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57] ABSTRACT

A method, apparatus, and article of manufacture for a
computer implemented scaleable set-oriented classifier. The
scalable set-oriented classifier stores set-oriented data as a
table 1n a relational database. The table 1s comprised of rows
having attributes. The scalable set-oriented classifier classi-
fies the rows by building a classification tree. The scalable
set-oriented classifier determines a gin1 index value for each
split value of each attribute for each node that can be
partitioned 1n the classification tree. The scalable set-
oriented classifier selects an attribute and a split value for
cach node that can be partitioned based on the determined
oini 1index value corresponding to the split value. Then, the
scalable set-oriented classifier grows the classification tree
by another level based on the selected attribute and split
value for each node. The scalable set-oriented classifier
repeats this process until each row of the table has been
classified in the classification tree.

21 Claims, 5 Drawing Sheets
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1
SCALABLE SET ORIENTED CLASSIFIER

BACKGROUND OF THE INVENTION

1. Field of the Invention.

This invention relates 1n general to computer 1mple-
mented classifiers, and 1n particular to a scalable set oriented
classifier.

2. Description of Related Art.

Information technology has developed rapidly over the
last three decades. Many companies are known to have
accumulated large volumes of critical business data on
magnetic medium. It 1s widely believed that implicit in this
business data are patterns that are valuable but not easy to
discern.

Data mining 1s the process of extracting valid, previously
unknown, and ultimately comprehensible information from
large databases and using it to make crucial business deci-
sions. The extracted information can be used to form a
prediction or classification model or to idenfify relations
between rows of a database table.

The classification problem 1s one 1n which a large data set
(i.e., a training set), consisting of many examples, must be
classified. Each example 1s a row of a table with multiple
attributes. Also, each example 1s tagged with a class label
identifying a class on which the examples 1n the training set
are to be classified. The objective of classification 1s to
develop a classifier based on the examples 1n the training set.
The classifier contains a description (model) for each class.
The model 1s used to classity future data for which the class
labels are unknown. See L. Breiman et. al., Classification
and Regression Trees, Wadsworth, Belmont, 1984,
| hereinafter Breiman]; J. Ross Quilan, C4.5: Programs for
Machine Learning, Morgan Kaufman, 1993, |hercinafter
Quilan]; S. K. Murthy, On Growing Better Classification
trees from Data, Ph.D. thesis, The Johns Hopkins
University, 1995, [hereinafter Murthy]; J. Catlett, Megain-
duction: Machine Learning on Very Large Databases, Ph.D.
thesis, University of Sydney, 1991, [hereinafter Catlett];
cach of which 1s which 1s 1incorporated by reference herein.

Improving quality of results and scalability for large data
sets are the two problems to solve for classification. Quality
is known to be domain specific (e.g., insurance fraud and
target marketing). However, there is a need for a generic
solution to the problem of scalability.

Although disk and CPU prices are plunging, the volume
of data available for analysis 1s 1mmense. It may not be
assumed data 1s memory resident. Hence, the practical
research thrust is for classifiers that are scaleable and accu-
rate. A classifier should scale well, that 1s, the classifier
should work well even 1if the training set 1s large and
overtlows main memory. In data mining applications, it 1s
common to have training sets with several million examples.
It 1s observed mm M. Mehta, R. Agrawal, and J. Rissanen,
SLIO: A Fast Scaleable Classifier for Data Mining, Proc. of
the Fifth Int’l Conference on Extending Database
Technology, Avignon, France, March 1996, [hercinafter
Mehta], which 1s incorporated by reference herein, that all
previously known classification methods do not scale well.
Moreover, traditionally, data access has followed “a row at
a time” paradigm and scalability has been addressed indi-
vidually for each operating system, hardware platform, and
architecture. Mehta; J. C. Shafer, R. Agrawal, M. Mehta,
SPRINT: A Scaleable Parallel Classifier for Data Mining,
Proc. of the 22nd International Conference on Very Large
Databases, Mumbai (Bombay), India, September 1996,
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|hereinafter Shafer|; IBM Intelligence Miner User’s Guide,
version 1, Document No. SH12-6213-00, IBM Germany,

July 1996, [ hereinafter IM User’s Guidel; each of which is
which 1s 1incorporated by reference herein.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art described
above, and to overcome other limitations that will become
apparent upon reading and understanding the present
specification, the present invention discloses a method,
apparatus, and article of manufacture for a computer imple-
mented scaleable set-oriented classifier. In accordance with
the present invention, the scalable set-oriented classifier
stores set-oriented data as a table in a relational database.
The table 1s comprised of rows having attributes. The
scalable set-oriented classifier classifies the rows by building
a classification tree. The scalable set-oriented classifier
determines a gin1 1index value for each split value of each
attribute for each node that can be partitioned 1n the classi-
fication tree. The scalable set-oriented classifier selects an
attribute and a split value for each node that can be parti-
tioned based on the determined gin1 index value correspond-
ing to the split value. Then, the scalable set-oriented clas-
sifier grows the classification tree by another level based on
the selected attribute and split value for each node. The
scalable set-oriented classifier repeats this process until each
row of the table has been classified 1n the classification tree.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1s a block diagram of an exemplary hardware
environment of the preferred embodiment of the present
mvention;

FIG. 2 1llustrates a classification tree;

FIG. 3 1s a flow diagram illustrating the general logic-of
the SLIM classifier;

FIG. 4 1s a flow chart 1llustrating the steps performed to
select a best split value for each non-STOP leaf node; and

FIG. § 1s a flow diagram 1llustrating the steps performed
to grow the classification tree 200.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference 1s made to the accompanying drawings which
form a part hereof, and which 1s shown by way of illustration
a specilic embodiment 1 which the imvention may be
practiced. It 1s to be understood that other embodiments may
be utilized as structural changes may be made without
departing from the scope of the present invention.
Hardware Environment

FIG. 1 1s a block diagram 1illustrating an exemplary
hardware environment used to implement the preferred
embodiment of the i1nvention. In the exemplary
environment, a computer 100 1s comprised of one or more
processors 102, random access memory (RAM) 104, and
assorted peripheral devices. The peripheral devices usually
include one or more fixed and/or removable data storage
devices 106, such as a hard disk, floppy disk, CD-ROM,
tape, etc. Those skilled 1n the art will recognize that any
combination of the above components, or any number of
different components, peripherals, and other devices, may be
used with the computer 100.

The present invention 1s typically implemented using
relational database management system (RDBMS) software
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108, such as the DB2 product sold by IBM Corporation,
although 1t may be implemented with any database man-
agement system (DBMS) software. The RDBMS software
108 executes under the control of an operating system 110,
such MVS, AIX, 0S/2, WINDOWS NT, WINDOWS,
UNIX, etc. Those skilled 1n the art will recognize that any
combination of the above software, or any number of
different software, may be used to implement the present
invention.

The RDBMS software 108 receives commands from users
for performing various secarch and retrieval functions,
termed queries, against one or more databases 112 stored in
the data storage devices 106. In the preferred embodiment,
these queries conform to the Structured Query Language
(SQL) standard, although other types of queries could also
be used without departing from the scope of the invention.
The queries invoke functions performed by the RDBMS
software 108, such as definition, access control,
interpretation, compilation, database retrieval, and update of
user and system data.

Generally, the RDBMS software 108, the SQL queries,
and the 1instructions derived therefrom, are all tangibly
embodied 1n or readable from a computer-readable medium,
¢.g. one or more of the data storage devices 106 and/or data
communications devices coupled to the computer.
Moreover, the RDBMS software 108, the SQL queries, and
the structions derived therefrom, are all comprised of
instructions which, when read and executed by the computer
100, causes the computer 100 to perform the steps necessary

to implement and/or use the present invention.
SLIM Classifier

One application of the RDBMS 108 1s known as the
Intelligent Miner(IM) data mining application offered by
IBM Corporation and described 1in IM User’s Guide. The IM
1s a product consisting of inter-operable kernels and an
extensive pre-processing library. The current IM kernels are:

Associations
Sequential patterns
Similar time sequences
Classifications
Predicting Values

Clusters

In data mining, sometimes referred to as advanced data
analysis, a frequently used kernel function 1s “classifica-
tion”. This classification kernel function i1s fundamental and
many other kernels can be reduced to it. J. H. Friedman,
Flexible Metric Nearest Neighbor Classification, Stanford
University Technical Report, 1994, [ hereinafter Friedman |,
which 1s 1ncorporated by reference herein.

The scalable set-oriented classifier 114 of the present
invention resorts to proven scalable database technology to
provide a generic solution to the classification problem of
scalability. The present invention provides a scalable model
for classitying rows of a table within a classification tree.
The scalable set-oriented classifier 114 1s called the Scalable
Supervised Learning Irregardless of Memory (SLIM) Clas-
sifier 114. Not only 1s the SLIM classifier 114 scalable 1n
regions where recently published classifiers are not, but by
virtue of building on well known set-oriented database
management system (DBMS) primitives, the SLIM classi-
fier 114 instantly exploits several decades of database
research and development. The present invention rephrases
classification, a data mining method, mnto analysis of data in
a star schema, formalizing further the interrelationship
between data mining and data warechousing.

A description of a prototype built using IBM’s DB2
product as the RDBMS 108, and experimental results for the
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prototype are discussed below. Generally, the experimental
results indicate that the DB2-based SLIM classifier 114 has
desirable properties associating 1t with linear scalability.
The SLIM classifier 114 1s built based on a set-oriented
access to data paradigm. The SLIM classifier 114 uses

Structured Query Language (SQL), offered by most com-
mercial RDBMS 108 vendors, as the basis for the method.

The SLIM classifier 114 1s based on well known database
methodologies and lets the RDBMS 108 automatically
handle scalability. As a result, the SLIM classifier 114 will

scale as long as the database scales.
The SLIM classifier 114 leverages the Structured Query

Language (SQL) Application Programming Interface (API)
of the RDBMS 108, which exploits the benefits of many
years research and development pertaining to:

(1) scalability
(2) memory hierarchy

(3) parallelism ([18])
(4) optimization of the executions(| 16])

(5) platform independence

(6) client server API ([17]).
See S. Sarawagl, Query Processing in lertiary Memory
Databases, VLDB 1995, [hereinafter Sarawagi]; S.
Sarawagl and M. Stonebraker, Benefits of Reordering Fxecui-
tion in lertiary Memory Databases, VLDB 1996,
| hereinafter Stonebraker |; G. Bhargava, P. Goel, and B. Iyer,
Hypergraph Based Reordering of Outer Join Quertes with
Complex Predicates, SIGMOD 1995, [hereinafter
Bhargaval; T. Nguyen and V. Srinivasan, Accessing Rela-
tional Databases from the World Wide Web, SIGMOD 1996,
|hereinafter Goell; C. K. Baru et. al., DB2 Parallel Edition,
IBM Systems Journal, Vol. 34, No 2, 1995, |hereinafter
Baru ]; each of which is which is incorporated by reference
herein.
Overview

A simple 1illustration of a training set 1s shown 1n Table 1
below:

TABLE 1

Training Set

salary age credit rating
65K 30 Safe

15K 23 Risky

75K 40 Safe

15K 28 Risky

100k 55 Safe

60K 45 Safe

62K 30 Risky

The rows of Table 1 (also known as relations or tuples)
reflect the past experience of an organization extending
credit. The salary and age columns of Table 1 represent
attributes of the examples, and the credit rating column of
Table 1 represents a class that will be used to classity the
examples.

From the examples, the SLIM classifier 114 generates a
classification tree 200 as illustrated in FIG. 2. The SLIM
classifier 114 generates the classification tree 200 to classily
the examples 1n the training set based on the credit rating
class. The credit rating class can have values of either “safe”
or “risky.” The classification tree 200 has a root node 205
with decision “age<=30". When the age attribute of an
example 1s less than or equal to 30, branch 212 1s followed
to node 220 with decision “salary<=62K”. When the salary
attribute of the example 1s less than or equal to 62K, branch



J,899,992

S

222 1s followed to leaf node 240. Leaf node 240 indicates
that an example whose age attribute is less than or equal to
30 and whose salary attribute 1s less than or equal to 62K
falls 1nto the risky class. When the salary attribute of the
example 1s greater than 62K, branch 224 1s followed to leat
node 240 that indicates that the example falls into the risky
class. When the age attribute of a row 1s greater than 30,
branch 214 1s followed to node 230, which 1s a leaf node that
indicates the example falls into the safe class. Additionally,
when the age attribute of an example 1s greater than 30,
branch 214 is followed to leaf node 230 that indicates the
example falls into the safe class.

A classification tree 200 1s built by the SLIM classifier 114
in two phases: a growth phase and a pruning phase. In the
orowth phase, the tree 1s built by recursively partitioning the
data 1n the training set until each partition 1s either “pure”
(all members belong to the same class) or sufficiently small
(a parameter set by a user). Each node in the classification
tree 200 that contains a decision (i.e., split test) reflects the
partitioning that has occurred. The form of the split test that
1s used to partition the data in the classification tree depends
on the type of the attribute used 1n the split test. Split tests
for a numerical attribute A are of the form value(A)=x,
where x 1s a value 1n the domain of A. Split tests for a
categorical attribute A are of the form value(A) € S, where
S 1s a subset of the domain of A. The SLIM classifier 114

uses a classification tree 200 with binary split tests as
described 1n Mehta and Shafer. One skilled 1n the art would
recognize that the classification tree need not be binary.
After the classification tree 200 has been fully grown, 1t 1s
pruned to remove the noise to obtain the final classification
tree 200. The pruning method used by the present mnvention
1s the one described 1 Shafer.

The growth phase 1s computationally more expensive than
the pruning phase. During the growth phase, the SLIM
classifier 114 accesses the training set multiple times; while
during the pruning phase, the SLIM classifier 114 only
accesses the fully grown classification tree 200. Therefore,
the SLIM classifier 114 focuses on the growth phase. The
following pseudocode provides an overview of the growth
phase performed by the SLIM classifier 114:

GrowTree (TrainingSet DETAIL)

Initialize tree T, with all rows of the DETAIL table in the
root,;

while not(all leafs in T are STOP nodes) {for each
attribute 1,
form the dimension table DIM ;
evaluate gini index for each non-STOP leaf at each split
value with respect to attribute 1;

for each non-STOP leat,
oet the overall best split value for 1t;

partition each row and grow the tree for one more level
according to the best split value;

mark all small or pure leafs as STOP nodes;}

return 1;

First, the SLIM classifier 114 1nitializes a DETAIL table,
containing a row for each example in the training set, and the
classification tree 200. Then, until each of the nodes 1s pure
or sufliciently small, the SLIM classifier 114 performs the
following procedure. First, for each attribute of an example,
a DIM. table 1s generated. Next, a gin1 index value 1s
determined for each distinct value (i.e., split value) of each
attribute 1n each leaf node that 1s to be partitioned. Then, the
split value with the lowest gin1 index value 1s selected for
cach leaf node that 1s to be partitioned for each attribute 1.
The best split value for each leaf node that 1s to be parti-
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tioned 1n the classification tree 200 1s determined by choos-
ing the attribute with a split value that has the lowest
corresponding gini index value for that leaf node. After the
best split value 1s determined, the classification tree 200 1s
orown by another level. Finally, the nodes that are pure or
sufliciently small are marked as “STOP” nodes to indicate
that they are not to be partitioned any further.

Data Structures

In Mehta, a method called SLIQ 1s proposed as a scalable
classifier. The key data structure used 1n SLIQ 1s a class list
whose size 1s linear in the number of examples in the
training set. Shafer shows that since the class list must be
memory-resident, 1t puts a hard limitation on the size of the
training set that the method can handle.

Shafer proposes the new data structures: attribute list and
histograms. Although 1t 1s no longer necessary for the
attribute list to be memory-resident, the histograms must be
in memory to msure good performance. While the size of a
histogram for a numerical attribute may be small, the size of
the histogram for a categorical attribute 1s linear 1n
#distinct__value * #distinct_ class, which could be large.
Also, to perform the split in Shafer, a hash table 1s used. The
size of such a hash table i1s 1n fact linear in the number of
examples of the training set. When the hash table is too large
to fit 1n memory, splitting 1s done 1n multiple steps. In each
step, 1t appears the entire attribute list needs to be accessed.
Therefore, Shafer’s method does not achieve real linear
scalability with respect to the number of examples 1n the
training set. This was confirmed from the time per example
measurement for the method. Instead of being flat, the
method described by Shafer grows with the number of
examples.

In the SLIM classifier 114, all information needed to
evaluate the split values and perform the partition 1s stored
in rows of a table 1n a relational database 15(. Therefore,
memory allocation 1ssues need not be handled by the SLIM
classifier 114 alone. The SLIM classifier 114 uses a data
structure that relates the rows of the table to the growing
classification tree 200. The SLIM classifier 114 assigns a
unique 1dentification number to 1dentily each node 1n the
classification tree 200. When loading the data from the
training set 1nto the relational database 150, the SLIM
classifier 114 adds a leat__num column to the DETAIL table.
For each example 1n the training set, leaf num indicates
which leal node in the current classification tree 200 to
which 1t belongs. When the classification tree 200 grows, the
leaf num column 1s updated to indicate that the example 1s

moved to a new node by applying the split in the current
node.

There 1s a one-to-one mapping between leal__num values
and leal nodes in the classification tree 200. If such a
mapping 1s stored 1n the rows of the DETAIL table, 1t will
be very expensive to access the corresponding leaf node for
any row when the table 1s not memory resident. By exam-
ining the mapping carefully, 1t 1s seen that the cardinality of
the leaf num column 1s the same as the number of leaf
nodes 1n the classification tree, which 1s not huge at all,
regardless of the size of the training set. Therefore, the
mapping 1s stored indirectly in a leaf node list (LNL).

A LNL 1s a static array that 1s used to relate the leaf_num
value 1n the table to the 1dentification number assigned to the
corresponding node 1n the classification tree 200. By using
a labeling technique, the SLIM classifier 114 insures that at
cach tree growing stage, the nodes always have the 1denti-
fication numbers 0 through N-1, where N 1s the number of
nodes in the tree. LNL|i] is a pointer to the node with
identification number 1. Now, for any row in the table, the
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SLIM classifier 114 can get the leaf node it belongs to from
its leal num value and LNL at anytime, and, hence, get the
information in the node (e.g. split test, number of examples
belonging 1n this node, and the class distribution of
examples belonging in this node).

To 1nsure the performance of the SLIM classifier 114,
LNL 1s the only data structure that needs to be memory
resident. The size of LNL 1s equal to the number of nodes in
the tree, which 1s not large at all and which can certainly be

stored 1n memory all the time.
The Gini Index Formula

A splitting 1index 1s used to choose from alternative splits
for each node. Several splitting indices have been proposed.
The SLIM classifier 114 uses the gini index, originally
proposed 1n Breiman. The SLIM classifier 114 uses the gini
index, mnstead of another index, because 1n both Mehta and
Shafer, it gave acceptable accuracy. It can be shown the
accuracy of the SLIM classifier 114 1s at least as good as
those published in Mehta and Shafer.

For a data set S containing m examples from n classes,
gini(S) is defined as:

gini($) =1~ p}
i=1

where p; 1s the relative frequency of class 1 1n S. If a split
divides S 1nto two subset S, and S,, whose size 1sm, and m,,
respectively, the index of the divided data gini_,, (S) is
ogrven by:

(2)

.. mp fmy |
gm%pm(g) = —gini(S) ) + —gini(.S;)
)] m

Computing the gini index 1s the most expensive part of the
method, since to find the best split value for a node, the
SLIM classifier 114 needs to evaluate the gim1 index value
for each attribute at each possible split value for each
non-STOP leaf node. The attribute containing the split value
achieving the lowest gini index value 1s then chosen to split
the node, as was done 1n Breiman.

Scalable Supervised Learning Irregardless of Memory

(SLIM)

FIG. 3 1s a flow diagram 1illustrating the general logic
performed by the SLIM classifier 114. In step 310, the SLIM
classifier 114 1nitializes the data set table. The examples of
the training set are stored 1n a relational database 112 using
a table with the following schema: DETAIL(attr,, attr,, . . .
, attry, class, leaf num), where attr; is the ith attribute, class
1s the classifying attribute, and leaf_ num indicates the leat
node 1n the classification tree 200 to which the row belongs.
When the classification tree grows, the leal__num value of
cach example 1n the training set 1s updated. Assuming that
there are N other attributes besides the class attribute, the

cardinality of the class attribute set 1s n. Table 2 1llustrates
the DETAIL table for the training set 1llustrated in Table 1:

TABLE 2
DETAIL
attr, attr, class leaf  num
65K 30 Safe 0
15K 23 Risky 0
75K 40 Safe 0
15K 28 Risky 0
100K 55 Safe 0
60K 45 Safe 0
62K 30 Risky 0

In step 320, the classification tree 200 1s initialized. At this
stage, the classification tree 200 contains only a root node
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with all examples belonging to this root node. Step 330 15 a
decision step m which the SLIM classifier 114 determines
whether all nodes 1n the classification tree 200 are STOP
nodes. That 1s, the SLIM classifier 114 determines whether
cach node 1s either pure or sufficiently small. When all nodes
are STOP nodes, the SLIM classifier 114 has completed
classifying the training set and the classification tree 200 1s
pruned 1n step 360. Otherwise, the SLIM classifier 114
continues 1n step 340 to select the best split value for each
non-STOP leat node. The classification tree 1s grown 1n step
350.

FIG. 4 1s a flow chart illustrating the steps performed to
select the best split value for each non-STOP leaf node, as
identified 1n step 340. In step 410, the SLIM classifier 114
ogenerates a DIM. table for each attribute. In particular, once
for every level of the tree, for each attribute attr,, the SLIM
classifier 114 generates a DIM. table with the schema
DIM(leaf num, class, attr,, count) using the following
simple select statement on the DETAIL table:

INSERT INTO DIM,

SELECT leaf num, class, attr;, count(*)
FROM DETAIL

WHERE leaf num=STOP

GROUP BY leat num, class, attr,

Although the number of distinct values 1n the DETAIL
table could be huge, the maximal number of rows 1n DIM,
1s no greater than #leal 1n_ tree * #distinct_ values_ on__
attr. * #distinct__class, which 1s very likely to be of the order
of several hundreds. In the case that #distinct__values on__
attr; 1s very big, preprocessing 1s suggested to further dis-
cretize 1t. Also, DETAIL could refer to data either 1n a table
or a file (e.g., on magnetic tape). In case of a file, DETAIL
resolves to an execution of a user defined function (e.g. fread
in UNIX). D. Chamberlin, personal communication,
|hereinafter Chamberlin|.

When such dimension tables are formed for every
dimension, 1t 1s easy to visualize the database schema as a
star schema. Thus many innovations related to data ware-
housing are now applicable to 1mprove performance. G.
Larry, Articles on Datawarehousing, http://
pwp.starnetinc.com/larryg/articles.html, 1996, [hereinafter
Larry], which is incorporated by reference herein.

Once, the DIM. tables are generated, the SLIM classifier
114 determines the gini index value for each attribute at each
possible split value of the attribute 1 by performing a series
of SQL operations which only involve accessing the DIM,
tables.

For one attribute 1, its DIM, table may be created in one
pass over the DETAIL table. It 1s straightforward to schedule
one query per dimension (i.€., attribute). Completion time is
still linear 1 the number of dimensions. Commercial
DBMSs store data 1n essentially row major sequence. Thus,
I/O efficiencies may be obtained 1f it 1s possible to create
dimension tables for all attributes 1n one pass over the
DETAIL table. Concurrent scheduling of the queries popu-
lating the DIM tables 1s the stmple approach. Existing butfer
management schemes that rely on I/O latency appear to
synchronize access to the DETAIL table for the different
attributes. The 1dea 1s that one query piggybacks onto
another query’s I/0O data stream. Results from early experi-
ments are encouraging. J. B. Sinclair, Rice University,
personal communication, [hereinafter Sinclair].

It 1s also possible for SQL to be extended to ensure that
not only I/0 1s optimized but also processor 102 utilization.
Taking liberty with SQL standards, the following query is
written as a proposed SQL operator:
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SELECT FROM DETAIL

INSERT INTO DIM, {leaf num, class, attr.,
count(*)
WHERE predicate
GROUP BY leaf num, class, attr,}

INSERT INTO DIM, {leaf num, class, attr,,
count(*)
WHERE predicate
GROUP BY leaf num, class, attr,} . . .

INSERT INTO DIM,, {leaf num, class, attr,,
count(*)
WHERE predicate
GROUP BY leaf _num, class, attrN}
The new operator forms multiple groupings concurrently,
and may allow further optimization.

For each non-STOP leaf node 1n the tree, possible split
values for attribute 1 are all distinct values of attr; among the
examples which belong to this leaf node. For each possible
split value, the SLIM classifier 114 needs to get the class
distribution for the two parts partitioned by this value to
compute the corresponding gini index. In step 430, the
SLIM classifier 114 collects such distribution information in
two tables, UP and DOWN.

The UP table with the schema. UP(leaf__num, attri, class,
count) could be generated by performing a self-outer-join on
DIM, using the following SQL query:

INSERT INTO UP

SELECT d,.node_ num, d,.attr;, d,.class, SUM(d,. count)

FROM (FULL OUTER JOIN DIM, d,, DIM. d,

ON d,. leal _num=d,.leaf num AND d,.attr.<=d, attr,
AND d, .class=d,.class

GROUP BY d,.leaf num, d,.attri, d,.class)

Similarly, the DOWN table could be generated by just
changing the <=to> i the ON clause. Also, the SLIM
classifier 114 can obtain the DOWN table by using the
information 1n the leaf nodes and the count column 1n the UP
table without doing join on DIMI again.

In case the outer-join operator 1s not supported, by per-
forming simple set operations such as EXCEPT and
UNION, the SLIM classifier 114 can form a view DIM . with
the same schema as DIM. first. For each possible split value
on attribute 1 and each possible class label of each node,
there 1s a row 1 DIM,; that gives the number of rows
belonging to this leal node that have such a value on
attribute 1 and such a class label. Note that DIM. 1s a superset
of DIM.; and the difference between them are those rows
with a count 0. After DIM. 1s generated, the SLIM classifier
114 performs a self-join on DIM. to create the UP table as
follow:

INSERT INTO UP
SELECT d,.node__num, d,.attr1, d,.class,
SUM(d,. count)
FROM DIM,; d,, DIM; d,
WHERE d,.leat _num=d,.leal _num AND
d,.attr,<=d, .attr, AND
d, class=d,.class

GROUP BY d,.leal_ num, d,.attr1, d,.class

The UP and DOWN tables contain all the information the
SLIM classifier 114 needs to compute the gini index at each
possible split value for each current leaf node 1n the classi-
fication tree 200, but the SLIM classifier 114 needs to
rearrange them 1n some way before the gini index is calcu-
lated.

In step 440, the SLIM classifier 114 obtains classification
information. The following intermediate view could be
formed for all possible classes k:
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10
CREATE VIEW C,_ UP(leaf num, attr;, count) AS

SELECT leat num, attr,, count
FROM UP

WHERE class=k
Similarly, the SLIM classifier 114 defines view C,- DOWN
from the DOWN table.

In step 450, the SLIM classifier 114 calculates the gini

index for each possible split value for attribute 1. Now a view
GINI__ VALUE that contains all gin1 index values at each
possible split value 1s generated. Taking the liberty with SQL
syntax, the following query 1s written:

CREATE VIEW GINI-VALUE(leaf num, attr;, gini)
AS
SELECT u,.leaf _num, u,.attr,, f

gIFL
FROM C, UPu,,...,C. UPu,C, DOWNd,,...,
C_ DOWNd,

WHERE u,.attr= . . . =u_. attr,.=d,. attr.= . . . =d . attr,

AND u,.leaf__num= =u_.leal_num=d,.

leaf num= ... =d leal num
where f_, ; 1s a function of u,.count, . . . , u,.count, d;.
count, . . ., d_.count.

In step 460, for each non-STOP leaf node, the SLIM
classifier 114 selects the best split value for attribute 1. The
SLIM classifier 114 creates a table with the schema MIN
GINI(leaf num, attr _name, attr_ value, gini):

INSERT INTO MIN GINI
SELECT leaf num,: 1, attr,, min(gini)

Note the transformation for the table name DIM, to column value 1 and
column name attr,.

FROM GINI__VALUE a

WHERE a.gini=SELECT min(gini)
FROM GINI_ VALUE b
WHERE a.leaf num=b.leaf num)

GROUP BY leaf _num
The MIN__GINI table contains the best split value and the
corresponding gin1 index value for each leaf node of the
classification tree 200 with respect to attribute 1.

The SLIM classifier 114 repeats the above procedure for
all attributes. Once that 1s done, the MIN _GINI table
contains the best split value for each non-STOP leaf node
with respect to all attributes. Step 470 1s a decision step 1n
which the SLIM classifier 114 determines whether all
attributes have been selected. If not all attributes have been
selected, the SLIM classifier 114 continues at step 420 to
perform the procedure for the remaining attributes. If all
attributes have been selected, the SLLIM classifier 114 con-
tinues at step 480. In step 480, the SLIM classifier 114
selects the best split value for each non-STOP leaf node. The
overall best split value for each non-STOP leaf node 1is
obtained from executing the following query:

CREATE VIEW BEST_ SPLIT(leaf num, attr name,
attr__value, gini)

AS
SELECT leaf num, attr_ name, attr value, min(gini)

FROM MIN_ GINI a

WHERE a.gini=(SELECT min(gini)
FROM MIN__GINI b
WHERE a.leaf num b.leaf num)

GROUP BY leaf _num
Categorical Attributes

For a categorical attribute 1, the SLIM classifier 114 forms
DIM, 1n the same way as for a numerical attribute. DIM,
contains all the information the SLIM classifier 114 needs to
compute the gini index for any subset splitting. In fact, It 1s
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an analog of the count matrix 1n Shafer, but formed with
set-oriented operators.

Apossible split 1s any subset of the set that contains all the
distinct attribute values. If the cardinality of attribute 1 1s m,
the SLIM classifier 114 needs to evaluate the splits for all the
2™ subsets.

Those subsets and their related counts can be generated in
a recursive way. The schema of the table that contains all the

k-sets is S, IN(leaf num, class, v, v,, . . ., vV, count).
Obviously DIM =S, IN.S, IN is then generated from

S, _IN and S, ,_IN as follows:
INSERT INTO S, IN

SELECT p.leaf num, p.class, p.v,, .
p.count+q.count

FROM (FULL OUTER JOIN S, , INp, S, INq

ON p.leal num=qg.leaf num AND

p.class=q.class AND
q-V,>P.-Vyq)
The SLIM classifier 114 generates the S, OUT table 1n a
similar way as the SLIM classifier 114 generates the DOWN
table from the UP table. Then the SLIM classifier 114 treats
S, INandS, OUT exactly as DOWN and UP for numeri-
cal attribute to compute the gini index for each k-set split.
The SLIM classifier 114 does not need to evaluate all the
subsets. The SLIM classifier 114 only needs to compute the
k-sets for k=1, 2, . . ., |m/2]| and thus saves time.
Partitioning
Once the best split values have been found for each leat
node, the leaf nodes are split into two child nodes. FIG. 5 1s
a flow diagram 1llustrating the steps performed to grow the
classification tree 200 as identified 1n step 350. In step 510,
the SLIM classifier 114 updates the leal  num values 1n the
DETAIL table as follows:

UPDATE DETAIL

SET leaf num=partition(attr,, . .
num)
The following 1s pseudocode for the user defined function
partition:

partition(row r).

Use the leal  num value of r to locate the tree node
which r belongs to through LNL;

Get the best split from node n;

Apply the split to r;

Return a new leal_num according the result of the split
test and update r in DETAIL;

The partition function applies the current tree to the
original training set. If updating the whole DETAIL table 1s
expensive, the update 1s avoided by just replacing leal num
by the partition function in the statement forming DIM..
Therefore, there 1S no need to store leaf num 1n the
DETAIL table. Instead, leal_num can be computed from the
attribute values of each row.

In step 520, the STOP nodes are determined. These are the
nodes that are pure or sufficiently small. In step 530, the
SLIM classifier 114 marks STOP nodes 1n the DETAIL table
to 1ndicate that these nodes are not to be partitioned further.
In step 540, the SLIM classifier 114 updates the leaf node
list.

.., Pv,, qvy,

., aftry, class, leaf

EXAMPLE

The SLIM classifier 114 is 1llustrated by an example. The

example training set 1s the same as the data in Table 1.
Initially, the SLIM classifier 114 loads the training set and

initializes the classification tree 200 and the leaf node list.
The DETAIL table 1s shown 1n Table 2 above.

Next, the SLIM classifier 114 finds the best split value for
the root node. To do this, the SLIM classifier 114 evaluates
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the gin1 index values for each split value of each attribute.
For illustration purposes, the procedure for finding the best
split value will be shown using the salary attribute.

First, a dimension table 1s generated for the salary
attribute. Table 3 1llustrates a sample DIM. table for the
salary attribute.

TABLE 3

DIM.

leaf_ num attr, class count

15 p 2
60 ]
62 P
65 ]
75
100

o O O o O O
—t

Second, 1n order to be able to generate the UP and DOWN

tables, a DIM. table 1s generated. This example assumes that
the outer join operation 1s not available. Table 4 illustrates a

sample DIM. table.

TABLE 4

Dim;

leaf_ num attr, class count

15
62
60
65
75
100
60
65
75
100
62
15

SRR A e
— O O O O O O

T T O o Y o Y o T o e e e Y
M!.'.l'.l'.l'.

[~
[~

Third, the SLIM classifier 114 collects distribution infor-

mation by generating the UP and DOWN tables. Tables 5
and 6 1llustrate these tables.

TABLE 5
UP
leaf_ num attr, class count
0 15 1 0
0 15 2 2
0 60 1 1
0 60 2 2
0 62 1 1
0 62 2 3
0 65 1 2
0 65 2 3
0 75 1 3
0 75 2 3
0 100 1 4
0 100 2 3
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TABLE 6

DOWN

leaf. num attr, class ccunt

15
15
60
60
62
62
65
65
75
75
75

oo oo oo oo O OO
e S e I S T R S

I:::I b_ll" b_ll" ':::l M I:::l [J‘J !. 1 L4 L

Fourth, the SLIM classifier 114 obtains classification
information by generating the C, views. Tables 7—10 1llus-
trate these views.

TABLE 7/
C;, UP
leaf. num attr, count
0 15 0.0
0 60 1.0
0 62 1.0
0 65 2.0
0 75 3.0
0 100 4.0
TABLE 8
C, UP
leaf _num attr, count
0 15 2.0
0 60 2.0
0 62 3.0
0 65 3.0
0 75 3.0
0 100 3.0
TABLE 9
C, DOWN
leaf_ num attr, count
0 15 4.0
0 60 3.0
0 62 3.0
0 65 2.0
0 75 1.0
TABLE 10
C, DOWN
leaf_ num attr, count
0 15 1.0
0 60 1.0
0 62 0.0
0 65 0.0
0 75 0.0
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Fifth, the SLIM classifier 114 generates the GINI__
VALUE view with the gin1 index values of each split value
of attribute 1. Table 11 1illustrates this view.

TABLE 11
GINI_VALUE
leaf__num attr, count

0 15 0.22856
0 60 0.40474
0 62 0.21428
0 65 0.34284
0 75 0.42856

Sixth, the SLIM classifier 114 generates the MIN__ GINI
view for the salary attribute. Table 12 illustrates this view.

TABLE 12

MIN__ GINI
after attr, 1s evaluated

leaf _num attr__name attr__value gini

0 1 62 0.21428

At this point, the MIN__GINI table contains the best split
value with respect to the salary attribute. Then, the above

procedure 1s repeated for the age attribute, and one or more
rows 1S added to the MIN__GINI table. Table 13 illustrates

the updated table.

TABLE 13

MIN__GINI after

attr, and attr, are evaluated

leaf _num attr__name attr__value gini
0 1 62 0.21428
0 2 30 0.21428

Normally, at this point, the SLIM classifier 114 selects the
best split value based on the split value of an attribute with
the lowest corresponding gini index value. Because both
attributes achieve the same gini index value 1n this example,
either one can be selected. The SLIM classifier 114 stores the
best split values in each leaf node of the tree( the root node
in this phase).

According to the best split value found, the SLIM clas-
sifier 114 grows the tree and partitions the training set. The
partition 1s reflected as the leal num changes in the
DETAIL table. Also, any new grown node that is pure or
sufficiently small 1s marked and reassigned a special leaf
num value STOP so that the SLIM classifier 114 does not

need to process 1t any more. The updated DETAIL table 1s
shown 1n Table 14.

TABLE 14

DETAIL after phase 2

attr, attr, class leaf num
65K 30 Safe 1
15K 23 Risky 1
75K 40 Safe 2—=STOP
15K 28 Risky 1
100K 55 Safe 2—=STOP
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TABLE 14-continued

DETAIL. after phase 2

attr, attr, class leaf. num
60K 45 Safe 2—=STOP
62K 30 Risky 1

After this, the SLIM classifier 114 follows the above
procedure for the DETAIL table until all the nodes in the
classification tree 200 become STOP nodes.

The final classification tree 200 1s shown 1n FIG. 2, and
the final DETAIL table 1s shown 1n Table 15.

TABLE 15

Final DETAIL

attr, attr, class leaf__num
65K 30 Safe 4—=STOP
15K 23 Risky 3—=STOP
75K 40 Safe STOP
15K 28 Risky 3—=STOP
100K 55 Safe STOP
60K 45 Safe STOP
62K 30 Risky 3—=STOP

Experimental Results

There are two 1important metrics to evaluate the quality of
a: classification accuracy and classification time.

Since Mehta and Shafer are the only published papers on
a scalable classifier dealing with large training sets, experi-
mental results from the SLIM classifier 114 are compared
with their method.

Although the SLIM classifier 114 uses different method-
ology to build the classifier, the SLIM classifier 114 uses the
same measurement(gini index) to choose the best split value
for each node. Also, the SLIM classifier 114 grows the
classification tree 200 1n a breath first fashion and prunes the
classification tree 200 using the same pruning method as
Mehta and Shafer. This insures the SLIM classifier 114
ogenerates the same classification tree as that produced by

Mehta and Shafer for the same training set. The accuracy of
SPRINT and SLIQ are discussed in Mehta and Shafer.

For scaling experiments, a prototype was run on large data
sets. The main cost of the SLIM classifier 114 1s that 1t needs
to access DETAIL N times(N is the number of attributes) at
cach level of the growth of the classification tree 200. It 1s
recommended that future DBMSs 108 support multiple
GROUP BY statements so the DETAIL table can be

accessed only once regardless of the number of attributes.

Due to the lack of a classification benchmark, the syn-

thetic database 1s used that was proposed in R. Agrawal, T.
Imielinski, and A. Swami, Database Mining: A Performance
Perspective, IEEE Transactions on Knowledge and Data
Engineering, December 1993, | hereinafter Agrawal], which
1s incorporated by reference herein.

In this synthetic database, each row consists of nine
attributes as shown 1n Table 16.
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TABLE 16

Description of the synthetic data

attribute value

salary uniformly distributed from 20K to
150K.

COMMISsS1on salary 2 74K — commission = 0 else
uniformly distributed from 10K to 75K

age uniformly distributed from 20 to 80

loan uniformly distributed from 0 to 500K

elevel uniformly chosen from O to 4

car uniformly chosen from 1 to 20

zipcode uniformly chosen from 9 available
zipcode

hvalue uniformly distributed from 0.5k100000
to 1.5k100000 where k € {0 ... 9}
depends on zipcode

hyear uniformly distributed from 1 to 30

Ten classification functions are proposed in Agrawal to
produce databases with different complexities. The proto-
type 1s run using function 2, described below. Two classes of
databases can be generated: Group A and Group B. The
description of the predicate for group A 1s shown below.

Function 2-Group A
((age<40) (50K =salary =100K))V
((40=age<60)"(75K=salary=125K))V
((age260) (25K =salary=75K)

Experiments were conducted using IBM’s DB2 RDBMS
108. Training sets with sizes ranging from 0.5 million rows
to 3 million rows were used. The experimental results
indicate that the SLIM classifier 114 achieves linear scal-
ability with respect to the training set size. Moreover, the
time per example curve stays flat when the training size
increases. This 1s the first flat curve seen for any classifier
built for large data sets.

The SLIM classifier 114 exhibits properties of a truly
linear classifier. It scales in such a way that the time per
example remains the same. This desirable property of linear
scaling may be attributed to conversion of classification(a
data mining problem) into a multi-dimensional analysis
problem and to exploitation of true DBMS technology.
Additionally, it was found that attribute names 1 DETAIL
became table names for the dimension tables and that 1t was
an attributes value pair that determined the next processing
step.

Conclusion

The foregoing description of the preferred embodiment of
the mvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible 1n light of the
above teaching. It 1s intended that the scope of the invention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A method for classifying set-oriented data 1n a com-
puter by generating a classification tree, the computer being
coupled to a data storage device for storing the set-oriented
data, the method comprising the steps of:

storing the set-oriented data as a table m a relational
database 1n the data storage device coupled to the
computer, the table being comprised of rows having
attributes and node 1dentifiers, wherein each node 1den-
tifier indicates a node 1n the classification tree to which
a row belongs;

iteratively performing a sequence of steps 1n the computer
until all of the rows have been classified, the sequence
of steps comprising;:
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determining a gini index value for each split value of
cach attribute for each node that can be partitioned 1n
the classification tree;

selecting an attribute and a split value for each node
that can be partitioned based on the determined gini
index value corresponding to the split value of the
attribute; and

ogrowing the classification tree by a new level based on the
selected attribute and split value for each node that can
be partitioned, further comprising:
using the node identifier associated with a row to
locate a node 1n the classification tree:
identifying the selected split value for that node;
applying the split value to the row; and
updating the node 1dentifier according to the result of
the split test.

2. The method of claim 1 wherein the step of determining
a ginl index value further comprises the step of creating an
attribute table for each attribute.

3. The method of claim 1 wherein the step of determining
a gin1 index value further comprises the step of collecting
distribution information for each attribute.

4. The method of claim 3 wherein each row has an
associated class and wherein the step of collecting distribu-
fion information for each attribute further comprises the step
of obtaining classification mnformation for each class of each
attribute.

5. The method of claim 1 wherein the step of selecting an
attribute and a split value further comprises the step of
selecting the split value of the attribute with a lowest gini
index value.

6. The method of claim 1 further comprising providing a
leaf node list in a memory coupled to the computer, the leat
node list having one or more entries, each entry associating
a node of the classification tree with a row in the table.

7. The method of claim 6 wherein the step of growing the
classification tree further comprises updating the leaf node
list.

8. An apparatus for classifying set-oriented data, com-
prising:

a computer coupled to a data storage device for storing the

set-oriented data;

means, performed by the computer, for storing the set-
oriented data as a table 1n a relational database 1n the
data storage device coupled to the computer, the table
being comprised of rows having attributes and node
identifiers, wherein each node 1dentifier indicates a
node 1n the classification tree to which a row belongs;
and

means, performed by the computer, for performing a
sequence of steps 1n the computer until all of the rows
of the table have been classified in a classification tree,
further comprising:
means, performed by the computer, for determining a

o1ni index value for each split value of each attribute
for each node that can be partitioned 1n the classifi-
cation tree;
means, performed by the computer, for selecting an
attribute and a split value for the attribute for each
node that can be partitioned based on the determined
o1ni index value corresponding to the split value of
the attribute; and
means, performed by the computer, for growing the
classification tree by a new level based on the
selected attribute and split value for each node that
can be partitioned, further comprising:
means, performed by the computer, for using the
node 1dentifier associated with a row to locate a
node 1n the classification tree;
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means, performed by the computer, for 1dentifying
the selected split value for that node;

means, performed by the computer, for applying the
split value to the row; and

means, performed by the computer, for updating the
node identifier according to the result of the split
test.

9. The apparatus of claim 8 wherein the means for
determining a gini index value further comprises means for
creating an attribute table for each attribute.

10. The apparatus of claim 8 wherein the means for
determining a gini1 index value further comprises means for
collecting distribution information for each attribute.

11. The apparatus of claim 10 wherein each row has an
associated class and wherein the means for collecting dis-
tribution 1nformation for each attribute further comprises
means for obtaining classification information for each class
of each attribute.

12. The apparatus of claim 8 wherein the means for
selecting an attribute and a split value further comprises
means for selecting the split value of the attribute with a
lowest gin1 1ndex value.

13. The apparatus of claim 8 further comprising means for
providing a leal node list In a memory coupled to the
computer, the leaf node list having one or more entries, each
entry associating a node of the classification tree with a row
in the table.

14. The apparatus of claam 13 wherein the means for
crowling the classification tree further comprises means for
updating the leaf node list.

15. A program storage device, readable by a computer,
tangibly embodying one or more programs of instructions
executable by the computer to perform method steps of a
classification method for classifying set-oriented data by
generating a classification tree, the computer the computer

being coupled to a data storage device for storing the
set-oriented data, the method comprising the steps of:

storing the set-oriented data as a table 1n a relational
database 1n the data storage device coupled to the
computer, the table being comprised of rows having
attributes and node 1dentifiers, wherein each node 1den-
tifier indicates a node 1n the classification tree to which
a row belongs; and

iteratively performing a sequence of steps 1n the computer
until all of the rows have been classified, the sequence
ol steps comprising;:
determining a gin1 index value for each split value of
cach attribute for each node that can be partitioned 1n
the classification tree;
selecting an attribute and a split value for each node
that can be partitioned based on the determined gini
index value corresponding to the split value of the
attribute; and
orowling the classification tree by a new level based on
the selected attribute and split value for each node
that can be partitioned, further comprising:
using the node identifier associated with a row to
locate a node 1n the classification tree;
identifying the selected split value for that node;
applying the split value to the row; and
updating the node 1dentifier according to the result of
the split test.
16. The program storage device of claim 15 wherein the
step of determining a gini index value further comprises the
step of creating an attribute table for each attribute.
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17. The program storage device of claim 15 wherein the
step of determining a gin1 index value further comprises the
step of collecting distribution information for each attribute.

18. The program storage device of claim 17 wherein each
row has an associated class and wherein the step of collect-
ing distribution information for each attribute further com-
prises the step of obtaining classification information for
cach class of each attribute.

19. The program storage device of claim 15 wherein the
step of selecting an attribute and a split value further
comprises the step of selecting the split value of the attribute
with a lowest gini index value.

10

20

20. The program storage device of claim 15 further
comprising providing a leaf node list 1n a memory coupled
to the computer, the leal node list having one or more
entries, each entry associating a node of the classification
tree with a row 1n the table.

21. The program storage device of claim 20 wherein the
step of growing the classification tree further comprises
updating the leaf node list.



	Front Page
	Drawings
	Specification
	Claims

