US005900023A
United States Patent .9 111] Patent Number: 5,900,023
Pase 45] Date of Patent: May 4, 1999
[154] METHOD AND APPARATUS FOR A.P. Chang, “A Note on the Modulo Operation”, pp. 19-23,

REMOVING POWER-OF-TWO
RESTRICTIONS ON DISTRIBUTED

ADDRESSING
|75] Inventor: Douglas M. Pase, Esopus, N.Y.
73] Assignee: Cray Research Inc., Eagan, Minn.
[21] Appl. No.: 08/673,436
22| Filed: Jun. 28, 1996
51] Inmt. CL® e, GoO6k 12/00
52] US.Cl o, 711/220; 711/217; 711/219;
364/765
58] Field of Search 711/217, 219,
711/220, 5; 364/765; 345/706, 553
[56] References Cited
U.S. PATENT DOCUMENTS
3,777,132 12/1973 Bennett, Jr. ..cooorverereeenerennnnnnes 364/765
5,434,995 7/1995 Oberlin et al.ooveeereeennnnnn.n 395/553
5,581,705 12/1996 Passint et al.co.oeeeeeeees 395/200.13
5,586,325 12/1996 MacDonald et al. 395/706
5,696,922 12/1997 Fromm ...ccccoovvevevernevenneereennnnnnene 711/5

OTHER PUBLICAITONS

Robert Alverson, “Integer Division Using Reciprocals”,
Proceedings 10th Symposuim on Computer Arithmetic, pp.
186—190 (Jun. 1991).

Robert Alverson, “Integer Division Using Reciprocals”,
Proceedings 10th Sympostum on Computer Arithmetic, pp.
186—190, (Jun., 1991).

Ehud Artzy, et al., “A Fast Division Technique for Constant
Divisors”, Communications of the ACM, pp. 98-101, (Feb.,
1976).

Henry G. Baker, “Computing A*B (Mod N) Efficiently in
Ansi C”, ACM Sigplan Notices, pp. 95-98, (Jan., 1992).
Robert Bernstein, “Multiplication by Integer Constants”,
Software—Practice and FExperience, pp. 641-652, (Jul.,
1986).

Raymond T. Boute, “The Euclidean Definition of the Func-

tions Div and Mod”, ACM Transactions on Programming
Languages and Systems, pp. 127-144, (Apr., 1992).

(Apr., 1995).

Torbjorn Granlund, et al., “Division by Invariant Intergers
Using Multiplication”, pp. 61-72, (1994).

David H. Jacobsohn, “A Combinatoric Division Algorithm

for Fixed—Integer Divisors”, IEEE Transactions on Com-
puters, pp. 608—610, (Jun., 1973).

(List continued on next page.)

Primary Examiner—Eddie P. Chan
Assistant Examiner—I1. V. Nguyen

Attorney, Agent, or Firm—Schwegman, Lundberg,
Woessner & Kluth, P.A.
|57] ABSTRACT

An efficient integer-division-by-an-constant method and
apparatus. This iteger-division-by-an-constant 1s useful 1n
calculations which must be performed often and/or quickly,
and where the denominator 1s fixed for the calculations, such
as address calculations 1n massively parallel, distributed
memory processor systems. Also described 1s a method and
apparatus using the integer-division-by-an-constant method
and apparatus, which facilitates removing power-of two
restrictions on the reorganization and redistribution of data
between remote and local memory blocks in a massively
parallel, distributed-memory processing system. The flex-
ible addressing scheme provided supports data organizations
which vary widely depending on the processing task. In
particular, a plurality of processing elements (PEs) operating
in parallel within a subset of all the PEs 1n a massively
parallel processor system, may simultaneously operate on an
array data structure, the array data structure having an
arbitrary size and shape. Different data organizations in
memory are supported by a processing element (PE) internal
array address having certain index ranges designated as the
targcet PE number and the areas within those index ranges
designating the offset within that PE’s local memory. The
index ranges and areas are distributed throughout the PE
internal array address to achieve various data distributions
throughout memory.

20 Claims, 7 Drawing Sheets

LINEARIZED | [DISTRIBUTION| [LOCAL BASE
INDEX SPECIFICATION ADDRESS
¢ { ¢
600 & { 602 610
604 CENTRIFUGE
606 ¢ 608
; |
PROCESSOR
ELEMENT Srrar
NUMBER
¢ °12
+
ELEMENT
614. LOCAL

ADDRESS

5,900,023

Page 2
OTHER PUBLICATIONS Daniel J. Magenheimer, “Integer Multiplication and Divi-
sion on the HP Precision Architecture”, In Proceedings
Shuo—Yen Robert Li, “Fast Constant Division Routines”, Second International Conference on Architectural Support

IEEE Transactions on Computers, pp. 866—869, (Sep., for Programming Languages and Operating Systems, pp.
1985). 90-99, (Oct., 1978).

5,900,023

Sheet 1 of 7

May 4, 1999

U.S. Patent

L Il

901

N
AHONW3N
OO

N
40SS3004d

®e®

0/

AHJOMLIN LOJINNOODYIINI

z
7>mozuz
V0

¢
40SS300dd

001

0/
| |
AJONIN ¥0SS3004d
VOO0
0L Z0|
....... bt
101

5,900,023

Sheet 2 of 7

May 4, 1999

U.S. Patent

JONYHOX3
SNg vivQd
OO0l

J18v.L

dNX00T
XN y A—
S13INOVd X —
- ASNOJS3Y
INIONT ANV 1S3N03Y M31NOY
AHO019 NV i
JOVAYIINI .
MUOMLIN Z+ LAt
T ~
Sng
Yivd o
N3N
HOL3434d | _OkC

TOHINOD ANV
SS34agy
AHONWIN

VOO

vivQd

¢ "9l

4
SNg 31VAIVAN! 3HOVO YLvd
#3d IVNLYIA avL -
dNA0Q0T “Naagy
13S440 TVOISAHd
SS3yaay WL dvd
TVYOISAHd 202

U.S. Patent

-ﬂ_

May 4, 1999 Sheet 3 of 7

DISTRIBUTION ACROSS 4 Pts

I 6

we [

FIG. SA

5,900,023

PES

37| - [4]812] -
SEEEEE

DISTRIBUTION ACROSS 4 PEs

FIG. 3B

DISTRIBUTION ACROSS 4 PEs

112

9 (10| 3 12|5|6(13| - |7]8] |-
HEREERE

PEC

PEO

FIG. 3C

DISTRIBUTION ACROSS 4 PEs

PE1 PE2

LJL2L;L4L5IHIEL8LQIE1H

212223242526Ei28292m2n

PE3

PEZ2

1,12

1:13l *

2.12)

FIG. 3D

2,13

Sheet 4 of 7

May 4, 1999

U.S. Patent

5,900,023

2 5 4 5 6 7 8

1

.... _.r_ _.r_
- N M)
L L L

— NM < W) O ™~

FIG. SE

U.S. Patent May 4, 1999 Sheet 5 of 7
LINEARIZED | [DISTRIBUTION| | LOCAL BASE
INDEX SPECIFICATION ADDRESS
¢
600 610
6041 CENTRIFUGE
606 608
8 §
PROCESSOR
ELEMENT OFQF%AE"T
NUMBER
1 612
+
FIG. 4A ELEMENT l
6514 LOCAL
ADDRESS
LINEARIZED | |DISTRIBUTION| | LOCAL BASE |
MASK ADDRESS
¢ il ’
600 620
6221 CENTRIFUGE
606 ¢ 1 608
PROCESSOR OCAL 7
ELEMENT OFFSET
| NUMBER
+
FIG. 4B

614A‘

ELEMEN
LOCAL

T
ADDRESS

5,900,023

U.S. Patent May 4, 1999 Sheet 6 of 7 5,900,023

LINEARIZED | |SHARED DATA| | LOCAL BASE

INDEX DESCRIPTOR ADDRESS
600 630 610
63521 CENTRIFUGE

606

PROCESSOR
ELEMENT ('5,9,_93’1_'-}
NUMBER

ELEMENT
LOCAL
ADDRESS

FIG.

614

5,900,023

Sheet 7 of 7

May 4, 1999

U.S. Patent

:_. —.ID.N'D..:.N._-mlD. —+m|3

|

—ANZ+1"'8(1-NZ)+1

—lmz+|_.....mA—|2v+l_

l=N d3

S "Old

(N@)/(1—-N+1)| =1 Fu3HM

1—-a(L+d+N(=)) 18N)+ | o

ﬁ

L-8(1+d+N)+7"8(d+N)+ coe

|-8(1+d)+1"8d+T

d id

L=g(L+N(L =) +H1an(=)+ | L=

L

L-8(1HN)+T" BN+ ,

1-g+71" ¢+ L 41 ' 0

0 3d

5,900,023

1

METHOD AND APPARATUS FOR
REMOVING POWER-OF-TWO
RESTRICTIONS ON DISTRIBUTED
ADDRESSING

FIELD OF THE INVENTION

The present invention relates generally to massively par-
allel processing systems, and more particularly to a division
method which facilitates the addressing, reorganization, and
redistribution of blocks of data between global and local
memory 1n a massively parallel distributed-memory pro-
cessing system.

BACKGROUND OF THE INVENTION

In the past, one of the typical approaches to speeding up
a computer division-by-a-constant operation has used a
reciprocal multiply operation to replace the division opera-
fion for floating-point numbers. In such an environment, one
can use a number of approaches to achieve good accuracy
(e.g., one can use a couple of “Newton-Raphson iterations”
to correct the result to a precision of within +1 unit-in-the-
last-place (ULP)). Floating-point precision is often mea-
sured 1n terms of ULP of the fractions, since the significance
of that bit depends on the exponent. Floating-point results
are also typically scaled and/or truncated automatically such
that the maximum number of bits and accuracy are main-
tained all the time.

In integer division, however, situations often require a
precision which does not allow the result to be off by one
(results accurate to 1 ULP are not sufficiently accurate).
Also, scaling operations are not performed automatically. In
integer division, there 1s no convenient representation of the
reciprocal of an arbitrarily-sized integer, therefore the com-
puter designer must take into account scaling, and must
provide an method and apparatus which provide an exact
result, since certain algorithms cannot afford a result which
1s off by one.

One area which requires exact results from an integer
divide 1s 1n the placement and addressing of elements 1n an
array which 1s being processed by a massively parallel
ProCesSor.

Massively parallel processing involves the utilization of
many thousands of processing elements (PEs) linked
together by high-speed interconnect networks. A distributed
MEemory processing system 1s one wherein each processor
has a favored low-latency, high-bandwidth path to a group
of local memory banks, and a longer-latency, lower-
bandwidth access path to the memory banks associated with
other processors (remote or global memory) over the inter-
connect network. Even 1n shared-memory systems in which
all memory 1s directly addressable by any processor in the
system, data residing 1n a processor’s local memory can be
accessed by that processor much faster than can data resid-
ing 1n the memory local to another processor. This signifi-
cant difference 1n performance between access to local
memory and access to remote memory prompts the
performance-conscious programmer to strive to place any
data to be accessed by a processor over the course of a
program 1nto local memory.

The need to efficiently move blocks of data between local
and remote or global memory becomes even more apparent
when attempting performance optimization using cache
memory. Spacial coherence, 1.€., the tendency for successive
references to access data 1n adjacent memory locations,
plays a major role 1n determining cache performance. Poor
spacial coherence may exist if the access sequence to a data

10

15

20

25

30

35

40

45

50

55

60

65

2

structure i1s accomplished via a large stride (e.g., when
accessing a two dimensional Fortran array by rows) or in a
random or sparse fashion (e.g., indirect accesses or irregular
orids). To achieve good performance, data often must be
rearranged from a multitude of different large-stride or
sparse organizations, cach dependent on the task to be
performed, 1nto a unit-stride organization, 1n addition to
being moved between remote and local memory.

There 1s a need 1n the art for a mechanism which supports
a flexible addressing scheme and facilitates the redistribu-
tion of data between local- and global-memory blocks 1n a
massively parallel, distributed-memory processing system.
The addressing support mechanism should allow scatter-
cgather capabilities 1n addition to constant-stride capabilities
in order to facilitate reorganization of sparse or randomly
organized data. The mechanism should also be easily
directed by the user for adaptation to different types of
processing tasks.

In particular, there 1s a need 1n the art to remove power-
of-two restrictions from the placement of data arrays across
various PEs 1n a MPP system while retaining fast address
calculation. For example, 1t 1s relatively easy and efficient to
distribute the data of a 16-by-32-by-64 array across a
three-dimensional torus MPP because each ordinate 1s an
integer power of two, but relatively ditficult and/or 1neffi-
cient to distribute the data of a 17-by-33-by-65 array across
such an MPP (to do so, the computer scientist often resorts
to an array at the next larger power-of-two i1n each
dimension, 1.., a 32-by-64-by-128 array, which wastes
MEmory space).

In the system described in patent application Ser. No.
08/165,118 filed Dec. 10, 1992 now U.S. Pat. No. 5,765,181,
and assigned to the assignee of the present invention, which
1s incorporated herein by reference, there 1s described hard-
ware and process which provides a hardware address cen-
trifuge to facilitate the reorganization and redistribution of
data between remote and local memory blocks 1n a mas-
sively parallel distributed-memory processing system. In
order to operate efficiently, however, data arrays must be
placed on power of two boundaries. That allows one to
calculate PE number and offset by simple bit manipulation.
In one such embodiment of that mnvention, the bits compris-
ing an index or address 1nto a vector array are separated 1nto
two sets of bits, a first set comprising the PE number, and a
second set comprising an offset into a portion of the memory
of a PE. In order to spread the references, the bits of the first
set and the bits of the second set are interspersed within the
array index. The address centrifuge 1s used to separate the
two sets of bits and to “squeeze” out the spaces between the
separated bits, thus resulting in a PE number and an offset.

None of the prior art provides a convenient and fast way
to provide a divide-by-a-constant. None of the prior art
provides a convenient and fast way to eliminate the power-
of-two restriction on array addresses being processed by a
plurality of processors.

SUMMARY OF THE INVENTION

To overcome limitations 1n the art described above and to
overcome other limitations that will become apparent upon
reading and understanding the present specification, the
present 1nvention provides an efficient mteger-division-by-
an-constant method and apparatus. This integer-division-by-
an-constant 1s useful 1n calculations which must be per-
formed often and/or quickly, and where the denominator 1s
fixed for the calculations. Also described 1s a method and
apparatus using the integer-division-by-an-constant method

5,900,023

3

and apparatus, which facilitates removing power-of two
restrictions on the reorganization and redistribution of data
between remote and local memory blocks 1n a massively
parallel, distributed-memory processing system.

A flexible addressing scheme 1s provided which supports
data orgamizations which vary widely depending on the
processing task. In particular, a plurality of processing
elements (PEs) operating in parallel within a subset of all the
PEs in a massively parallel processor system, may simulta-
neously operate on an array data structure, the array data
structure having an arbitrary size and shape. Different data
organizations 1n memory are supported by a processing
element (PE) internal array address having certain index
ranges designated as the target PE number and the arcas
within those 1ndex ranges designating the ofiset within that
PE’s local memory. The index ranges and areas are distrib-
uted throughout the PE internal array address to achieve
various data distributions throughout memory.

When a transfer occurs, the PE number bits are extracted
via a “division address centrifuge” which takes an array
address as an 1mnput, and generates two outputs: a PE number
and an offset. In one embodiment, a software-supplied
“mask”™ specifies to the division address centrifuge the
mapping of the mput array address 1nto the two outputs. The
division address centrifuge can be utilized 1n an asynchro-
nous direct memory access controller to actually perform the
block transfers, or 1t can also be used by processor to
produce division-address-centrifuged results directly on the
processor generated addresses 1n which block transfer con-
trol 1s accomplished through several memory-mapped con-
trol registers. The division address centrifuge allows scatter-
cgather reference patterns to be employed as well as constant-
stride capabilities and 1s easily adaptable by the user to fit a

wide variety of processing tasks.

The ability to arbitrarily define, via a software-supplied
mask, which 1index ranges in the index address are to be
interpreted as PE number or offset address provides direct
support for the programming need to arrange data 1in
memory 1n the optimum organization which results 1n the
most efficient processing of the data for each particular
processing task. The division address centrifuge allows the
user to achieve any organization through the simple mecha-
nism of a software-supplied mask and results 1n an
extremely flexible and easy-to-use mechanism to move and
arrange data throughout the system memory.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed description of the invention,
reference 1s made to the accompanying drawings which
form a part hereof, and in which 1s shown by way of
illustration only, specific exemplary embodiments in which
the mvention may be practiced. It 1s to be understood that
other embodiments may be utilized, and structural changes
may be made, without departing from the scope of the
present mvention.

FIG. 1 shows a simplified block diagram of a represen-
tative MPP system with which the present division address
centrifuge can be used.

FIG. 2 shows a block diagram of a processing element
(PE), including a processor, its associated shell circuitry, and
local memory.

FIGS. 3A-E are examples of array element distributions
for given data distribution selections.

FIG. 4A shows a functional block diagram of a global
address calculation.

FIG. 4B shows a functional block diagram of one embodi-
ment of a global address calculation with hardware assis-
tance.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4C shows a functional block diagram of one embodi-
ment of a global address calculation 1n software.

FIG. 5 shows a mapping of the distribution of elements 1n
an element array, the elements distributed across N process-
ing clements.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following detailed description of the preferred
embodiment, reference 1s made to the accompanying draw-
ings which form a part hereof, and in which 1s shown by way
of 1llustration a specific embodiment in which the mnvention
may be practiced. It 1s to be understood that other embodi-
ments may be utilized and structural changes made without
departing from the scope of the present imnvention.

[t 1s desirable for data held in arrays or matrices (e.g., a
multi-dimensional array M(X, y, z, t)) to be distributed
among various processors 1n a distributed-memory multi-
processor system, 1n order that multiple processors can
perform operations on different portions of the data simul-
taneously. A reference to a particular datum 1n the array, for
example M(x;, y;, Z;, t;), must be resolved to (1.) a
particular memory location, called an “offset”, within (2.) a
particular processing entity (PE), which is identified by a
“PE number”. If the data in the array are distributed in only
one dimension (i.e., the X dimension index is decoded to
represent a unique PE number), then the other three dimen-
sions are called “degenerate,” since the first dimension
determines which PE will be used, regardless of what the
other mndexes are. This leads to a small set of processors, or
even a single processor, handling all accesses for the portion
of the calculations focusing on a particular index in one

dimension.

This can be thought of as representing vertical columns or
“stripes” of data on each processor, rather than multi-
dimensional volumes of data. These stripes of data have a
very small volume relative to the amount of surface volume
around them.

Because of this topology, there is communication (data
passing from one PE to another) along all of that surface area
(since the adjoining memory is on other PEs. Thus, if the
data 1s distributed 1n stripes, then the amount of communi-
cations required 1s increased beyond that required 1f data
were distributed over more than one dimension of, e.g.,
array M(X, vy, z, t). By reducing the number and distance of
communications required, the efficiency of a computer pro-
oram running on an MPP is increased.

When accessing data 1n an array, the multi-dimensional
array 1ndices are typically converted mto a linear offset into
the data structure stored in memory. For example (using
unit-sized elements), the M(x,, v, Z;, t;) element might be
linearized into a single array index value as (t;xS,xS;xSy)+
(2, xSyxS5)+H(y{XSx)+(X,) into the data structure represent-
ing M, which is stored in memory. To support the routing of
array-clement references in a distributed-memory system,
the PE number and offset must be separated from the
linearized array index before being applied to the intercon-
nect network.

In one embodiment of the present invention, a block size
B 1s defined wherein the first block of B consecutive
clements 1s placed 1n one PE, the next block of B elements
are placed 1n the next PE, and so on. Once the Nth processor
has had the Nth block of elements placed in 1t, the process
wraps, and the next block of elements 1s placed 1n the first
PE used. In one such embodiment, the PE number 1s defined
as the integer quotient of the linearized array index divided

5,900,023

S

by (the number of PEs across which the matrix is spread
times the block size (NxB)), and the offset is defined as the
remainder of that division.

A large speed increase can be had because, for this case
of “distributed addressing,” the numerator (the number on
top) can vary, but the denominator (the number on the
bottom) remains invariant, or constant. The speed can be
cffectively improved even more when the effect of pipelin-
ing 1s taken into account. The present invention thus
removes a major impediment from implementing general-
case distributions of arrays across multiple processors. In the
past, one major reason cited for not implementing and
supporting general (1.e., non-power-of-two) distributions has
been the fact that up to three or more divide operations were
required to compute the addresses, and integer divide opera-
tions took much longer than other types of operations,
because the divides were done in software. (In the case of
one DEC ALPHA microprocessor, integer divides could take
more than 200 CPs (clock pulses). Floating-point division is
faster, taking approximately 62 CPs, and has sufficient
precision for some applications, but with the additional
conversions between integer and floating-point representa-
tions of the number, this too can be too “expensive” 1n terms
of performance for use in addressing.)

In one embodiment, the present mmvention provides an
integer reciprocal multiply operation which replaces an
integer divide operation and yields accurate results if a
certain set of conditions apply. In one embodiment, the
reciprocal must have as many significant bits as the sum of
the significant bits of the numerator and the denominator.

While the notion of using a scaled reciprocal multiply to
replace an integer division has been around for a long time,
for example using a floating point reciprocal multiply,
previous methods have had an unsolved problem of how to
handle the least-significant few bits 1n order to achieve an
exact result. Many of the prior approaches are off by one or
more 1n the least significant bits.

The present imvention 1s useful 1n replacing division
operations which divide by a invariant quantity; for
example, within in-line code optimizations, and within array
address calculations, such as described above. One goal of
the present 1nvention 1s to minimize the number of correc-
fions needed to achieve an exact result, and to make any
corrections which are needed simple and fast. For example,
if an mteger multiply operation takes 23 clock cycles, then
the basic reciprocal multiply needed to replace the divide
operation costs 23 clock cycles, and any correction requiring
another multiply will double that cost of the operation. On
an embodiment (e.g., having a particular processor or
architecture) in which one dominant time factor in the
algorithm 1s the multiply, elimination of corrections requir-
ing a multiply may be crucial.

One particularly useful application of the present inven-
tion 1s the calculation of the addresses of elements 1n an
array which 1s being processed by a plurality of processors.
The desired result for array address calculations (wherein
both arguments are positive integers) is FLOOR(A+B),
wherein the fractional portion of (A+B) is discarded. (The
FLLOOR function returns the largest integer which 1s smaller
or equal to 1ts arcument. Another corresponding function,
the CEILING function, returns the smallest integer which 1s
larger or equal to its argument.) According to the present
invention, FLOOR(A+B)=FLOOR((AxD)+2"), wherein
(D+2%) is the reciprocal of B, which is exact, depending on
choosing values D and K such that this relationship holds for
all values of A within a certain range of interest. In one

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiment, +2* is accomplished by using a binary shift by
K bits, and the value for D must contain at least as many
significant bits as the sum of the number of significant bits
in A plus the number of significant bits in B (i.e., log,A+
log.-B=log,D). D is calculated as

=CEILING(2*+B)=FLOOR((2*+B-1)+B)=FLOOR((2"*-1)+B)+1.

In one embodiment, an ALPHA processor from Digital
Equipment Corporation 1s included in each PE. For this
ALPHA, an unsigned-multiply-high (UMULH) operation 1s
available which multiplies two 64-bit integers and keeps
only the upper 64 bits of the 128-bit result (thus throwing
away the least-significant 64 bits), and a value K=64 is used.
The number of significant bits in A plus the number of
significant bits 1n B 1s tested to ensure that the sum 1s less
than or equal to 64 (i.e., log,A+log,B =log,D =64); if this
condition and certain other conditions hold, then the integer
divide operation 1s replaced by a single UMULH operation,
which has an implicit 64-bit shift right in order to retain only
the upper 64-bits of the result.

In another embodiment, K 1s fixed=32, and the upper
bound for A is 2°°. In one such embodiment, 64-bit registers
are used for integers, and the product AxD must fit within
one such 64-bit register. Further, 1n this embodiment, 64-bit
IEEE floating-point arithmetic 1s available, and D can be
computed 1n floating point values to avoid the even-more
expensive call to perform integer division ($sldiv). If it is
desired to have the range for A exceed 2°°, long multipli-
cation can be used, which causes the division to be replaced
by four multiplication operations, two shift operations, and
onc XOR operation.

The formulae describing the distribution of addresses of
an array Y such that

DIMENSION Y(L:U)
SHARED Y(N:BLOCK(B))
are
HOME(Y(I))=FLOOR((I-L)+B) mod N
OFFSET(Y(I))=(I-L) mod B+FLOOR((I-L)+(BxN))xB
wherein
HOME i1s the PE number,
OFFSET 1s the offset into the data structure in that PE,
B 1s the block size,

N 1s the number of processors allocated to this dimension,

(B and N are always positive integers),

I 1s the 1mndex for which an address i1s to be generated,
L 1s the lowest index of the array allocation,

U 1s the highest index of the array allocation,

FLOOR(a+b) represents truncated integer division, and

a mod b represents (in positive integers) the remainder of
a/b—in positive integers, a mod b 1s equivalent to
a-(FLOOR(a- b)xb)

A first embodiment uses the following expressions:

In the following expressions, d(X) represents the specific
D value for divisor X.

I' 1s the normalized
dimension index and its
lowest value 1s zero
For :BLOCK distributions, this results in

['<1-L

HOME(Y(I)) < I' x d(B) > K
OFFSET(Y(I)) < I' - HOME(Y(D)) x B

equal to FLOOR({I-L)/B
equal to (I-L) mod B

5,900,023

7

-continued

For :BLOCK(1) distributions, this results in

HOME(Y(D)) < I' x d(N) »> K
OFFSET(Y(D)) < I' - HOME(Y(D)) x N
For :BLOCK(B) distributions, this results in

equal to (I-L)/N
equal to (I-L) mod N

tl < I'x d(B) >> K

t2 < t1 x d(N) >> K
HOME(Y(D) < t1 — (2 x N)
t3 « I' - (tlx B)

t4 < [' x d(BxN) >> K
OFFSET(Y(D)) < t3 + (t4 x B)

equal to (I-L)/B

equal to (I-L)/B/N

equal to ((I-L)/B) mod N
equal to (I-L) mod B
equal to (I-L)/{BxN)

equal to ((I-L) mod B) +

((I-L)/(BxN))xB

A second embodiment uses the following expressions:

In the following expressions, d(X) represents the specific
D wvalue for divisor X, CVTFI 1s a function to convert
floating point to integer, and CVTIF 1s a function to convert
integer to floating point.

I' is the normalized dimension index

and its lowest value 1s zero
For :BLOCK distributions, this results 1n

['<1-L

HOME(Y(D)) < FLOOR(I-L)/B
equal to (float) (I-1L)/B

equal to (int) FLOOR(I-1)/B

OFFSET(Y(I)) < (I-L) mod B
equal to (float) FLOOR({I-L)/B

t1 < I' x d(B)
HOME <« CVTFI(t1)

t2 « CVTIF(HOME)

t3 <—t2x B # equal to (float) FLOOR(I-L)/B x B
t4 «— I' - t3 # equal to (float) (I-L) mod B
OFFSET < CVTFI(t4) # equal to (int) (I-L) mod B

For :BLOCK(1) distributions, this results in

OFFSET(Y(D)) < FLOOR(I-L)/N
equal to (float) (I-L)/N

equal to (int) FLOOR(I-L)/N
HOME(Y(I)) < (I-L) mod N

equal to (float) FLOOR(I-L)/N

t1 < I' x d(N)
OFFSET < CVTFI(t1)

t2 « CVTIF(OFFSET)

t3 «— t2x N # equal to (float) FLOOR({I-L)/
N x N
t4 «— I' - t3 # equal to (float) (I-L.) mod N

OFFSET « CVTFI(t4)
HOME(Y(D)) < I' x d(N) »>> K
OFFSET(Y(D)) < I' -
HOME(Y(D)) x N

For :BLOCK(B) distributions, this results in

equal to (int) (I-L) mod N
equal to (I-L)/N
equal to (I-L) mod N

HOME(Y(I)) <= FLOOR{I-L)/
B mod N

tl < I' x d(B) # equal to (float) (I-L)/B

t2 «— CVTFI(t1) # equal to (int) FLOOR(I-L)/B

t3 < CVTIF(t2) # equal to (float) FLOOR({I-L)/B

t4 < [' x d(B x N) # equal to (float) (I-L)/(BxN)

tS < CVTFI(t4) # equal to (int) FLOOR(I-L)/{(BxN)

t6 «<— CVTIF(t5) # equal to (float) FLOOR({I-L)/
(BxN)

t7 < t6 x N # equal to (float) FLOOR(I-L)/
(BxN)xN

t8 < t3 — t7 # equal to (float) FLOOR(I-L)/
B mod N

HOME <« CVTFI(t8) # equal to (int) FLOOR(I-L)/B mod N
OFFSET(Y(D)) < (I-L) mod B +

FLOOR(I-L)/(BxN) x B

t9 < t6—t3 # equal to (float) FLOOR({I-L)/
(BxN)-FLOOR(I-1)/B

t10 < t9 x B # equal to (float) FLOOR({I-L)/
(BxN)-FLOOR(I-1)/BxB

t11 < I' - t10 # equal to (float) (I-L) mod B +

FLOOR(I-L)/(BxN)xB
equal to (int) (I-1) mod B +
FLOOR(I-L)/(BxN)xB

OFFSET < CVTFI(t4)

In a MPP system, there are two important concepts of
distributing data and work across the machine 1 such a way
as to place the work and the data as close together as
possible. In one embodiment, the programming model 1s

10

15

20

25

30

35

40

45

50

55

60

65

3

designed for a so-called “NUMA”, or Non-Uniform
Memory Access, shared memory machine. The mechanisms
in the programming model addressed 1n this section will be
the address calculation which maps array indices to PEs and
base oilsets, which can be combined 1nto a single global
address, and the related problem of mapping DO-loop
indices to the PE where some specified data resides.

Data Distribution

The first problem to be tackled i1s, given some array
declaration

DIMENSION A (L,:U,,L,:U,, . .
SHARED A (a4, O, . . ., Q)

., LU

where . 1s the distribution pattern for dimension 1 and 1s one
of

BLOCK
BLOCK (M)
:(degenerate distribution)

how does one map the array elements to specific memory
locations within the machine? The first observation 1s that all
four distribution patterns are various cases of the BLOCK
(M) distribution, varying only in their choice of block size.
In each case the block size B 1s

If . = BLOCK B; = [(1 + U; - Ly/N;]
If o; = BLOCK(M) B, =M

where N. 1s the 1s the number of processors over which the
array elements will be distributed 1n dimension 1. A picture
of the memory allocation pattern for a one-dimension array

1s shown 1n FIG. 1.

Treating every distribution as a BLOCK (M) distribution,
the equations for determining the PE on which an element

resides (HOME), the offset from the base address
(OFFSET), and the function which maps a PE and an offset

back to the index which generated them are
P=HOME ,(I)=|(I-L)/B |mod N
W=0FFSET,(I)=(I-L) mod B+|(I-L)/(BxN) [xB
[=INDEX ,(P,W)=L+|W/B |BxN+BxP+W mod B

In these equations A 1s the distributed array, I is the array
index, N 1s the number of processors, P 1s the processor
number (in the range of 0 to N-1), and W is the offset from
P’s base address of the array.

In multidimensional arrays each of the dimensions can be
treated independently. The N processors available to the
whole array are effectively partitioned mto an N;xN,x . . .
xN _torus, where r 1s the rank of the array to be distributed.
The dimensions can be treated independently, in part
because each dimension 1s padded to fit exactly on the
processors allocated to it. In effect, for the ;* dimension

P=HOME, (1)=(I,-L,)/B,Jmod N,
W =OFFSET, ~(I)=(,-L) mod B +[(I-L,)/(B,xN)|B,
) [=INDEX, (P,W)=L+W/B,|B.xN +B.xP+W, mod

J
Of course the various PE and offset values for each dimen-

™

sion must be reduced to a single PE value and a single offset
value, which 1s done by the next two equations.

5,900,023

P =HOME ,(I) = E
N — (i 1+ U, -1,
W = OFFSET (I = E wj]_![v]

. &

J=1

Since the processor space is reshaped (from linear to
toroidal), we also need a transformation from the linear
space to the torus, which i1s given 1n the next equation.

P

mod N;

J-1
[T N
k=1

FIG. 5 shows a representation of a :BLOCK(B) distribu-
fion of elements from a one-dimensional array across N PEs,
each PE having k blocks of elements (where k=CEILING
((1+U-L)/(BxN))), and each block having B consecutive
clements from the array, and each consecutive block placed
in a different PE. L represents the lower bound for the index
for the elements, and U represents the upper bound for the
index for the elements. Referring to FIG. §, PEO holds the

first block of B elements having the consecutive element
indices between L and L+B-1, the N+1” block of B
clements having the consecutive element indices between
L+NB and L+(N+1)B-1, other blocks, and the block of B
clements having the consecutive element indices between
L+(k-1)NB and L+(k-1)N+1)B-1. Such a distribution of
clements spreads the elements while keeping blocks of B
clements together 1n one processor.

The preferred MPP system, for which the present inven-
fion provides a division address centrifuge, 1s a MIMD
massively parallel multiprocessor with a physically
distributed, globally addressable memory. The description of
distributing data elements of one array across a subset
plurality of PEs in the toroidal mesh of MPP system 100, and
another type of address centrifuge related to the present
invention 1s detailed i1n the patent application “Apparatus
and Method of Addressing Distributed Memory Within a

Massively Parallel Processing System,” Ser. No. 08/165,
118, filed Dec. 10, 1993 by Oberlin et al., which 1s hereby
incorporated by reference.

A representative MPP system 100 1s shown 1n FIG. 1. In
one embodiment, MPP system 100 contains hundreds or
thousands of processors, each accompanied by a local
memory and associated support circuitry. Each processor,
local memory and support circuitry component 1s called a
processing element (PE). The PE’s in the MPP system 100
are linked via an interconnect network.

The preferred MPP system 100 has a physically distrib-
uted memory, wherein each processor has a favored, low-
latency, high-bandwidth path to a local memory, and a
longer-latency, lower-bandwidth access to the memory
banks associated with other processors over the interconnect
network. In one preferred embodiment, the interconnect
network 1s comprised of a 3-dimensional torus which when
connected creates a 3-dimensional matrix of PEs. The torus
design has several advantages, including speed of 1nforma-
fion transiers, relatively short communications paths, and
the ability to circumnavigate failed communication links.
The 1nterconnect network 1s also scalable 1n all three dimen-
sions. An interconnect network of this nature 1s described 1n
more detail in the copending and commonly assigned U.S.
patent application Ser. No. 07/983,979, entitled “Direction
Order Routing 1n Multiprocessing Systems”, to Gregory M.
Thorsen, filed Nov. 30, 1992, which 1s incorporated herein
by reference.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 2 shows a simplified block diagram of a PE 200. An
individual PE includes a high-performance RISC (reduced
instruction set computer) microprocessor 202. In the pre-
ferred MPP system, microprocessor 202 1s the DECChip
21064-AA RISC microprocessor, available from Digital
Equipment Corporation. Each PE 1s coupled to a local
memory 204 that 1s a distributed portion of the globally-
addressable system memory, and includes a shell of circuitry
that implements synchronization and communication func-
tions facilitating interactions between processors.

The shell circuitry includes an interconnection network
router 206, used to connect multiple PEs 1n a three-
dimensional toroidal “fabric”. The interconnection network
carries all data communicated between PEs and memories
that are not local. A block-transfer engine 208 in the PE shell
circuitry permits asynchronous (i.€., independent of the local
processor) movement of data between the local memory 204
and remote memories assoclated with other PEs, such as
block transfers, with flexible addressing modes that permit
a high degree of control over the redistribution of data
between the distributed portions of the system memory. In
one embodiment, the division address centrifuge resides in
block-transter engine 208. However, it shall be understood
that the division address centrifuge may also be used directly
by the processor in many other ways. The implementation of
the address centrifuge as being used in the block transfer
engine 1s for purposes of 1illustration only, and 1s not a
limitation of the present invention.

The shell circuitry also mncludes a data prefetch queue 210
which allows the processor 202 to directly initiate data
movement between remote memories and the local proces-
sor 1n a way that can hide the access latency and permit
multiple remote memory references to be outstanding.

Synchronization circuits 1n the shell permit synchroniza-
tion at various different levels of program or data granularity
in order to best match the synchronization method that is
“natural” for a given “parallelization” technique. At the
finest granularity, data-level synchronization 1s facilitated by
an atomic swap mechanism that permits the locking of data
on an element-by-clement basis. A more coarse-grain data-
level synchronization primitive 1s provided by a messaging
facility, which permits a PE to send a packet of data to
another PE and to cause an interrupt upon message arrival,
providing for the management of message queues and
low-level messaging protocol 1n hardware. Control-level
synchronization at the program-loop level 1s provided by a
large set of globally accessible fetch-and-increment registers
that can be used to dynamically distribute work (in the form
of iterations of a loop, for instance) among processors at run
fime. Yet another form of control-level synchronization,
barrier synchronization, 1s useful to control transitions
between major program blocks (1.e., between loops perform-
ing actions on the same data sets). One barrier mechanism
1s described 1n detail mm the copending and commonly
assigned U.S. patent application entitled “BARRIER SYN-
CHRONIZATION FOR DISTRIBUTED MEMORY MAS-
SIVELY PARALLEL PROCESSING SYSTEMS,” Ser. No.
08/165,265, filed on Dec. 10, 1993 to Oberlin et al., now
U.S. Pat. No. 5,434,995, which 1s mcorporated herein by

reference.

Data Distribution

An 1mportant concept 1 a distributed memory MPP
system such as the one described herein is the fact that
different processing tasks may profit from very different data
distributions for most efficient processing performance. The
present invention provides a system and method which

5,900,023

11

allows the programmer to easily designate the optimal
distribution of data in memory for a particular processing
task.

The global address model permits data objects, such as
scalars or arrays, distributed across all of the PEs, to be
viewed as if there were a single address space. In one
embodiment, data distribution 1s defined through a set of
directives that indicate how a data object 1s distributed.
Directives are used to aid portability and allow for migration
to future standards for parallel execution. The directives are
defined to allow dimensions of a shared array to be distrib-
uted 1in different manners. In one such embodiment, the
declaration of a dimensionally distributed array 1s used to
specily the distribution of array elements within each dimen-
sion and each dimension 1s distributed as if 1t were 1nde-
pendent from all other dimensions. A programmer, therefore,
has great flexibility in distributing data to increase the
locality of data references.

In one such embodiment, distribution within each dimen-
sion is controlled by the distribution specifiers :BLOCK(N),
:BLOCK and:. The distribution specifier : BLOCK(N) speci-
fies a distribution 1n which N contiguous array elements are
placed within a block, and the blocks are distributed among,
the assigned PEs. N 1s therefore the block size, or number of
array elements 1n each block, of the distribution. In such a
distribution, each PE owns the same number of blocks.

The distribution specifier :BLOCK speciiies a block dis-
tribution where each PE owns exactly one block of contigu-
ous elements. The distribution specifier: specifies a degen-
erate distribution 1n that dimension. That 1s, an entire
dimension 1s distributed so that 1t 1s resident on a single PE.

FIG. 3A illustrates the :BLOCK(N) distribution of a
thirteen element single-dimension array distributed across 4
PEs. In this example, block-size N is equal to one. Such a
distribution may be requested using the following lines of
parallel Fortran code:

REAL A(13)

CDIR$ SHARED A(:BLOCK(1))

This kind of distribution 1s often referred to as a cyclic
distribution because the elements of array A cycle individu-
ally through the PEs. That 1s, the elements of A are distrib-
uted so that contiguous elements are on adjacent PEs. It
should be noted that, 1n this embodiment, no space 1s left for
unassigned array elements 14 through 16. In one preferred
embodiment, unassigned elements are not allocated auto-
matically 1n order to round the extent of each array dimen-
sion to a power of two. This power-of-two restriction on the
extent of array dimensions, and the methods used to ensure
such, are detailed 1n the copending and commonly assigned
U.S. patent application entitled “METHOD FOR THE
DYNAMIC ALLOCATION OF ARRAY SIZES IN MUL-
TIPROCESSOR SYSTEM,” by MacDonald et al., Ser. No.
08/165,379 filed Dec. 10, 1993, which detail is incorporated
herein by reference.

FIG. 3B illustrates the same array A but with a block-size
N equal to two. Such distribution could be requested using
the following parallel Fortran statements:

REAL A(13)

CDIR$ SHARED A(:BLOCK(2))

This distribution places two contiguous elements 1n each
block. As can be seen by comparing FIGS. 3A and 3B, such

10

15

20

25

30

35

40

45

50

55

60

65

12

a distribution places a majority of the elements of A on
different PEs than in the :BLOCK(1) distribution of FIG.
3A. Also, the unassigned elements are placed on different
PLEs.

FIG. 3C 1llustrates the default data distribution when a
value of N 1s not specified. Such a distribution could be
requested using the following parallel Fortran statements:

REAL A(13)

CDIRS$ SHARED A(:BLOCK)

The block size for the :BLOCK distribution 1s such that a
single contiguous block 1s assigned to each PE. That 1s, N 1s
set to the extent of the dimension (rounded up to a power of
two) divided by the number of PEs assigned to that dimen-
sion. Typically, the number of PEs assigned to a dimension
1s restricted to a power of 2 1n order to make such calcula-
tions easier.

As stated above, each dimension of a multidimensional
array can be distributed separately. FIG. 3E illustrates a
two-dimensional array where both dimensions are distrib-
uted separately. Such a distribution could be requested using
the following parallel Fortran statements:

REAL D(8,8)

CDIRS SHARED D(:BLOCK, :BLOCK)

In the example shown in FIG. 3E, array D 1s distributed
across 16 PEs. When both dimensions of a two-dimensional
array are distributed, the number of PEs is factored such that
cach dimension 1 is assigned a number of PEs, P|i]. In one
embodiment, P[i] is restricted to being a power of two. As
can be seen, each dimension has its own block size (BJ[1]).
Since both dimensions of array D are distributed with the
:BLOCK distribution, the block size 1s computed as follows:

B[1]=F[1]/P[1]
B[2]=E[2]P[2]

where E|1]1s the extent of dimension 1 and P[1] is the number
of PEs assigned to that dimension.

As stated above, each dimension of a multidimensional
array can be distributed 1n a different manner. FIG. 3D
illustrates a degenerate distribution 1n one dimension of a
two-dimensional array and a default distribution in the
second dimension. Such a two-dimensional array can be
created and distributed 1n the following manner:

REAL A(2,13)

CDIRS$ SHARED A(:,:BLLOCK)

The degenerate distribution allows an entire dimension to be
assigned to one PE. This 1s useful when, for example,
locality can be enhanced by placing an entire row or column
of an array on a single PE. FIG. 3D 1illustrates the situation
where a column from a two-dimensional array 1s assigned to
cach PE through a degenerate distribution.

Global Address Computation

To find the location within the toroidal mesh of an element
of an array, one must determine the number of the PE to
which that element has been assigned and the address within
the local memory of that PE. The PE number and the local

5,900,023

13

address together, therefore, describe a particular location 1n
global memory. In the preferred embodiment, a PE number
and local offset are encoded in the linearized index of the
clement. The local offset 1s combined with the local base
address to form the local address of the element. The 1ndex
must therefore be separated into its component parts, viz.,
PE number and local offset, and combined with the local
base address within the PE prior to application to the torus
network.

The present invention describes a method which simpli-
fies the calculation of the global address, and includes the
extraction of PE number and local offset from a linearized
array 1ndex and distribution specification. Unlike other
systems which sometimes restricted certain array data dis-
tributions to integer power-of-two numbers of PEs 1n order
to 1improve the speed of calculating a PE number and offset
for a particular element, the present imvention provides for
improved speed with any integer number of PEs 1n each
dimension, thus providing more efficient utilization of
memory with multidimensional arrays. In addition, the
present invention describes a mechanism for accomplishing
this calculation in software or 1n hardware while providing
a high degree of flexibility as to which bits of the index are
designated PE number bits and which are local offset bits. In

one embodiment, a software program extracts the PE num-
ber and local offset from a linearized 1ndex 1n a manner to
be described. In another embodiment, a division address
centrifuge extracts PE number bits from the index under
control of a software-supplied mask. In one series of

embodiments, this masking 1s done 1n hardware 1n a manner
to be described.

Division Address Centrifuge

An 1mportant concept 1 a distributed memory multipro-
cessing system such as the one described herein 1s the fact
that different processing tasks may require many very dif-
ferent data distributions in memory in order to achieve the
most efficient processing performance. The present inven-
fion provides the necessary hardware support which allows
the programmer to easily designate the optimal distribution
of data 1n memory for a particular processing task.

Because of the distributed nature of the memory in the
preferred MPP system of the present invention, the physical
address of a data element 1n the distributed memory can be
characterized as having two parts: the PE number and the
oifset within the memory of the PE. The PE number and the
oifset together describe a particular location 1n the overall
system memory. Address pointers to elements in memory are
ogenerated 1n the preferred MPP system as a single index
address (the PE number and offset combined). The index
address must be separated into its component parts, PE
number and offset within the PE memory, prior to applica-
tfion to the torus network. The present 1nvention includes a
mechanism for accomplishing this separation with an
extremely high level of flexibility with regard to the desig-
nation of which address ranges of the index are to be
interpreted as the PE number, and which address differences

™

are to be 1nterpreted as offset.

This mechanism, a division address centrifuge, extracts
the PE number from the index. This extraction can be
performed under control of a software-supplied mask.

In one embodiment, the extent of each array dimension 1s
not rounded up to a power-of-two, but instead the number
representing each array dimension provides the denominator
of a integer divide operation which 1s performed by the
above described method. Since the array dimension 1s a

5

10

15

20

25

30

35

40

45

50

55

60

65

14

fixed constant, this situation 1S amenable to the above
method. For example, if a three-dimensional array having X,
Y, and Z dimensions 20, 15, and 30 were to be distributed
over a 7 PE by 19 PE subset of the MPP, one distribution

would linearize the array index by multiplying the X index
by 20x15, the Y index by 15, and adding these two products
to the Z index to generate a linearized result. This result

would be “divided” using the above method by 7, with the
quotient specifying one index (PE index) of the 7 PE by 19
PE section, the remainder of the first “divide” would then be
used as the numerator of a second divide by 19, with the
quotient used as the second PE 1ndex of the 7 PE by 19 PE
section, and the remainder being used as the offset into the
local memory of that PE specified by the first and second PE
indices.

It 1s to be understood that the above description i1s
intended to be 1illustrative, and not restrictive. Many other
embodiments, and many other ways of using the described
embodiments, will be apparent to those of skill 1in the art
upon reviewing the above description. The scope of the
mvention should, therefore, be determined with reference to
the appended claims, along with the tull scope of equivalents
to which such claims are entitled.

What 1s claimed 1s:

1. A method for assisting address calculations for deter-
mining where each one of a plurality of data elements of an
array 1s placed 1 a massively parallel processing system,
cach data element having both a home address associated
with one processor 1n the system, and an offset address from
a base address of the array within a memory of the one
processor, the method comprising:

calculating the home address of an I th element of an array
Y using a formula HOME(Y(I))=FLOOR((I-L)+B)
mod N;

calculating the offset address of the I th element of the
array Y using a formula OFFSET(Y(I))=(I-L) mod

B+FLOOR((I-L)+(BxN))xB; and
using the calculated home address and ofiset address by

the system to access I th element of an array Y,
wherein

HOME 1s an identifying number of a processor associated
with Y(I),

I 1s an 1index into the array Y for which an address 1s to be
generated,

FLOOR(a+b) represents truncated integer division of a by
b, and

L 1s a lowest allocated index of the array Y,
B 1s a block size and 1s a positive integer,

N 1s a number of processors allocated to this dimension
and 1s a positive integer, and
a mod b represents (in positive integers) the remainder of
a/b; and
wherein at least one divide (+) operation includes the steps

of:

calculating a reciprocal of a denominator;

multiplying a numerator by the reciprocal to generate a
quotient, the quotient being a predetermined number of
high-order bits of a product.

2. A method for address calculations for determining
where each one of a plurality of data elements of a J th
dimension of a multi-dimensional array 1s placed 1 a
massively parallel processing system, each data element
having both a home address associated with one processor in
the system, and an offset address from a base address of the
array within a memory of the one processor, the method
comprising:

5,900,023

15

calculating the home address of an I th element of the J th
dimension of an array A using a formula

HOMEA(J)(IJ)=|.(IJ_LJ)/ B;]MOD Ny;

calculating the offset address of the I th element of the J
th dimension of the array A using a formula

using the calculated home address and offset address 1n
the system to access I th element of the J th dimension

of the array A;
wherein

HOME 1s an identifying number of a processor associated

with the I th element of the J th dimension of the array
A,

I 1s an 1ndex 1nto the array A for which an address 1s to be
generated,

FLLOOR(a+b) represents truncated integer division of a by
b, and

L 1s a lowest allocated imndex of the array A,
B 1s a block size and 1s a positive integer,

N 1s a number of processors allocated to this dimension
and 1s a positive mteger, and

a mod b represents (in positive integers) the remainder of
a/b; and

wherein at least one divide (+) operation includes the
steps of:
calculating a reciprocal of a denominator;
multiplying a numerator by the reciprocal to generate a
quotient, the quotient being a predetermined number
of high-order bits of a product.
3. The method according to claim 1, further comprising;:

linearizing a multi-dimensional array index of a multi-
dimensional array into a linear offset I 1nto the array
Y(I) representing the multi-dimensional array.

4. The method according to claim 1, further comprising:

calculating the index I using a formula

[=INDEX,, (P,W)=L+FLOOR(W/B) BxN+BxP+W mod B

wherein
[=INDEX,(P,W) is the index I,

P 1s the identifying number of the processor associated
with Y(I), and

W 1s the offset address of the I th element of the array Y
within the memory of the processor P associated with
Y(I).

5. The method according to claim 1, wherein calculating,

the reciprocal of the denominator 1s performed using a
formula

D=CEILING(2X +B)=FLOOR((2X+B-1)+B)=FLOOR((25-1)+B)+1

wherein
D 1s the denominator being calculated, and

K 1s a number of bits to be kept.

6. The method according to claim 1, wherein multiplying
the numerator by the reciprocal to generate a quotient 1s
performed using an unsigned integer multiply operation.

10

15

20

25

30

35

40

45

50

55

60

65

16

7. The method according to claim 2, further comprising;:
calculating the 1index I, using a formula

b

wherein
I, 1s the index I 1n the J th dimension of the element,

P, 1s the identifying number of the processor associated
with the element, and

W, 1s the offset address of the I th element of the J th
dimension of array A within the memory of the pro-
cessor P, associated with the element.

8. The method according to claim 2, wherein calculating

the reciprocal of the denominator 1s performed using a
formula

D=CEILING(2X+B)=FLOOR((25+B-1)+B)=FLOOR((25-1)+B)+1

wherein
D 1s the denominator being calculated, and

K 1s a number of bits to be kept.

9. The method according to claim 2, wherein multiplying
the numerator by the reciprocal to generate a quotient 1s
performed using an unsigned integer multiply operation.

10. The method according to claim 2, wherein PE and
offset values for each dimension are be reduced to a single
PE value and a single offset value, which 1s done by
equations:

L

P=HOME (I)= E

=1

F { 1

W = OFFSET |, (I) = E

J=1

11. An apparatus for address calculations for determining
where each of a plurality of data elements 1s placed 1 a
massively parallel processing system, each data element
having both a home address associated with one processor in
the system, and an offset address within a memory of the one
processor, the apparatus comprising:

means for calculating the home address of an I th element
of an array Y using a formula

HOME(Y(I))=FLOOR((I-L)+B) mod N;

means for calculating the offset address of the I th element
of the array Y using a formula

OFFSET(Y(]))=(I-L) mod B+FLOOR((I-L)+(BxN))xB; and

means for using the calculated home address and offset
address by the system to access I th element of an array
Y,
wherein

HOME 1s an identifying number of a PE associated with
Y(D),

I 1s an 1ndex 1nto the array Y for which an address 1s to be
generated,

FLOOR(a+b) represents truncated integer division of a by
b, and

5,900,023

17

L 1s a lowest allocated mdex of the array Y,
B 1s a block size and 1s a positive integer,

N 1s a number of processors allocated to this dimension
and 1s a positive integer, and

a mod b represents (in positive integers) the remainder of
a/b; and

wherein at least one divide (+) operation includes the
steps of:
calculating a reciprocal of a denominator;
multiplying a numerator by the reciprocal to generate a
quotient, the quotient being a predetermined number
of high-order bits of a product.
12. The apparatus according to claim 11, further compris-
Ing:
means for linearizing a multi-dimensional array index of
a multi-dimensional array into a linear offset I into the
array Y(I) representing the multi-dimensional array.
13. The apparatus according to claim 11, further compris-
Ing:
means for calculating the index I using a formula

I=INDEX , (B W)=L+FLOOR(W/B)BxN+BxP+W mod B

wherein
[=INDEX,(P,W) is the index I,
P 1s the 1dentifying number of the processor associated
with Y(I), and

W 1s the offset address of the I th element of the array Y

within the memory of the processor P associated with
Y(I).
14. The apparatus according to claim 11, wherein

means for calculating the reciprocal of the denominator 1s
performed using a formula

D=CEILING{(2*+B)=FLOOR((2*+B-1)+B)=FLOOR((2*-1)+B)+1

wherein
D 1s the denominator being calculated, and

K 1s a number of bits to be kept.

15. The apparatus according to claim 11, wherein means
for multiplying the numerator by the reciprocal to generate
a quotient uses an unsigned integer multiply operation.

16. An apparatus for address calculations for determining
where each one of a plurality of data elements of a J th
dimension of a multi-dimensional array 1s placed 1 a
massively parallel processing system, each data element
having both a home address associated with one processor in
the system, and an offset address from a base address of the
array within a memory of the one processor, the apparatus
comprising:

means for calculating the home address of an I th element
of the J th dimension of an array A using a formula

I

means for calculating the offset address of the I th element
of the J th dimension of the array A using a formula

OFFSET ,(,(I)=(I;~L;) mod BAFLOOR((I~L)/(BxN,)B;; and

5

10

15

20

25

30

35

40

45

50

55

60

138

means for using the calculated home address and offset
address 1n the system to access the I th element of the
array A,
whereln

HOME 1s an 1identifying number of a processor associated
with the I th element 1n the J th dimension of array A,

I 1s an 1index 1n the J th dimension into the array A for
which an address 1s to be generated,

FLOOR(a+b) represents truncated integer division of a by
b, and

L 1s a lowest allocated 1index of the array A,
B 1s a block size and 1s a positive 1nteger,

N 1s a number of processors allocated to this dimension
and 1s a positive integer, and

a mod b represents (in positive integers) the remainder of

a/b; and

wherein at least one divide (+) operation includes the
steps of:
calculating a reciprocal of a denominator;
multiplying a numerator by the reciprocal to generate a
quotient, the quotient being a predetermined number
of high-order bits of a product.
17. The apparatus according to claim 16, further com-
prising:

calculating the index I, using a formula

b,

wherein
I, 1s the index I 1n the J th dimension of the element,

P, 1s the identifying number of the processor associated
with the element, and

W, 1s the offset address of the I th element of the J th
dimension of array A within the memory of the pro-
cessor P, associated with the element.

18. The apparatus according to claim 16, wherein

calculating the reciprocal of the denominator 1s performed
using a formula

D=CEILING(2X+B)=FLOOR((2X+B-1)+B)=FLOOR((25-1)+B)+1

wherein
D 1s the denominator being calculated, and

K 1s a number of bits to be kept.

19. The apparatus according to claim 16, wherein multi-
plying the numerator by the reciprocal to generate a quotient
1s performed using an unsigned integer multiply operation.

20. The apparatus according to claim 16, wherein PE and
oifset values for each dimension are be reduced to a single
PE value and a single offset value, which i1s done by
equations:

P = HOME

W = OFFSET , (1) = E

J=1

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO.: 5,900,023
DATED: May 4, 1999
INVENTOR(S) : Pase

It is certified that errors appear in the above-identified patent and that said Patent is
hereby corrected as shown below:

In column 6, line 55, delete “(a- b)” and insert --(a+b)--, therefor.

In column 14, line 25, delete “assisting”.

In column 15, line 11, delete “OFFSET,;(I,)=(1-L)MOD B;+FLOOR(I-L)/(BxN;))B;; and”
and msert -- OFFSET,;(I)=(1-L)MOD B,+FLOOR((I-L,)/(B; xN;j))B;; and--,
therefor. |

In column 16, line 29, delete “be”’.

In column 18, line 54, delete “be”.

Signed and Sealed this
Ninth Day of May, 2000

Q. TODD DICKINSON

Attesting Officer Director of Patents and Trademarks

—————

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

