| [CurrentlistEntry
i | | LStotus | [Status | | Status
3 ANz B Vg C \y

30; FI1G.

5,911,054

1

SINGLE-OPERATION LIST ENTRY UPDATE
METHOD IN MIXED BUS ENVIRONMENTS

BACKGROUND OF THE INVENTION

1. Technical Field

The mvention relates to a computer bus architecture.
More particularly, the invention relates to multi-master bus
operation where bus masters use different sized transactions
in a list-based task communications scheme.

2. Description of the Prior Art

A typical computer bus architecture, 1.€. one that includes
multiple bus masters which have differing bus sizes and that
use a list-based task communications scheme, 1s shown 1n
FIG. 1. For purposes of the discussion herein, a bus “master”
shall mean a system element that 1s capable of asserting
control of the system bus, e¢.g. for purposes of memory
access. A multiple bus master architecture includes two or
more such bus masters. The computer bus architecture 10
shown 1n FIG. 1 includes the following features:

Bus cycle conversion between a 32-bit bus 12 and a 16-bit
bus 13 is performed by the bus bridge 16 (which, in this
example, is a PCI bus bridge).

Access to a shared system RAM 135 by the bus bridge 16
is arbitrated through direct memory access (DMA) protocols
and thus interleaved with accesses to the shared system
RAM 18 by a microprocessor 14 (which, in this example, is
an mo68000 microprocessor, manufactured by Motorola
Corp. of Schaumburg, I11.). The microprocessor 14 commu-
nicates with an I/O controller 17 (which, in this example, is
an Ethernet controller) directly through the bus bridge 16, as
well as indirectly through shared data stored in the shared
system RAM 15 (explained in greater detail below).

The 16/32 bit microprocessor 14 accesses 32-bit data by
using multiple 16-bit bus cycles, which may be interrupted
mid-transaction by DMA bus cycles.

Note that while not shown in this figure, other elements
may also be present in the overall system. These other
clements are generally inconsequential to the discussion
herein, except to note that they do exist and occupy system
address space.

The environment shown 1n FIG. 1 1s further defined by the
presence of a list-based I/O controller task communications
scheme, as shown 1n FIG. 2. The list based task communi-

cations scheme 20 shown 1 FIG. 2 mcludes the following
features:

Each list entry 22, 23, 24 comprises a self-contained task
to be performed by the I/O controller 17. There may be
additional arbitrary list entry fields as needed. For example,
in Ethernet controller each list entry can correspond to a
buffer into which a local area network data packet may be
received.

Each list entry provides a linkage (shown as “Next” 25, 26
in FIG. 2) to the next list entry to process in order. The last
list entry provides a NULL linkage 27 (i €., a link having a
value of zero) to signify the end of the list. The list entry

linkages are usually memory address pointers into the shared
system RAM.

The microprocessor builds lists of list entries and passes
them to the I/O controller by writing the address of the first
list entry 1n the list Into a CurrentListEntry control register
28. This write operation transfers ownership of the list
entries to the I/O controller and 1nitiates list processing.

Upon completion of processing each list entry, the 1/0
controller updates the status 29, 30, 31 of the list entry, thus

10

15

20

25

30

35

40

45

50

55

60

65

2

passing control back to the microprocessor. The I/O con-
troller then reads and follows the “Next” linkage to the next
list entry and begins processing the next list entry. This
process continues until the I/O controller comes to the end
of the list, at which point 1t goes 1dle until 1t 1s restarted by
the microprocessor, as discussed above.

Based upon the environment and operation described
above, there are two traditional approaches to managing the
I/O controller task lists. Unfortunately, both of these
approaches have fundamental problems and limitations.

One approach to managing I/O controller task lists 1s to
use a simple model, much as described above, in which the
microprocessor builds complete lists of tasks/entries, passes
these lists to the I/O controller, and then waits for all
tasks/entries to be processed. This approach has the draw-
back that the I/O controller 1s unable to process system
input/output information as long as 1t 1s 1dle. Factors which
contribute to this i1dle latency include the detection of the
completion of a final task/entry by the microprocessor, and
processing overhead that 1s associated with passing a new
list of tasks/entries from the microprocessor to the I/O
controller. In some cases, this latency leads to unacceptable
performance degradation, such as when high-speed 1nput/
output i1nformation 1s combined with a relatively slow
microprocessor. For example, 1n the environment described
above, which consists of an Ethernet I/O controller, LAN
packets could be dropped, thereby causing relatively slow
retransmission algorithms to be invoked.

Another approach to managing I/O controller task lists 1s
to have the microprocessor dynamically add new tasks/
entries to the end of the active list while the I/O controller
1s processing. This approach seems appealing because it can
climinate I/O controller 1dle time. However, based upon
typical hardware architecture operation and 1I/O controller
list processing (all as discussed above), errors can occur
when the I/O controller reads invalid Next linkages.

The steps leading to this error include:

The microprocessor reads the status in last task/entry and
determines that the I/O controller has not completed pro-
cessing the task/entry. The microprocessor determines that
there 1s a need to make a list addition and commits to making
the list addition.

The microprocessor begins updating the 32-bit Next field
in the list entry by writing the first 16-bits during a local (1.¢.
Non-bridged) 16-bit bus cycle.

The I/O controller completes processing the last task/
entry and performs a read of the Next field using DMA
interleaved access, superseding the microprocessor on the
bus. The I/O controller reads the new data written (as
described above) and old data not yet updated by the
microprocessor. The result 1s that the overall 32-bit data
value read by the I/O controller 1s mvalid because the
microprocessor has only written 16-bits of the 32-bit next
field 1n the list entry of interest.

The microprocessor then completes updating the 32-bit
Next field in the list entry by writing the last 16-bits 1n a
local 16-bit bus cycle.

Detecting and recovering from I/O controller address
errors 1s complex and can introduce undesirable I/O con-
troller i1dle time latency and software overhead. For
example, an I/O controller address error may lead to a
system hang, at worst, or may require a reset and
re-1nitialization of the I/O controller at a minimum.

It would be advantageous to provide a technique that
climinates problems associated with known approaches to

5,911,054

3

task/entry processing without requiring the provision of
additional hardware functionality.

SUMMARY OF THE INVENTION

The invention provides a system that substantially elimi-
nates problems associated with known task/entry processing
techniques, e.g. where an I/O controller 1s unable to process
system 1nput/output information while 1t 1s 1dle, and where
errors occur because the I/O controller reads invalid Next
linkages 1n a task entry list. The i1nvention solves these
problems without requiring the provision of additional hard-
ware functionality by defining a new approach to managing,
the I/O controller task/entry list. In particular, the mnvention
described herein solves list insertion problems associated
with multi-master bus operation, where bus masters use
different-sized bus transactions. The 1mnvention provides an
approach that accomplishes this by providing management
techniques which prevent interleaved accesses from return-
ing 1nvalid data. Thus, the invention provides a mechanism
for task/entry list management that makes the update of a list
entry Next field an atomic operation, where “atomic” 1s
defined as indivisible. That 1s, a list/entry Next field update
1s accomplished 1n one operation, even where a 16-bit
master (e.g2. a 16-bit microprocessor) writes to a 32-bit Next
field. Features of the invention that enable such improved
management techniques include sub-dividing the list entry
Next field into two parts, and the use of a terminator list

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block schematic diagram that provides an
example of a typical computer bus architecture to which the
invention herein may be applied;

FIG. 2 1s a block schematic diagram of a prior art
list-based I/O controller task communications scheme; and

FIG. 3 1s a block schematic diagram that illustrates a
subdivided list entry Next field and a terminator list entry
according to the mvention.

DETAILED DESCRIPTION OF THE
INVENTION

The mvention described herein solves various list inser-
fion problems concerning multi-master bus operation. For
example, the mnvention 1s readily applicable to environments
in which bus masters use different sized bus transactions,
and therefore require special management techniques to
prevent interleaved accesses from returning invalid data.

This invention may be generalized to apply to list inser-
fion 1n a broad range of environments by:

Processing the list entry Next field to generate a portion
of the list entry Next field which has a fixed value for all list
entries and a portion which 1s variant;

Scaling the variant portion of the list entry Next field to
match the width of a local bus cycle; and

Constraining all list entries such that they all are stored
within a corresponding size block of address space as
addressable by the variant portion of the list entry Next field.

Several examples are provided to explain the operation of
the 1nvention in certain specific environments. These
examples use a 16-bit master operating with a 32-bit master,
but can be generalized to other mixed size master operations
as well. Accordingly, the invention 1s not limited to the
environments described i1n the various examples, which
follow.

The invention makes the update of a list entry Next field
an atomic operation, where atomic 1s defined as imndivisible.

10

15

20

25

30

35

40

45

50

55

60

65

4

That 1s, a list entry Next field update 1s accomplished 1n one
operation, or where a 16-bit master (e.g. A 16-bit
microprocessor) writes to a 32-bit Next field. Features of the
invention that enable such improved management tech-
niques 1nclude sub-dividing the list entry Next field into two
parts, and the use of a terminator list entry.

With regard to the subdivision of the list entry Next field,
consider an example where system addresses are 32 bits
long and the list entry Next field 1s divided into high and low
16-bit words, ¢.g., in an environment having a 16-bit local

bus width (See FIG. 1).

Table 1 below shows what the address of any list entry,
and thus any corresponding list entry Next field, would be
for various address ranges.

TABLE 1
System Address List Entry Next List Entry Next
Range List Entry Address High Word Low Word

0x00000000 0x0000777?7 0x0000 0x7?777
0x0000FFFF
0x00010000 0x0001777?7 0x0001 0x7?777
0x0001FFFF

0x7?777
OxFFFFO000 OxFFFE?77?7? OxFFFF 0x7?777
OxFFFFFFFF

Note that within any of these ranges the high word of the
list entry Next field remains fixed and only the low word
varies. Thus, by constraining the list entries such that they all
reside 1in the same 64 kB block of shared system RAM, it 1s
possible to reduce the update of a list entry Next field to a
single 16-bit write which can be performed with a single
atomic bus operation which, 1n this example, occurs 1n an
environment having a 16-bit bus width.

Note that the speciiic method used to locate all list entries
in the same 64 kB block of shared system RAM 1s 1mple-
mentation dependent (they may naturally meet this location
criterion with no additional processing). However, as long as
all list entry addresses meet the following rule, they also
meet this criterion:

(Address(First List Entry) & OxFFFF0000)=(Address(All
Other List Entries & OxFFFF0000)

The details of memory allocation differ greatly between
systems and implementations. Normally, the size of the list
entry structure and the number of structures are both small
enough that they naturally reside within the 64 kB limitation.
A generic example 1s the following:

Alignment__pad=((64 * 1024)-1)
Alignment__ mask=0XFFFF0000

Entry space_needed=(sizeof(List_Entry) * Number _
of list_entries)

Address(First list entry)=malloc(Entry__space_ needed+
Alignment__pad)

Address(First_ List_ Entry)=(Address(First_ List

Entry)+Alignment pad) & Alignment mask

It should be appreciated that the foregomng example 1s
ogeneric. However, 1t 1s also highly inefficient, and those
skilled 1n the art will appreciate that more efficient tech-
niques are known, depending upon the application to which
the 1nvention 1s put.

The subdivision of the list entry Next field would be
entirely suflicient to meet the objective of an atomic update
if one were to constrain list entries further, such that they all
reside 1n the first 64 kB block of system address space.

Otherwise, the update of the NULL Next in the final list

5,911,054

S

entry would require two bus cycles, thereby making the
operation non-atomic. This approach, however, may not be
possible because system elements, other than the shared
system RAM, may occupy this region of system address
space. This problem leads to a second feature of the
invention, 1.€., the use of a terminator list entry.

FIG. 3 1s a block schematic diagram that illustrates the
fixed portion of the list entry Next field (shown as “AD” 50,
51) and the list entry 44.

The enhanced list-based communications scheme set
forth herein 1s described below. The operations mvolved 1n
such scheme are similar to those for list-based communica-
tions (as described above) with the following differences:

The high sub-part of the list entry Next field 50, 51 1s
pre-1nifialized 1n all list entries with the address of the
terminator list entry, with the one exception of the terminator
list entry, which 1s required by the I/O controller to be zero
or null 52.

The microprocessor does not add to the actual end of the
list. It mnstead inserts new list entries just before the list
terminator entry 44. Thus, the Next field 46, 48 for all list
additions ultimately links to the list terminator entry.

The microprocessor checks the status 40 of the list entry
just prior to the terminator list entry through implementation
dependent means (the last operative entry 43 in the example
shown 1n FIG. 3). If this status 40 indicates that the list entry
has not been processed by the I/O controller, then the
microprocessor commits to list insertion.

The microprocessor writes the low subpart of the list entry
Next field 46, 48 1n the last operative entry 43 during a single
bus cycle to establish a link to the new list entry.

The microprocessor validates proper list insertion by
checking Status fields 39, 40, 41 1n all List Entries. Under
normal operation and proper list insertion the Terminator list
entry 1s never processed by the I/O controller. However, the
Terminator list entry must be a valid entry to allow 1t to be
processed.

This invention may be generalized to list insertion in other
environments by:

Scaling the variant portion of the List Entry Next field, to
match the local bus width; and

Constraining all List Entries to reside within a corre-
sponding size block of address space as addressable by the
variant portion of the List Entry Next field.

Although the 1nvention 1s described herein with reference
to the preferred embodiment, one skilled in the art will
readily appreciate that other applications may be substituted
for those set forth herein without departing from the spirit
and scope of the invention. Accordingly, the invention
should only be limited by the claims included below.

We claim:

1. A method for list insertion 1n mixed bus environments,
comprising the steps of:

processing a list entry next field to generate a portion of
said list entry next field which has a fixed value for all
list entries and a portion which 1s variant; and

constraining all said list entries such that they all are
stored within a corresponding size block of address
space as addressable by said variant portion of said list

entry next field.
2. The method of claim 1, said constraining step further

comprising the step of:
constraining said list entries such that they all are stored
in a same block of shared system memory, wherein an
update of a list entry next field 1s reduced to a single
write operation that can be performed with a single
atomic bus operation.

10

15

20

25

30

35

40

45

50

55

60

65

6

3. The method of claim 1, said constraining step further
comprising the step of:

subdividing said list entry next field.
4. The method of claim 3, further comprising the step of:

pre-initializing a high sub-part of said list entry next field
in all list entries to a common fixed value.
5. The method of claim 4, further comprising the step of:

providing a terminator list entry.
6. The method of claim §, further comprising the step of:

inserting a new list entry just before said list terminator
entry, wherein said next field for all list additions
ultimately links to said terminator list entry.

7. The method of claim 6, further comprising the step of:

checking the status of a list entry positioned just prior to

said terminator list entry.
8. The method of claim 7, further comprising the step of:

writing a low sub-part of said list entry next field 1n a last
operative entry during a single bus cycle to establish a
link to a new list entry.

9. The method of claim 8, further comprising the step of:

validating proper list insertion by checking status fields in
all list entries.
10. A method for list insertion 1n mixed bus environments,
comprising the steps of:

processing a list entry next field to generate a portion of
said list entry next field which has a fixed value for all
list entries and a portion which 1s variant; and

scaling said variant portion of said list entry next field to
match the width of a local bus cycle.
11. The method of claim 10, said scaling step comprising
the step of:

constraining said list entries such that they all are stored
in a same block of shared system memory, wherein an
update of a list entry next field 1s reduced to a single
write operation that can be performed with a single
atomic bus operation.

12. The method of claim 11, said scaling step comprising
the step of:

subdividing said list entry next field.

13. The method of claim 10, further comprising the step
of:

pre-initializing a high sub-part of said list entry next field
in all list entries except for a terminator list entry to a
common fixed value.

14. The method of claim 13, further comprising the step
of:

inserting a new list entry just before said list terminator
entry, wherein said next field for all list additions
ultimately links to said terminator list entry.

15. The method of claim 14, further comprising the step
of:

checking the status of a list entry positioned just prior to
said terminator list entry.

16. The method of claim 15, further comprising the step
of:

writing a low sub-part of said list entry next field 1n a last
operative entry during a single bus cycle to establish a
link to a new list entry.

17. The method of claim 16, further comprising the step
of:

validating proper list insertion by checking status fields in
all list entries.

5,911,054

7

18. The method of claim 17, further comprising the step
of:

constraining all list entries such that they all are stored
within a corresponding size block of address space as
addressable by said variant portion of said list entry
next field.
19. An apparatus for list insertion 1n mixed bus
environments, comprising:

a list entry next field processed so as to generate a portion
of said list entry next field which has a fixed value for
all list entries and a portion which 1s variant,

wherein said variant portion of said list entry next field 1s

scaled to match the width of a local bus cycle.

20. The apparatus of claim 19, wherein said list entries are
constrained such that they all are stored 1n a same block of
shared system memory, and wherein an update of a list entry
next field 1s reduced to a single write operation that can be
performed with a single atomic bus operation.

21. The apparatus of claim 19, wherein said list entry next

field.

10

15

3

22. The apparatus of claim 21, wherein a high sub-part of
said list entry next field in all list entries 1s pre-initialized to

a common fixed value.
23. The apparatus of claim 19, further comprising;:

a terminator list entry.

24. The apparatus of claim 23, wherein a new list entry 1s
inserted just before said list terminator entry, and wherein
said next field for all list additions ultimately links to said
terminator list entry.

25. The apparatus of claim 24, further comprising a
mechanism for checking the status of a list entry positioned
just prior to said terminator list entry.

26. The apparatus of claim 21, wherein a low sub-part of
said list entry next field 1n a last operative entry 1s written
during a single bus cycle to establish a link to a new list
entry.

27. The apparatus of claim 19, wherein proper list mser-
tion 1s validated by checking status fields 1n all list entries.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :5,911,054 Page 1 of 1
DATED : June 9, 1999
INVENTOR(S) : Steven J. Jahr et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 3,
Line 27, after “list” insert -- entry --.

Column 3,
Lines 38-44, after “processed.” delete “This invention may be generalized to list
insertion in other environments by:
Scaling the variant portion of the List Entry Next field, to match the local bus
width; and
Constraining all List Entries to reside within a corresponding size block of
address space as addressable by the variant portion of the List Entry Next
Field.”

Column 7,
Line 21, after “field” insert -- 1s subdivided --

Signed and Sealed this

First Day of June, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

