US0058732006A
United States Patent .9 111] Patent Number: 5,878,206
Chen et al. 451 Date of Patent: Mar. 2, 1999
[54] COMMIT SCOPE CONTROL IN [56] References Cited
HIERARCHICAL INFORMATION
PROCESSES U.S. PATENT DOCUMENTS
5,287,501 2/1994 Lomet ..oovevrveeveviniieerineeenenennn, 707/202
|75] Inventors: Qiming Chen, Sunnyvale; Umeshwar 5,432,926 7/1995 Citron et al.ceeeeveenenn.. 395/182.02
Dayal, Saratoga, both of Calif. 5,506,983 4/1996 Atkinson et al. ...ccoovveviiniiinnnnnnnnn, 707/1
. _] Primary Examiner—Ayaz R. Sheikh
| 73] Assignee: I(-:Ifﬂlett Packard Company, Palo Alto, A ccistant Examiner—Sumati T efkowits
[57] ABSTRACT
211 Appl. No.: 823,704 An 1nformation system that enables a child transaction to
22] Filed: Mar. 25, 1997 broaden the visibility of its data updates to a wider scope
-) than the scope of its parent transaction thereby enhancing
:51: Illt. Cl- G06F 11/14, GO6F 17/30 COI]CUI‘I‘GI]CY but WlthOUt SaCI'iﬁCiIlg prOteCtiOIl iI] that SCOpe.
_52d U-S- Cl- 395/182-17, 707/10, 707/202; The information System provides Scoped transactions and
71077203 provides failure handling in hierarchical information pro-
[58] Field of Searchoooo.......... 395/182.13, 182.14, cesses that contain Scoped transactions.

3095/182.17, 182.18; 707/201, 202, 203,
10

Abort
Transaction

Determine Whether the Falled
Transaction is the Undo-Root of Itself
380

No Yes

Undo Root?
382

y

Y

18 Claims, 7 Drawing Sheets

80
(Start ' f

Find the Undo-Root Which is the Highest
Ancestor Aftected by the Failure
300

Roll Back the Partial Results
Under the Undo Root
310

Determine Whether the
Parent of the Failed Transaction
Should be Undone (Iteratively)

384

Discard Data Updates of the
Failed Transaction and/or Execute
Compensation Transactions for Already
Committed Scoped Subtransactions
386

Roll the Process Forward
From the Undo-Root
320

End

U.S. Patent Mar. 2, 1999 Sheet 1 of 7 5,878,206

FIG. 1 (Prior Art)

Information
Store
f--"'"'— 3_2.
//
/
”
Open Commit 22
Scope
!/
/
"
: 24 Y 26

N\
| Closed
,' Commit Scope

Transaction Transaction
28 30 20

U.S. Patent Mar. 2, 1999 Sheet 2 of 7 5,878,206

FIG . 2 Information

Store
232

Transaction
e _2_2_2.

Scoped
Commitment
/

/

/ Transaction Transaction
/ 224 226

/
I
I
!

Transaction Transaction
228 230 220

Process
For Failure

Pro_cess | Transaction
Execution Unit Definition File

72

Hanadling
80 70

U.S. Patent Mar. 2, 1999 Sheet 3 of 7 5,878,206

Complet
FIG. 3

Determine the Commit Scope

of the Completed Transaction
340

Commit the Data Updates of the Completed
Transaction to the Commit Scope
342

Done

Abort
FIG. 4

Determine Whether the Failed
Transaction is the Undo-Root of Itself

380

Yes

No Undo Root?
382

Discard Data Updates of the
Failed Transaction and/or Execute
Compensation Transactions tor Already
Committed Scoped Subtransactions
386

Determine Whether the
Parent of the Failed Transaction
Should be Undone (lteratively)
384

U.S. Patent

Mar. 2, 1999 Sheet 4 of 7

FIG. 5
f80

Find the Undo-Root Which is the Highest
Ancestor Affected by the Failure
300

Roll Back the Partial Results
Under the Undo Root
310

Roll the Process Forward
From the Undo-Root
320

5,878,206

5,878,206

Sheet 5 of 7

Mar. 2, 1999

U.S. Patent

9S

uonoesuel |
pad0ooS

¢S
uonoesuel |

9 Yl

¥S

uoljoesuel |
pas0|)

0S
uonoesuel |
pajsaN

1S
uonoesuel| usdp
Pauljuoy

UoijellliO4u|

€5

qg
uolnoesues |
padoog pauljuon

U.S. Patent Mar. 2, 1999 Sheet 6 of 7 5,878,206

Transaction
=TT SA

Commit
Scope
’
/ ,“ T
/- Commit A
/ chpe

! .
] Transaction
]

, T

n

!

, FIG. 7A

Transaction
S

_ Transaction
=T T
Commit A

Scope
;

/ [Transaction

l S

, A
|

‘ |
. |
Transaction :
T ,’

s FIG. 7B

S

5,878,206

Sheet 7 of 7

Mar. 2, 1999

U.S. Patent

ocl
aseqeleq

81T
ybI4 |9auen

P AN

(pajre) (usdp)
wex3 YieeH uolieAlasay Jybi4

oL}
Juswabuelly

ERNIN

0clt
(Aouabunuon)

9|NPaYISay

91l
(uonesuadwon)

UonezuoyINy |8ouen

90}
(padoog)

80!}

(padoog)
ajepdn Junoooy

LOL
uoljoeSueRl |

300929
HWWOD

-

UONeZIIOYINY

70} /

(1004-opun) 88@._.
9|NPaYIS HWWOY

c0}
buiuue|d du|

001

JISIA SSauIsng

3 Yl

J,878,206

1

COMMIT SCOPE CONTROL IN
HIERARCHICAL INFORMATION
PROCESSES

BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention pertains to the field of information
systems. More particularly, this invention relates to commit
scope control 1n hierarchical information processes.

2. Art Background

Information systems are commonly employed in a variety
of business-related and other applications. Such information
systems typically include mmformation stores such as data-
base management systems and one or more information
processes that manipulate data which 1s persistently stored in
the databases. Such information processes may also be
referred to as applications.

An mformation process may be arranged as a hierarchy of
nested transactions. Such a nested transaction hierarchy may
be arranged as a closed hierarchy that strictly enforces
atomicity at each level. Alternatively, such a nested trans-
action hierarchy may be arranged as an open hierarchy with
relaxed atomicity controls at particular levels.

FIG. 1 illustrates an information process 20 which 1s
arranged as a hierarchy of nested transactions 22-30. The
fransaction 22 1s at a top level or root of the hierarchy. The
fransaction 22 spawns the transactions 24 and 26. The

transaction 22 1s referred to as the parent of the transactions
24 and 26, and the transactions 24 and 26 are each referred

o as a child transaction or a sub-transaction of the transac-
tion 22. The transaction 24 1s a root of a corresponding
sub-tree 1n the hierarchy.

Typically, transactions 24 and 26 each generate a corre-
sponding set of data updates which are targeted for an
information store 32. The data updates generated by the
transactions 24 and 26 may also be referred to as the effects

of the transactions 24 and 26 or the results of the transactions
24 and 26.

The child transactions 24 and 26 make their respective
data updates visible to their parent transaction 22 upon their
completion. The act of a child transaction making its data
updates visible to 1ts parent 1s referred to as committing to
its parent. Transactions that commit to their parent are
usually referred to as closed transactions. In other words, the
commit scope of a closed child transaction 1is its parent.

The transaction 24 1s the parent of the transactions 28 and
30. The child transactions 28 and 30 are usually closed
transactions that commit to their parent transaction 24 upon
their completion. Typically, the transaction 24 commuts to 1ts
parent transaction 22 only after both of 1ts child transactions
28 and 30 have completed. The transaction 22 usually
commits to the information store 32 only after both of its
child transactions 24 and 26 have completed.

Typically, the transaction 22 commits all accumulated
data updates to the information store 32 as a single atomic
transaction thereby making the data updates visible to all
transactions. Such an “atomic” transaction usually ensures
that the interrelated data updates generated by the transac-
tions 22-30 are either all made visible or none are made
visible 1n the information store 32 should a system failure
OCCUL.

Such a closed nested transaction hierarchy typically pro-
vides strict enforcement of atomicity at each level of the
hierarchy because the only possible commit scope of a child
fransaction 1s 1its parent. Unfortunately, such a closed nested
hierarchy usually sacrifices data concurrency in the hierar-
chy.

10

15

20

25

30

35

40

45

50

55

60

65

2

For example, the transaction 30 may have an extended
duration that involves extended user interaction. As a
consequence, the transaction 30 may require a relatively
long time to complete. The transaction 28, on the other hand,
may complete relatively quickly. In addition, the transaction
26 may have a need for the data updates generated by the
transaction 28.

The transaction 28 being a closed transaction commits to
its parent transaction 24 upon its relatively quick comple-
tion. The data updates generated by the transaction 28 are
then held by the transaction 24 until the extended duration
transaction 30 has completed because the transaction 24
usually cannot commit to its parent transaction 22 until all
its children have completed. Unfortunately, such a hold up
of data updates generated by the transaction 28 can exces-
sively delay the transaction 26 which requires those data
updates even though the transaction 28 had completed
relatively quickly.

One prior technique for making the data updates of a child
fransaction available to other transactions prior to the
completion of its parent 1s to allow the child transaction to
commit 1ts data updates to an mnformation store directly. A
child transaction that commits directly to an information
store 1s referred to as an open child transaction. It 1s said that
such an open child transaction has an open commit scope.
For example, the transaction 28 having an open commit
scope upon completion commits to the information store 32
thereby making 1ts data updates immediately visible to the
fransaction 26.

Unfortunately, such direct updates of an information store
by open child transactions usually sacrifices the data integ-
rity controls which are provided by a closed hierarchy. For
example, a system failure that occurs after the transaction 28
commits to the information store 32 but before the transac-
fion 22 commits to the information store 32 can result 1n
inconsistent data updates being visible 1n the information
store 32.

In summary, a transaction hierarchy that includes open
fransactions with open commit scopes usually improves
concurency by allowing the data updates of open transac-
tions to be more widely visible upon their completion.
Unfortunately, such open hierarchies usually sacrifice the
data mtegrity protections provided by closed hierarchies

which enforce atomicity at each level.

SUMMARY OF THE INVENTION

An 1nformation system 1s disclosed that enables a child
transaction to broaden the visibility of 1ts data updates to a
wider scope than the scope of its parent transaction thereby
enhancing concurrency but without sacrificing protection 1n
that scope. The mmformation system enables a child transac-
fion 1n a nested transaction hierarchy to commit to a selected
one of its ancestors independently of 1ts parent transaction
and thereby make its data updates visible to that ancestor as
well as the transactions beneath that ancestor in the trans-
action hierarchy.

The information system includes mechanisms for trans-
action recovery that handle failures in a transaction hierar-
chy having transactions with mixed commit scopes. A
scoped undo process 1s disclosed that partially and consis-
tently rolls back a transaction hierarchy upon failure, then
restarts and rolls the transaction hierarchy forward.

Other features and advantages of the present invention
will be apparent from the detailed description that follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present ivention 1s described with respect to par-
ticular exemplary embodiments thereof and reference 1is
accordingly made to the drawings in which:

J,878,206

3

FIG. 1 1illustrates an information process which 1s
arranged as a hierarchy of nested transactions;

FIG. 2 illustrates one embodiment of an information
system that enables a child transaction to broaden the
visibility of its data updates to a wider scope than the scope
of 1ts parent by committing its data updates to one of its
ancestors independently of its parent;

FIG. 3 illustrates the complete-transaction routine 1n the
process execution unit;

FIG. 4 illustrates the abort-transaction routine in the
process execution unit;

FIG. 5 illustrates a failure handling routine for transaction
hierarchies that include scoped transactions;

FIG. 6 1llustrates an assortment of access-set inheritance
paths and commit scopes for nested transactions;

FIGS. 74-7b 1illustrate the failure handling problems
avolded by the cap property of open and scoped transac-
tions;

FIG. 8 illustrates the failure handling routine for transac-

tion hierarchies that include scoped transactions applied to
an example mnformation process.

DETAILED DESCRIPTION

FIG. 2 illustrates one embodiment an information system
that enables a child transaction to broaden the visibility of its
data updates to a wider scope than the scope of its parent
transaction by committing its updates to one of its ancestors
independently of i1ts parent transaction. These types of child
fransactions are also referred to as scoped transactions. The
information system includes an 1information process 220, a
process execution unit 70 and a transaction definition file 72.

The mnformation process 220 1s arranged as a hierarchy of
nested transactions 222-230. The information process 220
conducts mnformation processing functions and stores per-
sistent data 1n an information store 232. In one embodiment,
the information store 232 is a relational database manage-
ment system. In other embodiments, the information store
232 may be another type of database systems or a conven-
tional file system.

The transaction definition file 72 contains specifications
that define the hierarchy of nested transactions 222-230 of
the information process 220 icluding information that
specifies the commit scopes of the transactions 222-230.
The process execution unit 70 creates and manages the
transactions 222-230 according to the specifications pro-
vided 1 the transaction definition file 72.

The transaction definition file 72 specifies that the commit
scope of the transaction 228 1s 1ts ancestor transaction 222.
As a consequence, the process execution unit 70 commits
the data updates of the transaction 228 to the transaction 222
upon completion of the transaction 228.

The commitment of data updates by a child transaction to
1ts ancestor transaction 1s referred to as scoped commitment.
A child transaction that employs scoped commitment 1s said
to commit over 1ts parent directly to its ancestor and have a
commit scope to 1ts ancestor.

The scoped commitment by the transaction 228 to its
ancestor transaction 222 makes the data updates of the
fransaction 228 visible to the transaction 226 before the
completion of the transaction 224 while keeping the data
updates of the transaction 228 internal to the transaction 222
until the transaction 222 completes.

In one embodiment, the process 220 1s a software devel-
opment process wheremn the transaction 230 1s a long

10

15

20

25

30

35

40

45

50

55

60

65

4

duration coding transaction and the transaction 228 1s a
relatively brief function design transaction and the transac-
tion 226 1s an interface development transaction that uses
data updates generated by the transaction 228. The scoped
commitment by the transaction 228 to the transaction 222
makes 1ts function design data updates visible to the inter-
face development transaction 226 before the completion of
the transaction 224. The scoped commitment avoids delays
to the mterface development transaction 226 that otherwise
would have been caused by the long duration coding trans-
action 30.

The process execution unit 70 provides a set of routines
or functions for creating and managing the hierarchical
transactions of the information process 222. The process
execution unit 70 includes a start-transaction routine that
starts up individual transactions and a complete-transaction
routine for properly handling the completion of individual
transactions. The process execution unit 70 also includes an
abort-transaction routine that implements a process for fail-
ure handling 80 for handling transaction failures when
scoped transactions are mvolved.

The transaction definition file 72 contains a set of trans-
action specifications for each of the transactions 222-230.
Each set of transaction specifications includes an 1dentifi-
cation of an access set associated with the corresponding
fransaction, an identification of an optional compensation
transaction for the corresponding transaction, an 1dentifica-
fion of an optional contingency transaction for the corre-
sponding transaction, a specification of the commit scope of
the corresponding transaction, and a specification of the
vitalness of the transaction to its parent.

For example, the transaction specifications contaimed 1n
the transaction definition file 72 for the transaction 228 are
shown below.

Access Set [dentifier data objects inherited
from transaction 224 and
data objects obtained
directly from an
information store
optional

optional

transaction 222

vital

Compensation Transaction
Contingency Transaction
Commit Scope

Vitalness to Parent

The access set of a transaction in the information process
220 include data objects obtained directly by the transaction
or data objects inherited by the transaction. For example, the
access set for the transaction 228 includes data objects
obtained from an mformation store and data objects inher-
ited from 1ts parent transaction 224. If objects mherited by
a transaction are held by an ancestor of 1ts parent transaction,
then a two-step inheritance operation 1s performed. For
example, the access set of the transaction 228 may include
data objects acquired by the transaction 222 from the
information store 32 which are then inherited by the trans-
action 224 and then inherited by the transaction 228.

The data objects visible to a child transaction in the
process 220 during its execution are referred to as the
visibility set of the child transaction. The data objects on
which a child transaction may have operational contlicts
with other transactions 1s referred to as the conflict set of the
child transaction. Two transaction are said to have an opera-
tional conflict if different orders of their executions result 1n
different data update states.

In response to the specifications 1n the transaction defi-
nition file 72, the complete-transaction routine of the process

J,878,206

S

execution unit 70 commits the data updates of the transac-
fion 228 over 1its parent transaction 224 to its ancestor
fransaction 222 by delegating to the ancestor transaction 222
the commit/abort responsibility on the entire access set of
the transaction 228. The ancestor transaction 222 1s referred
to as the commit scope of the transaction 228.

The process execution unit 70 manages the mformation
process 220 such that the objects held by the transaction 222
are visible to its descendants. In general, a transaction can
access without conflicts any data object currently accessed
by one of its ancestors, 1.€. 1ts parent or i1ts grand-parent etc.
Therefore, the transaction 226 can access the data objects
committed by the scoped transaction 228 to the transaction
222. The scoped commit of the transaction 228 makes its
clfects visible to the transaction 226 immediately without
being blocked by a long duration sibling transaction such as
the transaction 230. The data updates of the transaction 228
arc not made persistent and are inaccessible to other top-
level transactions until the process 220 completes wherein
the complete-transaction routine of the process execution
unit 70 commits the data updates of the transaction 222 to
the 1nformation store 232.

The transactions 222-23(0, the information store 232, and
the process execution unit 70 are software elements that may
be mmplemented in a variety of hardware environments.
These software elements may execute on a single computer
system or may be distributed across a number of computer
systems. For example, the transactions 222-228 may
execute on one computer system and the transaction 230 my
execute on a separate computer system. These computer
systems may be connected via a local area network or
another type of network including networks that conform to
Internet communication protocols.

FIG. 3 illustrates the complete-transaction routine in the
process execution unit 70 which 1s performed upon comple-
fion of each of the transactions 222-230. At step 340, the
complete-transaction routine determines the commit scope
of the transaction being completed. The commit scope of the
transaction being completed 1s indicated in the transaction

definition file 72.

At step 342, the complete-transaction routine commits the
data updates of the transaction being completed to the
commit scope determined at step 340. The complete-
fransaction routine commits the data updates to the commit
scope by delegating the commit/abort responsibility on the
entire access set of the transaction being completed to the
commit scope transaction.

FIG. 4 1illustrates the abort-transaction routine in the
process execution unit 70 which 1s performed when one of
the transactions 222-230 fails. At step 380, the abort-
fransaction routine determines whether the failed transaction
1s the undo-root of itself. If so then control proceeds to step
386. At step 386, the data updates generated by the failed
transaction are discarded. At step 386, optional compensa-
tion transactions are executed to compensate for any scoped
sub-transactions of the failed transaction that have already
committed their data updates.

If the failed transaction 1s not the undo-root of itself, then
at step 384 1t 1s determined whether the parent of the failed
transaction should be undone. Step 384 1s performed 1n an
iterative manner to find the undo-root for the failed trans-
action.

For purposes of the description to follow 1t 1s worth noting,
the difference between a transaction that commits to an
ancestor transaction, such as a scoped transaction that com-
mits to 1ts ancestor, and a transaction that 1s a child of that

10

15

20

25

30

35

40

45

50

55

60

65

6

ancestor transaction. The inherent properties of parent-child
relationship can be expressed 1n terms of inter-transaction
dependencies. An instance of a transaction undergoes state
transition at run time. The transaction activates 1n the start
state from which 1t exists by either reaching the end of its
work or a failure. Accordingly, the transaction terminates
cither 1n the commit state or 1n the abort state. A child
fransaction 1s “vital” if its failure causes its parent transac-
tion to abort.

The relationship between a parent transaction and a child
transaction includes the following dependencies which are
enforced by the routines of the process execution unit 70.

A child transaction has a start dependency on 1t parent
transaction. For example, the transaction 228 cannot
start until the transaction 224 has started.

A parent transaction has terminate dependency on 1n its
child transaction. For example, the transaction 224
cannot terminate until the transactions 228 and 230
have terminated.

A child transaction has an abort/compensate dependency
on its parent transaction. For example, 1f the transaction
222 aborts, then the transaction 224 and its child
transactions 228 and 230 are either aborted or a com-
pensation operation for them 1s performed.

If a child transaction 1s predefined as bemng vital to it
parent transaction, then the failure of the child trans-
action causes the parent transaction to fail. If a child
transaction 1s predefined as being non-vital to i1t parent
transaction, then the failure of the child transaction may
be 1gnored by the parent transaction.

Any data object held in the access-set of a parent trans-
action 1s visible to a child transaction such that the child
fransaction can 1voke operations on the data objects
held 1n the access-set of the parent transaction without
conilicts with the parent transaction. For example, the
transaction 226 can invoke operations on the data
objects 1n the access set of the transaction 222 without
conilicts with the transaction 222.

Although a closed child transaction has a commit depen-
dency on its parent 1n a transaction hierarchy, such depen-
dency 1s not essential to parent-child relationship. A scoped
fransaction 1n a transaction hierarchy provides commit
dependencies that do not coincide with the parent child
relationship.

The fact that the child transaction 228 can commit to its
ancestor transaction 222 mdependently of its parent trans-
action 224 does not change the dependencies between the
parent and child transactions 224 and 228. For example, the
parent transaction 224 cannot terminate before the child
transaction 228 terminates. In addition, the child transaction
228 does not survive the abort of 1t parent transaction 224.
If the parent-child relationship 1s not maintained, then a
child transaction and its siblings may not be processed at the
same level either 1n normal progress or 1n failure recovering,
which can lead to 1inconsistencies with the semantics of the
modeled application.

FIG. 5 1llustrates the process for failure handling 80. At
step 300, the highest ancestor in the process hierarchy that
1s alfected by the failure 1s found. The highest ancestor
alfected by the failure 1s referred to as the undo-root. The
undo root 1s the closest ancestor of the failed transaction that
1s non-vital or that 1s associated with a contingency trans-
action which acts as an exception handler for the failed
transaction.

The undo-root of a scoped transaction 1s the closest
ancestor of the scoped transaction that does not kill 1ts own

J,878,206

7

parent transaction upon failure. In addition, the undo-root of
a scoped transaction may be the closest ancestor having no
parent transaction at all such as the top-level transaction 222
of the process 220, a contingency transaction, or a compen-
sation fransaction.

The path between the failed transaction and the undo-root
defines an abort-up chain 1n the transaction hierarchy. Step
300 involves a bottom-up search of the transaction hierarchy
220 from the failed transaction which 1s conducted without
actually applying any abort or compensation operations.

At step 310, the partial results under the undo-root found
at step 300 are logically rolled back 1n what 1s referred to as
a scoped-undo operation. The scoped-undo operation i1s
conducted 1n a top-down fashion to roll back the transaction
sub-tree under the undo-root. The top-down undo may
involve compensation transactions according to the specifi-
cations contained 1n the transaction definition file 72.

During the scoped-undo operation, the transactions on
cach level of the transaction hierarchy that committed over
the undo-root transaction are compensated if the effects of
those transaction are not compensated for at a higher level.
In-progress transactions or transactions that have tentatively
committed to their parent transaction are aborted during the
scoped-undo operation. In addition, committed child trans-
actions of aborted transactions may be compensated during
the scoped-undo operation. Sequential child transactions are
processed 1n the inverse order.

At step 320, the failed information process 1s rolled
forward from the undo-root. The rolling forward involves a
top-down execution from the undo-root, possibly through an
alternate path provided by contingency transactions.

The presence of scoped transactions 1n a transaction
hierarchy may cause different pieces of the partial results of
a transaction sub-tree to be visible 1n different scopes. As a
consequence, the following rules are applied to ensure
semantic consistencies when executing compensation trans-
actions during a scoped-undo operation. First, a compensa-
tion transaction for a scoped transaction 1s also scoped with
the same commit scope of the scoped transaction being
compensated. For example, when a seminar announcement
1s made accessible 1n a department, the seminar cancellation
notification should be made accessible 1n the same
department, rather than 1in a smaller or a larger scope. In
addition, certain restrictions defined hereinafter by confine
and cap properties of scoped transaction are applied. The
coniine and cap properties allow the effects of open or
scoped transactions and the scopes of those effects to be
determined without ambiguity.

A compensation transaction executed during a scoped-
undo operation can logically undo the effects of a failed
scoped transaction in a scope that matches commit scope of
the failed scoped transaction. For example, a scoped hotel
reservation transaction may be paired with a scoped reser-
vation cancel transaction that compensates for the failed
hotel reservation transaction. A confingency or compensa-
fion transaction associated with a scoped transaction may be
a flat transaction or hierarchy of transactions that may be
structured differently from the scoped transaction. As trans-
actions are parameterized, appropriate information can be
passed from the mstance of a transaction to the mstances of
its compensation and contingency transactions.

The scoped-undo operation provides effective response to
failures 1n the following aspects. The scoped-undo operation
performs the compensation for a transaction at the highest
possible level. For example, when an organize seminar
transaction 1s directly compensated for by a cancel-seminar
transaction, the collective effects of the organize seminar

10

15

20

25

30

35

40

45

50

55

60

65

3

transaction are eliminated regardless of its internal steps.
Secondly, the scoped-undo operation provides timely
response to a failure by halting the transaction sub-tree
affected by the failure promptly from 1its root i1n the trans-
action hierarchy.

Without the confine property described below, the execu-
tion of a compensation transaction with opposite effects to a
failed transaction may lead to over-compensation if the
failed transaction 1s nested and partially done with not all of
its child transactions committed. On the other hand, the
execution of a compensation transaction with opposite
cffects to a transaction may lead to under-compensation
without the confine property if the transaction i1s open or
scoped and has data objects inherited from its ancestors.

An open or scoped transaction satisfies the confine prop-
erty 1f the transaction holds only locally controlled data
objects and commits only the locally controlled data objects.
Locally controlled data objects are data objects acquired
directly from an information store and not inherited data
objects.

The access-set of a transaction includes a locally con-
trolled access-set that 1s acquired from an information stores
directly by the transaction and the descendants of the
transaction. The access-set of a transaction also 1includes the
access-set passed to the transaction from its parent. A
confined open transaction commits to an 1mnformation store
only the locally controlled access set. A confined scoped
fransaction commits to a non-parent ancestor transaction
only the locally controlled access set.

A nested transaction may be a confined open transaction
that commits to an information store. A nested transaction
may be a confined scoped transaction that commits to an
ancestor transaction. In addition, a nested transaction may be
a transaction that commaits to its parent transaction.

FIG. 6 1llustrates an assortment of access-set inheritance
paths and commit scopes for nested transactions. A set of
nested transaction 5055 1s shown wherein the solid lines
indicate inheritance paths and dashed lines indicate commut
paths in the transaction hierarchy. All of the transactions
50-55 can acquire data objects from an information store 57.

The transaction 54 1s a closed transaction that inherits data
objects from 1ts parent transaction 51 and that commits to its
parent transaction 51. The transaction 51 1s a confined open
transaction that commits to the information store 57. In
addition to the closed child transaction 54, the transaction 51
includes a scoped child transaction 55. The confined scoped
transaction 55 commits to the transaction 51. The confined
scoped transaction 56 commits to the transaction 50. The
nested transaction 50 has sub-transactions with mixed com-
mit scopes and can inherit objects from and commit to its
own parent transaction (not shown).

FIGS. 7a—7b 1llustrate the problems avoided by the cap
property of scoped transactions. The transaction T 1s a
scoped transaction which commits to 1ts ancestor transaction
T,. The transaction T 1s associated with a compensation
transaction T1 (not shown). The transaction T has a descen-
dant transaction S which commits over the transaction T to
the transaction S,.

FIG. 7a shows the problems of compensating the effects
of the transaction T by executing the compensation trans-
action T1 when the transaction T, 1s a child of the transac-
tion S,. If the commit scope of the compensation transaction
T1 1s the transaction T,, then the effects of the transaction
T are under-compensated since the effects of the transaction
S are compensated 1n a smaller scope than the commit scope
of the transaction S. If the commit scope of the transaction
T 1s the transaction S,, the effects of the transaction T are

J,878,206

9

over-compensated since effects other than those of the
fransaction S are compensated 1n a larger scope than the
commit scope of the transaction T.

FIG. 7b shows the problems of compensating the effects
of the transaction T by executing the compensation trans-
action T1 when the transaction S, 1s a child of the transac-
tion T ,. If the commit scope of compensation transaction T1
1s the transaction T,, then the effects of the transaction T are
OVer- compensated since the effects of the transaction S are
compensated in a larger scope than the commit scope of the
fransaction S. If the commit scope of the compensation
transaction T1 1s the transaction S,, then the effects of
transaction T are under-compensated since etfects other than
those of the transaction S are compensated 1n a smaller scope
than the commit scope of the transaction T.

The cap property which applies to open or scoped trans-
actions avoids the problems shown 1n FIGS. 7a—7b. The cap
property refers to a restriction that an open or scoped
fransaction may not have descendants committing over 1it.
With this restriction, the compensation scope of a scoped
fransaction can be chosen as one that matches 1ts commit
SCope.

Although an open or scoped transaction may not have
open or scoped sub-transactions committing over 1it, it may
have closed sub-transactions or scoped sub-transactions that
do not commuit over it. Further, a nested transaction contain-
ing open or scoped sub-transactions 1s not necessarily an
open or scoped transaction, and 1s not restricted by the above
cap property. For example, a nested transaction that 1s not
open or scoped itself 1s allowed to have all its child trans-
actions committing over it to the information store. Thus,
failure handling for the effects of the nested transaction may

be compensated for at the level of the nested transaction or
at its child level.

Given the confine and cap properties described above, the
compensation scopes 1n a transaction hierarchy are as fol-
lows. When a transaction T, 1n a transaction tree fails, the
sub-tree under its undo-root transaction T,, 1s logically
undone. Compensation 1s performed for transactions under
the transaction T, that have committed over the transaction
T, . Compensation 1s unnecessary for transactions that have
committed to a transaction under the transaction T, In
addition, compensation may be unnecessary for transactions
that have committed to a transaction under the transaction
T, _because the compensation 1s covered by the compensa-
fion applied to some ancestor of the transactions.

For example, assume a transaction T 1s a transaction under
the transaction T, that previously committed to an ancestor
transaction T, and that needs to be logically undone. The
climination of the effects of the transaction T depends on
whether the transaction T has committed over the transaction
T, _since only 1n that case do the effects of the transaction
T need to be explicitly eliminated by scoped compensation.
According to the terminate dependency between a parent
and a child transaction, transitively, any direct ancestors of
the failed transaction T, may not commit prior to the failure
of the transaction Tk

If the transaction T, 1s a child of the transaction T, or 1f
the transaction T, 1s not the undo-root T, , then the trans-
action T 1s compensated with the scope of the transaction T,
to eliminate the effects of T. The transaction T, may not
commit prior to the failure of the transaction Tx

If the transaction T, 1s the undo-root transaction T, , then
the transaction T can be aborted without compensation
because the transaction T, may not commit prior to the
failure of T,

If the transaction T, 1s uncommitted and 1s a child of the
undo-root transaction T, , then the transaction T can be
aborted without compensation.

10

15

20

25

30

35

40

45

50

55

60

65

10

The application of a scoped-undo operation on a transac-
tion hierarchy T 1s based on 1ts 1nstance execution history.
The expression T:<T,, ..., T, > represents a list of child
transactions T, ..., T, which are executed sequentially. The
expression T:{T,, . . ., T, } represents a set of child
transactions T, . . . , T, which are executed concurrently.

During a scoped-undo operation, the function scoped-
undo_ , 1s used to logically undo the sub-transactions at the
child level of a given transaction. The function scoped-
undo_ , 1s 1invoked by the scoped-undo function shown
below and 1iteratively invokes the scoped-undo function for
accomplishing hierarchical logical undoing. When the sub-
transactions form a sequence, the scoped-undo operations

are performed 1n the 1nverse order.
scoped-undo_,, (T)=T:<T,, . . ., T, >—<scoped-undo
(T,), . . . scoped-undo (T))>; T:{T,, . . .,
T }—{scoped-undo(T,), . . . scoped-undo(T))};

A nested transaction having confined open or scoped
sub-transactions still may commit to its parent. The follow-
ing special cases are given special treatments: for a nested
transaction with all 1ts child transactions committing to the
information store—the database 1s considered as 1ts commut
scope; and for a nested transaction with all its child trans-
actions committing to the same ancestor, that ancestor 1s
considered as its commit scope. These special treatments
allow such a nested transaction to be compensated either at
the same level or at the child level.

The expression p,—J;...;P,—7F, ;J, ., denotes function
form “if P, then f,; ... ;else if p_ then f ; else f, ,.” The
symbols T and T® represent the compensation and
contingency transactions associated with a transaction hier-
archy T. The term nested(T) indicates a nested rather than a
flat or leaf-level transaction.

The expression T . represents a commit to information
store operation. The expression T __, represents a commit to
ancestor transaction A operation. The expression &(T)
denotes the execution status of T, with values committed,
executing, aborted, idle, etc. o(T) denotes the commit scope
of T, for example the information store or an ancestor
transaction of T. The expression T<A indicates that T 1s a
child of A.

The scoped-undo operation which i1s performed at step
320 of the process for failure handling 80 1s defined by the

following;:

scoped-undo (T) =
g (T) ==idle — nil;
g (T) ==executing — (
nested (T) — scoped-undo,,, (T);
abort (T));
g (T) ==aborted — (

executed (T“'®) — scoped-undo (T'8);

nil);
g (T) ==committed — (

o (T) ==information store — {
compensate-defined (T) — exec (T°""_.;.);
nested (T) — scoped-undo,y, (T);
nil);

Oo(l)=AAur(T) <cAAA=ur(T)—(
compensate-defined (T) — exec (T°™_, 4);
nested (1) — scoped-undo,y, (T);
nil);

nested (T) — scoped-undo,,, (T);

nil);

FIG. 8 illustrates the process for failure handling 80
applied to a business visit process 100. The business visit
process 100 1s arranged as a transaction tree with a trip-
planning transaction 102 as a child transaction and a sched-
ule transaction 104 as a grand-child transaction. The sched-

J,878,206

11

ule transaction 104 1s further divided into an authorization
transaction 106 and a travel arrangement transaction 110
which are executed in parallel.

An account update transaction 108 1s a scoped transaction
which commuits over 1ts parent transaction 107 to the autho-
rization transaction 106. The authorization transaction 106 1s
also a scoped transaction which commits over 1ts parent
schedule transaction 104 to the trip planning transaction
102. A flight reservation transaction 112 1s an open child
fransaction of the travel arrangement transaction 110.

A health exam transaction 114 which 1s a child of the
travel arrangement transaction 110 has failed. The undo-root
of the failed health exam transaction 114 1s the schedule
transaction 104. The failure of the health exam transaction
114 causes the travel arrangement transaction 110 to fail, and
the failure of the travel arrangement transaction 110 causes
the schedule transaction 104 to fail 1n an abort-up causal
chamn. The schedule transaction 104 1s associated with a
reschedule transaction 120 which 1s a contingency transac-
tion. Therefore, the schedule transaction 104 qualifies as an
undo-root. The schedule transaction 104 would also quality
as an undo-root if 1t were non-vital to its parent transaction
102 as indicated by the specifications of the transaction 104
which are contained in the transaction definition file 72.

The open flight reservation transaction 112, which 1s a
sibling of the failed health exam transaction 114 has already
committed to an airline reservation database 130 at the time
the health exam transaction 114 fails. The travel arrange-
ment transaction 110, the parent of the failed health exam
transaction 114, 1s a sibling of the authorization transaction
106 which 1s a scoped transaction that already has commit-
ted over its parent schedule transaction 104 to the trip
planning transaction 102 at the time the health exam trans-
action fails. In addition, the account update transaction 108
1s a scoped transaction that has committed to the authoriza-
fion transaction 106 before the authorization transaction 106
committed to the trip planning transaction 102.

During the scoped-undo operation, the open flight reser-
vation transaction 112 1s compensated for by a cancel tlight
transaction 118 which removes the reservation committed by
the tlight reservation transaction 112 from the airline reser-
vation information store 130. The scoped authorization
transaction 106 1s compensated for 1n the scope of the trip
planning transaction 102. Since the scoped account update
transaction 108 only committed to the authorization trans-
action 106, 1ts effects are still internal to the authorization
transaction 106 are eliminated along with the compensation
of the authorization transaction 106.

Upon failure of the health exam transaction 114, its
undo-root, the schedule transaction 104, 1s searched for first
without actually performing scoped undo 1n accordance with
step 300 of the process for failure handling 80. Thereafter,
the sub-transaction trees under the undo-root transaction
104, one of which 1s rooted by the authorization transaction
106 and another of which 1s rooted by the travel arrangement
transaction 110 are applied with a scoped undo operation 1n
parallel 1n accordance with step 310 of the process for failure
handling 80. After the completion of parallel scoped-undo
operations, the business visit process 100 rolls forward with
the execution of the contingency reschedule transaction 120
in accordance with step 320 of the process for failure
handling 80.

The techniques disclosed herein provide an integrated
approach for handling failures in transaction hierarchies
where closed, open and scoped transactions coexist.

A variety of mechanisms may be employed by the process
execution unit 70 to delegate data objects and commit data

10

15

20

25

30

35

40

45

50

55

60

65

12

objects to transactions within a hierarchy. In one
embodiment, the data objects 1n the access set or visibility
set of a transaction may be contained 1n a data table for that
transaction in a database. The descendant transactions that
inherit data objects from an ancestor transaction are pro-
vided with data locks for the data tables of the ancestor
transaction by the process execution unit 70. The descendant
fransactions may use SQL statements to read data from or
write data updates to the inherited data objects.

In another embodiment, the data objects for a transaction
may be contained 1n a file. The descendant transactions of
the transaction are allowed access to the file when they
inherit the data set. The process execution unit 70 controls
access to the file and passes “keys” to the file during the
start-transaction and complete-transaction functions. Data
updates from a descendant transaction may be written to an
update log file for a data object file when the child transac-
fion commits to the parent transaction.

The foregoing detailed description of the present mnven-
tion 1s provided for the purposes of illustration and 1s not
intended to be exhaustive or to limit the mnvention to the
precise embodiment disclosed. Accordingly, the scope of the
present 1nvention 1s defined by the appended claims.

What 1s claimed is:

1. An information system, comprising:

information process arranged as a hierarchy of nested
transactions wherein at least one of the nested transac-
tions 1s a scoped transaction that generates a set of data
updates;

routine that handles the completion of the scoped trans-

action by committing the data updates generated by the

scoped transaction to an ancestor transaction of the

scoped transaction such that the data updates are visible

to one or more descendant transactions of the ancestor

transaction before the ancestor transaction completes.

2. The information system of claim 1, further comprising

a routine for handling a failure 1n the information process by
performing the steps of:

performing a bottom-up search of the hierarchy to find an
undo-root transaction which 1s a highest one of the
nested transactions affected by the failure;

compensating for any data updates committed over the
undo-root transaction by the scoped transaction;

aborting any data updates generated by the transactions

below the undo-root transaction in the hierarchy.

3. The mformation system of claim 2, wherein the undo-
root transaction 1s a closest ancestor to a failed transaction
that 1s non-vital to 1ts parent transaction.

4. The mformation system of claim 2, wherein the undo-
root transaction 1s a closest ancestor to a failed transaction
that 1s associlated with a contingency transaction.

5. The mformation system of claim 2, wherein the undo-
root transaction 1s a closest ancestor to a failed transaction
that does not have a parent transaction in the hierarchy.

6. The information system of claim 2, wherein the step of
compensating 1ncludes the step of executing a compensation
transaction that commits to the ancestor transaction of the
scoped transaction.

7. The information system of claim 1, wherein the scoped
fransaction 1s a confined transaction such that the data
updates committed by the confined transaction are targeted
for data objects acquired directly from an information store
by the confined transaction.

8. The information system of claim 7, further comprising,
a routine for handling a failure in the information process by
performing the steps of:

J,878,206

13

performing a bottom-up search of the hierarchy to find an
undo-root transaction which i1s a highest one of the
nested transactions affected by the failure;

compensating for any data updates committed over the
undo-root transaction by the confined transaction;

aborting any data updates generated by the transactions

below the undo-root transaction in the hierarchy.

9. The information system of claim 1, wherein the scoped
fransaction 1s a capped transaction such that the capped
fransaction has no child transactions that commit over the
capped transaction.

10. The information system of claim 9, further comprising
a routine for handling a failure in the information process by
performing the steps of:

performing a bottom-up search of the hierarchy to find an
undo-root transaction which 1s a highest one of the
nested transactions affected by the failure;

compensating for any data updates committed over the
undo-root transaction by the capped transaction;

aborting any data updates generated by the transactions
below the undo-root transaction in the hierarchy.
11. A method for handling a failed transaction in a
hierarchy of nested transactions that includes at least one
scoped transaction, comprising the steps of:

searching the hierarchy to find an undo-root transaction
which 1s a highest one of the nested transactions
alfected by the failure;

compensating for any data updates previously committed
over the undo-root transaction by the scoped transac-
tfion to an ancestor transaction of the scoped transaction
such that the data updates are visible to one or more

10

15

20

25

30

14

descendant transactions of the ancestor transaction
before the ancestor transaction completes;

aborting any data updates generated by the transactions

below the undo-root transaction in the hierarchy.

12. The method of claim 11, wherein the step of secarching
comprises the step of searching upward from a bottom of the
hierarchy.

13. The method of claim 11, wherein the step of searching
comprises the step of searching for a closest ancestor to the
failed transaction that 1s non-vital to its parent transaction.

14. The method of claim 11, wherein the step of searching
comprises the step of searching for a closest ancestor to the

failed transaction that i1s associated with a contingency
transaction.

15. The method of claim 11, wherein the step of searching
comprises the step of searching for a closest ancestor to the
failed transaction that does not have a parent transaction in
the hierarchy.

16. The method of claim 11, wherein the step of com-
pensating includes the step of executing a compensation
transaction that commits to the ancestor transaction of the
scoped transaction.

17. The method of claim 11, wherein the scoped transac-
fion 1s a confined transaction such that the data updates
committed by the confined transaction are targeted for data
objects acquired directly from an mformation store by the
coniined transaction.

18. The method of claim 11, wherein the scoped transac-
fion 1s a capped transaction such that the capped transaction
has no child transactions that commit over the capped
fransaction.

	Front Page
	Drawings
	Specification
	Claims

