United States Patent |9

Nielsen

US005907680A
(11] Patent Number: 5,907,680
45] Date of Patent: May 25,1999

[54] CLIENT-SIDE, SERVER-SIDE AND
COLLABORATIVE SPELL CHECK OF URL’S

|75] Inventor: Jakob Nielsen, Atherton, Calif.

| 73] Assignee: Sun Microsystems, Inc., Palo Alto,
Calif.

[21] Appl. No.: 08/668,877
22| Filed: Jun. 24, 1996

51] Int. CLO oo, HO041. 12/00
52] US.CL e, 395/200.58; 395/200.75;

707/533
[58] Field of Search 395/200.57, 200.58,

395/200.59, 200.47, 200.48, 200.49, 200.75;
70°7/533, 5; 345/336, 338

[56] References Cited

U.S. PATENT DOCUMENTS

5,203,705 4/1993 Hardy et al. ..cccovevvevvevreenennennnn. 707/533
5,218,536 6/1993 McWhertercooooeevvvvneevinnnn.. 707/533
5,261,112 11/1993 Futatsugi et al.ccceeeeene.ne. 707/533
5,572,423 11/1996 Churchc.coovvevvviierrvinceerennnnn. 707/533
5,708,780 1/1998 Levergood et al. 395/200.12
5,774,664 6/1998 Hidary et al.ccueeeee.. 395/200.48
5,778,181 7/1998 Hidary et al. 395/200.48

DOCUMENT VIA URL

244

*SERVER

248 .
BROWSER REQUESTS | -—=__ 702 @

OTHER PUBLICATTONS

Cover sheet for Brown, “Special Edition Using Netscape 27
published by Que, 1995.

Using Netscape 2.0, Mark R. Brown, published by Que
Corporation, pp. 182-207, May 8§, 1996.

Primary Fxaminer—Frank J. Asta

Assistant Examiner—Daniel Patru
Attorney, Ageni, or Firm—McDermott, Will & Emery

57] ABSTRACT

Spell checking of network addresses such as Uniform
Resource Locator (URL) addresses is provided at three
levels. Each 1s invoked when a connection to the specified
network address 1s unable to be established. At a client level,
the specified URL 1s compared with URL’s previously
successtully used to find candidate misspellings. At a server
level, directory and file names are checked against corre-
sponding components of the URL to which connection was
requested to return a list of candidate correct spellings to the
requestor. Excluded from the list returned to the requestor
are the correct spellings of “hidden” files to which general
access 1s not desired. At a network access provider level,
information about URL’s successtully used by all customers
1s accumulated and used to provide a candidate list of correct
spellings to a user. Older entries are periodically pruned
from the database to control size.

19 Claims, 17 Drawing Sheets

242
X,

240

X

.. NO "DOCUMEN DISPLAY
NOT FOUND NOT FOUND* DOCUMENT
\ 234 X, UPDATE
CLIENT
- - rag | DATABASES
208 DISPLAY
X, —*! PRIOR ART X,
ERROR MSG HALT
SPELLCHECK —» “SERVER -
PROTOCOL & NOT FOUND" 250
210 SERVER NAME \
220
\ i / DISPLAY MSG
CREATE LIST LIST TO USER THAT
OF POTENTIAL] YES__~ pReviousty YES o SPELLCHECK
URLS WAS NOT
SUCCESSFUL
230
228 \ l
/ HALT
| ATTEMPTTO
RETRIEVE DOCUMENT
DISPLAY 232
LIST

DID USER

DOCUMENT
RETRIEVED ?

FROM LIST

SELECTED 224 50
SELECT URL / j
DISPLAY PRIOR
NOT FOUND" DOCUMENT
| HALT » 222 rrror s | SERVER \HOT FOUND
REMOYE URL | 262 DOCUMENT

5,907,680

Sheet 1 of 17

May 25, 1999

U.S. Patent

d3AH3S
JIdI03dS V

d3AH3S
AId03dS V

0¢l

0L1

d3AH3S
d3dIAOHd
JIIAHYES

091

V1 24nbyj

0Cl

N

JOIA3d
ONILNAdINOD
S.H3SN

Otl

30I1A340
ONILNdWNOO
S H3ASN

0Ll

U.S. Patent May 25, 1999 Sheet 2 of 17 5,907,680

BROWSER REQUESTS | —__ 902
DOCUMENT VIA URL

204

“SERVER
NOT FOUND*
ERROR?

NO

206 YES

234

CLIENT
DATABASES

DID USER

] .
NTER URLS DISPLAY

PRIOR ART

ERROR MSG HALT

"SERVER
NOT FOUND" 250

220
/ DISPLAY MSG
TO USER THAT
YES SPELLCHECK
WAS NOT

SUCCESSFUL
228 \

214 ATTEMPT TO
S
26 232
LIST
DOCUMENT
RETRIEVED ?

SPELLCHECK
PROTOCOL &
SERVER NAME

CREATE LIST LIST
OF POTENTIAL PREVIOUSLY

URLS ON-EMPTY ?

212 230

216

AN

DID USER
SELECT URL
OR CANCEL?

SELECTED 224 NO

DISPLAY PRIOR
ART "SERVER

213\ CANCELLED
W NOT FOUND"

HALT A 222 ERROR MSG

REMOVE URL 252 DOCUMENT
FROM LIST 0

Figure 2

SERVER OR
DOCUMENT

U.S. Patent May 25, 1999 Sheet 3 of 17 5,907,680

3022,.

306
304

DID USER
ENTER URL?

NO DISPLAY PRIOR ART

ERROR MSG "DOCUMENT
NOT FOUND®

310
308
SPELLCHECK URL HALT
COMPONENTS
312
CREATE LIST OF
POTENTIAL URLS 336

WAS UNABLE
] ?
ON-EMPTY TO CONDUCT

VALID URL

TO USER THAT
WAS LIST
Y
® PREVIOUSLY = 5| SPELLCHECK

314
316

DISPLAY LIST
OF URLS 332
318

DID USER
SELECT URL

320

CANCELLED _OR CANCEL ?
330
399 SELECTED
ATTEMPT TO RETRIEVE REMOVE CURRENT
DOCUMENT VIA URL URL FROM LIST
328
324

DISPLAY PRIOR ART
“DOCUMENT NOT
FOUND" ERROR MSG

DOCUMENT NO
RETRIEVED ?

YES

326

Figure 3

U.S. Patent May 25, 1999 Sheet 4 of 17 5,907,680

Figure 4

04—= GET FIRST URL COMPONENT

ATTEMPT TO RETRIEVE THE
GET NEXT URL
FIRST RECORD FROM DATA- - 428
COMPONENT
406 BASE C WHERE DATABASE
SERVER NAME IS EQUAL TO TS 430 432

435 URL SERVER NAME

MORE URL
COMPONENTS
AVAILABLE ?

408
NO

NO

MSG USER
SPELLCHECK

NOT SUCCESSFUL

YES

SET VARIABLES MATCH = FALSE
DB ITEM=DATABASE COMPONENT NAME

URL ITEM=URL COMPONENT NAME

412 PERFORM PHASE | SPELLCHECK @ =
414 PERFORM PHASE 1l SPELLCHECK

416 PERFORM PHASE 11l SPELLCHECK

ATTEMPT TO RETRIEVE NEXT
RECORD FROM DATABASE (
WHERE DATABASE SERVER
NAME IS=T0 URL SERVER

NAME

410

436

426

SUBSTITUTE DB ITEM
FOR URL ITEM IN URL
AND ADD THE REVISED

URL TO LIST

Y
E> 424

434

NO

U.S. Patent May 25, 1999 Sheet 5 of 17 5,907,680

1= [~ s0s

510
AN

NO

YES

COPY URLITEMTO
TEMP URL ITEM
REMOVE Ith CHARACTER
FROM TEMP URL ITEM

525
.

NO TEMP URL

ITEM =DB
ITEM

I=1+1

YES
R+ g
T s

Figure 5

U.S. Patent May 25, 1999 Sheet 6 of 17 5,907,680

=1 |===—s05

610\ ,ld
<= LENGTH NO

(DB ITEM)

YES

COPY DB ITEM TO
TEMP DB ITEM

REMOVE Ith CHARACTER
FROM TEMP DB ITEM

625

=1+ 1 TEMP DB ITEM
= URL ITEM

»T

640

NO

Figure 6

U.S. Patent May 25, 1999 Sheet 7 of 17 5,907,680

COPY DB ITEM TO TEMP DB ITEM

AND - 705
URL ITEM TO TEMP URL ITEM

CONVERT TEMP DB ITEM AND
TEMP URL ITEM TO LOWERCASE |+ = 710

REMOVE ALL NON-ALPHA
NUMERIC CHARACTERS FROM
TEMP DB ITEM AND TEMP URL ITEM

COPYDB ITEM TO
TEMP DB ITEM

REMOVE Ith CHARACTER
FROM TEMP DB ITEM

TEMP DB ITEM
= TEMP URL

ITEM

NO
HALT

725

YES
MATCH = TRUE | ~—=_ 730
HALT [==—73;

Figure 7

U.S. Patent

May 25, 1999 Sheet 8 of 17 5,907,680

“ ~—=—-810 PROTOCOL NAMES

Figure 8A

www.sun.com

~—=-820 SERVER NAMES
www.xyz.edu

www.abc.gov

Figure 8B

www.sun.comv/foo/bar/file.htm| <-——__ 830

www.sun.com foo
www.sun.com bar “T="-840 SERVER AND

www.sun.com file.html COMPONENTS

Figure 8C

U.S. Patent May 25, 1999 Sheet 9 of 17 5,907,680

DOCUMENT RETRIEVED BY
BROWSER VIA URL

SERVER NAME
IN DATABASE
B?

YES

PARSE SET OF COMPONENT
NAMES FROM URL AND PLACE

IN ARRAY

970

ADD TUPLE TO
DATABASE B

NO

TUPLE
{SERVER NAME,
COMPONENT (1)}
EXIST IN

DATABASE
B?

COMPONENT
() EXISTS?

Figure 9

U.S. Patent May 25, 1999 Sheet 10 of 17 5,907,680

REQUEST FOR www PAGE IS
RECEIVED BY SERVER

1010
\ 1015
PAGE YES
FOUND?
NO SEND REQUESTED
PAGE USING
PRIOR ART

DECONSTRUCT URL INTO AN
ARRAY OF COMPONENTS,
DISGARDING PROTOCOL, SERVER
NAME, AND CGlI ARGUMENTS

SET DIRECTORY = TO ROOT

DIRECTORY FOR HYPER TEXT “=_ 1030
FILES ON SERVER 1060
I=1+1 ~=_1035 ﬂ
CHANGE TO
1040 COMPONENT
1055 (1Y'S DIRECTORY
COMPONENT \
(1) FOUND IN YES IS COMPONENT YES
CURRENT () A DIRECTORY

DIRECTORY? NAME?

NO NO

SPELL CHECK —=_1045
COMPONENT (i)

C8-AD=<—=_1450

Figure 10

U.S. Patent May 25, 1999 Sheet 11 of 17 5,907,680

1115

J‘J 1120

1110

MATCHES SEND USER HTTP 404
FOUND DURING “DOCUMENT NOT HALT
SPELL CHECK? FOUND” ERROR MSG

REMOVE ANY CANDIDATE URLS
FROM SPELLCHECK SET THAT
CANNOT BE RETRIEVED

REMOVE ANY CANDIDATE URLS
FROM SPELLCHECK SET THAT
ALSO EXIST IN SERVER DATABASE

YES

NO

CONSTRUCT AND SEND NEW
PAGE OF HTML TEXT TO USER
DISPLAYING THE CANDIDATE URLS
(AS HYPERTEXT) AND THE URLS

1145

Figure 11

U.S. Patent May 25, 1999 Sheet 12 of 17 5,907,680

1235

SERVICE RECEIVES RESPONSE
FROM REMOTE SERVER BASED

ON USER SUPPLIED URL

1205

1210
"SERVER
NOT FOUND" NO
ERROR? 7
VES “DOCUMENT o 1260
1220 NOT FOUND" ERROR
OCCURED ?
SPELL CHECK SEND
1230 SERVER NAME YES DO(():UHEHT
TO USER
1225 1265

PRIOR ART

“SERVER CANDIDATE UPDATE
NO
NOT FOUND" SERVER NAMES Smllufl"fc'(SERVICE
MESSAGE EXIST 2 DATABASE
SENT TO USER 1225 1270

YES

CANDIDAT
URLS

EXIST ?

NO

1284

CONSTRUCT 1280

NEW HTML PAGE
WITH CANDIDATE

1240 YES

CONSTRUCT

SERVER NAMES SEND
REPLACING THE NEW HTMLPAGE | | «pocymenT
UNKNOWN SERVER CONTAINING NOT FOUND"
INTHE URL. (NEw | | CANDIDATE URLS| | rppor 10
URLS ARE HYPER- AS HYPERTEXT | | ysER vIA PRIOR
TEXT ALSO) SEND TO AND SEND TO

USER

1245 1288
1286

Figure 12

U.S. Patent May 25, 1999 Sheet 13 of 17 5,907,680

1306

DYNAMIC RULE
MODIFICATION
BEING USED ?

NO

1310

YES

SPELL CHECKS

NO TAKE MORE

1315 TIME THAN
DESIRED ?
USE PREDEFINED YEs 1325 1335 1340
TIME PERIODS TO P4 STORAGE »W
REMOVE OLD CAPACITY TES REDUCE
DATA FROM NOTIFY SYSTEN THRESHOLD AGING VALUE
DATABASE OPERATORS -;
THAT PRE- HIT?
DEFINED TIME ‘0
HALT PERIODS ARE NO 145
LONGER SUIT- 1350

SPELL CHECK

1320 MAX TIME TO REDUCE
HALT PERFORM VALUE AGING YALUE
EXCEEDED ?
1330 NO

1355 1360

YES | INCREASE
AGING VALUE

CAPACITY &

SPELL CHECK
SPEED WELL BELOW
THRESHOLD ?

1365

Figure 13

U.S. Patent May 25, 1999 Sheet 14 of 17 5,907,680

SERVER NAME DATE ACCESSED

www.netscape.com

Figure 14A

URL DATE ACCESSED
www.company.com/foo/bat/filr.html

www.nasa.gov/pictures/earth/northpole.qgif

Figure 14B

U.S. Patent May 25, 1999 Sheet 15 of 17 5,907,680

DOCUMENT SUCCESSFULLY
SENT TO USER VIA URL

PARSE SERVER NAME
FROM URL

1615

SERVER NAME

EXISTS IN
DATABASE A?

YES UPDATE DATE FIELD
TO CURRENT DATE 1520

NO

ADD SERVER NAME AND
CURRENT DATE TO DATABASE A | =_157%5

1530

X

URL FOUND IN
DATABASE B?

YES UPDATE DATE FIELD 1
TO CURRENT DATE 935

NO

ADD URL AND CURRENT DATE
TO DATABASE B =_1540

HALT [1545

Figure 15

U.S. Patent May 25, 1999 Sheet 16 of 17 5,907,680

1030 —= o [EvBOARD m m

== 1640

{650 1645—=""| INTERFACE DISPLAY | o =~ 1675
1670

INTERFACE
DISK e
CONTROLLER
m COMMUNICATIONS
HARD ' PORT
DRIVE If
. 1660 1665 1685

1671 | FLOPPY

DRIVE 1672

Figure 16B

1673

U.S. Patent May 25, 1999 Sheet 17 of 17 5,907,680

I
P [
*'i-
L |
.
.I
o »
&
*
L
S
49 &
fl-lr‘I
.
[I'II-
]
»
L
* "
b .
s ¥ . - -
L " [-
[o @ ." -
* . | . » ‘- ¥ %
* . ' * ¢ .
» r . - & * .
* ¢ 4 . .
4 - L . » 4 & . .
¢ - . r e -
3 ’
» w B * ¥
. N\ . J | * s %
.) L
. . . . P
» i - L T e .
L % .‘
- » - . ¢
. & -‘ - .
B - L | 4 L s
" 8 > » N
’ L 8 "
. . ' ' . bt ’ * e . -
. - L ’ b s b v . .
. il
. ’ . " . .
' %
| s & B » |
-
-
» ’ » * *
" . »+ ® Y .
L
LI - - L &
* Y L . * &
» W . & L
® R s & * .
. - . ® »

Figure 16C

5,907,680

1

CLIENT-SIDE, SERVER-SIDE AND
COLLABORATIVE SPELL CHECK OF URL’S

BACKGROUND OF THE INVENTION

1. Field of the Invention

The mvention relates to computer communications Sys-
tems and more particularly to spell checking of resource
identifications 1n a network environment.

2. Description of Related Art

In order to access specific World-Wide-Web (WWW)
pages, users must often enter the Uniform Resource Locator
(URL) which provides the address of the page on a remote
server. However, as WWW browsers evolved, the focus of
the user interface has been to allow users to access remote
pages by selecting hypertext links, thus often removing the
need to manually enter URLSs. Scant attention has been paid
to the problems inherent in manual URL entry. Yet, the
explosive growth of the WWW has made 1t inconvenient to
follow a long series of hypertext links to retrieve a page
desired by the user: i fact, companies, organizations and
individuals often provide their URLs 1n television
advertisements, on printed materials, and verbally. This has
led to a growing number of instances when the user would
prefer to directly enter the URL 1n the browser.

A major problem with the manual entry of URLSs 1is the
introduction of spelling errors, which are particularly com-
mon because of the characteristics of URL syntax and
structure. Often long, the URL often includes terms, such as
“http”, “com”, “org”, “git”, “jpeg”, that are not commonly
known by users. URLs may also be 1n a foreign language,
especially for those users 1n non-English speaking countries.
Additionally, the URL may include odd special characters
such as ~, 7, and (@ that are difficult to type and hard to
remember. The fact the URLs interpret upper and lower case
letters differently i1s yet another source of user iput error.
Finally, the user is often relying on a quickly made note or
just his memory from a brief appearance of a URL or from
a spoken URL 1n an advertisement. All of these factors taken
together provide a rich basis for the mtroduction of spelling

errors during manual entry of URLSs.

In order to assist the user with manual URL entry a
spelling checker 1s needed. Spell checking in general 1s well
established 1n the art, with numerous different implementa-
tion schemes. The central idea of a spelling checker 1s to take
the word 1n question and compare it to a dictionary of legal
spellings to find one or more words that are spelled roughly
the same way and to then provide the user the ability to
chose the correct word from a list presented by the spelling
checking program.

However, traditional spelling checkers, using the prior art,
are unsuitable for use 1n the WWW environment for several
reasons. The dynamic nature of the WWW, where new
URLs are constantly being created, precludes the use of a
static dictionary. The sheer number of URLs precludes the
use of a dynamic dictionary: as of April 1996 there were
more than 30 million URLs on the WWW. Additionally,
since the WWW operates 1n a client-server environment,
only the server knows what URLs are valid for accessing
WWW pages residing on that server. Servers often contain
files (pages) that are not intended for general use and the
server administrators rely on the fact that only users who
know the exact URLSs can retrieve those files. The introduc-
tfion of sophisticated spelling checkers for URLs must take
this fact into account. Finally, the prior art provides no
mechanism for utilizing knowledge obtained from other
users, behavior.

10

15

20

25

30

35

40

45

50

55

60

65

2

As an example of the prior art, Netscape’s Navigator
WWW browser performs a simplistic spelling check on
manually entered URLs. Specifically, the program tries to
identify and correct problems with the protocol and server

names. The program will try adding “http://” to the URL 1f
no protocol 1s specified, 1t will also add “www.” before and
“.com” after the domain name if they are not present in the
manually entered URL. These spelling check capabilities are
simple but helpful, but are not sufficiently robust or exten-
sive to solve the general problem of spelling errors in
manually entered URLSs.

SUMMARY OF THE INVENTION

The present system provides apparatus, systems, pro-
cesses and software which provide a user who manually
enters a URL with a sophisticated method for spell checking
the URL to increase the probability of finding the desired
WWW 1n a timely fashion.

The 1nvention 1s composed of three components that may
work 1n concert, individually or 1n pairs. The client-side
component operates in conjunction with the user’s browser
running on the user’s computing device. The server-side
component operates on the server computing device which
contains the WWW pages the user wishes to acquire and
communicates with the user by dynamically constructing
onc or more WWW pages containing alternative spellings
for the URL (as hypertext) and sending the constructed
page(s) to the user’s browser for display. The collaborative
component operates on Internet Service Providers (ISPs)
SErvers, or on an organization’s proxy server to maintain the
protection of whatever firewalls are i place. It communi-
cates to the user 1n a manner similar to that of the server-side
component. The collaborative component of the mvention
utilizes knowledge from other users’ behavior (i.e. the
WWW pages they have successtully retrieved in the past by
all users) to provide a knowledge base for the spelling
checker.

The three components (client-side, server-side and
collaborative) represent three unique but complementary
methods of providing spelling check services to the user.
Each component resides on a different part of the WWW and
addresses the spelling check problem differently. The multi-
platform and dynamic nature of the WWW suggests that a
user cannot be assured that all three components are always
available, but the mnvention is robust enough to utilize only
those components that are present. In fact, the components
are not coupled at all but yet are able to work together by
using the common language of the WWW, namely Hyper-
Text Markup Language (HTLLM), which provides a univer-
sal way of encoding information that any compliant browser
can display to the user.

The novel features of this invention are inter alia its
sophisticated spelling check functionality, its dynamic
nature, and its ability to leverage the experiences of multiple
users to a knowledge base that will assist all future users.

The 1nvention relates to apparatus for checking spelling of
network addresses, including a database containing valid
network protocol names, a database containing valid net-
work server names, a database containing valid component
names, and a computer configured to analyze a network
address, used 1n an attempt to establish a connection to that
address but which did not result 1n a connection, to compare
portions of that address with a database containing corre-
sponding information and present to a user one or more
alternative spellings of that address if a portion of that
address does not match identically a valid entry in the
database.

5,907,680

3

The 1nvention also relates to apparatus for checking
spelling of network addresses received at a server having a
hierarchical directory structure from a remote user, includ-
ing a database containing names of hidden files, and a
computer configured to analyze network addresses term by
term beyond the server address, to compare portions of an
address with corresponding portions of the server directory
and to present to the remote user one or more alternative
spellings 1f a directory or file name does not match identi-
cally a valid entry 1n the hierarchical directory, unless such
an alternative spelling 1s contained 1n the database.

The 1nvention also relates to apparatus for checking
spelling of network addresses received from a remote user at
a network access provider, including a database containing
remote server names to which users have successfully
connected, a database containing network addresses, and a
computer configured to analyze a network addresses,
received from a remote user which did not result in a
connection, to compare portions of that address with por-
tions of each database containing corresponding information
and present to a user one or more alternative spellings if a
portion of a network address does not 1dentically match a
valid entry 1n the databases.

In each of the apparatus described, the one or more
alternative spellings are presented in a form, such as HTML,
so that the remote user can select one of the alternative
spellings with an input device, such as a mouse, and attempt
to connect again using the selected alternative spelling.

The mvention 1s also directed to a system for checking
spelling of network addresses received from a user, includ-
ing at least any two of a client spell checker, a network
access provider spell checker and a server spell checker,
resident on respective computers connected to the network.

The 1vention 1s also directed to a system for checking
spelling of network addresses received from a user, includ-
ing a network, and a computer connected to the network
coniigured to spell check network addresses and to suggest
alternative spellings. The computer can be either a computer
1s operated as a client 1n a client-server mode, one operated
as a server 1n a client-server mode or one operated as a
network access provider.

The invention 1s also directed to a method of checking
spelling of network addresses, by comparing a portion of a
network address received from a user which did not result in
a connection with entries in a database containing corre-
sponding portions of network addresses which had previ-
ously resulted 1n connections, identifying candidate matches
from the database which match 1mperfectly a portion of a
network address, and when one or more candidate matches
1s found, providing a list of the candidate matches to the

user. Candidate matches are provided to a user in a hypertext
format.

The invention 1s also directed to a method of checking
spelling of network addresses 1n a server having a hierar-
chical directory, by comparing a portion of a network
address received from a remote user which did not result 1n
access to a document on the server with corresponding
portions of the hierarchical directory, and presenting to the
remote user alternative spellings 1f a directory or file name
does not match 1dentically a valid entry in the hierarchical
directory. Hidden files are excluded from the list of alter-
native spellings presented to a user.

The invention 1s also directed to a method of checking
spelling of network addresses at a network access provider,
by storing remote server names and network addresses, to
which network access provider users have successtully

10

15

20

25

30

35

40

45

50

55

60

65

4

connected, 1n one or more databases, comparing portions of
an address received from a network access provider user
which did not result 1n a connection, with corresponding
portions of the database, and presenting to the network
access provider user alternative spellings 1f a portion of an

address does not 1dentically match a valid entry in the
database.

The invention 1s also directed to computer program prod-
ucts carrying out the techniques of the mvention.

Still other objects and advantages of the present invention
will become readily apparent to those skilled 1n the art from
the following detailed description, wherein only the pre-
ferred embodiment of the invention 1s shown and described,
simply by way of illustration of the best mode contemplated
of carrying out the invention. As will be realized, the
invention 1s capable of other and different embodiments, and
its several details are capable of modifications 1n various
obvious respects, all without departing from the invention.
Accordingly, the drawing and description are to be regarded
as 1llustrative 1n nature, and not as restrictive.

BRIEF DESCRIPTION OF DRAWINGS

The object, features, and advantages of the system of the
present invention will be apparent from the following
description, 1n which

FIGS. 1A and 1B 1illustrates environments in which the
invention operates.

FIGS. 2 and 3 together are a flowchart for the client-side
process 1n accordance with the mnvention.

FIG. 4 1s a flowchart for a client-side spelling checker 1n
accordance with the mvention.

FIG. 5 1s a flowchart of a Phase I routine used with the
client-side spelling checker of FIG. 4.

FIG. 6 provides a detailed flowchart for Phase II of the
client-side spelling checker of FIG. 4.

FIG. 7 provides a detailed flowchart for Phase III of the
client-side spelling checker of FIG. 4.

FIGS. 8A, 8B and 8C 1llustrate content of databases used
by the client-side component of the ivention.

FIG. 9 1s a flowchart of a process for updating the
client-side databases.

FIGS. 10 and 11 together are a flowchart for the server-
side spelling checker component of the invention.

FIG. 12 1s a flowchart for the use of the collaborative spell
checker component of the invention.

FIG. 13 1s a flowchart of a process for dynamic and
non-dynamic database pruning in the collaborative compo-
nent of the mvention.

FIGS. 14A and 14B 1illustrates exemplary databases used
with the collaborative component of the invention.

FIG. 15 1s a flowchart of a process for updating the
collaborative component’s databases.

FIG. 16A 1llustrates a computer of a type suitable for
carrying out the invention.

FIG. 16B 1llustrates a block diagram of the computer of
FIG. 16A.

FIG. 16C 1llustrates an exemplary memory medium con-

taining one or more programs usable with the computer of
FIG. 16A.

NOTAITONS AND NOMENCLAIURE

The detailed descriptions which follow may be presented
in terms of program procedures executed on a computer or

5,907,680

S

network of computers. These procedural descriptions and
representations are the means used by those skilled 1n the art
to most effectively convey the substance of their work to
others skilled in the art.

A procedure 1s here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be noteall of these hat all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
assoclated with mental operations performed by a human
operator. No such capability of a human operator i1s
necessary, or desirable 1n most cases, 1n any of the opera-
tions described herein which form part of the present 1nven-
tion; the operations are machine operations. Useful
machines for performing the operation of the present 1nven-
fion mclude general purpose digital computers or similar
devices.

The present mvention also relates to apparatus for per-
forming these operations. This apparatus may be specially
constructed for the required purpose or 1t may comprise a
general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general
purpose machines may be used with programs written in
accordance with the teachings herein, or it may prove more
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these machines will appear from the description
gIven.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The environment 1n which the invention will operate 1s
illustrated in FIGS. 1A and 1B. In the simplest environment,
shown in FIG. 1A the user’s computing device (110),
running WWW browser software, 1s attached to a network
(120). The specific WWW server (130) the user wants to
access 1s attached to the same network. A more complex
environment 1s depicted i FIG. 1B 1n which the user’s
computing device (140) is attached to a network (150) that
is attached to a Internet Service Provider (ISP) server (160)
which 1s, in turn, connected to another network (170)
providing a connection to the specific WWW server (180).
The various components of the invention may or may not be
installed at each computing device or server, but the client-
side component could be 1nstalled on the user’s computing
device (110, 140), the server-side component could be
installed on the specific WWW server being accessed (130,

180) and the collaborative component could be installed on
the ISP server (160).

FIGS. 2 through 9 provide flowcharts and diagrams to
demonstrate the preferred embodiment of the client-side
component of the mvention.

FIG. 2 provides a flowchart for the operation of the
client-side portion of the invention and makes no assump-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions regarding the deployment of the other components of
the 1nvention. The process begins when the browser sends a
request for a particular WWW document or page (202). If
the browser does not receive a “Server Not Found” error
(204) and it does not receive and “Document Not Found”
error (244) then the document 1s displayed by the browser
(240), the client-side component’s databases are updated

(238 and FIGS. 8 and 9), and the process is terminated (236).

If, however, the browser receives a “Server Not Found”
error (204) and the URL was not entered by the user (206,
1.€., the user attempted to access the URL via a hypertext
link), then the standard “Server Not Found” error message
is displayed by the browser (234) and the process is termi-
nated (236). Alternatively, if the URL was manually entered
by the user (206) then the client side component of the
invention performs a spelling check on the protocol and
domain-name portion of the URL (208) and creates a list of
potentially valid URLs (210). If the created list is not empty
(212) then the list is displayed to the user in a hypertext
format (214). The user may then select one of the generated
URLs (216) or cancel the operation (216). If the user
chooses to cancel the operation (216) then the process is
terminated (218). If, however, the user chooses one of the
URLs displayed (216) then an attempt is made to retrieve the
desired document (228). If it is successfully retrieved (226)
then, following the flowchart connector (232) to its entry
point (242), the document is displayed by the browser (240),
the client-side component’s databases are updated (238) and
the process is terminated (236). If the document in not
successtully retrieved then the type of error encountered 1s
evaluated (250). If the error was “Server Not Found” then
that message is displayed using the prior art (224), the
invalid URL is removed from the list (222) and, if the list is
not empty (212) the process repeats from (214) until either
the list is empty (212), in which case the process 1s termi-
nated as described below, or a valid URL i1s selected (216)
and used to retrieve the document with processing continu-
ing at the C-C entry point (242). If the error was “Document
Not Found” then, following the connector C-D (252) to its
input at (248) where spell check operations on the URL
components begins.

[f, however, the created list is empty (212) and has never
had any URLs contained within it (220), then the “Server
Not Found” error message 1s displayed using the prior art
(234) and the process is terminated (236). Alternatively, if
the list 1s now empty (212) but previously held URLs (220)
then the user 1s provided with a message stating that the
spelling check operation did not yield any valid URLs (250)
and the process 1s terminated (230).

A URL that does not return a “Server Not Found” error
(204) but does return a “Document Not Found” error (244)
follows the connector (246) to FIG. 3’s connector input
(302). If the user did not manually enter the URL (304) then
the error message “Document Not Found™ 1s displayed using
the prior art (306) and the process is terminated (308).
Otherwise, the user did manually enter the URL (304) and
the components (i.e. those atomic words to the left of the
domain name but ignoring Common Gateway Interface
(CGI) arguments; for example in the URL “http://
www.company.com/foo/bar/doc.html?arcument” the com-
ponents are defined to be foo, bar, and doc.html) are then
spell checked (310) and a list of potential URLs is generated
(312). If the list 1s not empty (314) then the list of URLs is
displayed to the user in a hypertext format (316) where the
user can either select one of the URLs or cancel (318).
Choosing cancel (318) will terminate the process (320).
Selecting a URL from the list (318) results in an attempt to

5,907,680

7

retrieve the document using the selected URL (322). If the
document is successfully retrieved (324) then processing
branches from the connector C—C (326) to the input
connector C—C (FIG. 2, 242) where the document is
displayed (FIG. 2, 240), the client-side component’s data-

bases are updated (FIG. 2, 238) and the process is terminated
(FIG. 2, 236).

If the selected URL 1is insufficient to retrieve a document
(324) then, using the prior art, the “Document Not Found”
error message 1s displayed (328), the invalid URL is
removed from the list (330) and processing resumes at (314),
continuing until a document 1s retrieved, the user cancels the
operation or the list becomes empty. If the list becomes
empty (314) and the list previously held constructed URLSs
(324) then the user is given a message stating that none of

the constructed URLs were valid (336) and the process is
terminated (332).

Should the list of potentially valid URLs be empty (314,
334) immediately after the spell check (310) and list creation
process (320) then the “Document Not Found” error mes-
sage will be displayed using the prior art (306) and the
process terminated (308).

FIGS. 4-7 are a detailed view of the processes described
in FIG. 3 and labeled “spell check URL components™ (310)
and “create list of potential URLs” (312). The spell checking
process detailed in FIGS. 4-7, although specifically 1n the
context of the client-side component of the invention, works
with minor and obvious modifications all the components
where two text strings are compared. The generic algorithm
1s given below. Assume that one of String 1 and String 2 1s
the version typed 1n by the user. The other will normally be
a version stored 1n the database.

1) A potential spelling check match between two text
strings, Stringl and String2, 1s detailed as follows:

Phase I: The process temporarily removes each of the
characters 1n Stringl the temporarily modified Stringl
1s 1dentical to String2 then a potential match exists.

Phase II: The process temporarily removes each of the
characters 1n String2 and 1f the temporarily modified
String2 1s 1dentical to Stringl then a potential match
e XI1Sts.

Phase III: Both Stringl and String2 are temporarily con-
verted 1nto lower-case and all non-alphanumeric char-
acters are removed. If Stringl and String2 are 1dentical
then a potential match exists.

FIG. 4 1s the process flowchart for the spelling checker
operation of the client-side component of the invention.
Upon invocation, an empty list is created (402) and the first
URL component (as defined above) is parsed from the
complete URL (404). An attempt is then made to retrieve a
tuple {server name, component name } from Database C (see
FIG. 8, item 840) where the server name from the URL
matches the server name in Database C (406). If the attempt
is not successful (408) then Database C contains no match-
ing entries to the URL’s server name and the spell check
process cannot proceed. The user is given a message (435)
that the spell check process was unsuccessful (435) and the
process is halted (436).

Alternatively, if the attempt was successful (408) then the
variables Stringl and String2, the URL component and the
retrieved Database component respectively, are assigned to
temporary variables and the match indicator 1s set to FALSE
(410). Then Phase I (412) of the spelling check algorithm, as
defined above, 1s invoked. If a match was found, the match
indicator will have a value of TRUE. If the match indicator
is still false after Phase I is completed, Phase II (414) is

10

15

20

25

30

35

40

45

50

55

60

65

3

invoked. Similarly, if Phase II does not result in a match,
then Phase III (416) is invoked. If Phase III also does not

yield a match then an attempt 1s made to retrieve the next
tuple from Database C where the server name equals the
URL server name (426). If the attempt is successful (434)
then the temporary variables are reset in (410) and the
process begins again at (412).

Should any Phase result in the match indicator being set
to TRUE (418, 420 and 422) then the Database component
that matched the URL component replaces the URL com-

ponent 1n the URL and the revised URL 1s added to the list
of potentially valid URLs (424). An attempt is then made to
retrieve another tuple from the database (426) and if the
attempt 1s successful (434) then the temporary variables are
reset in (410) and the process begins again at (412).
When the attempt to get the next tuple from Database C
fails because the server name does not match that of the URL
(434) (i.c. all tuples with server name equal to the URL
server name have been examined) then, if there are more
URL components to process (430), the next component is
parsed from the URL (428) and the process begins again at
(406). If there are no more URL components (430) then the

process halts (432), returning the list of potentially valid
URLs to be tested 1n FIG. 3, item 314.

FIG. 5 provides a detailed process flowchart of the Phase
I spelling check for the client-side component of the inven-
tion. In Phase I, the value for String1 1s the URL component
and the value for String2 1s the component found 1n the
Database C. Initializing a counter (505) allows the process
to sequentially (510) and temporarily remove a single char-
acter at a time from Stringl and place the result n a
temporary variable (520). If the temporary variable equals
String2 (525) then the match indicator is set to TRUE (535)
and the process is terminated (540). If the two strings are not
equal (525) then the counter in incremented to point to the
next character in String1 (530) and the process begins again
at (510). If the counter is greater than the length of Stringl
then no match has been found and the process 1s terminated
(515).

FIG. 6 provides a detailed process flowchart of the Phase
II spelling check for the client-side component of the
invention. In Phase II, the value for String2 1s the URL
component and the value for String] 1s the component found
in the Database C. Initializing a counter (605) allows the
process to sequentially (610) and temporarily remove a
single character at a time from Stringl and place the result
in a temporary variable (620). If the temporary variable
equals String2 (625) then the match indicator is set to TRUE
(630) and the process is terminated (635). If the two strings
are not equal (630) then the counter in incremented to point
to the next character in String1 (640) and the process begins
again at (610). If the counter is greater than the length of
Stringl then no match has been found and the process is
terminated (615).

FIG. 7 provides a detailed process tlowchart of the Phase
III spelling check for the client-side component of the
invention. In Phase III, the value for Stringl 1s the URL
component and the value for String2 1s the component found
in the Database C. Each string variable 1s copied into a
temporary variable for processing purposes (705), and the
temporary variables are then converted to lower case (710)
and then all non-alphanumeric characters are removed from
both (715). If the temporary variables are equal (720) then
the match indicator is set to TRUE (730) and the process is
terminated (735). If the two strings are not equal (720) then
the process is terminated (725).

FIGS. 8A-8C 1illustrate the databases required by the

client-side component of the invention. The database of FIG.

5,907,680

9

8A (810) is a simple list of WWW protocols that would only
be changed when the browser itself supported additional
protocols. The database of FIG. 8B (820) is also a simple
list, but 1t 1s updated dynamically with the server names of
all URLs that have been successtully accessed and viewed.
The complete and correct URL (830) is used as input data for
the database of FIG. 8C (840) which contains tuples com-
posed of {server name, component name} as discussed
above and which 1s also updated dynamically. As shown 1n
FIG. 8C, a plurality of {server name, component name } may
be generated from a single URL.

FIG. 9 provides a process flowchart for the updating of the
Databases B and C in the client-side component of the
mvention. A WWW document 1s retrieved by the browser
via a URL, either supplied by the user or embedded in
another document as a hypertext reference (905). The server
name 1s parsed from the URL (910) and if the server name
does not already reside in Database B (920) it is added to
Database B (930). If the server name does currently exist in
Database B (920) then the URL is parsed into components
(excluding anything to the left of the server name and any
CGI arguments) and placed into an array (940). Initializing
the array subscript variable to zero (950) begins the process
of adding tuples of the form (server name, component name)
into Database C. The loop begins by incrementing the
subscript variable by one (955). If the component in the
array referenced by the subscript does exists (960, e.g., 1s not
null) and the tuple does not already exist in Database C
(965), then the tuple is added to Database C (970) and the
process begins again at (955) by incrementing the subscript
variable. If the component does already exist in Database C
(965) then it 1s skipped and the process begins again at (955)
by incrementing the subscript variable. Once the entire array
of components has been exhausted (960) the process is
terminated (975).

In order to conceptualize the actual experience the user
would have employing the client-side component of the
invention, the following example 1s helpful. Assume that
Database C in FIG. 8 exists and that the user has entered the
following URL 1nto his browser:

http://www.sun.com/foot/ba/file~html

The protocol and domain server have been entered
correctly, but a “Document Not Found” error occurs (FIG. 2,
item 244) and so process control branches to FIG. 3, item
302. Since the user did manually enter the URL the spell
checking process begins (FIG. 3, item 310) and control
branches to FIG. 4 item 402 where an empty list of potential
URLs 1s created. The first URL component 1s parsed from
the URL and 1s “foot”. There does exists at least one tuple
in Database C which has a server name equal to that of the
URL’s, “www.sun.com”. In this example the first tuple is
“www.sun.com”, “foo”}. It is clear that a Phase I spell
check will result 1n a match and the resulting constructed
URL “http://www.sun.com/foo/ba/file~html” 1s place 1n the
list of potentially valid URLs. Similarly, as the looping
mechanism allow the processing of the second URL
component, “ba”, 1t 1s clear that a Phase II spell check will
result 1n a match between “ba” and the tuple
“www.sun.com”, “bar”) which will lead, in turn, to the
creation of the URL “http://www.sun.com/foo/bar/
file~html” which 1s placed 1n the list. Finally, again utilizing
the looping mechanismes, it 1s found that the next component
“file~html” can be successiully spell checked using Phase
III, resulting i1n the creation of the URL *“http://
www.sun.com/foo/bar/file.html”. The resulting list pre-
sented to the user would contain the following constructed

URLs:

5

10

15

20

25

30

35

40

45

50

55

60

65

10

http://www.sun.com/foo/ba/file~html
http://www.sun.com/foo/bar/file~html
http://www.sun.com/foo/bar/file.html

Although FIG. 8 item 830 makes 1t clear by inspection
that the third and final URL on the list 1s the correct one, 1n

actual practice the user would only be assured that the final
URL has been the most thoroughly spell checked. But since
the databases used to perform the spell check are, by their
methods of construction, immediately out of date, 1t 1s not
possible to say that the completely spell checked URL,
which did exist 1n the past, still exists now. Nor can 1t be said
that the first or second URLs on the list are necessarily
invalid. In fact, the only positive assertion that can be made
1s that the URL initially entered by the user 1s invalid
because an error message was received by the server stating
that the document could not be found.

The method of spelling checking protocols and server
names would operate 1n an analogous manner, utilizing the
Phase 1, II and III algorithms. While the actual parameters
supplied would differ from the URL component spell check
example, the transformations performed on Stringl and
String2 remain the same. It would be obvious to one skilled
in the art how the spell checking already described would
apply to protocol and server name spell checking.

FIGS. 10 and 11 provide process tlowcharts to describe a
server-side spell checking component of the invention. The
server-side spell checking embodiment uses the same con-
ceptual approach as the client-side embodiment.

In FIG. 10, the process begins when a request for the
WWW document or page is received by the server (1005).
If the page 1s found on the server it 1s then sent to the
requester using the prior art (1015). If it is not found on the
server (1010) then the spell checking process starts by
initializing an array subscript variable to zero (1020) and
then deconstructing the URL 1nto an array of components
(1025). Since this 1s occurs at the server it may be safely
assumed that the protocol and domain server names were
correct and can therefore be 1gnored, along with any CGI
arcuments. Next the current directory 1s set to be the root
directory for hypertext documents on the server (1030).
After incrementing the array subscript (1035), the first
component 1s compared to the entries 1n the directory
(1040). If the component is found in the directory (1040) and
the component is itself a directory name (1055) then the
current directory 1s changed to be that of the component
(1060) and the process begins again at 10385.

However, 1f the component 1s not found in the current
directory (1040) then the component is spell checked using
the same generic algorithm described above. The Stringl
arcument would be the component itself, while the String2
values would be taken from the list of components found
within the current directory one at a time. Following the
connector S-A (1050) to it entry point in FIG. 11 (1105), if
no matches were found during the spell check then the list
of potential URLs 1s empty and the user 1s sent a “Document
Not Found” error using the prior art (1115) and the process
is terminated (1120). Alternatively, if matches were found,
indicated by a non zero length list, the server-side compo-
nent would test each URL on the list and remove those that
could not be accessed (1125, 1.e., those that returned “Docu-
ment Not Found” errors). If the system administrator at the
server-side maintains a simple list of “hidden” files, files that
can only be accessed by entering the correct URL at the start,

then the component will remove URLs from the spell

checking list that occur in the “hidden” files list (1130). If
after (1125 and 1130) the URL list is empty, the server-side

component would send a “Document Not Found” error

5,907,680

11

message to the user using the prior art (1115) and the process
would terminate (1120). If, however, the list is not empty
then the server would construct a new page, in HITML
format, that would contain a note to the user indicating that
the requested URL was not found but that instead the server
had compiled a list of possible alternative URLs. The list of
alternative URLs would be displayed in hypertext format
with those components that had been replaced by the server-
side spell checking embodiment displayed in a bold typeface
as a visual aid to the user in determining what part of his
original URL had been modified. Additionally, each sug-
gested URL would be followed by the document title as a
further selection aid for the user (1140).

The server-side creation of new WWW pages 1s well
known 1n the art. For example, many search engines on the
WWW return HITML pages to the user that contain hypertext
links to other pages, with appropriate bolding or highlight of
keywords (from the search terms) that appear in the page’s
fitle.

The collaborative (third) component of the invention
performs sophisticated spell checking operations on a ISP’s
server or an organization’s proxy server within a firewalled
domain. For purposes of discussion these shall be referred to
as “the service” The collaborative component 1s illustrated
and described 1n FIGS. 12-13.

FIG. 12 provides a process Hlowchart for the use of the
collaborative spell checker component. The service receives
an response from the remote server due to a request to
retrieve a document using a URL sent by the user (1205). If
the response received 1s the error “Server Not Found” then
the server name 1s spell checked. If the server portion of the
URL does not reside 1n Database A, which 1s maintained at
the service’s site, then the spell check algorithm described
previously 1s employed to spell check the server name from
the URL against server names in Database A (1220). That is,
Stringl would be the URL server name and String2 would
be take on successive values from Database A until a match
1s found or there are no more database entries. If candidate
server names are found during the spell check (1225) then
the service would construct a new HTML page of candidate
hypertext URLs, composed of the candidate server names
and the components and CGI arguments to the left of the
invalid server name 1n the original URL, which 1s then sent
to the user (1240) and the process is terminated (1245). As
with the server-side component, the collaborative compo-
nent will encode the HIML page so that the new candidate
server names are bolded or highlighted to provide a visual
aid to the user. Additionally, a message would appear above
the list to inform the user that the original server name was
imnvalid. However, if no candidate server names are found
(1225) then the error message “Server Not Found” 1is
returned to the user’s browser using the prior art (1230) and
the process is terminated (12385).

Alternatively, 1f the service receives a “Document Not
Found” error as a response from the remote server (1205),
then the collaborative component will spell check the user-
supplied URL. This 1s accomplished by using the service’s
Database B which contains all valid URLs that have been
retrieved from remote servers and passed back to users via
the service for some specified period of time. The generic
spell check algorithm describe above can again be
employed. But in this embodiment, the entire URL 1is
checked as a single string. So, the variable Stringl would
contain the user supplied URL and String2 would be take on
successive URL values from Database B, where the server
name of the user-supplied URL 1s equal to the server name
portion of the URL 1n Database B, until a match 1s found or

10

15

20

25

30

35

40

45

50

55

60

65

12

there are no more database entries (1275). As with both the
client-side and server-side components, a list a candidate
URLs 1s created based upon the results of the spell check. It
the list 1s empty then the “Document Not Found” error 1is
passed on to the user via the prior art (1284) and the process
is terminated (1286). If the list is not empty then the service
would construct a new HTML page of candidate hypertext
URLSs, which is then sent to the user (1282) and the process
is terminated (1288). As with the server-side component, the
collaborative component will encode the HIML page so that
the new candidate URLs are bolded or highlighted so
provide a visual aid to the user. Additionally, a message
would appear above the list to inform the user that the
original URL was 1nvalid.

Of course, as the service successiully retrieves WWW
pages, its databases (see FIG. 14) will continue to grow. In
order to control the growth of the databases, a pruning
algorithm has been devised for pruning the databases. It 1s
depicted 1n FIG. 13. The pruning occurs during low-load
time for the service and 1s based upon defined aging
parameters, which may be “hard coded” values that may not
be changed by the pruning algorithm, or may be “seed
values” that are dynamically changed during operations as
conditions change. If dynamic rule modification 1s not being
employed (1305) and if the spell checks are taking longer
than the maximum time permitted (1310) the system opera-
tors are notified that the pre-defined time periods for holding
database entries are no longer suitable (1325) and the
process is terminated (1330). Alternatively, if the time to
perform a spell check 1s less than the maximum time
permitted (1310) then the system uses the pre-defined time
periods to determine which database entries should be
removed.

[f dynamic rule modification is employed (1305) then if
the storage capacity threshold has been met or exceeded
(1335) then the aging values are reduced (1340) so that more
older entries are removed. If storage capacity 1s still beneath
the threshold (1335) but the time to perform a spell check
has exceeded the maximum time allowed (1345) then, again,
the aging values are reduced (1350). Alternatively, if the
storage capacity 1s well below 1ts threshold value and the
time needed to perform spell checks 1s also significantly less
than allowed (1355) then the aging values are increased
(1360). If the storage capacity is below its threshold and the
time needed to perform spell checks 1s less than allowed (but
not significantly) then the process is terminated (1365). The
flowchart, beginning at (1335) indicates that only if the
thresholds are exceeded or if the system 1s operating sub-
stantially under those thresholds are the aging values
changed; 1t 1s possible that none of the conditions are met for
changing the aging values and the process simply terminates
(1365).

FIG. 14 illustrates the databases required by the collabo-
rative component of the invention. Database A contains
previously valid server names and the dates they were last
accessed (1405). Database B contains previously valid
URLs for documents that have been successtully retrieved
and the dates they were most recently retrieved (1420).

FIG. 15 provides a process flowchart for the updating of
the collaborative component’s databases. When a document
1s successtully retrieved from a remote server and sent to the
user (1505) the server name 1s parsed from the URL (1510).
If the server name exists in Database A (1515) then the date
field 1n the database record corresponding to the server name
is updated to the current date (1520). If the server name does
not exist in Database A (1515) then the server name and the

current date are added to the database (1525). If the URL is

5,907,680

13

found in Database B (1530) then the date field in the
database record corresponding to the URL 1s updated to the
current date (1535) and the process is terminated (15485). If
the URL does not exist in Database B (1530) then the URL
and current date are added to the database (1540) and the
process is terminated (15485).

FIG. 16A 1illustrates a computer of a type suitable for
carrying out the invention. Viewed externally in FIG. 16A,
a computer system has a central processing unit 1600 having

disk drives 1610A and 1610B. Disk drive indications 1610A
and 1610B are merely symbolic of a number of disk drives
which might be accommodated by the computer system.
Typically, these would include a floppy disk drive such as
1610A, a hard disk drive (not shown externally) and a CD
ROM drive indicated by slot 1610B. The number and type
of drives varies, typically, with different computer configu-
rations. The computer has the display 1620 upon which
information 1s displayed. A keyboard 1630 and a mouse
1640 are typically also available as input devices.
Preferably, the computer 1llustrated in FIG. 16 A 1s a SPARC
workstation from Sun Microsystems, Inc.

FIG. 16B 1illustrates a block diagram of the internal
hardware of the computer of FIG. 16A. A bus 1650 serves
as the main 1information highway interconnecting the other
components of the computer. CPU 16355 1s the central
processing unit of the system, performing calculations and
logic operations required to execute programs. Read only
memory (1660) and random access memory (1665) consti-
tute the main memory of the computer. Disk controller 1670
interfaces one or more disk drives to the system bus 1650.
These disk drives may be floppy disk drives, such as 1673,
internal or external hard drives, such as 1672, or CD ROM
or DVD (Digital Video Disks) drives such as 1671. A display
interface 1675 interfaces a display 1620 and permits infor-
mation from the bus to be viewed on the display. Commu-
nications with external devices can occur over communica-
fions port 1685.

FIG. 16C 1illustrates an exemplary memory medium
which can be used with drives such as 1673 in FIG. 16B or
1610A 1n FIG. 16A. Typically, memory media such as a
foppy disk, or a CD ROM, or a Digital Video Disk will
contain, the program information for controlling the com-
puter to enable the computer to perform its functions in
accordance with the nvention.

In this disclosure, there 1s shown and described only the
preferred embodiment of the invention, but, as
aforementioned, 1t 1s to be understood that the mvention 1s
capable of use 1 various other combinations and environ-
ments and 1s capable of changes or modifications within the
scope of the mventive concept as expressed herein.

I claim:

1. Apparatus for checking spelling of network addresses,
comprising:

a. a first database containing valid network protocol

names;

b. a second database containing valid network server
names;

c. a third database containing valid component names;
and

d. a computer configured to analyze a network address,
used 1n an attempt to establish a connection to that
address but which did not result 1n a connection, to
compare portions of that address with one of said {first,
second or third databases, containing corresponding
information and present to a user one or more alterna-
tive spellings of that address if a portion of that address
does not match 1dentically a valid entry 1n the database.

10

15

20

25

30

35

40

45

50

55

60

65

14

2. Apparatus of claiam 1 in which said one or more
alternative spellings are presented 1n a form so that a user
can select one of said alternative spellings with an 1nput
device and attempt to connect again using the selected
alternative spelling.

3. Apparatus for checking spelling of network addresses
received at a server having a hierarchical directory structure
from a remote user, comprising;

a. a database containing names of hidden files;

b. and a computer configured to analyze network
addresses term by term beyond the server address, to
compare portions of an address with corresponding
portions of the hierarchical directory and to present to
said remote user one or more alternative spellings if a
directory or file name does not match identically a valid
entry 1n the hierarchical directory, unless such an
alternative spelling 1s contained in said database.

4. Apparatus of claam 3 in which said one or more
alternative spellings are presented in a form so that said
remote user can select one of said alternative spellings with
an mput device and attempt to connect again using the
selected alternative spelling.

5. Apparatus for checking spelling of network addresses
received from a remote user at a network access provider,
comprising:

a. a database containing remote server names to which

users have successtully connected;

b. a database containing network addresses; and

c. a computer configured to analyze a network addresses,
received from a remote user which did not result 1n a
connection, to compare portions of that address with
portions of each database containing corresponding
information and present to a user one or more alterna-
tive spellings 1f a portion of a network address does not
identically match a valid entry i the databases.

6. Apparatus of claim § 1 which said one or more
alternative spellings are presented in a form so that said
remote user can select one of said alternative spellings with
an nput device and attempt to connect again using the

selected alternative spelling.

7. A system for checking spelling of network addresses
received from a user, comprising at least two computers
connected to said network, said computers respectively
running at least one of a client spell checker, a network
access provider spell checker and a server spell checker
resident on said respective computers.

8. A system for checking spelling of network addresses
received from a user, comprising:

a. a network; and

b. a computer connected to said network configured to
spell check network addresses and to suggest alterna-
tive spellings.

9. The system of claam 8 1n which said computer 1s

operated as a client in a client-server mode.

10. The system of claim 8 in which said computer 1s

operated as a server 1n a client-server mode.

11. The system of claim 8 1n which said computer 1s

operated as a network access provider.

12. A method of checking spelling of network addresses,

comprising the steps of:

a. performing a step of comparing a portion of a network
address received from a user which did not result 1n a
connection with entries 1n a database containing cor-
responding portions of network addresses which had
previously resulted 1n connections; and

b. performing a step of identifying candidate matches
from the database which match imperfectly a portion of
a network address, and

5,907,680

15

c. performing a step of when one or more candidate

matches 1s found, providing a list of said candidate
matches to said user.

13. The method of claim 12, in which candidate matches
are provided to a user 1n a hypertext format which permits
selection and use of one of said candidate matches 1n a
connection request by clicking on a candidate match.

14. A method of checking spelling of network addresses
in a server having a hierarchical directory, comprising the
steps of:

a. performing a step of comparing a portion of a network
address received from a remote user which did not
result 1n access to a document on the server with

corresponding portions of the hierarchical directory,
and

b. performing a step of presenting to said remote user
alternative spellings 1f a directory or file name does not
match 1dentically a valid entry in the hierarchical
directory.

15. The method of claim 14 in which the names of hidden
files are excluded from the list of alternative spellings
presented to a user.

16. A method of checking spelling of network addresses
at a network access provider, comprising the steps of:

a. providing an element for performing the step of storing
remote server names and network addresses, to which
network access provider users have successfully
connected, 1n one or more databases;

b. providing an element for performing the step of com-
paring portions of an address received from a network
access provider user which did not result 1n a
connection, with corresponding portions of said data-
base; and

c. providing an element for performing the step of pre-
senting to said network access provider user alternative
spellings if a portion of an address does not identically
match a valid entry in the database.

10

15

20

25

30

35

40

16

17. A computer program product, comprising:
a. a memory medium; and
b. a computer program stored on said memory medium,

saild computer program containing instructions for
comparing a portion of a network address received
from a user, which did not result in a connection, with
entries 1n a database of network addresses, which
previously resulted 1n a connection, to 1dentify candi-
date matches which match imperfectly the network
address recerved from the user, and when one or more
candidate matches 1s found, providing a list of said
candidate matches to said user.

18. A computer program product for checking spelling of
network addresses 1n a server having a hierarchical
directory, comprising;

a. a memory medium; and
b. a computer program stored on said memory medium,

saidd computer program containing instructions for
comparing a portion of a network address received
from a user which did not result 1n access to a document
on the server with corresponding portions of the hier-
archical directory and to present to a user alternative
spellings if a directory or file name does not match
identically a valid entry in the hierarchical directory.

19. A computer program product for checking spelling of
network addresses 1n a server having a hierarchical
directory, comprising;:

a. a memory medium; and

b. a computer program stored on said memory medium,

said computer program containing instructions for stor-
ing remote server names and network addresses to
which users have successifully connected in one or
more databases, comparing portions of an address
received from a user which did not result 1n a connec-
tion with corresponding portions of said database; and
presenting to a user alternative spellings 1f a portion of
an address does not match identically a valid entry 1n
the database.

	Front Page
	Drawings
	Specification
	Claims

