United States Patent (i
Adegeest et al.

US005889932A
(11] Patent Number: 5,889,932
45] Date of Patent: Mar. 30, 1999

[54]

[75]

[73]

21
22

[51]
[52]

[58]

[56]

METHOD OF CHECKING GRAPHICAL
DATA FOR CONFORMITY TO GRAPHICAL
DESIGN RULES
Inventors: Frank Adegeest, Sint Jansteen,
Netherlands; Leo De Wael, Lokeren;
Patrick Bergmans, Gent, both of
Belgium
Assignee: Barco Graphics N.V., Belgium
Appl. No.: 642,299
Filed: May 3, 1996
INt. CLC oo, GO6F 15/00
US. Cll o, 395/117
Field of Searchoovvvvvvvnnnenn. 305/133, 110,
395/117; 349/433; 364/468.1, 468.09, 552;
53/411
References Cited
U.S. PATENT DOCUMENTS
4,873,643 10/1989 Powell et al. ...couevvevivvneennnnnn. 364/468
5,619,635 4/1997 Millman et al.ceveeenne., 395/768

OTHER PUBLICATTONS

Harrel, “Publish without perishing: Adobe Systems’ Pain
and Publish, Corel Systems’ Venture 5, Microsoft Publisher
for Windows 95, Serif PagePlus Publishing Suite 3.0,
Home Office Computing, Jan. 1996, vol. 14, No. 1, p. 74(4).
LePage, “Next PageMaker chapter adds tools, Web fea-
tures,” MacWeek, Oct. 28,1996, vol. 10, No. 41, p. 1(4).

Dengel, et al., “From Paper to Office Document Standard

Representation,” IEEE Computer Magazine, Jul. 1992, vol.
25, No. 7, pp. 63-67.

Primary Examiner—Mark R. Powell
Attorney, Agent, or Firm—Dov Rosenteld

57] ABSTRACT

Disclosed 1s a method for improving computer aided graphi-
cal design with a design rule checker. A preferred embodi-
ment of the invention 1s a computer program which when
loaded 1n a computer checks a graphical design for confor-
mity to a set of graphical design rules such as printability
rules, legal packaging rules, company style rules, and aes-
thetic rules. The program may be operated in an interactive
mode to provide feedback while a design 1s being created, or
in a batch mode after the design 1s completed. Specific rules
can be customized and adapted for appropriate printing
processes, company styles, legal rules, and aesthetics.

24 Claims, 4 Drawing Sheets

U.S. Patent Mar. 30, 1999 Sheet 1 of 4 5,889,932

For each design rule
For each object A

102 110

108

Shc)w Aand R to
Does A yes

)

113

"G
YES
116
@ ho Show list of

FI1G. 1

U.S. Patent Mar. 30, 1999 Sheet 2 of 4 5,889,932

100%

90% | ,

Ink Amount

Length of Object

FI1G. 2

U.S. Patent Mar. 30, 1999 Sheet 3 of 4 5,889,932

134

132
FIG. 3a FIG. 3b
138—
142
F1G. 4a FI1G. 4b

e
&
-
el
=
-
o
NS

U.S. Patent Mar. 30, 1999 Sheet 4 of 4 5,889,932

162

F1G.7

J,889,932

1

METHOD OF CHECKING GRAPHICAL
DATA FOR CONFORMITY TO GRAPHICAL
DESIGN RULES

FIELD OF THE INVENTION

The present invention relates generally to the field of
ographical data processing and more specifically to methods
for analyzing and correcting graphical data for conformity to
ographical design rules.

BACKGROUND OF THE INVENTION

In the present graphic design process, an artist typically
uses a computer running a graphic design program to
compose and edit the design. The design 1s stored as a
oraphical data file which 1s ultimately sent to an output
process for display. In commercial design, the output pro-
cess might include a preprint process followed by the
process of printing itself. Depending on the particular
medium, the printing process will vary. For example, the
processes for printing cereal boxes, the sides of trucks, and
brochures vary in their technical details and each imposes a
different set of constraints.

Because the work of today’s graphical designer involves
computers, various printing processes, and numerous media,
the creative artist 1s usually burdened with the task of
combining the intuitive process of design with the analytical
and technical knowledge of the computers and printing
processes involved. For example, a designer may create very
thin lines that cannot be reproduced due to the technical
constraints of a particular printing processes. There are
many other similar constraints that affect the printability of
a design as well. For example, different printing processes
have characteristic registration error tolerances, minimum
printable color intensities, and minimum resolvable gaps
between distinct graphical elements. Because these many
constraints vary between different printing processes, keep-
ing them all in mind 1s distracting to the creative process of
the artist. Moreover, even 1f the graphical elements created
by the artist are printable by the selected printing process,
there may be small errors or undesirable features in the
design that are easily overlooked. For example, a stroke
forming the boundary of an object may have be partially
covered by another object.

Consequently, a designer may produce a creative design
that appears to be printable on the computer, but which may
not, 1n fact, reproduce as intended when sent to the selected
printing process. Or the design may print as intended 1n one
printing process but not in another. Time and money are
often spent printing such designs only to discover the
mistakes after 1t 1s too late. On the other hand, 1t 1s
time-consuming and detrimental to the creative process of
design for the artist to check all the graphical elements of a
design for conformity to the constraints of a particular
printing process and make appropriate modifications.

In addition to design rules 1imposed by the medium or
printing process, there are other types of rules that constrain
the design of graphic art. For example, an artist producing
many designs for a company advertisement may be con-
strained 1n the use of certain colors or fonts traditionally
used by the company. The design of packages for a product
line may also be constrained by certain design rules such as
color and font. Other rules of design 1nvolve more general
acsthetics. For example, there may be certain design rules
for brochures that specily the balance of colors and the
spacing of text. Such rules may be different for packaging or
for annual reports or other applications.

10

15

20

25

30

35

40

45

50

55

60

65

2

There are specific legal rules that apply to certain package
and advertisement designs. For example, cigarette packag-
ing and advertisements are required by law to have warning
labels having a certain mimmum relative size. Certain
alcohol labels have similar requirements. Food labels have
requirements regarding ingredients, nutrients, and weight.
Since these legal rules vary from country to country and
product to product, the artist is burdened in the creative
Process.

Therefore, there has long been a need for a way to free the
oraphic design artist from the burdens of many complicated
rules of various types which constrain the design. There 1s
also a need to improve the efficiency of graphic design and
reduce the problems and errors encountered due to the
constraints imposed by printing processes, company styles,
acsthetics, regulations and other design considerations.

OBIJECTS AND ADVANTAGES OF THE
INVENTION

In view of the above, 1t 1s a primary object of the present
invention to facilitate the creation of digital artwork which
can 1mmediately be used 1n a production environment and
prepared for printing. More specifically, 1t 1s a primary
object of the present invention to relieve the graphic artist
from the burden of knowing and checking for conformity of
a graphical data with various forms of design rules such as
printability rules, company style rules, regulations,
acsthetics, and other design considerations. It 1s a further
object of the present invention to facilitate the 1dentification
and correction of design rule violations in digital artwork. It
1s an additional object of the present invention to provide a
design rule checker which 1s flexible and adaptable to
different media, printing processes, and types of design. It 1s
a further object of the present invention to provide a design
rule checker that does not impose nappropriate limitations
or restrictions on the graphical artist during the creative
process. These and other objects and advantages will be
apparent from the following description and figures.

SUMMARY OF THE INVENTION

The mnvention provides a method of processing graphical
data representing the graphical objects of design. It includes
the step of 1dentifying in the design a graphical object which
violates a graphical design rule, and then modifying the
object so that 1t conforms to the rule. Depending on the mode
of operation, the modification may be performed manually
by the user or automatically with or without user 1nterven-
tion. The preferred embodiment also includes provisions for
producing output such as identification of the object, an
explanation of how the object violates the rule, and one or
more suggested changes to the object. The preferred
embodiment also provides for checking the design for
conformity with different types of design rules such as
printability rules, legal packaging rules, company style
rules, and aesthetic rules. To further enable to checking for
design rules involving text data, the preferred embodiment

includes a method for recovering text data from contour
data.

DESCRIPTION OF THE FIGURES

FIG. 1 1s a flowchart of the general method of the
invention.

FIG. 2 1s a graph 1llustrating color gradations.

FIG. 3a and 3b are examples of an object with a thin part.

FIG. 4a and 4b are examples of two objects that are too
close together.

J,889,932

3

FIG. 5a and 5b show the visible parts of two rectangles.
FIG. 6 shows the importance of calculating visible parts.
FIG. 7 1llustrates the process of spreading.

DETAILED DESCRIPTION

General Operation

A preferred embodiment of the present invention 1s a
method implemented on a computer workstation. The steps
of the method are performed by the computer executing a
software program integrated with a layout and illustration
package. The program may be used in an interactive mode
during the design stages to check graphical elements as they
are created. Alternatively, it may be used 1n a batch mode to
identify and correct errors 1n a graphical art work after it has
been completed. In the interactive mode of operation, the
program allows for selective rule checking so that the artist
may be immediately notified of certain errors during the
creative design process, while postponing notification of
other errors. Designs originated 1n such an environment
should be totally compliant with the applied design rules.

The artistic design 1s represented as a database of graphi-
cal objects 1n a computer memory or digital storage device
associated with the workstation. The graphical objects fall
into several distinct categories well-known 1n the art of
computerized graphic design (e.g., line art object, text,
images). Also stored in the memory or storage device is a
database of design rules. Rules are organized in rule sets
assoclated with object categories. New sets and rules can be
defined by the user with associated sets of corrective actions.
Some rule sets are general and can be used for each
installation (e.g., printability rules) other rules are very
specific and must be tuned for each application area (e.g.,
company style guides). Moreover, as the program is used
with more designs, the rule sets may be refined and cus-
tomized to suit the particular application arca. An “experi-
enced” program, therefore, will be optimized for the types of
designs most frequently encountered in the past by those
who have used the program. The rules can be classified mto
four major categories: printability rules, legal regulations,
company style guides and aesthetic rules. Printability rules
are rather general, while the three other types of rules require
more user customization and input for the specific situation.

As shown 1n FIG. 1, the computer program, which 1s the
preferred embodiment of the method of the present
invention, analyzes the graphical objects and checks for
violations of the design rules. Two loops (initialized by
blocks 100 and 102) iterate through a list of selected design
rules and a list of selected graphical objects. The program
checks if a given object A violates a given design rule R
(block 104). If not, it checks if A is the last object in the list
(block 106), and if A is not the last object, A is set to the next
object 1n the list and control 1s returned back to block 104
where the new object A 1s checked against the design rule R.
If the object A violates R, then the program checks the mode
of operation selected (block 108). If interactive mode is on,
the program 1mmediately shows the user the object A, the
rule R it violates, suggests a change to the object that will
correct the object, and modifies the object according the user
response (block 110). If interactive mode 1s off, then the
program simply tags the object A and the rule R (block 112)
or otherwise records the violation for later recall. In either
mode, the program then checks if A is the last object (block
106) and, if not, loops back up as before to block 104. If A
1s the last object, then 1t checks 1f R 1s the last rule in the list
(block 114). If R is not the last rule, then R is set to the next

10

15

20

25

30

35

40

45

50

55

60

65

4

rule 1n the list and control is transterred back up to block 102
to begin checking objects. If R 1s the last rule, then the
program checks if interactive mode is on (block 116). If not
(i.c., a batch mode is on), the program lists the number and
type of rules violated by the entire design without 1dentify-
ing particular objects (block 118). Alternatively, it may
identify only objects which violate a certain rule or class of
rules. In another alternate mode, a rule violation list 1s
actively updated and displayed when objects are created and
modified, providing the artist with summary feedback dur-
ing the design process. The type of rules which appear on the
list may be customized by the artist so that, for example,
only printability rule violations are displayed and no legal
packaging rule violations are displayed.

In an mteractive mode of operation, after identifying an
object 1n violation of a rule, the computer program, which 1is
the preferred embodiment of the method of the present
invention, explains which rule 1s violated, zooms 1n on the
object and indicates 1n detail the features of the object which
violate the rule. A preferred embodiment also provides the
user with one or more suggested changes to the object. For
example, 1f a stroke 1s too thin, the user can select whether
to enlarge it to the inside of the object, to the outside, or
cequally both ways. Once the object and rule violation are
identified, the user may then decide to 1gnore the violation,
select one of the suggested changes, change the object in
another way, or change the rule itself. The program then
continues on to the next object in the design. The user may
decide also to have the program automatically make analo-
oous corrections to similar objects with the same rule
violations. For example, the program can automatically
increase the thickness of all lines that are too thin for the
presently selected printing process. Or the program might
scale all line thicknesses proportionally. Note that, 1n addi-
tion to selecting the types of rules of interest, the user may
also select a certain subset of objects 1n the design for rule
checking. These features provide the program with flexibil-
ity and adaptabaility.

In a preferred embodiment, the procedure for checking a
set of objects for conformity with a set of design rules may
be summarized as follows. First, a group of objects 1s
selected. For each object A 1n the group, the object A 1is
checked against all enabled rules that apply to the class of
objects to which A belongs. If the rule 1s not violated, the
program goes on to the next object. It the rule 1s violated and
the user has selected batch mode, then the object 1s tagged
with the rule violation and the program goes on to the next
object. If the rule i1s violated and the user has selected
interactive mode, then the object A 1s highlighted, an expla-
nation 1s given ol the violation, a selection of suggested
changes 1s proposed, and an action 1s taken as requested by
the user, 1.€., correct the object as suggested, skip the object,
change the rule, or change the object 1s some other way.

Printability Design Rules

A preferred embodiment of the invention includes the
ability to check graphical objects for compliance with print-
ability design rules. Printability rules are constraints
imposed by the printing process that will be used for the
particular design or set of designs being worked upon. All
the printability 1ssues are based on process related param-
eters which may be configured and customized by the user.
These parameters are typically set each time the printing
process 15 changed. Different sets of parameters may be
stored so that the user may easily switch between printing
processes 1f desired.

For a given printing process there are several printability
parameters. For example, the minimum positive line thick-

J,889,932

S

ness speciiies the thinnest width that the printing process 1s
able to produce as a printed line on top of a white or colored
background. Another parameter 1s the negative line
thickness, which specifies the thinnest width that the print-
ing process 1s able to produce by masking out a portion of
print surrounding it, 1.¢., a line defined by the absence of ink.
Another parameter 1s the minimum color percentage for
flat-tone 1nk relations. For certain printing processes a
minimum color intensity, say below 5%, will not be printed.
Similarly, certain printing processes will print 100% solid
color 1ntensities above a maximum value, say 95%. There 1s
also a parameter specifying the number of inks that are
available. Another parameter 1s the spatial tolerance for
die-cutting which requires that any graphic elements be
placed a minimum distance within the die-cut. Similarly, a
cutting tolerance determines how far inks should bleed out
past the cut so as not to leave a white gap. The press also has
registration error tolerance parameters. These will limait the
thickness of multi-ink graphical elements below a certain
width. Thus there 1s an interdependence between thickness,
tolerance, and number of inks.

In summary, printability rules are general rules that can be
adapted to the particular situation by a number of printing
process parameters. They check that what 1s 1n the design
also appears on the press as intended. Examples of process
parameters are the width of smallest line that holds on the
press (minimum positive line width), the width of smallest
hole that does not fill (minimum negative line width), the
shift between the plates for the different inks on the press
(registration error), the maximum number of inks that can be
printed 1n one pass through the press (maximum number of
print units), the minimum percentage of an ink that must
used in a color to hold on the press (minimum color
percentage) and the maximum ink percentage that can be
distinguished from the full color (maximum color
percentage).

The printing process parameters depend on the process,
the material printed upon, the print quality and the speciiic
press. A stored database contains a number of default values
for common situations, as well as user-customized values.
Examples of common processes are oflset, flexo, gravure,
silk-screen, lithopress and letterpress. Examples of common
materials are paper, carton, film and label. Quality 1s typi-
cally high or low and 1s often related to the rotation speed of
the press. Users can add their own processes, materials and
qualities and add their own values for the parameters.

Ink Thresholds

The 1nk thresholds are parameters that depend on the type
of press, the material printed upon, the printing process used
and the required quality. For example, a process may have
a low 1nk threshold of 5% and an upper ink threshold of
95%. In this case, 1f an object has color components 6%
cyan, 96% magenta, 7% yellow and 10% black, will violate
the 1nk threshold rule. The program will suggest that the
color components be changed to 6% cyan, 95% magenta,
7% yellow and 10% black. Similarly, an object with color
components 3% cyan and 99% yellow will be changed to 5%
cyan and 100% yellow.

The method for checking objects for conformity with the
ink threshold rule 1s as follows. For each object, check first
if the object 1s visible. If visible, then retrieve the ink
amounts for its solid colors and compare them with the
lower and the upper threshold values for the inks. For each
such amount between 0% and lower threshold value, suggest
changing 1t to zero or the lower threshold value. For each
such amount between the upper threshold value and 100%,
suggest changing 1t to the upper threshold or 100%.

10

15

20

25

30

35

40

45

50

55

60

65

6

Color Gradation

Changes 1n colors components due to ink thresholds can
cause color discontinuities in objects with color gradations.
For example, an object such as a rectangle may have
continuous gradations of cyan magenta and yellow defined
along its length as illustrated in FIG. 2. Yellow (curve 120)
gradually falls from 100% at the left to 0% at the middle,
cyan (curve 122) rises from 0% at the left to 40% at the
middle then falls to 0% at the right, and magenta (curve 124)
rises from 0% at the middle to 100% at the right. If the
(typically pre-specified) ink low threshold is 10% and the
high threshold 1s 90%, then there will be discontinuities 1n
the color gradation at the points along the length of the
object where the lines cross 10% and 90%. To correct these
discontinuities, the minimum and maximum color intensities
of the gradations are adjusted to the minimum and maximum
threshold values. Thus the colors 1n the example are modi-
fied so that yellow (curve 126) gradually falls from 90% at
the left to 10% at the middle, cyan (curve 128) rises from
10% at the left to 40% at the middle then falls to 10% at the
right, and magenta (curve 130) rises from 10% at the middle
to 90% at the right.

The general method 1s as follows. For each object,
retrieve the ink amounts for the color gradations over the
visible part of the object. Then find the areas of the color
oradation that apply to the object and compare the ink 1n
cach color with the adjacent colors. The 1nk range 1s divided
into three regions: above upper threshold, middle area (safe
area) and below lower threshold. Compare the ink values of
cach of the colors two by two. If the ik values are in the
same region for both colors there 1s no problem. If they are
in different regions the ink values must be shifted to the
boundaries of the middle region.

Thin Strokes

One of the attributes of a line 1s its thickness or width.
Also, the border of an object, called a stroke, has a width that
will be distinguishable if 1t 1s given a color different from the
interior of the object (the fill). Like other small graphical
clements, 1f 1t 1s too small it will not be printed on the press.
For example, suppose one 1s printing to papers 1n a high
quality offset process having the following parameters:
minimum positive line width: 0.17 mm, minimum negative
line width 0.20 mm, press tolerance: 0.25 mm. Then the
corresponding critical sizes are: positive object distance=
0.17 mm, registration distance=0.70 mm. In this situation, an
1solated line with width 0.18 mm and color 45% cyan 1s
printable, but an isolated (positive) line with width 0.12 and
any color 1s too thin and will not print. Any line with width
0.30 mm and color 30% cyan 45% magenta 1s too thin
because of possible registration error. A non-isolated line
with width 0.45 mm and color 23% yellow 1s also too thin
because of possible registration error.

Similarly, a stroked object with stroke width 0.19 mm and
color 23% yellow 52% magenta and a fill of 70% cyan 1s too
thin due to possible registration error. A stroked object with
stroke width 0.19 mm, color 23 % yellow and a fill of 70%
cyan 1s also too thin due to possible registration error. A
stroked object with width 0.19 mm and color 50% black and
f111 of 70% cyan 1s OK. An 1solated stroked object with width
0.16 mm and color 23% cyan and {ill of 15% yellow 1s too
thin because it 1s below the minimum positive line width.

As would be clear to those 1n the art, in this and other
cases 1n any 1mplementations of the method of the present
invention, other values of the thresholds may be used
without deviating from the scope of the invention.

A method for detecting violations of this design rule 1s as
follows. For each object in the design, first check if the

J,889,932

7

object 1s visible and if the stroke has a different color from
the fill. If these conditions are not both satisiied, then skip to
the next object. Otherwise check one of three cases. Case 1:
the stroke contains more than one 1nk; if its width 1s below
the registration threshold, then the stroke violates the rule.
Case 2: the stroke contains no 1nks, 1.e., 1s defined negatively
as the absence of ink; check if the stroke 1s embedded 1n an
object with one 1nk and the width 1s below the negative
object distance, or 1f the stroke 1s embedded 1n an object with
several inks (or overlaps objects having several distinct inks)
and the width 1s below the registration distance. If either 1s
the case, then the stroke 1s too thin. Case 3: the stroke
contains just one 1nk; check if the stroke 1s 1solated and has
a width less than the positive object distance, or if the stroke
1s overlapped by another object or by a fill of different color
and the width 1s less than the registration distance. In either

case, the stroke 1s too thin.
Thin Parts

If an object has a portion that i1s too narrow, such as the
portion 132 of the object shown 1in FIG. 3a, then, if the
narrow portion 132 1s smaller than a certain threshold for the
printing process, the object may break into two parts 134 and
136 when printed, as shown i FIG. 3b. A method for
detecting objects that contain parts that will disappear when
printed on the press 1s as follows. For each object, first
determine the visible part of the object and find the critical
distances in the object. (The critical distance for an area of
an object 1s the distance that the object can be expanded or
contracted 1n size before 1t fragments 1nto separate objects.
The spreading method for determining critical distances 1s
described later.) Check four cases. Case 1: the object con-
tains several 1nks; if the critical distance 1s less than the
registration distance, then there 1s a possible registration
problem and the design rule 1s violated. Case 2: the critical
arca contains one 1k and 1s 1solated; if the critical distance
1s less than the positive object distance, then the critical part
1s too thin. Case 3: the critical area contains one 1nk and 1s
not 1solated; 1f the critical distance 1s less than the registra-
tion distance, then there 1s a possible registration problem.
Case 4: the object contains no inks; if the critical area 1s
embedded in an object with one ink (or overlaps objects
containing only on ink), and if the critical distance is less
than the negative object distance, then the part 1s too thin.
Alternatively, 1f the critical area 1s embedded 1n an object
with several inks (or overlaps objects containing several
inks) and if the critical distance is below the registration
distance, then there 1s a possible registration problem and the
object 1s too thin.

Objects Too Close

Problems with thin parts arise when the border of an
object 1s too close to itself in some area. As shown 1n FIG.
4a, there are similar problems when a portion 138 of the
borders of separate objects 140 and 142 are too close. In
elfect, two objects that are too close create a background
with a thin part 138. Consequently, the thin part 138 may not
print, mistakenly merging the two objects 140 and 142 mto
one object 144, as shown 1n FIG. 4b. A method for finding
close objects 1s as follows. First, find an object that 1s a
background for two objects and get the visible part of the
background. If the two objects have the same 1nk and 1f the
background has a critical area that overlaps with both
objects, then the objects are too close. Alternatively, if the
two objects have more than one ink or different inks, and 1f
the background has a critical area that overlaps with both
objects, then the objects are too close.

Find Visible Parts (Flatten Design)

Because graphical objects exist in layers so that they may

overlap and cover each other, 1t 1s only necessary to check

5

10

15

20

25

30

35

40

45

50

55

60

65

3

errors for objects and parts of objects that are visible. To
determine the visible parts of objects, however, one must
“flatten” the layers 1nto one visible layer so that design rules
can be checked against what will actually appear. FIG. 5a
illustrates a simple example of a design consisting of a first
rectangle 146 overlapping a second rectangle 148.

Because rectangle 146 covers the center of rectangle 148,
the resulting flattened file, shown i FIG. 5b, consists of
three rectangles: the unchanged rectangle 146 on top and
two rectangles 150 and 152 corresponding to the two visible
portions of the rectangle 148 underneath.

In the preferred embodiment, the objects 1n the design are
ordered from top to bottom. To determine object overlap, a
box sort method 1s used. This method stores objects by
location on the page. The method consists of two parts. The
first part 1terates over all objects, starting from the top and
coing to the bottom. For each object, relevant masks are
applied to the object and the bounding box of the object 1s
computed. The object depth, or object stacking order, 1is
stored. Then the object and bounding box is stored 1n a list.
The list of objects 1s then sorted by bounding box. The
second part of the method also 1terates over all objects from
top to bottom. For each object, the following steps are
performed. First find all other objects that overlap the object
bounding box. Then select from the sorted object list gen-
erated in the first part all objects that are laying above the
object. Then select from the list all objects that really
intersect the object. Form the union of the selected objects
and subtract 1t from the original object. Store the resulting
object as the visible part of the original object.

There are several variations on part two of the method.
Performance depends on the actual graphical objects in the
design. One variation subtracts each individual object from
the original object, instead of making the union first.

The performance of the method may also be improved as
follows. Since visible parts are computed from top to
bottom, the visibles of all objects that overlap a given object
are already known. Thus each object may be replaced in the
box sort by its visible part. This reduces the number of
objects that 1ntersect each other, but requires a new sort at
the end. More specifically, this method may be performed
with the following steps. For each object (from top to
bottom), find all other visibles that overlap its bounding box
and select from the list all visibles above the object and all
visibles that intersect the object. Form the union of the
selected visibles and subtract 1t from the original object.
(Alternatively, subtract each selected visible individually.)
Then store the resulting object as a visible of the original
object, remove the original object from the box sort, and add
the visible object to the box sort. Finally, sort the elements
in the box sort by bounding box.

Find Critical Distances (Spread Algorithm)

As mentioned previously, many design errors relating to
printability may arise because boundaries are too close to
cach other, e.g., thin parts of a single object or separate
objects that are too close to each other. These types of errors
are not evident by a superficial mnspection of the object
attributes such as stroke thickness. For example, FIG. 6
shows an object 154 with a stroke 156 whose thickness is
sufficient to print. A second object 158, however, partially
covers stroke 156, resulting 1n a portion 160 of the stroke
that 1s too thin to print. To find these types of errors the
design must first be flattened to determine the visible por-
tions of the objects. Methods for performing this step were
just discussed above. Once the visible portions of objects
have been determined, however, 1t 1s then necessary to
calculate the critical distances between visible parts. To

J,889,932

9

accomplish this, the preferred embodiment uses the follow-
ing spreading method.

To determine critical distances for an object or pair of
objects, the method converts all attributes to objects (e.g.,
converts strokes to contours), calculates visible parts,
spreads the object boundary or boundaries (either inward or
outward), and checks for an intersection of boundaries. By
measuring the amount of spread required to cause an
intersection, the critical distance 1s determined. This critical
distance can then be used to check for violations of design
rules (e.g., thin parts, objects too close) as discussed previ-
ously.

Note that if two objects of the same color overlap, their
union 1s taken when converting to visible parts, so a thin part
of a red object on a red background, for example, would not
generate an error. Thus, the generation of errors will depend
on whether an object i1s 1solated or not, 1.e., whether 1t
overlaps with or 1s too close to another object.

Critical distances are important if a thin object has a color
that contains two or more 1nks, since the film of one 1nk can
shift 1n one direction and the other film can shift m the
opposite direction. As a result, the overlap between the two
inks 1s reduced. To ensure an overlap of the inks the object
must be at least registration distance wide. Also, if two
objects containing different inks are close too each other, the
ink of the object that 1s printed last may cover the object
printed first. So an object that 1s close to another object
printed with different ik must at least be registration
distance away from the other object. Similar considerations
apply to negative object distances, as discussed earlier. The
registration error distance 1s defined to be the negative line
width plus twice the press tolerance plus.

The method for the determination of the critical distance
1s based on an object spread tool. FIG. 7 shows an example
of how the spreading 1s used to determine the thin part of the
object 1n FIG. 3a. As the outline 162 1s moved inward a
distance d to a new outline 164, the object breaks into
separate pieces, as was seen 1n FIG. 3b. By determining the
distance d at which this break takes place, the critical
distance of the object 1s found. In particular, if the object
breaks after spreading a distance d, then 1t contains a critical
arca with a critical distance smaller than 2 d. A modification
of the spread method allows the program to identify the
location where the break of the object occurs (the critical
area).

More precisely, the method may be described as follows.
It iterates over all objects. For each object 1t spreads the
object by a distance d equal to half the registration distance.
If the object holds together then there 1s no problem.
Otherwise the object breaks 1nto separate pieces and further
conditions must be checked. Case 1: the object contains
more than one 1nk; then there 1s a registration problem. Case
2: the object 1s 1solated; then spread over half the positive
threshold distance and check if the object holds together. It
it holds together, then there 1s no problem. Otherwise it
violates the minimum positive line width rule. Case 3: the
object contains no ink; then spread 1t over half the negative
threshold distance and check if object holds together. If it
holds together, then there 1s no problem. Otherwise it
violates the negative threshold distance. Case 4: the object
contains one 1nk; then 1if the critical area 1s not 1solated, there
1s a registration error. Otherwise the critical area 1s 1solated.
Spread over half the positive threshold distance. If the object
holds together then there 1s no problem. If the object
separates, then 1t violates the minimum positive width rule.
Isolated Objects

As part of some methods it 1s necessary to determine
1solated objects. An object 1s 1solated when i1t does not

10

15

20

25

30

35

40

45

50

55

60

65

10

overlap with other objects or when no other 1nk 1s printed
over 1t. Isolated objects can be 1dentified as follows. For a
ogrven object, compute the mtersection of the object with all
other objects. If there 1s no intersection then the object 1s
1solated. Otherwise, for each of the intersecting objects, 1f an
ink of the intersecting object 1s printed later than an 1nk of
the original object, then the object 1s not 1solated. If no 1nk
1s printed later than the inks of the original object then the

object 1s 1solated.
Die Rule

A die 1s a simple polygon whose edges define the lines
where a package 1s folded or cut. In a package the die must
be closed and connected. This means that there can only be
one object that functions as the die. A simple method can
check the file for such an object and give an error if there 1s
more than one.

Text Rules

There are often design rules that place restrictions on text.
For example, the location of text may be restricted to certain
regions of the layout and text may not be too close to
margins and 1mages. In some cases text must be located in
so-called safe text areas. A method for checking conformity
with such a design rule 1s as follows. For each object that 1s
a textbox, expand the textbox by the minimum print-to-cut
distance. If the expanded text overlaps an external image,
extends outside the die, overlaps an edge of the die, or
overlaps with an edge of the safe text area, then there 1s a text
design rule violation.

Bleed Rule

As mentioned above, a die 1s a border that imndicates the
margins of the package or other design. It has no attributes
and thus produces no ink on the press. Because of limitations
In cufting accuracy in the printing process, objects that
terminate at the die may be shifted inside or outside the
actual die, producing a white gap between the actual cut and
the edge of the objects. To avoid this problem the objects
must be designed to bleed over the edge of the die a
minimum amount. A method for checking this design rule 1s
as follows. First, spread the die outward a bleed distance
determined by the cutting tolerance.

For all objects that overlap the grown die, if the object
contains 1nk then subftract the object. If any object touching
the original die remains after all such overlapping objects
are checked, then there 1s not enough bleed of the objects.
Role Identification

When a design must be checked for 1ts contents there must
be a way to 1dentity the role of a graphical object. In the prior
art there are several methods for role 1dentification. The first
method 1s for the designer to add a label to each created
oraphical object. These annotations attach two strings to
cach object. A second method 1s to define graphical styles.
The designer then has a choice between a set of predefined
styles (e.g., die, cutline, text area margin, logo, front panel,
top, bottom, back panel, etc.) and can create additional
styles. A third method 1s to use templates (intelligent dies) to
which styles are added. When a new design 1s started a
template 1s loaded from a library.

Because these previous methods require a lot of work and
discipline from the designer a new method has been devel-
oped that tries to infer the purpose of a graphical object from
its structure and relation with other graphical objects. It 1s
based on symbolic reasoning about graphical objects. A
method for performing this 1dentification involves classify-
ing cach graphical object, finding the relations between
objects, and matching aggregates of objects with a library of
template compositions.

Generic objects have attributes such as color, bounding
box, position, stroke width, and transformation. More spe-

J,889,932

11

cilalized objects have additional characteristic attributes. An
object may be classified as follows: textline, textbox, exter-
nal file, object with several contours, and object with one
contour. An object with one contour 1s further classified as
an open object or a closed object. An open object 1s classified
as either an object defined by splines or an object defined by
vectors, such as a polyline or line. A closed object 1s also
classified as either an object defined by splines, such as an
ellipse or circle, or an object defined by vectors, such as a
polygon. Polygons are further classified imto polygons
whose 1nterior angles are all less than 180 degrees and all
other polygons. The former group includes triangles, poly-
gons with four sides (such as trapezoids, parallelograms,
rectangles, squares, and rhombuses), and polygons with
more than four sides.

Generic objects A and B can have certain general relations
which fall mnto the following categories. A contains B,
meaning A 1s a filled object and B 1s completely inside of A
but in front of 1t. A covers B, meaning A 1s a filled object and
B 1s completely 1mside of but behind A. A surrounds B,
meaning A1s an object containing holes and B 1s 1n one these
holes. A overlaps B. A is close too B, meaning the bounding
boxes of A and B overlap, but do not actually overlap. A 1s
to the left of B. A1s to the right of B. A1s above B. A is below
B. Furthermore, specific types of objects can have charac-
teristic relations specific to their structures.

To match aggregates of objects with a library of template
compositions, the object types and relations found are com-
pared against stored templates. For example, a design may
contain registration marks which can be 1dentified by finding
three objects of the same color where one object 1s a circle
and two objects are lines that are mutually perpendicular,
intersect at the center of the circle, and have lengths nearly
equal to twice the radius of the circle. A die can be 1dentified
as a closed polygon without a fill that surrounds most of the
objects 1n the design.

Remove Nonprintable Objects

Some objects may exist in the design but do not atfect the
visible part of the design. For example, completely hidden
objects, completely masked objects, objects completely con-
tained 1n other objects of the same color, and objects having
a bounding box smaller than the positive object. Objects
such as these are design errors 1n the sense that they are
clements of the design that have no visible effect. They can
therefore be removed from the file. Correcting this design
error has the additional benefit of reducing the superfluous
objects of the design and improving performance while
printing.

Legal Rules

Certain designs such as packages are subject to legal
packaging regulations or rules. In order to facilitate com-
pliance with such rules, the preferred embodiment includes
provisions for legal design rule checking. The designer may
create a box which 1s called, for example, Netweight
Statement, which 1s a template textbox with “Netweight”
followed by blank spots for the specific values. These
templates can have certain styles linked to a kind of text
database to ensure that the text spelling and abbreviations
conform to the rules of packaging text. An example of a legal
packaging rule 1s the health warnings that must be present on
cigarette boxes. These warnings must occupy a certain arca
of each side of the package. The font must be at least a given
size and color. In this case, a package template 1s defined
having certain required area fractions, colors, font styles,
and font colors for the front, left, right, and back panels of
the package. The purpose of text sections can be recognized

10

15

20

25

30

35

40

45

50

55

60

65

12

based on keywords. For example, keywords such as fat
cholesterol, sodium, and protein i1denfily a text section as a
nutrient name section. Keywords such as hazard, danger,
warning 1dentify a text section as a warning section. The
program then scans the design for text boxes, checks for
keywords and classifies the text boxes based on the key-
words. The position and property of each text box 1s then
compared with the requirements for 1ts class as defined 1n the
appropriate legal design rules applicable to the design.

The 1dentification of keywords in the above method
presupposes that the text i the design 1s 1n the form of a
textbox type object. For various reasons, however, the text
in a design may be represented by lines and other objects.
For example, the design may have been scanned without the
subsequent application of an optical character recognition
(OCR) transformation. Or the designer may intentionally
convert an existing font so that i1t may be adapted and
customized for the particular purposes of the design. In any
case, 1n order for the legal design rules (and other rules
involving text) to be checked, the text must be recognizable
as a text object. The present 1nvention, therefore, provides a
method for recovering text information.

The text recovery method 1s a reversal of the process of
ogenerating characters for display from text data. In contrast
to methods for OCR which determine characters from pixel
representations of text, the present method determines char-
acters from a representation of text in terms of lines,
contours, and other objects. By classitying characters based
on properties such as the number of contours, the relations
between contours the number of points in each contour, and

the relative lengths of contours segments, the present
method 1s able to match a set of contours with a character.

A method implementing the present method of text recov-
ery 1ncludes two parts, a learning phase and a recovery
phase. In the learning phase, the following seven properties
are determined for each character and style 1n a set of fonts
randomly chosen from those available 1n the computer
system running the program which 1s the preferred embodi-
ment of the present mnvention.

1. Number of contours in the character (e.g., C has one
contour, O has two contours, B has three contours).

2. Number of groups of contours (¢.g., 1 has two groups,
a has only one group).

3. Number of contours in each group (e.g., 1 has two
groups with each one contour).

4. Vector v corresponding to a bounding box around the
character. The components of the vector correspond to
16 cells of the box mm a 4x4 arrangement indexed
sequentially from the upper left to the lower right. The
values of a component indicates whether or not the
corresponding cell contains a portion of the character:
v[i]=1 if the i”* cell contains a piece of the character,
and v|[1]=0 otherwise. The Euclidean Distance function
1s used to measure the distance between the vectors of
the characters.

5. Density: the percentage of the bounding box that 1s
filled (e.g., — 1s 100% filled, 1 1is less than 100% filled).

6. ratio of height to width of the bounding box.

7. number of straight segments in the character (e.g., = has
two straight lines, / has only one straight line).
Once these structures have been determined, they are
indexed to provide a structural index to character properties.
The recovery phase of the method uses the structural data
developed 1n the learning phase to recover character 1nfor-
mation from the design. Prior to the main recovery

J,889,932

13

processing, the method unlinks all objects, links all com-
pletely overlapping objects, straighten objects to reduce the
number of segments. The main recovery processing 1S
performed as follows. The program 1iterates over all contour
objects 1n the design. For each object, 1f the bounding box
of the object 1s smaller then the smallest printable unit for
the selected printing process then skip to the next object.
Otherwise, determine properties 1, 2, and 3 for the contour
object and use the indexes to determine the set of characters
that match the determined properties 1, 2, and 3. Call this set
SET1. If SET1 1s empty then skip to next contour object.
Otherwise, calculate properties 4 through 7 of the contour
object, and find the subset of characters in SET1 whose
vector (i.e., property 4) matches the vector of the current
contour object. Call this subset SET2. If SET2 1s empty then
skip to the next object. Otherwise find the character in SET?2
that 1s closest to the current contour object by comparing
properties 5 and 6 to those of the characters in SET2. If no
character 1s near the contour object, then skip to the next
object. If only one character 1s near the contour object, then
the character has been 1denfified. If several characters are
near the contour object, then ask the user to choose the
correct character.

The above method for recovering text data permits the
program to then check if the design conforms to legal design
rules mnvolving text requirements. It also enables the pro-
oram to check other design rules involving text.

Style Rules

Many companies have certain particular styles for pack-
aging 1n order to give a consistent look to a product line. A
company style might also be used to give company reports,
letterhead, advertisements, logos, etc. a consistent look and
feel. For example, there may be certain company colors used
for particular purposes or the logo may be required to have
specific colors. Such company style design rules can be
created and stored so that they may be conveniently acti-
vated whenever a design 1s being produced for a particular
company. Template constraints may include rules such as
certain types of elements that must be present in a design,
certain types of elements that are not allowed, restrictions on
the attributes of certain classes of objects, and restrictions on
relations between certain classes of objects. A simple
method to check a design for conformity with a template
defining certain style rules scans the design and matches
clements of the template with elements 1n the design.

Aesthetic Rules

The preferred embodiment of the invention also provides
for checking a design for conformity with a set of aesthetic
rules. For example, a design may be checked for aesthetic
compatibility between different fonts used or may check for
the use of more legible fonts or more creative fonts depend-
ing on the type of design. Aesthetic rules can also assist 1n
providing the design with balance related to colors, shapes,
and other properties of and between objects. For example,
one type of aesthetic design rule 1s based on color harmony.
When the human eye perceive a color, then complementary
colors are required by the eye in order to produce a certain
harmony. Color harmony may include, for example, a check
for color-by-color contrast, for light-dark contrast, for cold-
warm contrast, for complementary confrast, for simulta-
neous contrast, for color quality contrast, and for color
quantity contrast. For each of these types of contrast, the
program compares each visible object with any wvisible
background object for compliance with the color contrast
rule.

10

15

20

25

30

35

40

45

50

55

60

65

14

Consumer Behavior and other Design Rules

The preferred embodiment may also be configured to
include checks for compliance of a design to certain design
rules related to consumer behavior.

Consumer behavior research may be used to define certain
design properties that have commercial advantage. For
example, a green color for a detergent package may result 1n
increased sales among environmentally conscious consum-
ers. These types of design constraints may be incorporated
into the design rule check, mcluding dependence upon the
targeted consumers.

It 1s obvious from the foregoing description that many
other types of design rules may be added 1n a stmilar manner
so as to provide the program with many additional advan-
tages to the graphic designer, the commercial printer, and
others mvolved 1n graphic design. Thus the scope of the
invention 1s not to be limited by the specific examples of
design rules described herein, nor 1s 1t to be limited to the
particular methods for checking a design for conformity to
these rules. Accordingly, the scope of the invention should
be determined by the following claims and their legal
equivalents.

What 1s claimed is:

1. In a digital computer a method of processing graphical
data representing a plurality of graphical objects, the method
comprising:

1dentifying a subset of the graphical data representing a

oraphical object, wherein the graphical object 1s 1n
violation of a graphical design rule, the graphical
design rule being a printability rule for a specified
printing process,; and

modifying the subset of the data so that the graphical
object conforms to the graphical design rule,

wherein the printability rule for the specified printing
process depends on one or more of: the type of printing
process, the material printed upon, the print quality, and
the speciiic printing device.

2. The method of claim 1 further comprising producing
output comprising an explanation of how the graphical
object violates the graphical design rule.

3. The method of claim 1 further comprising producing
output comprising a suggested change to the object, wherein
the suggested change would conform the graphical object to
the graphical design rule.

4. The method of claim 1 further comprising producing
output comprising an identification of the graphical object.

5. The method of claim 1 further comprising automati-
cally modifying other graphical objects which are also in
violation of the graphical design rule.

6. The method of claim 1 wherein the modifying step 1s
performed upon user approval.

7. The method of claim 1 wherein the 1dentifying step 1s
performed 1nteractively within a graphic design program
whereby immediate design feedback 1s provided to the user
during creation or editing of the graphical object.

8. The method of claim 1 wherein the 1dentifying step 1s
performed for all of the graphical objects represented by the
oraphical data without user intervention, whereby design
rule violations are checked m a batch mode.

9. The method of claim 1 wherein the design rule com-
prises having an ink percentage above a mimimum 1nk
threshold and below a maximum ink percentage threshold.

10. The method of claim 1 wherein the design rule
comprises having a continuous color gradation.

11. The method of claim 1 wherein the design rule
comprises being a stroke that 1s not too thin for printing with
the specified printing process.

J,889,932

15

12. The method of claim 1 wherein the design rule
comprises not having parts that are too thin for printing with
the specified printing process.

13. The method of claim 1 wherein the design rule
comprises the object not being too close to another object.

14. The method of claim 1 further comprising determining
the portion of the object that is visible.

15. The method of claim 1 further comprising determining
a design rule based critical distance for the object, the
critical distance being the maximum distance for violating
the graphical design rule, the maximum distance being: in
the case that the design rule comprises not having parts that
are too thin for printing with the specified printing process,
the maximum too-thin thinness; 1n the case that the design
rule comprises being a stroke that 1s not too thin for printing
with the specified printing process, the maximum too-thin
thinness; and 1n the case that the design rule comprises the
object not being too close to another object, the maximum
distance for being too close.

16. The method of claim 1 further comprising determining
if the object 1s 1solated from other objects.

17. The method of claim 1 wherein the design rule
comprises having properties of a die.

18. The method of claim 1 wherein the graphical design
rule comprises bleeding at least a predetermined distance
over the edge of a die.

19. The method of claim 1 further comprising classifying
the object, determining its relationship with other objects,

10

15

20

25

16

and matching ageregates of objects with a library of tem-
plate compositions.

20. The method of claim 1 wherein the design rule
comprises being visible.

21. The method of claim 1 wherein the design rule
comprises a legal rule about text, and wherein the 1dentify-
ing step comprises recovering text data from contour data,
the recovering determining one or more text characters from
the contour data representing the text data in the packaging
design.

22. The method of claam 1 wherein the specified printing
process 1s one of a set of printing processes including offset
printing, iflexo printing, gravure printing, silk-screen
printing, lithopress printing, and letterpress printing on a
material chosen from the set of material including paper,
carton, film and label.

23. The method of claim 1 wherein the graphical design
rule 1s dependent on a set of printability parameters for the
specifled printing process.

24. The method of claim 23 wherein the printability
parameters for the specified printing process include one or
more of the set of parameters comprising minimum positive
line width, minimum neagtive line width, the registration
error, the maximum number of inks per press pass, the
minimum color percentage, and the maximum color per-
centage.

	Front Page
	Drawings
	Specification
	Claims

