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57] ABSTRACT

A method and system are disclosed for generating a
decision-tree classifier 1n parallel 1n a multi-processor
system, from a training set of records. The method com-
prises the steps of: partitioning the records among the
processors, each processor generating an attribute list for
cach attribute, and the processors cooperatively generating a
decision tree by repeatedly partitioning the records using the
attribute lists. For each node, each processor determines 1its
best split test and, along with other processors, selects the
best overall split for the records at that node. Preferably, the
oini-index and class histograms are used 1n determining the
best splits. Also, each processor builds a hash table using the
attribute list of the split attribute and shares it with other
processors. The hash tables are used for splitting the remain-
ing attribute lists. The created tree 1s then pruned based on
the MDL principle, which encodes the tree and split tests in
an MDL-based code, and determines whether to prune and
how to prune each node based on the code length of the
node.

18 Claims, 9 Drawing Sheets
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1

METHOD AND SYSTEM FOR GENERATING
A DECISION-TREE CLASSIFIER IN
PARALLEL IN A MULTT-PROCESSOR
SYSTEM

FIELD OF THE INVENTION

The invention relates 1n general to computer databases,
and 1n particular to data mining. The 1nvention speciiically

relates to an efficient method and system for generating a
decision tree classifier from data records in parallel by the
processors of a multi-processor system.

BACKGROUND OF THE INVENTION

Data mining i1s an emerging application of computer
databases that mvolves the development of tools for ana-
lyzing large databases to extract useful information from
them. As an example of data mining, customer purchasing
patterns may be derived from a large customer transaction
database by analyzing its transaction records. Such purchas-
ing habits can provide valuable marketing information to
retailers 1n displaying their merchandise or controlling the
store 1nventory. Other applications of data mining include
fraud detection, store location search, and medical diagno-
S1S.

Classification of data records according to certain classes
of the records 1s an important part of data mining. In
classification, a set of example records, referred to as a
fraining set or mput data, 1s provided from which a record
classifier will be built. Each record of the training set
consists of several attributes where the attributes can be
either numeric or categorical. Numeric (or continuous)
attributes are those from an ordered domain, such as
employee age or employee salary. Categorical attributes are
those from an unordered domain such as marital status or
gender. One of these attributes, called the classifying
attribute, indicates the class to which the record belongs. The
objective of classification 1s to build a model of the classi-
fying attribute, or classifier, based upon the other attributes.
Once the classifier 1s built, 1t can be used to determine the
classes of future records.

Classification models have been studied extensively 1n the
fields of statistics, neural networks, and machine learning.
They are described, for example, 1n “Computer Systems that
Learn: Classification and Prediction Methods from
Statistics,” S. M. Weiss and C. A. Kulikowski, 1991. Prior
art classification methods, however, lack scalability and
usually break down 1n cases of large training datasets. They
commonly require the training set to be sufficiently small so
that 1t would {it in the memory of the computer performing
the classification. This restriction 1s partially due to the
relatively small number of training examples available for
the applications considered by the prior art methods, rather
than for data mining applications. Early classifiers thus do
not work well 1n data mining applications.

In the paper “An Interval Classifier For Database Mining,
Applications,” Proc. of the Very Large Database
Conference, August 1992, Agrawal et al. described a clas-
sifier specially designed for database applications. However,
the focus there was on a classifier that can use database
indices to improve retrieval efficiency, and not on the size of
the training set. The described classifier 1s therefore not
suitable for most data mining applications, where the train-
ing sets are large.

Another desirable property of classifiers 1s their short
fraining time, 1.€., the time required to generate a classifier
from a set of training records. Some prior art methods

10

15

20

25

30

35

40

45

50

55

60

65

2

address both the execution time and memory constraint
problems by partitioning the data into subsets that fit in the
system memory and developing classifiers for the subsets in
parallel. The output of these classifiers 1s then combined
using various algorithms to obtain the final classification.
Although this approach reduces running time significantly,
studies have shown that the multiple classifiers do not
achieve the same level of accuracy of a single classifier built
using all the data. See, for example, “Experiments on
Multistrategy Learning by Meta-Learning,” by P. K. Chan

and S. J. Stolfo, Proc. Second Intl. Conf. on Information and
Knowledge Management, pp. 314-323, 1993.

Other prior art methods classily data in batches. Such
incremental learning methods have the disadvantage that the
cumulative cost of classifying data incrementally can some-
times exceed the cost of classifying all of the training set
once. See, for example, “Megainduction: Machine Learning
on Very Large Databases,” Ph.D. Thesis by J. Catlett, Univ.
of Sydney, 1991.

Still other prior art classification methods, including those
discussed above, achieve short training times by creating the
classifiers based on decision trees. A decision tree 1s a class
discriminator that recursively partitions the training set until
cach partition consists entirely or dominantly of examples
from the same class. The tree generally has a root node,
interior nodes, and multiple leal nodes where each leaf node
1s associated with the records belonging to a record class.
Each non-leaf node of the tree contains a split point which
1s a test on one or more attributes to determine how the data
records are partitioned at that node. Decision trees are
compact, easy to understand and to be converted to classi-
fication rules, or to Structured Query Language (SQL)
statements for accessing databases.

For example, FIG. 1 shows a training set where each
record represents a car insurance applicant and includes
three attributes: Age, Car Type, and Risk level. FIG. 2 shows
a prior art decision tree classifier created from the training
records of FIG. 1. Nodes 2 and 3 are two split points that
partition the records based on the split tests (Age<25) and
(Car Type in {Sports}), respectively. The records of appli-
cants whose age 1s less than 25 years belong to the High Risk
class associated with node 4. The records of those older than
25 years but have a sport car belong to the High Risk class
associated with node 5. Other applicants fall into the Low
risk class of node 6. The decision tree then can be used to
screen future applicants by classifying them into the High or
Low Risk categories.

As another example of decision-tree classifiers, an effi-
cient method for constructing a scalable, fast, and accurate
decision-tree classifier 1s described 1n the assignee’s pending

application “Method and System For Generating a Decision-
Tree Classifier For Data Records,” Ser. No. 08/564,694

(hereinafter 694 application), U.S. Pat. No. 5,787,274. The
method described there effectively handles disk-resident
data that 1s too large to fit in the system memory by
presorting the records, building the tree branches in parallel,
and pruning the tree using the Description Length (MDL)
principle. Further, 1t forms a single decision tree using the
entire training set, instead of combining multiple classifiers
or partitioning the data. For more details on MDL pruning,
sec for example, “MDL-based Decision Tree Pruning,” Intl.
Conf. on Knowledge Discovery in Databases and Data

Mining, pp. 216221, 1995.

Nevertheless, the method described 1n the 694 applica-
tion still has some drawbacks. First, it requires some data per
record to stay memory-resident all the time, e.g., a class list
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containing the attribute values and node IDs. Since the size
of this data structure grows i1n direct proportion to the
number of mnput records, this places a limit on the amount of
data that can be classified. Secondly, 1n a parallel processing
environment such as a multi-processor system, the method
does not take advantage of the parallelism of the multi-
processor system to build the decision tree classifier more
ciiiciently across the processors. Such parallel generation of
the classifier would lead to both shorter training times and
reduced system memory requirements.

Therefore, there remains a need for an efficient method for
generating a decision tree classifier 1in parallel by the pro-
cessors of a multi-processor system that 1s fast, compact, and
scalable on large training sets.

SUMMARY OF THE INVENTION

It 1s an object of the present mvention to provide an
eiicient method for generating a decision-tree classifier in
parallel by the processors of a multi-processor system, from
a training set of records for classifying other records.

Another object of the present invention 1s to obtain a
decision-tree classifier that 1s compact, accurate, and has
short training times.

Still another object of the present invention 1s a method
for generating a classifier that 1s scalable on large disk-
resident training sets, without restricting the size of the
fraining set to the system memory limat.

The present invention achieves the foregoing and other
objects by providing a method for generating a decision tree
classifier 1n parallel in a multi-processor system, from a
training set of records. Each record includes one or more
attributes, a class label to which the record belongs, and a
record ID. In accordance with the invention, the method
partitions the training records generally evenly among the
processors of the multi-processor system. Each processor
generates 1n parallel with other processors an attribute list
for each attribute of the records. The list includes the values
for that attribute, class labels and record IDs of the records
from which the attribute values are obtained. The processors
then cooperatively generate a decision tree by repeatedly
partitioning the records according to record classes, using,
the attribute lists. The final decision tree becomes the desired
classifier in which the records associated with each leaf node
are of the same class.

The step of generating attribute lists preferably includes
the processors sorting in parallel the attribute lists for
numeric attributes based on the attribute values, and distrib-
uting the sorted attribute lists among the processors.

The processors cooperatively create the decision tree by
splitting the records at each examined node, starting with the
root node. Each processor first determines a split test to best
separate the records by record classes, using the attribute
lists available 1n the processor. The processor shares 1ts best
split test with other processors to determine the best overall
split test for the examined node. The processor then parti-
tions the records of the examined node that are assigned to
it, according to the best split test for the examined node. The
partitions of records form the child nodes of the examined
node and also become new leal nodes of the tree. The
records of the new leal nodes are then similarly split.
Preferably, the split tests are determined based on a splitting
index corresponding to the criterion used in splitting the
records.

In addition, each processor maintains for each attribute
one or more variables, such as histograms, representing the
distribution of the records at each leaf node. In determining
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4

a split test, the processor would traverse the attribute list for
cach attribute A. For each value v of A 1n the attribute list,
the class histograms for A at the examined node are updated
using the class label corresponding to v and the value v. If
A 1s a numeric attribute, then the splitting index for the
splitting criterion (A<=v) for the examined node is calcu-
lated. If A 1s categorical, then one of the processors collects
all the class histograms for A from other processors after the
scan and determines a subset of the attribute A that results in
the highest splitting index for the examined node. The
splitting 1ndex used 1s preferably a gini-index based on the
relative frequency of records from each class present 1n the
fraining set.

Also 1n the case where the attribute A 1s categorical,
various subsets of the values of A are considered as possible
split points. If the number of values for A is less than a
certain threshold, then all subsets of a set S of all values of
A are evaluated to find one with the highest splitting index
for the examined node. If the number of values 1s equal to
or more than the threshold, each value from set S 1s added,
one at a time, to an 1nitially empty set S' to find a split with
the highest splitting index.

In accordance with the invention, the partitioning of
records at a node by each processor includes, for an attribute
B used 1n the split test, dividing the attribute list for B at the
processor 1nto new attribute lists corresponding respectively
to the child nodes of the examined node. In dividing the
attribute list, the method traverses the list to apply the split
test to each entry 1n the list and puts the entry into a
respective new list according to the test. The processor also
builds a hash table with the record IDs obtained from the
attribute list as it 1s being divided and shares the hash table
with other processors. The processor partitions the remain-
ing attribute lists of the examined node among its child
nodes according to the shared hash tables.

In addition, the processor updates the histograms of each
new leal node with the distributions of records at these
nodes, and shares the updated histograms with the other
ProcCessors.

In another aspect of the invention, the originally created
decision tree 1s pruned based on the MDL principle to obtain
a more compact classifier. The original tree and split tests are
first encoded 1n a MDL-based code. The code length for each
node of the tree 1s calculated. Depending on the code lengths
resulting from different pruning options at the node, the
method determines whether to prune the node, and 1f so, how
to prune 1t.

In a first embodiment of the pruning step, each node of the
decision tree 1s encoded using one bit. If the code length in
the case the node has no child node 1s less than when 1t has
both child nodes, then both of i1ts child nodes are pruned and
it 18 converted to a leaf node. Otherwise, the node 1s left
Intact.

In a second embodiment, two bits are used to encode each
node of the tree. The code length 1s evaluated for the cases
where the node 1s a leaf node, has a left child, has a right
child, and has both child nodes. A pruning option 1s selected
from these cases that would result 1n the shortest code length
for the node.

In a third embodiment of the pruning step, a smaller tree
1s first obtained using the steps of the first embodiment. The
smaller tree 1s further pruned by examining the code length
of each node for the cases where the node has only a left
child, only a right child, and both child nodes. A pruning
option 1s selected so that the shortest code length for the
node 1s obtained.
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Additional objects and advantages of the present mven-
tion will be set forth in the description which follows, and
in part will be obvious from the description and with the
accompanying drawing, or may be learned from the practice
of this 1invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a prior art training set of
records.

FIG. 2 1llustrates a prior art decision tree corresponding to
the training set of FIG. 1 1n which each leaf node represents
a class of records.

FIG. 3 1s a simplified block diagram of a computer system
having multiple processors upon which the present invention
may be practiced.

FIG. 4 1s a flow chart showing the overall operation of the
method of the present invention.

FIG. 5 illustrates an exemplary training set of records for
use with the method of the mvention.

FIG. 6 1llustrates a typical partitioning of the records

between the two processors of a multi-processor system,
according to block 15 of FIG. 4.

FIG. 7 1llustrates the attribute lists built by the processors
of the multi-processor system, according to block 16 of FIG.

4.

FIG. 8 1s a flow chart showing further details for the step
of creating the decision tree, from block 17 of FIG. 4.

FIG. 9 1s a flow chart showing further details for the step
of determining a split test at each examined node, from

block 29 of FIG. 8.

FIGS. 10a and 10b illustrate the numeric attribute lists in
the processors and the respective histograms of the
processors, according to block 38 of FIG. 9.

FIGS. 11a and 115 1llustrate the categorical attribute lists
in the processors and the respective histograms of the
processors, according to block 44, FIG. 9.

FIG. 12 1s a flow chart showing further details for the step
of determining a subset of the attribute values with the
highest splitting index, from block 45, FIG. 9.

FIG. 13 1s a flow chart showing further details for the step
of splitting the records at a node to create child nodes, from

block 31, FIG. 8.

FIG. 14a illustrates a part of the decision tree as the
records at node 67 are split to create child nodes, according

to block 31 of FIG. 8.

FIGS. 14b and 14¢ show how the attribute lists of the node
67 arc partitioned into new attribute lists for the child nodes

of node 67, from block 63 of FIG. 13.

FIG. 15 1s a flow chart showing the steps for pruning the
decision tree based on the Minimum Description Length
principle to obtain the decision-tree classifier.

FIG. 16 1s a flow chart showing the Full pruning embodi-
ment for the pruning steps of FIG. 15.

FIG. 17 1s a flow chart showing the Partial pruning
embodiment for the pruning steps of FIG. 15.

FIG. 18 1s a flow chart showimg the Hybrid pruning
embodiment for the pruning steps of FIG. 15.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The invention 1s primarily described as a method for
ogenerating a decision-tree classifier in parallel 1n a multi-
processor system. However, persons skilled 1n the art will
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6

recognize that an apparatus, such as a data processing
system, including a CPU, memory, I/0, program storage, a
connecting bus, and other appropriate components, could be
programmed or otherwise designed to facilitate the practice
of the method of the 1nvention. Such a system would include
appropriate program means for executing the method of the
invention.

Also, an article of manufacture, such as a pre-recorded
disk or other similar computer program product, for use with
a data processing system, could include a storage medium
and program means recorded thereon for directing the data
processing system to facilitate the practice of the method of
the invention. Such apparatus and articles of manufacture

also fall within the spirit and scope of the nvention.

FIG. 3 1s a stmplified block diagram of a multi-processor
system with which the method of the invention may be
practiced. The system includes several processors 10 that
communicate with each other by a link 11. Each processor
10 may be implemented in hardware, software, or a com-
bination thereof. For instance, the processors 10 may be
nodes within an IBM SP2 multi-processor computer, or
software tasks of a multi-task program running on a single
computer. They may also be IBM RISC System/6000 work-
stations or currently available microprocessors intercon-
nected by the link 11. Similarly, the link 11 may be 1mple-
mented 1in hardware, software, or a combination thereof. For
example, it may be a data bus, network, or software layer
based on the Message Passage Interface (MPI) standard.

FIG. 4 1llustrates a high-level flow chart of the method for
ogenerating a decision-tree classifier 1n parallel by the pro-
cessors 10 1n accordance with the invention, from a training
set of records. Each record has one or more data attribute
values, a class label of the class to which the record belongs,
and a record ID. An attribute may be numeric (or
continuous) such as Age, or categorical such as Car Type.
Beginning with block 15, the records are partitioned among
the processors 10. Generally, the records are divided evenly
among the processors 10 to maintain a balanced workload 1n
the system. However, an unequal partitioning of the records
may be necessary to balance the workload of the processors
when they do not have the same computing power.

At block 16, each processor 10 generates an attribute list
for each attribute of the records at that processor. The
processors 10 generate their attribute lists 1n parallel. Each
record of an attribute list has an attribute value, class label,
and record ID of the record from which the attribute value
1s obtained. The attribute list generation 1s described 1n more
detail below 1n accordance with FIG. 7. At block 17, the
processors 10 cooperatively generate a decision tree by
repeatedly partitioning the records using the attribute lists.
The decision tree generation by the processors 1s described
further below 1 reference to FIGS. 8 through 15. The
resulting decision tree after all record classes are i1dentified
becomes the decision-tree classifier.

FIG. § 1llustrates an exemplary training set of records
before they are partitioned according to block 15 of FIG. 4.
Each record represents a car msurance applicant with the
values of two attributes Age and Car Type, and a class label
indicating the Risk level for the applicant. In this case, Age
1s a numeric attribute indicating the applicant’s age, while
Car type 1s a categorical attribute indicating the type of car
the applicant owns. FIG. 6 shows a typical partitioning of the
records of FIG. § between processors P1 and P2 1 a
two-processor system, per block 15 of FIG. 4. The records
of processors P1 and P2 are 1n tables 20 and 21, respectively.

Referring to FIG. 7, the attribute lists generated by each
of the processors P1 and P2 for the attributes Age and Car
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Type, according to block 16 of FIG. 4, are shown. For a
categorical attribute, such as Car Type, attribute lists 23 and
25 can be generated from the records at processors P1 and
P2, respectively, without further processing. For a numeric
attribute such as Age, attribute lists 22 and 24 are preferably
ogenerated by processors P1 and P2, respectively, after the
processors cooperatively sort their attribute lists based on
attribute values and distribute the sorted lists among each
other. Each processor thus has a contiguous sorted portion of
the global attribute list for each attribute. A parallel sorting
algorithm like the one described by D. J. DeWitt et al.,
“Parallel Sorting on A Shared-nothing Architecture Using
Probalistic Splitting,” Proc. of the First Intl. Conf. on
Parallel and Daistributed Information Systems, pp. 280-291,
1991, may be used for this purpose.

Generating the Decision Tree

FIG. 8 shows the preferred embodiment for the step of
generating the decision tree cooperatively by the processors
10, from block 17 of FIG. 4. Generally, each processor
examines each current leaf node and separates 1ts records by
record class to create new nodes. This process continues
until all classes are 1dentified. Note that initially, the tree 1s
viewed as having a single leaf node that 1s also the root node.
Starting with block 28, each processor 10, working in
parallel with other processors, examines each leaf node of
the decision tree. Each processor determines a split test to
best separate the records at the examined node, using the
attribute lists of that processor, as shown by block 29. The
processor shares 1ts best split test with other processors so
that the best overall split of the records at the examined node
can be determined, at block 30.

While growing the decision tree, the goal at each node 1s
to determine the split point that best divides the training
records belonging to that node. The value of a split point
depends on how well 1t separates the classes. Thus, a
splitting 1ndex corresponding to a criterion used for splitting
the records may be used to help determine the split test at
cach leaf node. Preferably, the splitting index 1s a gini-index
as described, for example, by Brieman et al. 1n “Classifica-
fion and Regression Trees”, Wadsworth, 1984. The advan-
tage of the gini-index 1s that its calculation requires only the
distribution of the class values 1n each record partition. For
instance, to find the best split point for a node, the node’s
attribute lists are scanned to evaluate the splits for the
attributes. The attribute containing the split point with the
lowest value for the gini-index 1s used to split the node’s
records. The evaluation of the split points 1s described
further below 1n reference to FIG. 9.

At block 31, the processor 10 splits the records at the
examined node, that are assigned to the processor, according
to the best overall split test for the examined node. Each
group of records forms a new leaf node of the tree and 1s also
a child node of the examined node. At block 32, the
processor checks to see 1f each leal node now contains
records from only one class. If this condition has not been
achieved, the processor repeats the process starting with

block 28 for each leaf node.

FIG. 9 shows further details for the step of determining a
split test from block 29 of FIG. 8. To help evaluate the split
tests, a variable showing the distribution of records by
record class at each leaf node may be used. For example, for
cach leal node, each processor may have a histogram for
cach categorical attribute showing the class distribution of
the records at that node. For each numeric attribute, the
processor typically maintains two histograms, C and
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C . ... They are mitialized to reflect, respectively, the dis-
tributions of the records preceding those assigned to the
processor and the records following the first record assigned
to the processor, including this first record.

Starting with block 35 of FIG. 9, for each attribute A, the
processor traverses the attribute list for A at the examined
node 1n block 36. For each value v of the attribute list, the
processor updates the class histograms for A at the examined
node with the class label corresponding to v and the value v,
as shown by block 38. If A 1s determined 1n block 39 to be
numeric, the splitting index for the splitting criterion (A= v)
at the examined node 1s computed at block 40. Another
attribute value v 1s then examined, at block 41, until the
complete list 1s traversed, at block 42. If A 1s a categorical
attribute, one of the processors 10 collects all the class
histograms for A from other processors (block 44) to deter-
mine a subset of the attribute A that results in the highest
splitting index for the examined node, at block 45. The
determination of this subset will be further described below
in reference to FIG. 12.

FIGS. 10a and 10b illustrate how the histograms for the
numeric attribute Age are updated by the processors P1 and
P2. In FIG. 10a, the attribute lists for Age 1n processors P1
and P2, from FIG. 7, are shown respectively as tables 48 and
49. F1G. 10b represents the 1nitial state and final state of the
C,.....and C .,  histograms for attribute Age, according to
the steps of FIG. 9. The initial state of the histograms in
processors P1 and P2 (tables 50 and 51, respectively) reflects
the class distribution 1n each processor before the Age
attribute lists are traversed, according to block 36, FIG. 9.
The final state of the histograms in processors P1 and P2
(tables 52 and 353, respectively) reflects the distribution in
cach processor after the histograms are updated according to

block 38 of FIG. 9.

Similarly, FIGS. 11a and 115 illustrate the attribute lists
for the categorical attribute Car Type and the histograms for
this attribute 1n the processors, respectively. In FIG. 114, the
attribute lists for Car Type for processors P1 and P2 are
reproduced from FIG. 7. The histograms for attribute Car
Type maintained by P1 and P2 are shown as tables 54 and

55, respectively, 1n FIG. 11b.

Referring now to FIG. 12, a preferred embodiment for
block 45 of FIG. 9, for determining a subset of a categorical
attribute A with the highest splitting index, i1s shown as a
flow chart. At block 58, the cardinality of A, 1.e., the number
of elements 1n the set S of all the values of A, 1s compared
to a predetermined threshold. If the cardinality 1s less than
the threshold, all subsets of S are evaluated to find the best
split, at block 59. Otherwise, a greedy algorithm may be
used for subsetting. For mstance, starting with an empty set
S' at block 60, each element of set S 1s added to S', one at
a time, and a corresponding splitting index 1s computed at
block 61. This incremental addition to S' confinues until
there 1s no further improvement 1n the splitting index, as

determined by block 62.

FIG. 13 shows further details for the step of splitting the
records per block 31 of FIG. 8. At block 63, the attribute list
for an attribute B used 1n the split test 1s partitioned 1nto new
attribute lists, one for each child node of the examined node.
The processor typically traverses the original attribute list,
applies the split test to each entry in the list, and puts the
entry into the respective new list according to the test. At
block 64, the processor also builds a hash table with the
record IDs from the entries of the attribute list for B as the
entries are distributed among the new attribute lists. The
processor then shares its hash table with other processors, at




3,870,733

9

block 65, and partitions the remaining attribute lists among,
the child nodes of the examined node, according to the

collected hash tables, at block 66.

FIGS. 144 through 14c 1llustrate how the attribute lists of
FIG. 7 are partitioned into new attribute lists according to
block 63, FIG. 13. FIG. 14a shows a part of the decision tree
being generated with a node 67 and 1its child nodes 68 and
69. Suppose the split test at node 67 1s whether the 1nsurance
applicant’s car is of a sport type, i.e., {Car Type € Sports}.
FIG. 14b 1llustrates attribute lists 70 and 71 1n processor P1
for child nodes 68 and 69, respectively. Attribute lists 70 and
71 are created when processor P1 partitions its attribute lists
for node 67 (blocks 23 and 23 of FIG. 7) according to step
63, FIG. 13. Smmilarly, FIG. 14¢ shows attribute lists 72 and
73 1n processor P2 for child nodes 68 and 69, respectively.
They are created when processor P2 partitions 1ts attribute

lists for node 67 (blocks 24 and 25 of FIG. 7).

Pruning the Decision Tree

In order to obtain a compact classifier, the decision tree as
created may further be pruned to remove extraneous nodes.
Preferably, the pruning algorithm is based on the Minimum
Description Length (MDL) principle so that a subset of the
child nodes at each node may be discarded without over-
pruning the tree. The pruning step 1s illustrated 1n more

detail mm FIGS. 15 through 18.

The MDL principle generally states that the best model
for encoding data i1s one that minimizes the sum of the cost
of describing the data 1n terms of the model and the cost of
describing the model. If M 1s a model that encodes data D,
the total cost of encoding, cost(M, D), 1s defined as:

cost(M, D)=cost(D|M)+cost(M)

where the cost of encoding X, cost(X), 1s defined as the
number of bits required to encode X. Here, the models are
the set of trees obtained by pruning the original decision tree
1T, and the data 1s the training set S. Since the cost of
encoding the data is relatively low, the objective of MDL
pruning will be to find a subtree of T that best describes the
fraining set S.

Referring to FIG. 15, a typical pruning of the decision tree
based on the MDL principle 1s shown. It consists of two
main phases: (a) encoding the tree and (b) determining
whether to prune the tree and how it 1s pruned, based on the
cost of encoding. First, at block 80, the tree 1s encoded 1n a
MDL-based code. The preferred encoding methods are
described below 1n reference to FIGS. 16, 17, and 18. The
split tests for the leaf nodes are also encoded with the
MDL-based code, as shown by block 81. Next, for each
node n of the tree, a code length C(n) for the node is
computed in block 82 for each pruning option, and evaluated
in block 83 to determine whether to convert the node 1nto a
leaf node, to prune 1its left or right child node, or to leave
node n 1ntact.

The code length ((t) for the test options at a node n is
calculated as follows:

if t1s a leaf node
(Option 1)

(i1) Cpomlt) = L{t) + Lo + C(ty) + C(t,), if t has both child
nodes (Option 2)

(1) Cye(t) = L(t) + Errors,,
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-continued

(ii1) C.q(t) = L{t) + L., + C(t,) + C'(t,), if t has only child node

t,; (Option 3);

est

and
(1v) Ciigni(t) = L(t) + Lioyy + C(t;) + C(t,),if t has only child node
t, (Option 4),

where L. 1s the cost of encoding any test at an internal
node, L(t) is the cost of encoding the node itself, Errors,
represents the misclassification errors at the node, C(t,) is the
cost of encoding the i”* subtree, and C'(t,)) is the cost of
encoding a child node’s records using the parent node’s
statistics.

In FIGS. 16 through 18, the flow charts of the preferred
embodiments of the step of pruning of FIG. 15 are shown.
The embodiment 1n FIG. 16 1s referred to as Full pruning and
1s used when a node may have zero or two child nodes
(options 1 and 2). Accordingly, only one bit is needed to
encode each node of the tree, shown by block 86. At block

87, the code length C,, (t) when the node has no child nodes

lea

is compared to the code length C,_,(t) when it has both
child nodes. If C,_ (1) is less than C,_,,(1), both child nodes

of the test node are pruned and the node 1s converted 1nto a
leaf node, as shown by blocks 88 and 89.

FIG. 17 shows another embodiment of the step of pruning,
from FIG. 15, referred to as Partial pruning. Partial pruning
1s desirable where all four options are applicable to each tree
node, 1.€., the node 1s a leaf node, has only a left child node
or a right child node, or has both child nodes. At block 92,
two bits are used to encode each node n of the decision tree.
The code lengths for the four options are evaluated at block
93 and the option with the shortest code length for node n 1s
selected at block 94.

Finally, FIG. 18 shows a third preferred embodiment of
the pruning step from FIG. 15 that combines Full pruning
and Partial pruning, and 1s appropriately referred to as
Hybrid pruning. The Hybrid method prunes the decision tree
in two phases. At block 93, 1t first uses Full pruning to obtain
a smaller tree from the originally generated tree. It then
considers only options 2, 3, and 4, 1.e., where the node has
a lett child, a right child, or both, to further prune the smaller
tree. For these three options, log(3) bits are used for encod-
ing each node. At blocks 96 and 97, for each node of the
smaller tree, the code lengths corresponding to the three
options are evaluated to select a pruning option that results
in the shortest code length for the node, as shown by block

98.

Parallelizing Other Classification Methods

Existing classification methods may be similarly paral-
lelized 1n a multi-processing environment as described
above. For 1nstance, the method for generating a classifier 1n
the assignee’s pending application '694 (also described in
“SLIQ: A Fast Scalable Classifier For Data Mining,” Proc.
of the EDBT ’96 Conf., Avignon, France, 1996) may be
parallelized by replicating the class list in each processor of
a multi-processor system or distributing the class list among
the processors. The SLIQ method uses a class list 1n which
cach entry contains a class label and node ID corresponding
to a leaf node.

In the replication method, the class list for the entire
training set 1s replicated in the local memory of every
processor. The split tests are evaluated in the same manner
as described above 1n reference to FIGS. 8, 9, and 12.
However, the partitioning of the attribute lists according to

a chosen split test (block 63 of FIG. 13) is different as the
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execution of the split points requires updating the class list
for each record. Since every processor must maintain a
consistent copy of the entire class list, every class-list update
must be communicated to and applied by every processor.

To minimize communications among the processors, a
technique similar to the one described 1n reference to FIGS.
9, 10a—b, and 11a—b may be used where only the smaller
half of each split 1s communicated and updated by the
processors. As a result, updates to the replicated class lists
can be exchanged in small batches or in a single commu-
nication.

In the distribution method, each processor of the system
contains a portion of the class list for all the records. The
partitioning of the class list has no correlation with the
partitioning of the numeric attribute lists. The class label
corresponding to an attribute value 1n one processor may
reside 1 another processor. Thus, the two processors com-
municate when 1t 1s necessary to find a non-local class label
in the case of a numeric attribute. This inter-processor
communication 1s not necessary for categorical attributes
since the class list 1s created from the original partitioned
training set and perfectly correlated with the categorical
attribute lists.

The split tests are evaluated in the same manner as
described above 1n reference to FIGS. 8, 9, and 12. In
traversing the attribute list of a numeric attribute, a processor
may request another processor to look up a corresponding
class label. It may also have to service look-up requests from
other processors. This inter-processor communications,
however, may be minimized by batching the look-ups to the
distributed class lists.

Using the foregoing specification, the mvention may be
implemented using standard programming or engineering
techniques 1ncluding computer programming software,
firmware, hardware or any combination or subset thereof.
Any such resulting program, having computer-readable pro-
oram code means, may be embodied or provided within one
or more computer-readable media, thereby making a com-
puter program product, 1.e., an article of manufacture,
according to the mvention. The computer readable media
may be, for instance, a fixed (hard) drive, diskette, optical
disk, magnetic tape, semiconductor memory such as read-
only memory (ROM), etc., or any transmitting/receiving
medium such as the Internet or other communication net-
work or link. The article of manufacture containing the
computer programming code may be made and/or used by
executing the code directly from one medium, by copying
the code from one medium to another medium, or by
transmitting the code over a network.

An apparatus for making, using, or selling the imvention
may be one or more processing systems including, but not
limited to, a central processing unit (CPU), memory, storage
devices, communication links, communication devices,
servers, I/O devices, or any sub-components or individual
parts of one or more processing systems, including software,
firmware, hardware or any combination or subset thereof,
which embody the 1nvention as set forth 1n the claims.

User 1input may be received from the keyboard, mouse,
pen, voice, touch screen, or any other means by which a
human can mput data to a computer, including through other
programs such as application programs.

One skilled in the art of computer science will easily be
able to combine the software created as described with
appropriate general purpose or special purpose computer
hardware to create a computer system or computer sub-
component embodying the invention and to create a com-
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puter system or computer sub-component for carrying out
the method of the invention.

While several preferred embodiments of the invention
have been described, it should be apparent that modifica-
tions and adaptations to those embodiments may occur to
persons skilled 1n the art without departing from the scope
and the spirit of the present invention as set forth in the
following claims.

What 1s claimed 1s:

1. A computer program product for use with a computer
system for directing the system to generate a decision-tree
classifier in parallel from a training set of records, the system
having a plurality of processors, each record having: (1) at
least one attribute, each attribute having a value, (ii) a class
label of the class to which the record belongs, and (ii1) a
record ID, the computer program product comprising;

a computer readable medium;

means, provided on the computer-readable medium, for
directing the system to partition the records among the
processors of the system;

means, provided on the computer-readable medium, for
directing each processor to generate in parallel an
attribute list for each attribute of the records, each entry
in the attribute lists having the attribute value, class
label, and record ID of the record from which the
attribute value 1s obtained; and

means, provided on the computer-readable medium, for
directing the processors to cooperatively create a deci-
sion tree, the decision tree being formed by repeatedly
partitioning the records using the attribute lists, the
resulting decision tree becoming the decision-tree clas-
sifier.

2. The computer program product as recited 1n claim 1,

wherein:

the attributes include numeric attributes; and

the means for directing each processor to generate the
attribute lists includes:
means, provided on the computer-readable medium, for
directing the processor to sort the attribute lists for
the numeric attributes based on the attribute values;
and
means, provided on the computer-readable medium, for
directing the processor to distribute the sorted
attribute lists among the processors.
3. The computer program product as recited in claim 1,
wherein the attributes include categorical attributes.
4. The computer program product as recited 1n claim 1,
wherein:

the decision tree includes a root node, a plurality of
interior nodes, and a plurality of leaf nodes, all of the
records 1nitially belonging to the root node; and

the means for directing to create a decision tree imncludes,
for each processor and for each node being examined
until each leaf node of the decision tree contains only
one class of records:

a) means, provided on the computer-readable medium,
for directing the processor to determine a split test to
best separate the records at the examined node by
record classes, using the attribute lists of the proces-
SOr;

b) means, provided on the computer-readable medium,
for directing the processor to share the split test with
the other processors to determine a best overall split
test for the examined node; and
¢) means, provided on the computer-readable medium,

for directing the processor to split the records of the
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examined node that are assigned to the processor,

according to the best overall split test for the exam-

ined node, to create child nodes for the examined
node, the child nodes becoming new leaf nodes.

5. The computer program product as recited in claim 4,
wherein the means for directing to determine a split test 1s
based on a splitting index corresponding to a criterion for
splitting the records.

6. The computer program product as recited in claim 35,
wherein the splitting mndex includes a gini-index based on
relative frequencies of records from each record class
present 1n the training set.

7. The computer program product as recited 1n claim 5,
wherein:

cach processor 1ncludes, for each leaf node, a plurality of

histograms for each attribute of the records at the leat
node, the histograms representing the class distribution
of the records at the leaf node; and

the means for directing to determine a split test includes:

a) means, provided on the computer-readable medium,
for directing the processor to traverse, for each
attribute A, the attribute list for A at the examined
node;

b) for each value v of A in the attribute list for A:

1) means, provided on the computer-readable
medium, for directing the processor to update the
class histograms for A, at the examined node, with
the class label corresponding to v and the value v;
and

i1) if the attribute A is numeric, then means, provided
on the computer-readable medium, for directing
the processor to compute the splitting index cor-
responding to splitting criterion (A<=v) for the
examined node; and

c) if the attribute A is categorical, then:

1) means, provided on the computer-readable
medium, for directing a first processor to collect
all the class histograms for A from all the proces-
sors; and

11) means, provided on the computer-readable
medium, for directing the first processor to deter-
mine a subset of the attribute A that results in the
highest splitting index for the examined node.

8. The computer program product as recited in claim 7,
wherein the histograms for each numeric attribute include a
C,..... histoeram and a C_, __ histogram, the C,_,  histo-
oram corresponding to the class distribution of the records
preceding those assigned to the processor, and the C ,
histogram corresponding to the class distribution of the
records following a first record assigned to the processor,
including the first record.

9. The computer program product as recited 1n claim 7,
wherein the means for directing to determine a subset of the
attribute A includes:

if a number of elements 1n a set S of all values of Ai1s less
than a predetermined threshold, then means, provided
on the computer-readable medium, for directing the
first processor to evaluate all subsets of the set S to find
one with the highest splitting index; and

if the number of elements 1n S 1s equal to or more than the

predetermined threshold, then means, provided on the

computer-readable medium, for directing the first pro-

cessor to:

a) add an element of S to an initially empty subset S' of
S such that the splitting index for the splitting
criterion at the examined node 1s maximized; and

b) repeat the adding until there is no improvement in
the splitting index.
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10. The computer program product as recited in claim 4,
wherein the means for directing to split the records includes:

means, provided on the computer-readable medium, for
directing the processor to partition the attribute list for
an attribute B used 1n the split test into new attribute
lists corresponding, respectively, to the child nodes of
the examined node;

means provided on the computer-readable medium, for
directing the processor to build a hash table with the
record IDs from the entries of the attribute list for B as
the entries are partitioned among the new attribute lists;

means, provided on the computer-readable medium, for
directing the processor to share the hash table for
attribute B with other processors; and

means, provided on the computer-readable medium, for
directing the processor to partition the remaining
attribute lists of the examined node among the newly
created child nodes according to the hash tables shared
by the processors.
11. The computer program product as recited in claim 10,
wherein the means for directing to partition the attribute list
includes:

means, provided on the computer-readable medium, for

directing the processor to traverse the attribute list for
attribute B;

means, provided on the computer-readable medium, for
directing the processor to apply the split test to each
entry of the attribute list for B; and

means, provided on the computer-readable medium, for
directing the processor to enter the entry into a respec-
tive new attribute list according to the split test.
12. The computer program product as recited in claim 10,
wherein the means for directing to create a decision tree
further comprises:

means, provided on the computer-readable medium, for
directing the processor to update the histograms for
cach newly created child node with the distribution of
records at the child node; and

means, provided on the computer-readable medium, for
directing the processor to share the updated histograms
with other processors so that all the histograms remain
updated.

13. The computer program product as recited i claim 4
further comprising means, provided on the computer-
readable medium, for directing the system to prune the
decision-tree classifier to obtain a more compact classifier.

14. The computer program product as recited in claim 13,
wherein:

the means for directing to prune 1s based on a Minimum
Description Length (MDL) principle that encodes the
decision tree as a model such that an encoding cost for
describing the decision tree and the training set 1s
minimized;
the means for directing to prune includes:
means, provided on the computer-readable medium, for
directing the system to encode the decision tree 1n an
MDL.-based code;
means, provided on the computer-readable medium, for
directing the system to encode the split tests for the
leaft nodes 1n the MDL-based code;
means provided on the computer-readable medium, for
directing the system to calculate a code length C(n)
for each node n of the decision tree; and
means, provided on the computer-readable medium, for
directing the system to determine whether to prune
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the child nodes of node n, convert n 1into a leaf node,
or leave n 1ntact, depending on the encoding cost;
and

the encoding cost is based on the code length C(n).
15. The computer program product as recited in claim 14,
wherein:

a) the means for directing to encode the decision tree
includes:
(1) means, provided on the computer-readable medium,

for directing the system to encode each node of the
decision tree using one bit, 1f the node has two or no
child nodes;

(i1) means, provided on the computer-readable medium,

for directing the system to encode each node of the
decision tree using two bits, 1f the node has one, two,
or no child nodes; and

(1i1) means, provided on the computer-readable
medium, for directing the system to encode each
internal node of the decision tree using log(3) bits;
and

b) the encoding cost includes:

(i) a cost for encoding an attribute value v of an
attribute A, where a split test 1s of the form (A=v)
and A 1s numeric; and

(i1) a cost related to In(n,) where n, is a number of
times the split test 1s used 1n the tree and A 1s a
categorical attribute.

16. The computer program product as recited 1n claim 14,
wherein:

cach node n of the decision tree 1s encoded using one bat;
and

if the code length C(n) in the case n has both child nodes
is more than C(n) in the case n 1s a leaf node, then the
means for directing to determine whether to prune
includes:
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means, provided on the computer-readable medium, for
directing the system to prune both child nodes of the

node n; and
means, provided on the computer-readable medium, for
directing the system to convert the node n 1nto a leaf

node.

17. The computer program product as recited in claim 16

further comprising:

means, provided on the computer-readable medium, for
directing the system to evaluate, for each node n of the
pruned decision tree, the code length C(n) when n has
only a left child node, n has only a right child node, and

n has both child nodes; and

means, provided on the computer-readable medium, for
directing the system to select a pruning option that
results in a shortest code length C(n).
18. The computer program product as recited in claim 14,
wherein:

cach node n of the decision tree 1s encoded using two bits;
and

the means for directing to determine whether to prune
includes:

means, provided on the computer-readable medium, for

directing the system to evaluate the code length C(n)

when n 1s a leaf node, n has only a left child node,
n has only a right child node, and n has both child
nodes; and

means, provided on the computer-readable medium, for
directing the system to select a pruning option that
results in a shortest code length C(n).
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