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57 ABSTRACT

A method, apparatus, and article of manufacture for han-
dling NULL values in SQL queries over object oriented data.
A two-phase method 1s used to enable a query evaluator 1n
a two-valued logic environment to properly handle occur-
rences of NULL values for predicates that involve
subqueries, 1.€., basic subquery predicates and/or quantified
subquery predicates. For basic subquery predicates, nega-
tion reduction 1s performed by applying logical equivalence
rules and inverting basic comparators (e.g., transforming <
to >=) to eliminate NOTs. Then, transformations are
employed for the resulting positive predicates to include
NULL value testing, 1.e., NULL protection. For quantified
subquery predicates, 1n addition to performing negation
reduction, quantified subqueries are converted 1nto existen-
fial subqueries. In most cases, this yields a predicate that can
be handled using NULL protection transtormations for posi-
tive predicates. The exception (i.€., a “NOT EXISTS” result-
ing from the conversion step of a universally quantified
subquery) 1s handled using NULL protection transforma-
tions for negative predicates. The evaluation of the NULL
tested positive and negative predicates ensures that if a
predicate has a NULL value, 1t 1s not included 1n the query
result.

50 Claims, 4 Drawing Sheets
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HANDLING NULL VALUES IN SQL
QUERIES OVER OBJECT-ORIENTED DATA

RESERVAITON OF RIGHTS

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document as 1t appears
in the Patent and Trademark Office patent files or records,
but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates 1n general to systems, methods, and
computer programs 1n the field of processing database
queries 1n database management systems (DBMSs), includ-
ing relational, hierarchical, and object-oriented DBMSs, and
in particular to handling NULL values 1n SQL queries over
object oriented data.

2. Description of Related Art

Databases are computerized information storage and
retrieval systems. A Relational Database Management Sys-
tem (RDBMS) is a database management system (DBMS)
which uses relational techniques for storing and retrieving,
data. Relational databases are organized into tables which
consist of rows and columns of data. The rows are formally
called tuples. A database will typically have many tables and
cach table will typically have multiple tuples and multiple
columns. The tables are typically stored on random access
storage devices (DASD) such as magnetic or optical disk
drives for semi-permanent storage.

RDBMS software using a Structured Query Language
(SQL) interface is well known in the art. The SQL interface
has evolved into a standard language for RDBMS software
and has been adopted as such by both the American Nation-
als Standard Organization (ANSI) and the International
Standards Organization (ISO). The current SQL standard is
known 1nformally as SQL/92.

In RDBMS software, all data 1s externally structured mto
tables. The SQL interface allows users to formulate rela-
tional operations on the tables either interactively, in batch
files, or embedded 1n host languages, such as C and COBOL.
SQL allows the user to manipulate the data.

The definitions for SQL provide that a RDBMS should
respond to a particular query with a particular set of data
orven a specilied database content, but the method that the
DBMS uses to actually find the required mmformation in the
tables on the disk drives 1s left up to the RDBMS. Typically,
there will be more than one method that can be used by the
RDBMS to access the required data. The RDBMS will
optimize the method used to find the data requested in a
query 1 order to minimize the computer time used and,
therefore, the cost of doing the query.

Today, a DBMS can instead be an object-oriented data-
base (OODB), wherein the database is organized into objects
having members that can be pointers to other objects. An
object can have relationships to other objects. The objects
contain references, and collections of references, to other
objects 1n the database, thus leading to databases with
complex nested structures.

The integration of object technology and database sys-
tems has been an active area of research for the past decade.
One important aspect of the integration of these two tech-
nologies 1s the provision of efficient, declarative query
interfaces for accessing and manipulating object data. Com-
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pared to other aspects of object-oriented database (OODB)
technology, such as integrating persistence 1nto object-
oriented languages like C++ and Smalltalk, queries were
orven relatively little attention in the early days of OODB
research. Mike Stonebraker, Third Generation Data Base
System Manifesto, Computer Standards & Interfaces, 12,
December 1991, which 1s incorporated by reference herein.

In Won Kim, Object-Oriented Database Systems:
Promise, Reality, and Future, Proc. 19th International Con-
ference on Very Large Data Bases, Dublin, August 1993,
which 1s incorporated by reference herein, 1t 1s pointed out
that even today, a number of commercial OODB systems are
quite weak 1n this regard. As the OODB field has developed,
however, a number of proposals for OODB query languages
have appeared 1n the database literature mcluding the fol-
lowing publications:

Michael J. Carey, David DeWitt, and Scott Vandenberg, A
Data Model and Query Language for EXODUS, Proc.
ACM-SIGMOD International Conference on Manage-
ment of Data, Chicago, June 1988;

Won Kim, A Model of Queries for Object-Oriented

Databases, Proc. 15th International Conference on
Very Large Data Basses, Amsterdam, August 1989;

Francois Bancilhon, S. Cluet, and C. Delobel, A Query
Language for the O, Object-Oriented Database
System, Proc. 2nd International Workshop on Database

Programming Languages, Morgan-Kaufmann
Publishers, Inc., Gleneden Beach, June 1989,

| hereinafter referred to as “BCD8&9”];

Jack Orenstein, Sam Haradhvala, and Benson Margulies,
Don Sakahara, Query Processing in the ObjectStore
Database System, Proc. ACM-SIGMOD International
Conference on Management of Data, San Diego, June
1992, [ hereinafter referred to as “OHMS927];

S. Dar, N. Gehani, and H. Jagadish, COL++: A SQL for a
C++ Based Object-Oriented DBMS, Proc. International
Conference on Extending Data Base Technology,
Advances 1n Database Technology—EDBT 92, Lec-

ture Notes 1n Computer Science, Springer-Verlag,
Vienna, 1992;

Michael Kifer, Won Kim, and Yehoshua Sagiv, Querying
Object-Oriented Databases, Proc. ACM-SIGMOD
International Conference on Management of Data, San
Diego, June 1992;

Tom Atwood, Joshua Duhl, Guy Ferran, Mary Loomis,
and Drew Wade, Object Query Language, Object Data-
base Standards: ODMG—93 Release 1.1, ed. R. G. G.
Cattell, Morgan-Kaufmann Publishers, Inc., 1993,
|hereinafter referred to as “ADF793”];

José Blakeley, William J. McKenna, and Goetz Graefe,
Experiences Building the Open OODB Query
Optimizer, Proc. ACM SIGMOD International Confer-
ence on Management of Data, Washington, D.C., May
1993;

all of which are incorporated by reference herein.

Some commercial object-oriented database systems that
offer object query facilities are 02, discussed in BCD89, and
ObjectStore, discussed 1n OHMS92. Each of these object-
oriented database systems provides theirr own flavor of
object query language. ObjectStore’s query language 1s an
extension to the expression syntax of C++. O2’s query
language 1s generally more SQL-like, and has been adapted
into a proposed object-oriented database query language
standard (ODMG-93) by a consortium of object-oriented
database system vendors, ADF"93, which is incorporated by
reference herein, but it differs from SQL in a number of
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respects, Won Kim, Observations on the ODMG-93
Proposal, ACM SIGMOD Record, 23(1), March 1994,
| hereinafter referred to as “Kim94” |, which is incorporated
by reference herein.

Furthermore, it should be noted that SQL3 supports object
relational queries, and Illustra Relational Database System
includes object oriented SQL extensions. See, the publica-

tion by Jim Melton, ed., ISO-ANSI Working Draft: Database
Language SQL (SQL3); ISO/IEC SC21 WGS DBL YOW-004
and ANSI XSH2-94-084, ISO__ANSI, 1995, |hercinafter
referred to as “Mel95”], which is incorporated by reference
herein.

In RDBMS software using the SQL-92 query language,
columns are of simple atomic types, and columns appear 1n
queries as ¢ or g.c where ¢ 1s a column of some table and g
1s a correlation name or range variable. In query languages
for Object-Oriented DBMSs, column expressions are
replaced with path expressions that allow traversal through
pointers, embedded classes and structs, multi-valued
collections, and relationships to reach nested attributes.

Mel95 proposes traversal through embedded structures as
Abstract Data Types (ADT). For example, if “e” i1s a
correlation, “address™ 1s an ADT of type Address, “zip™ 1s an
attribute of address, and the “..” characters are used to
express traversal through embedded structures, then “e.ad-
dress..zip” expresses the traversal through the Address struc-
ture to obtain the attribute “zip”. It should be noted that the
SQL3 draft has been further extended to include support for
typed rows, references to rows, and a dereference operator
(—).

In RDBMSs, columns of any type can assume NULL (i.e.,
unknown) values. In RDBMS software, NULL values are
properly handled using tri-valued logic (i.e., TRUE, FALSE,
or UNKNOWN) for predicates, and SQL-based RDBMSs
employ such a logic. The OODB and C++ worlds are
different; for example, neither C++ nor the ObjectStore
OODBMS nor the ODMG standard has a general notion of
NULL values, and their predicates are therefore based upon
a two-valued logic (i.e., TRUE, FALSE). Most OODB
systems support two-valued logic (TRUE or FALSE), and
therefore cannot handle NULL wvalues. See, OHMS92 and
Charles Lamb, Gordon Landis, Jack Orenstein, and Dan
Weinreb, The Objectstore Database System, Communica-
tions of the ACM, 1991, [hereinafter referred to as
“LLOW91”], Bjarne Stroustrup, The C++ Programming
Language, Addison-Wesley Publishing Co., 1987,
| hereinafter referred to as “Str87”]; Margaret A. Ellis and
Bjarne Stroustrup, Annotated C++ Reference Manual,
Addison-Wesley Publishing Co., 1990, [ hereinafter referred
to as “EIl90”]; all of which are incorporated by reference
herein.

In the early 1980°s, a pre-OODB project the GEM project,
discussed 1n C. Zaniolo, The Database Language GEM, In
Proc., ACM-SIGMOD International Conference on Man-
agement of Data, 1983, [ hereinafter referred to as “Zan8&83” ]
and S. Tsur and C. Zanmolo, An Implementation of GEM.:
Supporting a Semantic Data Model on a Relational
Backend, In Proc., ACM-SIGMOD International Confer-
ence on Management of Data, 1984, [ hereinafter referred to
as “TZ84”], which are incorporated by reference herein,
extended the relational data model and the QUEL query
language with entity-relationship features that were quite
similar to those found in many of today’s object-oriented
query languages.

The GEM project was designed as a layer over a RDBMS
that added enftity-relationship modeling extensions to the
relational model. The GEM project, which has a tri-valued

10

15

20

25

30

35

40

45

50

55

60

65

4

logic, was implemented over a RDBMS that had a two-
valued logic and did not support NULL values. The GEM
project stmulated NULL values by requiring an arbitrary
value of an attribute to be selected to represent NULL
values, as described 1 Zan83 and TZ&84. For example, the
value zero could be selected. Then, a test such as (e.sal IS
NULL) would be implemented as (e.sal=0).

To translate GEM queries mto underlying relational
queries, GEM converted 1ts tri-valued logic into two-valued
logic, as described 1n TZ84. The GEM project developed
tri-valued to two-valued logic transformations for the fol-
lowing forms of predicate expressions, as described in

T7Z84:
tArk

tArs.B

Here, s and t are correlations over tables, k 1S a constant,
A and B are columns of t and s respectively that can have
NULL values, and r is a relational operator among {=, =, <,
=, >, =}. An example of the first type of predicate above is
(e.sal>100), and an example of the second type of predicate
above is (e.did=d.no). The previous examples can be scoped
by negation: (not (e.sal>100)) and (not (e.did=d.no)) respec-
fively. Negation 1s determined by counting the number of
NOT’s from the root of the predicate tree. If the number 1s
odd, the expression 1s negative, otherwise it 1s positive. For
example, in (not (not e.sal>100)), the subexpression
(e.sal>100) is a positive expression, whereas in the expres-
sion (not (not (not e.sal>100))), the subexpression
(e.sal>100) is a negative expression because it is scoped
within an odd number of NOT’S. Positive expressions are
replaced as follows:

tArk —=(t.AIS NOT NULL and t.Ar k)

t.Ars.B—=(t.AISNOTNULL and t.B IS NOT NULL and
t.Ar s.B)

The predicate (e.sal>100) is transformed into the predi-
cate (e.sal IS NOT NULL and e.sal>100). Similarly, the
predicate (e.did=d.no) is transformed into the predicate
(e.did IS NOT NULL and d.no IS NOT NULL and e.did=

d.no). Negative expressions are replaced as follows:
not (t.A r k)—=not (t.A IS NULL or t.Ar k)

not (t.Ar s.B)—not (t AIS NULL or s.B IS NULL or t. A
r s.B)

The predicate (not (e.sal>100)) is transformed into the
predicate (not (e.sal IS NULL or e.sal>100)). Similarly, the
predicate (not. (¢.did=d.no)) is transformed into the predi-
cate not ((e.did IS NULL or d.no IS NULL or e.did=d.no)).
If the predicate 1s not within the scope of negation, the “IS
NOT NULL” test guarantees that bindings for which the
predicate evaluates to NULL return FALSE. Inversely, if the
predicate 1s within the scope of negation, the “IS NULL” test
cuarantees that after the application of negation, bindings
for which the predicate evaluates to NULL return FALSE.

The GEM project handles simple scalar comparisons, but
it does not address predicates involving subqueries that can
arise 1n SQL-92 queries. Subqueries were not an 1ssue for
the GEM project, because the GEM query language was
based on the QUEL query language, not on SQL. SQL-92
includes predicates of the form: e r Q, and e r a Q 1n which
€ 1S an expression, r 1s a relational operator, ¢ 1s a qualifier
among {ANY, ALL} and Q is a subquery (note: the IN
quantified predicate 1s not detailed here since ¢ IN Q 1s
equivalent to e=ANY Q and ¢ NOT IN Q 1s equivalent to
e=ALL Q).

The first form of predicate 1s a basic predicate with a
subquery, while the second i1s a quantified subquery. The
following query 1s an example of a basic predicate with a
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subquery, and retrieves employees who earn more than the
average salary of employees 1n their departments.

select *
from Emp ¢

where e.sal>(select avg (el.sal) from (e.dept.emps) e1)

The next query 1s an example of a query with a quantified
subquery and selects employees who have the highest salary
of employees in their departments.

select *
from Emp ¢

where e.sal>=all (select el.sal from (e.dept.emps) e1)

Although the GEM query language introduced path
expressions (functional joins, in GEM terminology) with the
NULL-related semantics, their published transtormations in
1784 did not properly address the handling of NULL values
when translating path expressions into QUEL queries. In
particular, the transformations presented in TZ84 did not
respect the outer-join-like NULL semantics of path expres-
sions that was specified 1n Zan8&3.

As noted above, the other shortcoming of GEM was that
it did not attempt to handle basic predicates with a subquery
or quantified subqueries since GEM was based upon the
QUEL query language which does not have subqueries. The
SQL-92 query language does include predicates with a
subquery including quantified subqueries. SQL-92 also pro-
vides an interpretation of the predicates with subqueries 1f a
NULL value 1s encountered. However, the interpretation
specifies when a predicate including a sub-query 1s NULL,
and that 1s based on tri-valued logic.

The GEM project also did not address NULL pointers.
With object-oriented DBMS software, pointer data types are
available and attributes of these data types can be NULL.
The notions of NULL value and NULL pointer differ in
many respects. While NULL values are excluded from most
object-oriented data models, they are reintroduced 1n object-
oriented SQL queries where path expressions can include
attributes that are NULL pointers. The object-oriented data-
base world, as described in OHMS92 and LLLOWO91, and the
C++ language environment, as described 1n Str&87 and EI1190,
do not support NULL wvalues, and their predicates are
therefore based upon a two-valued logic. However, both do
have pointer types that can be NULL-valued, which leads to
NULL-related problems for queries that involve navigation
through potentially NULL pointers. Simply 1gnoring NULL
pointers during path expression evaluation could cause the
query engine for an object-oriented system (or any other

two-valued logic environment having NULL pointers) to fail
at run-time. To address this, both the ODMG-93 standard, as

described in ADF™93, and ObjectStore, as described in
LLOWI91 and OHMS92, place the burden of avoiding this
problem on the user. Users of these query facilities are
expected to include NULL-testing predicates 1n their queries
in order to prevent such cases. If a dereference of a NULL
pointer does occur 1n a query, 1t 1s viewed as an error and a
run-time exception 1s raised. This makes queries more
complex to specity and introduces ordering dependencies
among the query’s (possibly many) NULL tests and path
predicates.

Thus there 1s a need 1 the art for improved methods of
handling NULL pointers 1n SQL queries over object-
oriented data.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
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specification, the present invention discloses a method,
apparatus, and article of manufacture for handling NULL
values 1n SQL queries over object oriented data. A two-phase
method 1s used to enable a query evaluator 1n a two-valued
logic environment to properly handle occurrences of NULL
values for predicates that mvolve subqueries, 1.€., basic
subquery predicates and/or quantified subquery predicates.
For basic subquery predicates, negation reduction 1s per-
formed by applying logical equivalence rules and mverting
basic comparators (e.g., transforming < to >=) to eliminate
NOTs. Then, transformations are employed for the resulting
positive predicates to include NULL value testing, 1.c.,
NULL protection. For quantified subquery predicates, 1n
addition to performing negation reduction, quantified sub-
queries are converted imto existential subqueries. In most
cases, this yields a predicate that can be handled using
NULL protection transformations for positive predicates.
The exception (i.e., a “NOT EXISTS” resulting from the
conversion step of a universal quantified subquery) is
handled using NULL protection transformations for nega-
tive predicates. The evaluation of the NULL tested positive
and negative predicates ensures that i1f a predicate has a
NULL value, 1t 1s not included 1n the query result.

It 1s therefore an object of this invention to eliminate
run-time exceptions 1 a two-valued logic query system
where NULL values are not supported 1if NULL pointers are
encountered 1in query predicates having subqueries.

It 1s a further object of this invention to eliminate the need
for users to perform NULL-testing 1n a two-valued logic
query system environment having NULL pointers.

It 1s a further object of this invention to enable a query
engine running against a system based upon two-valued
logic to process predicates having subqueries that may have

NULL pointers.
BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1illustrates an OO-SQL DMBS according to the
present 1nvention;

FIG. 2 1llustrates a computer hardware environment
according to the present 1nvention;

FIG. 3 1s a flowchart 1llustrating the method of 1nitializing,
and optimizing SQL queries over object-oriented data
according to the present 1nvention; and

FIG. 4 1s a flowchart illustrating the additional steps
required to perform negation reduction according to the
present 1vention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference 1s made to the accompanying drawings which
form a part hereof, and in which 1s shown by way of
illustration a specific embodiment in which the mvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural and functional changes
may be made without departing from the scope of the
present 1vention.

OVERVIEW

A path expression p can be expressed as q.m,..m,.., . . .
, ..m_where q1s a correlation name defined over a collection
C, and m, 1s an attribute of the class of 1nstances of C, and
m_ 15 an attribute of the class of m, ,. An attribute m; can be
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a data member or a function member (method). A path
expression evaluates to the value of the leaf of the expres-
sion. For example, mn “e.address..zip”, “address” 1s an
attribute of the class empClass and “z1p” 1s an attribute of the
class Address. The expression “e.address.zip” returns the

value of “zip”.
A sample object-oriented database schema follows:

typedef struct Address
1
char *street;
char *city;
char *zip;
I
class empClass :  public person
{ public:
int no;
float sal;
Address address;
deptClass *dept;
person *spouse;
int mgr;
J;
class deptClass
{ public:
ro0ot
int no;
char name|20];

Collection<empClass™*=> emps;
J;
Collection<empClass*> *Emp; // Database root
Collection<deptClass*> *Dept; // Database

In the schema above, each imstance of empClass has a
“dept” attribute that 1s a pointer to an instance of deptClass.
Consider a path expression that reaches an employee’s
department number through the “dept” attribute. If the
“dept” attribute for a particular mstance of empClass 1s a
NULL pointer, then the path expression results 1n a NULL
value for that mstance of empClass. NULL values 1n predi-
cates follow the same semantics as 1n SQL-based RDBMSs
(where bindings for variables where the condition evaluates
to UNKNOWN are not included 1n the result, and an “IS
INOT] NULL” predicate is provided to determine whether
expressions are NULL).

The present mvention handles NULL values 1in queries
using tri-valued logic 1 a two-valued logic system. NULL
values do not exist mn the object-oriented data models
manipulated by object-oriented SQL queries, but are intro-
duced due to path expressions that can contain NULL
pointers. The present invention can handle path expressions
of any length in which a node might be a NULL pointer. This
protects a simple, two-valued, query engine from abnormal
termination when traversing a NULL pointer, and provides
the correct interpretation of object-oriented SQL queries 1n
the presence of such expressions. Moreover, the present
invention handles predicates that include subqueries whose
interpretation can be NULL. Also, the present mvention
handles the correct interpretation of the IS NOT NULL

predicate for general path expressions.

To enable a two-valued query evaluator to properly
handle occurrences of NULL values 1n basic path predicates
(i.e., those without subqueries), an extended version of the
basic GEM transformations are employed for positive and
negative predicates called null protection.

In particular, the present invention applies query rewrite
transformations on object-oriented SQL queries so that the
rewritten query 1s amenable to the mtroduction of appropri-
ate NULL-pointer checking predicates for two-valued logic
environments. To enable a two-valued query evaluator to
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3

properly handle occurrences of NULL values 1 both simple
predicates (i.e., those without subqueries) and subquery
predicates (1.e., those within subqueries), a two phase trans-
formation 1s performed. For both types of predicates, nega-

tion reduction 1s performed by applying DeMorgan’s logical
equivalence rules and inverting their basic comparators
(c.g., transforming < to >=) to eliminate NOTS.
Additionally, to handle subquery predicates, all quantified
subqueries are transformed into existential subqueries.
Then, for both types of predicates, transformations are
employed to mnclude NULL value checks.

ENVIRONMENT

An OO-SQL query engine 100 1s described with reference
to FIG. 1. A preferred embodiment has an implementation of
the OO-SQL query engine 100 that runs on top of System
Object Model (SOM), which is well known 1n the art as an
object architecture. SOM 1s described fully 1n Christina Lau,
Object Oriented Programming Using SOM and DSOM, Van
Nostrand Reinhold, an International Thomson Publishing

Company, 1994. In addition, the OO-SQL query engine 100
can run on top of an OODB system.

FIG. 1 presents the framework for the implementation
which supports the integration of the OO-SQL query engine
100 with a user’s applications 102. The application 102
1ssues OO-SQL queries 104 through a Call Level Interface
(CLI) 106. The OO-SQL parser 108 parses the query and
ogenerates an internal representation of the query called a
query graph, i.e. a data structure OQGM (object query graph
model) 110. The OQGM 110 is passed to the query rewrite
component 112, which applies transformations to optimize
the query. This query rewrite component 112 employs
standard relational query rewrite techniques that were devel-
oped for relational systems as well as the query rewrite
transformations of this invention. The query rewrite trans-
formations of this mvention apply the negation reduction
techniques as discussed herein. The rewrite phase compo-
nent 112 outputs as its result a query graph 114 that 1s used
by the optimizer 116. The optimizer 116 further optimizes
the query by applying the null protection techniques dis-
cussed herein. Each query 1s then translated into an execut-
able plan (QPL) 118. Once translated, the QPL 118 is passed
to the Query Evaluation Subsystem (QES) 120, which runs
it against SOM collections of objects 122, which can include
objects stored 1n a database 124. Returned to the application
102 (which could also be a user interacting directly through

an interface) 1s an ordered collection of tuples or objects
126.

Query results can include pointers to objects 1n stored
collections 124. These pointers are simply virtual memory
addresses 1n the application program 102, SO they must be
valid pointers 1n the application program 102 i order to be
usecable for further C++ based navigation and data manipu-
lation.

FIG. 2 shows the context of the OO-SQL query engine
100 1n a processing system 200 having memory 202 and at
least one cpu 204. The system 200 could be connected to
other systems 206 via a network. The application could be
resident on any of the systems 200 or 206 1n the network.
Further, the OO-SQL query engine 100 could retrieve data
from a data storage device 208 connected locally or
remotely to the processing system.

Using the specification herein, the invention may be
implemented as a machine, process, or article of manufac-
ture by using standard programming and/or engineering
techniques to produce programming software, firmware,
hardware or any combination thereof.
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Any resulting program(s), having computer readable pro-
oram code, may be embodied within one or more computer
usable media such as memory devices or transmitting
devices, thereby making a computer program product or
article of manufacture according to the invention. As such,
the terms “article of manufacture” and “computer program
product” as used herein are intended to encompass a com-
puter program existent (permanently, temporarily, or
transitorily) on any computer usable medium such as on any
memory device or 1n any transmitting device.

Executing program code directly from one medium, stor-
ing program code onto a medium, copying the code from
one medium to another medium, transmitting the code using
a transmitting device, or other equivalent acts, may 1nvolve
the use of a memory or transmitting device which only
embodies program code transitorily as a preliminary or final
step 1n making, using or selling the invention.

Memory devices include, but are not limited to, fixed
(hard) disk drives, diskettes, optical disks, magnetic tape,
semiconductor memories such as RAM, ROM, Proms, etc.

Transmitting devices 1nclude, but are not limited to, the
internet, electronic bulletin board and message/note
exchanges, telephone/modem-based network
communication, hard-wired/cabled communication
network, cellular communication, radio wave
communication, satellite communication, and other station-
ary or mobile network systems/communication links.

A machine embodying the 1invention may mvolve one or
more processing systems 1ncluding, but not limited to, cpus,
memory/storage devices, communication links,
communication/transmitting devices, servers, I/O devices,
or any subcomponents or individual parts of one or more
processing systems, including software, firmware, hardware
or any combination or subcombination thercof, which
embody the invention as set forth in the claims.

One skilled in the art of computer science will easily be
able to combine the software created as described with
appropriate general purpose or special purpose computer
hardware to create a computer system and/or computer
subcomponents embodying the invention and to create a
computer system and/or computer subcomponents for car-
rying out the method of the 1nvention.

INTERPRETATION AND OPTIMIZATION
Handling NULL Values

The 1invention 1s applicable to predicates having subque-
ries and quantified subqueries. A predicate 1s a truth-valued
function, 1.e., a function that, given appropriate arcuments,
returns either TRUE, FALSE, or NULL (UNKNOWN). A
quantified subquery includes a quantified predicate such as
the universal predicate ALL and existential predicates such
as ANY, SOME, and IN.

To handle object-oriented SQL, queries are transformed
in two phases. The first phase performs negation reduction
to simplity the treatment of NULL values including predi-
cates that involve subqueries. Following this negation reduc-
fion phase, the second phase applies NULL protection
transformations to guard the query engine against interme-
diate NULL pointer values. The negation reduction phase
occurs at logical query rewrite time, and precedes query plan
optimization. The NULL pointer protection phase occurs
somewhat later, during plan optimization, as it requires
predicates to have an ordered execution semantics.

The mvention presented herein provides techniques for
implementing tri-valued logic over two-valued systems to
derive the correct interpretation of path expressions with
NULL pointers and queries involving subquery predicates.
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To properly handle NULLS 1n the context of path
expressions, the technique of this invention extends the
GEM transformations for NULLs 1n predicate expressions.
To properly handle subqueries (including a basic predicate
with a subquery and a quantified subquery), both types of
subqueries are handled 1n a special fashion when being
converted to two-valued logic since both types have speciiic
semantics for their interpretation with respect to tri-valued
logic. The mvention 1s especially applicable for use with an
underlying query evaluation engine that 1s 1tself capable of
handling path expressions if, and only if, no intermediate
pointer along the path 1s NULL, 1.e., a two-valued query
engine system.

The problem that this invention addresses 1s different than
the problem of NULL values addressed in GEM 1n the
following respect: The 1nvention does not try to enrich the
types of values that a column, say t.A of type integer, can
have by selecting a specific value, say zero, to represent a
NULL value instead of the value zero. The invention 1is
concerned with the correct interpretation of path expressions
in which a node might be a null pointer.

The problem which this invention overcomes has two
aspects: 1) protecting a simple, two-valued, query engine
from abnormal termination by traversing a NULL pointer,
and 2) providing the correct interpretation of queries in
Object-Oriented Systems (OOS) and Object-Oriented Data-
base Systems (OODB), including those involving subquery
predicates, 1n such an environment. These two aspects of the
problem of handling NULL valued semantics in the context
of queries 1n OOSs and OODBs are solved by this invention
in the following ways. First, the invention provides a correct
interpretation, by the query engine, of predicates with path
expressions having NULL pointers by using NULL valued
semantics. Second, the invention handles predicates that
include subqueries whose interpretation can be NULL.
Third, the invention provides a correct interpretation of the

SQL“IS[NOT]NULL” predicate for the detection of NULL
values 1n systems that do not directly support such a notion.

The present invention 1s incorporated 1nto an OO query
system that provides SQL-based query access to C++ pro-
cramming language environments, Object-Oriented Sys-
tems (OOSs), and Object-Oriented Database Systems
(OODBSSs). The present invention is embodied in an object-
oriented database query interface that provides an upward
compatible extension to SQL-92, as discussed in Database
Language SQL ISO/AEC 9075:1992, ISO__ANSI, 1991,
|hereinafter referred to as “IS091”], which is incorporated
by reference herem. The motivation for this approach 1s
twofold. First, it enables programmers familiar with SQL to
write object-oriented database queries without learning an
entirely new language; they must simply learn about the
object extensions. Second, 1t enables the many tools that
have been built for relational systems to access object-
oriented database data via interfaces such as open database
connectivity (ODBC), Microsoft Open Database Connec-

tvity Software Development Kit, Microsoft Programmer’s
Reference, 1992, [ hereinafter referred to as “Mic92”], which
1s 1ncorporated by reference herein.

Table 1, below, gives the interpretation of expressions 1n
predicates.
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TABLE 1

P Q P AND Q POR Q

T T T T

T F F T

T NULL NULL T

F T F T

F F F F

F NULL F NULL
NULL T NULL T
NULL F F NUI
NULL NULL NULL NU.

Additionally, NOT (TRUE) is FALSE, NOT (FALSE) is
TRUE, and NOT (NULL) is NULL. The SQL-92 “IS [NOT]

NULL” predicate can be applied to a column of any type to

determine if it has a NULL value, as discussed in [ISO91].
The IS NULL predicate 1s TRUE 1if the path expression
has a node which 1s a NULL pointer. The predicate 1s FALSE

otherwise, and mversely for IS NOT NULL.

SQL-92 includes predicates of the form: e r Q, and e r &
(Q 1n which e 1s an expression, r 1s a relational operator, o 1s
a qualifier among {ANY, ALL} and Q is a subquery. Both
have specific semantics for their interpretation with respect
to tri-valued logic, and therefore require careful treatment
when being converted to two-valued logic.

Managing NULL Values In Object-Oriented SQL Queries
Using Two-Valued Logic

To handle object-oriented SQL, queries are transformed
in two phases. The first phase 1s to use negation reduction to
simplify the treatment of NULL values for predicates that
involve subqueries. The purpose behind this simplification 1s
that if negation 1s eliminated 1n predicates, then predicates
that evaluate either to FALSE or to NULL can be treated
similarly. (This is the case because object-oriented SQL, like
SQL, only returns query results for those predicates that
evaluate to TRUE.) Following this negation reduction phase,
the second phase applies the NULL protection transforma-
fions to guard the query engine against intermediate NULL
pointer values.

A two-phase method 1s used to enable a query evaluator
in a two-valued logic environment to properly handle occur-
rences of NULL values for predicates that involve
subqueries, 1.€., basic subquery predicates and/or quantified
subquery predicates. For basic subquery predicates, nega-
tion reduction 1s performed by applying logical equivalence
rules and inverting basic comparators (e.g., transforming <
to >=) to eliminate NOTS. Then, transformations are
employed for the resulting positive predicates to include
NULL value testing, 1.e., NULL protection. For quantified
subquery predicates, 1n addition to performing negation
reduction, quantified subqueries are converted 1nto existen-
f1al subqueries. In most cases, this yields a predicate that can
be handled using NULL protection transformations for posi-
tive predicates. The exception (i.€., a “NOT EXISTS” result-
ing from the conversion step of a universally quantified
subquery) 1s handled using NULL protection transforma-
tions for negative predicates. The evaluation of the NULL
tested positive and negative predicates ensures that if a
predicate has a NULL value, it 1s not included 1n the query
result.

A predicate with a subquery has the form ¢ r Q, where ¢
1s an expression, r 1s a relational operator, and Q 1s a
subquery that returns at most a single value. For example,
the following query selects employees who have a higher
salary than their manager:
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select *
from Emp e
where e.sal > (select m.sal

from Emp m
where m.no = e.mgr);

ek - *?

For a given Employee “¢”, the subquery 1s computed and
the comparison (e.sal>m. sal) 1s performed. The SQL inter-
pretation of predicates with a subquery 1s NULL if either
operand is NULL (e.sal or m.sal in the above example), or
if the subquery returns an empty result.

A quanfified subquery predicate 1s of the form ¢ r a. Q,
where € 15 an expression, r 1s a relational operator, o 1s a
qualifier among {ALL, ANY, SOME, IN}, and Q is a
subquery. For example, the following query selects employ-
ces having the highest salary of employees 1n their depart-
ment:

select *

from Emp e

where e...sal >=ALL (select . ..e2 ... sal
from (e ... dept...emps)
e2);

be - *?

For a given Employee “e”, the subquery selects the
salaries of all employees 1n “e’s” department. The 1nterpre-
tation of this predicate 1s NULL 1f the specified relationship
1s not FALSE for any values returned by the subselect and
at least one comparison 1s unknown because of a NULL
value. The following query selects employees who have 1n
their departments, other employees with the same name:

select *
from Emp €
where e...name = ANY (select €2 . . . name
from (e ... dept...emps) e2

where 62 <> €);

The interpretation of this predicate 1s NULL 1if the speci-
fied relationship 1s not TRUE for any of the values returned

by the subselect and at least one comparison 1s unknown
because of a NULL value.

As shown above, the mterpretation 1n OOSQL of basic
predicates with subqueries, of an “ALL” quantified sub-
query and of an “ANY” quantified subquery, 1s enabled to be
the same as the interpretation provided by SQL-92 even
though OOSQL 1s based upon a two-valued logic system and
SQL-92 provides for tri-valued logic. The mvention pre-
sented herein handles queries with such subquery predicates.

As discussed above, a path expression p i1s of the form
g.m,..m,.., ..., .M 1n which attributes m,, ... ,m__, can
be NULL pointers. To protect the query engine from abnor-
mal termination due to dereferencing a NULL pointer, each
attribute m, through m__, along the path must be checked
for NULL values before attempting to further resolve the
path p. Doing this takes care of mtermediate NULLSs along
paths.

Object-Oriented SQL Transformations

FIG. 3 1s a flowchart 1llustrating the method of 1nitializing,
and optimizing SQL queries over object-oriented data
according to the present invention. In step 302, each predi-
cate 1n a query 1s selected, starting with the first predicate.
In step 304, the negation reduction 1s performed. To perform
negation reduction, logical equivalence rules are applied to
the query to eliminate negative predicates and to convert
quantified subqueries into existential subqueries, as will be
discussed 1n further detail below.
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Once step 304 1s completed, step 306 indicates that NULL
protection 1s performed. Recall that a path expression
resolves to the value of the leaf of the path expression, and
that the correct interpretation of predicates 1s dictated by
tri-valued logic. Predicates having path expressions are
transformed as follows:

p,rk

P1 1T P2
in which p; 1s a path expression, k 1s a constant, and r 1s a

relational operator among {=, =, <, =, >, =}. Positive
expressions are transformed as follows:

P, r k—=q,.m;#zNULL and q,.m,. m,=NULL and . . . and
q,.m;..,...,.m_.=NULL and gq;.m,..,...,.m_rk

p; r p,—>q,-.m,;=NULL and q,.m,..m,=NULL and . . . and

q,.m;.., ..., .m__=NULL and g,.m,;=zNULL and
g..m,.m,=NULL and . . . and g,.m4.., . . ., .m,__,
=NULL and ¢, m,..,...,.m_rq.my..,...,.m,

Note that 1t 1s assumed that the last nodes m_ in the path
expression above are not pointer types.

Since any non-leaf node 1n a path expression can contain
a NULL pointer, each node in a path expression must be
checked for NULL values before proceeding to the succes-
sive one. For positive expressions, the NULL test ensures
that bindings for predicates evaluating to NULL are not
included in the resullt.

It should be noted that i1f an existential subquery of the
form “not exists Q7 1s part of the original query, then it 1s
treated as a posifive predicate as described above. However,
if the existential subquery “not exists Q” 1s a result of being
converted from an “ALL” quantified subquery, then its
predicates are treated according to the following formulas
for negative predicates:

not (P; r k)—not (q,.m;=NULL or q,.m;..m,=NULL

or...orq,.my.,...,.m_,=NULLor q,m,.., ...,
.m, 1 k)

not (p; r ©p,)—>not (q;.m;=NULL or
q,.m,.m,=NULLor...orq,m,.,...,.m__,=NULL
or ,.m,=NULL or g,.m,.m,=NULL or . .
orq,.my.., ..., .m__.=NULLorq,.m,..,...,.m_r
qo.My.ey « . ., ..M, )

Note that 1t 1s assumed that the last nodes m_ 1n the path
expression above are not pointer types.

The NULL test ensures that bindings for predicates evalu-
ating to NULL are not included 1n the result by returning
TRUE if a NULL pointer 1s found. After reaching the scope
of negation, 1t will become false.

As shown above for the positive predicates, a NULL
testing predicate 1s applied to each node along the path
expression with each NULL testing predicate being AND ’ed
together. The semantic of the IS NOT NULL 1is interpreted
as being FALSE 1f the path expression has a node which 1s
a NULL pointer, and 1t 1s interpreted as being TRUE 1f the
path expression does not have a node which 1s a NULL
pointer. Because each node and 1ts NULL testing predicate
are AND’ed together, if there 1s a NULL pointer present, or
if the predicate expression evaluates to FALSE, then the
whole predicate expression evaluates to FALSE. As such,
for positive predicates, the NULL test ensures that bindings
for predicates evaluating to NULL are not included in the
result. Since bindings for predicates evaluating to FALSE
are not included 1n the result, both a NULL wvalue and a
FALSE value are handled similarly.

As shown above for the negative predicate “not exist Q7,
a NULL testing predicate 1s applied to each node along the
path expression with each NULL testing predicate being,
OR’ed together. The semantic of the IS NULL 1s interpreted

10

15

20

25

30

35

40

45

50

55

60

65

14

as being TRUE 1if the path expression has a node which 1s a
NULL pointer, and 1t 1s interpreted as being FALSE 1if the
path expression does not have a node which 1s a NULL
pointer. Because each node and 1ts NULL testing predicate
arec OR’ed together, 1f there 1s a NULL pointer present, then
the whole predicate expression evaluates to TRUE. After the
scope of negation 1s applied, the expression evaluates to
FALSE thereby ensuring that bindings for predicates having
a NULL pointer are not icluded 1n the result.

By applying the NULL transformations and interpreting,
the semantics as described above with respect to positive
and negative predicates, the query can be processed, 1n a
two-valued logic query system that does not support NULL
values and 1 an environment that has NULL pointers,
without an abnormal termination as a result of a traversal of
a NULL pointer with a predicate having a subquery.

NULL tests are added to all of the positive path predicates
in the transformed predicate tree. As for negative predicates,
the only negative predicates that survive the negation reduc-
fion process are predicates of the form “not exists Q.” These
must be treated carefully because a positive (universal)
predicate is transformed into a negative (existential) one.
Those that were generated by the transformations 1n Table 5,
which convert universally quantified subqueries 1mnto nega-
tive existential subqueries, must be handled as a special case
in order to produce the correct NULL semantics. It should be
noted that 1f a “not exists Q7 appears 1n the original query,
it 1s handled as a positive predicate. In the case of a “not
exists Q7 subquery that was introduced by transformations
in Table 5, the newly created predicate (ar~" x,) was pushed
into the body of Q. In the predicate, r™* is the inverse
comparator for r, and x, 1s the first and only projection
clement. This predicate requires particular attention, as it
must remain in the scope of negation with respect to NULL
testing predicates. These are the only predicates to which the
path transformations for negative predicates are applied.
Other negative existential subqueries are handled similarly
to positive ones (i.c., their predicates are considered to be
positive with respect to the introduction of NULL testing
predicates). For positive (universal) predicates that are trans-
formed into negative (existential) predicates, the resulting
negative existential subquery must return FALSE 1if the
umversal predicate 1s either FALSE or UNKNOWN. It must
therefore return FALSE if (1) the specified comparison is not
FALSE for any values returned by the original subquery and
(1) at least one comparison is unknown because of a NULL
value. The first case 1s handled by the iverse predicate
which 1s added to the negative existential subquery; this
detects any bindings for which the comparison fails. The
second case detects any NULL values, which cause at least
one comparison to be UNKNOWN due to a NULL value.
This will be clarified 1n the example below.

Step 308 15 a decision step determining whether all of the
predicates have been selected. When all of the predicates
have not been selected, then the next predicate 1s selected for
negation reduction and NULL transtormation. In step 310,
the next subquery 1s selected, starting with the first subquery.
In step 312, the transform query routine 1s performed on the
subquery. This ensures that the predicates in subqueries have
been properly handled. Step 314 1s a decision step that
determines whether all of the subqueries have been selected.
When all of the subqueries have not been selected, then the
next subquery 1s selected and transform query 1s performed
on 1it.

FIG. 4 1s a flowchart further 1llustrating additional detail
of the steps required to perform negation reduction (step 304
of FIG. 3) according to the present invention. Step 402 is a
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decision step that determines whether a predicate 1s 1n the
scope of negation. In step 404, when the predicate 1s 1n the
scope of negation, logical equivalence rules are applied to
progressively push negation from the root of a predicate tree
down to the leaves of the predicate tree.

In particular, first logical equivalence rules are applied for

negation reduction for predicate trees, as illustrated 1n Table
2 below.

TABLE 2

not (not (A)) A
not (A or B) (not (A) and not (B))
not (A and B) (not (A) or not (B))

Next, logical equivalence rules are applied for negation
reduction of simple predicates, as illustrated n Table 3
below.

TABLE 3
not (a = b) a=b
not (a = b) a=>b
not (a > b) a=bh
not (a = b) a <b
not (a < b) a=b
not (a = b) a>b
not (a like b) a not like b
not (a not like b) a like b
not (a [S NULL) a IS NOT NULL
not (a [S NOT NULL b) a IS5 NULL

Then, logical equivalence rules are applied for negation

reduction for quantified subqueries, as illustrated in Table 4
below.

TABLE 4
not (a = ANY Q) a=ALLQ
not (a = ANY Q) a=ALLQ
not (a > ANY Q) a = ALLQ
not (a 2 ANY Q) a < ALL Q
not (a < Q) a = ALL Q
not (a = ANY Q) a >ALLQ
not (a = ALL Q) a = ANY Q
not (a = ALL Q) a =ANY Q
not (a > ALL Q) a = ANY Q
not (a = ALL Q) a < ANY Q
not (a < ALL Q) a = ANY Q
not (a = ALL Q) a > ANY Q

The last step 1nvolves applying logical equivalence rules
to convert quantified subqueries mto existential subqueries,
as 1llustrated 1n Table 5 below. Note that x, stands for the

first (and only) projection element in the subquery Q.
TABLE 5
a=ANY Q exists (. .. and a = x;)
a=ANY Q exists (.. .and a = X;)
a>ANY Q exists (... and a > x,)
a = ANY Q exists (... and a = x,)
a < ANY Q exists (.. .and a < X;)
a = ANY Q exists (... and a = x,)
a=ALLQ not exists (. . . and a = X,)
a=ALLQ not exists (. . . and a = x,)
a>ALLQ not exists (. . . and a = x,)
a = ALL Q not exists (. . . and a < x;)
a <ALLQ not exists (.. .and a Z x,)
a = ALL Q not exists (. . . and a > x;)

These transformations push the quantified predicate 1nto
the body of the subquery 1n order to convert the subquery
from a quantified subquery into an existential subquery. A
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predicate of the form: “e r ANY (select x; . .. ” generates
a newly created predicate of the form “e r x,”, which 1s then
AND ’ed 1nto the list of conjuncts 1n the existential subquery.
Similarly, a predicate of the form: “e r ALL (select x, ... )”
generates a newly created predicate of the form “e r " x,”
(where r~" is the inverse comparator for r) which is then
AND’ed 1nto the existential subquery’s list of conjuncts; 1n
this case, the resulting existential subquery itself 1s negative.

The details of the transformed existential subquery vary
slightly from case to case. If the original subquery Q 1s not
an aggregate form (i.e., Q has no aggregate function in its
projection element and no group-by or having-clause), then
the newly created predicate 1s AND’ed into the list of
conjuncts 1n the existential subquery’s where-clause.
Otherwise, the newly created predicate 1s AND’ed into the
having-clause (creating one if Q previously had no having-
clause).

Continuing with FIG. 4, step 406 1s a decision step that
determines whether the predicate has a left operand. In step
408, when the predicate has a left operand, the negation
reduction routine 1s performed on the predicate and its left
operand. Step 410 1s a decision step that determines whether
the predicate has a right operand. In step 410, when the
predicate has a right operand, the negation reduction routine
1s performed on the predicate and its right operand.

An Illustrative Example

In the following example, the query selects employees

who don’t have any spouses with the same name as their

own spouse 1n their departments.

select ™
from Emp e
where  not (e.spouse. .name = any (select

el.spouse. .name from (e.dept. .emps)
el where e <> el))

The transformations applied to this mnitial query are now
detailed.

1.  select *
from Emp €
where e.spouse. .name <> all (select

el.spouse. .name from (e.dept. .emps) el
where ¢ <> el))

2.  select *
from Emp €
where not exists (select 1 from (e.dept. .emps)
el

where e <> ¢l and e.spouse. .name =
el.spouse. .name)

3. select *
from Emp €
where not exists (select 1 from (e.dept. .emps)
el

where (e <> el and
(espouse == NULL or
el.spouse == NULL or
e.spouse. .name =
el.spouse. .name)))

NULL values can appear 1n the following three places 1n
the example query: (1) if “e.spouse” is a NULL pointer in
“e.spouse..name”, (i1) if “el.spouse” i1s a NULL pointer in
“el.spouse..name”, and (ii1) if “e.dept” 1s a NULL pointer in
“e.dept. . emps”. Assume, 1n this example, that “name” 1s a
character array and cannot be NULL. The first transforma-
fion eliminates negation by transforming the “ANY” quan-
fified predicate into an “ALL” quantified predicate, and
inverting the comparison operator. The second transforma-
tion converts the quantified predicate into a negative exis-
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tential subquery by introducing a new predicate into the
body of the subquery. The newly formed predicate 1s
“e.spouse..name”’=“el.spouse.name”. Note that i1n the
absence of NULL values, the negative existential subquery
1s equivalent to the “ALL” quantified predicate. The final
transformation, which 1s actually performed later (during
plan optimization), adds the NULL testing predicates that

are required to implement the correct semantics of the query
in the presence of NULL values (i.e., e.spouse == NULL or
el.spouse == NULL or . . . ). If “dept” in “e.dept.emps” is
a NULL pointer, the interpretation of “e1” 1s the empty set.

The Complete Method

The transformations applied to an object-oriented SQL
query to handle NULL values using a two-valued logic
systems are presented 1n pseudocode below.

negation_ reduction (q subquery)
begin
for each conjunct p 1n q do
begin
reduce (p); null__protection (p);
end
for each subquery qi 1n q do
begin
negation__reduction (qi);
end
end
reduce (p predicate)
begin
if (p is in the scope of negation) then
begin
if (Table 2 transformations can be applied to
p) then
apply Table 2 transformations to p;
else if (Table 3 transformations can be
applied to p) then
apply Table 3 transformations to p;
else if (Table 4 transformations can be
applied to p) then
apply Table 4 transformations
to p;
if (Table 5 transformations can be
applied to p) then
apply Table 5 transformations to p;
end
if (p is a predicate that has a left operand)
then
reduce (left operand (p));
if (p is a predicate that has a right operand)
then
reduce (right operand (p));
end
null__protection (predicate p)
begin
if (p is of the form q <relop> k) then
if (p is not in the scope of negation) then
p :=qg.m; <> NULL and .. . and

qmy ... .....m, <>NULLand
qm; ... ... ..m <relop> k;
else

p:=qmy =NULLor...or

qmy .......m,; =NULLor

qmy .., ... ..m, <relop> k;
else if (p is of the form ql1 <relop> g2) then
if (p is not in the scope of negation) then

p :=q,.m; <> NULL and . . . and

qq-My « vy - - .y . . My 4 <> NULL and
q,.-m; <> NULL and . . . and
qoMMy « vy« ooy . . My 7 <> NULL and
qq-My - oy« ... . M <relop>
O P7% 12 PR 12 P
clse
p:=q;.my =NULLor...or
qyMy ..y...,..m _, =NULLor
g,.m; = NULLor...orq,my .., ... ..My, 4
= NULL or q;,m; . ., ..., ..m, <relop>

Qo-My « oy v v oy« 2 M;
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-continued
else
begin
if (p is a predicate that has a left operand)
then

null__protection (left operand (p));
if (p 1s a predicate that has a right
operand) then
null__protection (right operand (p));
end
end

© Copyright 1997 IBM Corporation.

The recursive negation_ reduction procedure accepts a
single parameter that 1s a subquery. The mitial query 1is
treated as a subquery since 1t 1s passed as a parameter to this
function. The negation_reduction procedure 1iterates
through each AND’ed predicate 1n the query, and calls the
reduce procedure to apply negation reduction on each predi-
cate. For example, the predicate expression e.sal>100 and
not (¢.no <> 10) would generate two iterations. The first for
predicate e.sal>100 and the second for predicate not (e.no <>
10). For a given subquery Q, once all predicates have been
reduced, the method processes each subquery contained
within Q by recursively calling negation reduction for each
one. Once the reduce procedure has transformed a predicate
p, the null_protection procedure 1s applied to the predicate
p to mtroduce the NULL pointer testing predicates to ensure
1) that path expression traversal does not extend beyond
NULL pointers, and 11) the correct interpretation of predi-
cates that include them. The null protection procedure
performs the null protection transformations described
under the heading “Object-Oriented SQL Transformations”.
Subqueries contained within subqueries might also have
predicates scoped by negation that need to be reduced in
order to be interpreted correctly with respect to NULL
values.

The reduce procedure accepts a predicate p, over which it
attempts to apply the transformations given in Tables 2
through 5. The reduce procedure handles predicates that are
scoped by negation. Even if a predicate 1s not itself scoped
by negation, 1t might include other predicates that are. The
reduce procedure also 1ncludes recursive calls to the reduce
procedure that handle operands of predicates that are also
predicates. For example, calling reduce with the predicate
¢.sal>100 or not (e.no <> 10), would cause two recursive
calls to the reduce procedure. The transformations per-
formed using Table 2 push negation into the leaves of
predicate trees. These leaves are further reduced by the
transformations performed by Tables 3 to 5. However, the
transformations performed using Table 4 produce subqueries
that are applicable for further transformations using Table 5
(e.g., a negated “ALL” subquery is transformed into an
“ANY” subquery form using Table 4 transformations, and
then transformed into an “exists” subquery using Table 5
transformations).

The IS [NOT]| NULL Predicate

In SQL-92, discussed mn ISO91, the “IS NULL” predicate,
and 1t’s negation, the “IS NOT NULL” predicate are used to
test whether a column contains, or does not contain, a NULL
value. The following 1s an interpretation of these predicates
in a system that doesn’t directly support such a notion.

The truth value of an expression p IS [NOT] NULL,
where p 1s a path expression, 1s determined using the
approach presented under the heading “Object-Oriented
SQL Transformations”, and 1s implemented using a method
that 1s similar to the null protection method. For path
expressions p, where the leaf of the expression i1s not a
pointer type, the transformations are as follows:
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p IS NOT NULL—=g.m,;#NULL and g.m,.m,=NULL

and . . . and q.m,.., ..., .m__,=NULL
p IS NULL—=q.m,=NULL or g.m,.m,=NULL or . . . or
qm,.,...,.m__,=NULL

Path expressions that are pointers types have an additional
test for the leaf node as follows:

p IS NOT NULL—-q.m,;=NULL and gq.m,..m,=NULL
and . ..and q.m,..,...,.m_,=NULL and q.m,.., ...,
.M, =NULL

p IS NULL—=qg.m,=NULL or gm,.m,=NULL or . .. or

qm,.,....,.m__,=NULLorqm,..,...,.m =NULL

Note that 1t 1s assumed that the last nodes m_ in the path
expression are not pointer types.

CONCLUSION

The foregoing description of the preferred embodiment of
the 1nvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible 1n light of the
above teaching. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A method of handling null values 1n a query having a
subquery, the query being performed by a computer to
retrieve object-oriented data from a database stored in an
clectronic storage device connected to the computer, the
method comprising the steps of:

(a) iteratively eliminating, in the computer, negation in
cach predicate of the query by applying logical equiva-
lence rules; and

(b) iteratively performing, in the computer, null protection
on cach predicate of the query after eliminating
negation, to ensure that null values are checked when
attempting to retrieve the object-oriented data from the
clectronic storage device coupled to the computer
within a two-valued logic environment.

2. The method of claim 1, wherein the query comprises
quantified subqueries and wherein step (a) further comprises
the step of applying logical equivalence rules to eliminate
negation 1n predicates mvolving the quantified subqueries.

3. The method of claim 1, wherein the query comprises
quantified subqueries and wherein step (a) further comprises
the step of applying logical equivalence rules to transform
the quanfified subqueries into existential subqueries.

4. The method of claim 1, wherein step (b) further
comprises the step of, when the predicate 1s a positive
predicate, performing null protection transformations for the
positive predicate.

5. The method of claim 1, wherein step (b) further
comprises the step of, when the predicate 1s a negative
predicate, performing null protection transformations for the
negative predicate.

6. An apparatus for handling null values 1n a query having
a subquery, comprising;:

a computer with an electronic storage device connected
thereto, the electronic storage device storing object-
oriented data;

means for executing the query in the computer to retrieve
the object-oriented data from the electronic storage
device;

means, performed by the computer, for iteratively elimi-
nating negation 1n each predicate of the query by
applying logical equivalence rules; and
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means, performed by the computer, for iteratively per-
forming null protection on each predicate of the query
after eliminating negation, to ensure that null values are
checked when attempting to retrieve the object-
oriented data from the electronic storage device
coupled to the computer within a two-valued logic
environment.

7. The apparatus of claim 6, wheremn the means for
iteratively eliminating further comprise means for applying
logical equivalence rules to eliminate negation 1n each
predicate 1n the query.

8. The apparatus of claim 6, wherein the query comprises
quantified subqueries and wherein the means for iteratively
climinating further comprise means for applying logical
equivalence rules to eliminate negation in the quantified
subqueries.

9. The apparatus of claim 6, wherein the query comprises
quantified subqueries and wherein the means for iteratively
climinating further comprise means for applying logical
equivalence rules to transform the quantified subqueries into
existential subqueries.

10. The apparatus of claim 6, wherein the means for
iteratively performing further comprise means for, when the
predicate 1s a positive predicate, performing null protection
transformations for the positive predicate.

11. The apparatus of claim 6, wherein the means for
iteratively performing further comprise means for perform-
ing null protection transformations for the negative
predicate, when the predicate 1s a negative predicate.

12. A program storage device, readable by a computer,
tangibly embodying one or more programs of instructions
executable by the computer to perform method steps for
handling null values 1n a query having a subquery that is
performed by the computer to retrieve object-oriented data
from an electronic storage device connected to the computer,
the method comprising the steps of:

iteratively eliminating, in the computer, negation 1n each
predicate of the query by applying logical equivalence
rules; and

iteratively performing, in the computer, null protection on

cach predicate of the query after eliminating negation,
to ensure that null values are checked when attempting
to retrieve object-oriented data from the electronic
storage device coupled to the computer within a two-
valued logic environment.

13. The program storage device of claim 12, wherem the
query comprises quantified subqueries and wherein the
iteratively eliminating step further comprises the step of
applying logical equivalence rules to eliminate negation 1n
predicates involving the quantified subqueries.

14. The program storage device of claim 12, wherein the
query comprises quantified subqueries and wherein the
iteratively eliminating step further comprises the step of
applying logical equivalence rules to transform the quanti-
fied subqueries mto existential subqueries.

15. The program storage device of claim 12, wherein the
iteratively performing step further comprises the step of
performing null protection transformations for the positive
predicate, when the predicate 1s a positive predicate.

16. The program storage device of claim 12, wherem the
iteratively performing step further comprises the step of
performing null protection transformations for the negative
predicate, when the predicate 1s a negative predicate.

17. A method for processing a query 1n a computer
system, comprising the steps of:

providing, in a two-valued logic system where NULL

values are unsupported, a tri-valued logic
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interpretation, by a query engine, of predicates involv-
ing subqueries having a capability to have NULL
pointers; and

protecting the query engine processing the query from
abnormal termination due to dereferencing one of the
NULL pointers.
18. A method for processing queries 1n a computer
system, comprising the steps of:

processing, by a two-valued logic system which 1s not
supportive of NULL values 1n an environment having
NULL pointers, a predicate having a subquery by
transforming the predicate by:

employing a technique to handle each occurrence of a
negative predicate, if any, as a positive predicate;

transforming a quantified subquery, if any, 1nto an exis-
tential form;

applying null tests, by the query system, to each resulting
predicate; and

interpreting the semantics of the NULL tested resulting
predicate such that a presence of a NULL pointer or a
NULL value 1s handled in a same way as 1f the
predicate evaluated to False by not returning a result;

wherein the two-valued logic system simulates tri-valued
logic and the query system does not terminate abnor-
mally 1if a NULL pointer 1s traversed.

19. The method of claim 18, wherein the step of employ-
ing further comprises applying equivalence rules to progres-
sively push negation from the root to the leaves of the
predicate and to reduce the breadth of negation.

20. The method of claim 18, wherein the step of trans-
forming further comprises pushing the quantified predicate
into a body of the subquery.

21. The method of claim 20, wherein the predicate having
a form “e r ANY (select X, . ..” generates a created predicate
of the form “e r x,”; and further comprising AND’ 1ng the
created predicate into a list of conjuncts 1n the existential
subquery; wherein ¢ 1s an expression, r 1s a relational
operator among {=, #,<, =, >, =}, and X, iS a projection
clement.

22. The method of claim 20, wherein the predicate having
a form “er ALL (select X, ... generates a created predicate
of the form “e r™" x,”; and further Comprlsmg AND’1ng the
created predicate mto a list of conjuncts 1n the existential
subquery; wherein € 1s an expression, r 1s a relational
operator among {=, =, <, =, >, 2}, x, IS a projection
element, and ™' is the inverse comparator for r.

23. The method of claim 20 or 21, wherein if the subquery
does not have an aggregate function 1n 1ts projection element
and there 1s no group-by or having-clause, then the created
predicate 1s AND’ed mto the list of conjuncts 1n a where-
clause of the existential subquery.

24. The method of claim 20 or 21, wherein if the subquery
has an aggregate function 1n its projection element, then the
created predicate 1s AND’ed mnto a having-clause.

25. The method of claim 21, wherein the created predicate
remains 1n a scope ol negation during the application of the
null protection transformations, and wherein the step of
applying null protection transformations further comprises
applying the following transformations for the created predi-

cate:
(1) transforming a negative expression “not (p; r k) as:

not (p; r k)—not (q,.m,=NULL or
q,.m,.m,=NULLor...orqg,.m,.,...,.m,_,=NULL
or ¢,.m,.., ..., .m_ rKk),and

(ii) transforming a negative expression “not (p; r p,)” as
not (p; r p,)—not (q;.m;=NULL or q,.m;..m,=NULL

10

15

20

25

30

35

40

45

50

55

60

65

22

or...or q,.my.,...,.m_,=NULL or g,.m,=NULL
or q2 m,.m,=NULL or...or g, my..,...,.m__. =
NULL or q;.m;.., . . ., .m, T Q,.My.., . . ., ..M, ),

wherein:

P, 1s a path expression of the form g,.m,..m,..,...,.m_
in which attributes m,, . . . , m__, can be NULI.
pointers,

k 1s a constant, and

P 1s a path expression of the form g,.m,..m,..,...,.m_
where m,, ..., m, __, are attributes that can be NULL
pointers.

26. A method for processing a query having a predicate
with a subquery 1n a computer system, comprising the steps

of:

using a two-valued logic system to process the query, the
query being capable of having NULL values;

reducing each predicate in the query from a negative
predicate to a logically equivalent positive predicate;

applying NULL pointer testing predicates to each positive
predicate to ensure that path expression traversal does
not extend beyond NULL pointers; and

interpreting the NULL tested positive predicates that
include NULL pointers similarly to a False value of the
predicate by not being included 1n the result.

27. The method of claim 26, further comprising:

if one of the each predicates 1s a quanfified subquery
predicate, converting the quantified subquery predicate
into an existential subquery predicate; and

if a resulting converted existential subquery 1s a form of
“NOT EXIST”, applying a NULL protection.
28. A method for processing a query 1n a computer
system, comprising the steps of:
transforming a predicate having a subquery imnto a logi-
cally equivalent predicate;

checking for nullness, in query systems that support
subqueries and 1n an environment where NULL values
are unsupported, each attribute (m, through m,) along
cach path expression p having a form
q.m,.m,..,...,..m_where m,,...,m_ canbe NULL
pointers within the transformed predicate;

interpretating, by a two-valued logic system, the check for
nullness of the transformed predicate in a way that
supports tri-valued logic; and

continuing to resolve the path after the check for nullness;
wherein a presence of a NULL pointer in the trans-
formed predicate 1s handled in a same way as a
FALSE value of the predicate having a subquery by
not returning a result and the query engine process-
ing the query 1s protected from abnormal termination

due to dereferencing the NULL pointer.
29. A method for processing a query 1n a computer

system, comprising the steps of:

applying, 1n an environment having NULL pointers and

where NULL values are unsupported, an IS NULL
predicate to a path expression 1n the query; and

interpreting a semantic of the IS NULL as being TRUE 1f
the path expression has a node which 1s a NULL
pointer.
30. A method for processing a query 1 a computer
system, comprising the steps of:
applying, 1n an environment having NULL pointers and

where NULL values are unsupported, an IS NULL
predicate to a path expression i1n the query; and

interpreting a semantic of the IS NULL as being FALSE
if the path expression does not have a node which i1s a

NULL pointer.
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31. A method for processing a query 1n a computer
system, comprising the steps of:

applying, in an environment having NULL pointers and
where NULL values are unsupported, an IS NOT
NULL predicate to a path expression 1n the query; and

interpreting a semantic of the IS NOT NULL as being
FALSE 1if the path expression has a node which 1s a
NULL pointer.
32. A method for processing a query in a computer
system, comprising the steps of:

applying, in an environment having NULL pointers and
where NULL values are unsupported, an IS NOT
NULL predicate to a path expression in the query; and

interpreting a semantic of the IS NOT NULL as being
TRUE 1if the path expression does not have a node
which 1s a NULL pointer.

33. The method of claims 29 or 31, further comprising the
step of continuing to process the query without an abnormal
termination of a query engine as a result of a traversal of the
NULL pointer.

34. The method of claims 29, 30, 31, or 32, wherein the
environment 1S an object-oriented database environment.

35. The method of claims 29, 30, 31, or 32, wherein the
environment 1s an object-oriented system.

36. A method for processing a query in a computer
system, comprising the steps of:

processing the query, 1n an environment where NULL
values are unsupported, the query having a basic predi-
cate with a subquery; and

interpreting the predicate as NULL 1f an operand 1s NULL
or if the subquery returns an empty result.
¥7. A method for processing a query 1n a computer
system, comprising the steps of:

processing the query, in an environment where NULL
values are unsupported, the query having a predicate
with a universal quantified subquery; and

interpreting the predicate as NULL 1f a relationship 1s not
FALSE for any values returned by the subquery and at
least one comparison 1s unknown because of a NULL
value.
38. A method for processing a query in a computer
system, comprising the steps of:

processing the query, in an environment where NULL
values are unsupported, having a predicate with an
existential quantified subquery; and

interpreting the predicate as NULL 1f a specified relation-

ship 1s not TRUE for any values returned by the

subquery and at least one comparison 1s unknown
because of a NULL value.

39. A method for processing queries 1n a computer
system, comprising the steps of:

processing, 1n an environment where NULL values are
unsupported, a predicate having a path expression by:
(a) transforming each occurrence, if any, of a negative
predicate 1nto a positive predicate; and
(b) applying null protection transformations to each
positive predicate by:
<(1) transforming a positive expression p; rkasp;r
k—=q,.m,=NULL and q,.m,.m,=NULL and . . .
and q,.m;.., . . ., .m,_;==NULL and
q,-Mmy.., ..., .m_ rKk;and
(i1) transforming a positive expression p; I p, as p;
r p,—q;.m,;=NULL and q,.m;..m,=NULL and .
and q,.m,. ..m, _ 1;:ENULL
and q,.m,. mz;éNULL and q,.m,..m,=NULL
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and . . . and gq,.m;4.., . . ., .m__,=zNULL and
qQ;-M;.., . . .,.M I J,.M,..,...,.Mm ,wheren:
p, 1s a path expression of the form

g,.m,.m,.., . . ., .m_ 1n which attributes

m,, ..., m__, can be NULL pointers,

r is a relational operator among {=, =, <, =, >, 2},
k 1s a constant, and

P, 1s a path expression of the form g,.m,..m,.., ..., .m_
where m,, . . . ,m__, are attributes that can be NULL
pointers.

40. A method for processing queries In a computer

system, comprising the steps of:

processing, 1n an environment where NULL values are
unsupported, a predicate having a subquery by:

(a) employing a technique to handle each occurrence, if
any, of a negative predicate as a positive predicate;

(b) converting quantified subqueries into existential
subqueries and pushing a created predicate into a
body of the subquery;

(¢) applying null protection transformations to each
resulting predicate, except a “not exists Q” resulting
from the conversion step (b), by:

(1) transforming an expression p; r k as p,; r
k—q;. ml;éNULL and q,.m,.m,=NULL and . . .
and qg,.m,. , .m,_,#=NULL
andqlml,.. mrk

(i1) transforming an expression p; r p, as p; T
p,—>q,.m,=NULL and q,.m,. m,=NULL and . . .
and q,;.m,.., ..., .m =NULL and gq,.m,=NULL
and q,.m;,. mz;éNULL and . . . and
Qo My.y ..., _ 1;ﬁNULL and q,.m,..,...,.m_
r q,.my.., ..., .m_; and

(d) applying a following applicable null protection
transformation to a predicate, if any, having the form
“not exists Q7, if the form “not exists Q” 1s a result
of the conversion of quantified subqueries 1nto exis-
tential subqueries of step (b):

(1) (p; r k)—=(q,. m,=NULL or
q,.m,.m,=NULLor...orqg,my..,...,.m,_ .=
NULL or q,.m,.., . .., .m_r Kk);

(i1) (p; r p,)—(q;.m,=NULL or q,.m,..m,=NULL

or...or q,my.,...,.m_,=NULL or g, m;=

NULL or gq,.m,.m,=NULL or . . . or

qg,.my..,...,.m__,=NULLorq,.m,.,...,.m,

rq,.m,.., ..., .m ), wherein:

p, 1s a path expression of the form
q,.m;..Mo.., . . . .m, 1n
which attributes m,, . . ., m,__, can be NULL
pointers,

r is a relational operator among {=, =, <, =, >,
-
=

k 1s a constant, and

P, 1s a path expression of the form
J,.m,..M-..,...,.m_ wherem,, ... ,m__, are
attributes that can be NULL pointers.

41. The method of claim 40, wherein the null protection
transformations are applied during a plan optimization phase
of query processing.

42. The method of claim 40, wherein the steps (a) and (b)
are performed during a query rewrite phase of query pro-
cessing.

43. A method for processing a query having a predicate

with a subquery 1 a computer system, comprising the steps
of:

using a two-valued logic system to process the query, the
query being capable of having NULL values;
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reducing each predicate 1n the query from a negative
predicate to a positive predicate; and

applymg NULL pointer testing predicates to each predi-
cate to ensure that path expression traversal does not
extend beyond NULL pointers and to interpret predi-
cates that include NULL pointers such that a NULL or
False truth value are handled similarly by not being
included 1in the result.

44. A query system for processing a query, the system

comprising:

means for providing, in an environment where NULL
values are unsupported, a tri-valued logic mterpretation
of predicates involving subqueries having a capability
to have NULL pointers; and

means for protecting the query system from abnormal
termination due to dereferencing one of the NULL
pointers.

45. A query system for processing queries, the system

comprising:

means for processing, mn an environment where NULL
values are not supported, a predicate having a subquery
having a capability to have NULL pointers, the means
for processing further comprising:

means for employing a technique to handle each occur-
rence of a negative predicate, 1f any, as a logically
equivalent positive predicate;

means for applying null tests to each resulting predicate;
and

means for interpreting the semantics of the NULL tested
resulting predicate such that a presence of a NULL
pointer or a NULL value 1s handled 1in a same way as
if the predicate evaluated to False by not returning a
result;

wherein the two-valued logic system simulates tri-valued
logic and the query system does not terminate abnor-
mally 1if a NULL pointer 1s traversed.

46. The system of claim 45, wherein the means for
processing further comprises means for transforming a
quantified subquery, if any, 1into an existential form.

47. The system of claim 45, wherein the means for
applying null tests further comprises:

means for applying an IS NOT NULL predicate to each
node 1n a path expression of the resulting predicate;

means for AND’ing each node having the IS NOT NULL
predicate applied to it;
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means for interpreting a semantic of the IS NOT NULL as
being TRUE if the path expression does not have a
node which 1s a NULL pointer; and

means for interpreting the semantic of the IS NOT NULL
as bemmg FALSE if the path expression has a node

which 1s a NULL pointer.
48. A computer program on a computer usable medium

for controlling a processing of a query by a query system, the
program comprising:

program code means for providing, 1n an environment
where NULL values are unsupported, a tri-valued logic
interpretation of predicates involving subqueries hav-
ing a capability to have NULL pointers; and

program code means for protecting the query system from
abnormal termination due to dereferencing one of the
NULL pointers.

49. A computer program on a computer usable medium
for controlling a processing of a query by a query system, the
program comprising:

program code means for controlling the processing, 1n an

environment where NULL values are not supported, of

a predicate having a subquery having a capability to

have NULL pointers, the means for controlling the

processing further comprising:

program code means for employing a technique to
handle each occurrence of a negative predicate, if
any, as a logically equivalent positive predicate;

program code means for applying null tests to each
resulting predicate; and

program code means for causing an interpretation of
the semantics of the evaluation of the NULL tested
resulting predicate such that a presence of a NULL
pointer or a NULL value 1s handled 1n a same way
as 1f the predicate evaluated to False by not returning
a result;

wherein a two-valued logic system 1s enabled to simu-
late tri-valued logic and the query system does not
terminate abnormally 1if a NULL pointer 1s traversed.

50. The system of claim 49, wherein the program code
means for processing further comprises program code means
for transforming a quantified subquery, if any, mnto an
existential form.
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INVENTOR(S) :Michael James Carey, et al.

it is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 24. Claim 40, Line 51, delete " < " and replace with —-< —

Column 24, Claim 40, Line 52, "> " and replace with —2

Signed and Sealed this
Fighteenth Day of April, 2000

Q. TODD DICKINSON

Artesting Officer Director of Pairents and Trademarks
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