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57] ABSTRACT

An apparatus for implementing block matching for motion
estimation in video 1mage processing. The apparatus
receives the pixel data of an original 1image block and the
pixel data of a compared 1mage block selected from a
number of compared 1mage blocks during video image
processing. The selected image blocks are compared to
determine a movement vector. The apparatus has a multi-
stage pipelined tree-architecture that includes four stages.
The first computational stage produces corresponding pairs
of difference data and sign data. A second compression stage
in the process pipeline 1ncludes a compression array that
receives all the difference data and sign data, which are
added together to produce compressed summation data and
compressed sign data. The third summation stage i1n the
pipeline receives the compressed summation and sign data
and produces a mean absolute error for the original and
compared 1mage block pixels. A last minimization stage
receives the mean absolute error for each of the compared
image blocks and determines a minimum mean absolute
error from among them. The compression array includes of
a number of full and half adders arranged in a multi-level
conflguration 1n which none of the adder operand inputs and
the carry-in mputs 1s left un-connected.

12 Claims, 8 Drawing Sheets
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APPARATUS FOR IMPLEMENTING A
BLOCK MATCHING ALGORITHM FOR
MOTION ESTIMATION IN VIDEO IMAGE
PROCLESSING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates 1n general to a processing hardware
confliguration for manipulating video 1mage data for com-
pression. In particular, the mnvention relates to a processing,
hardware configuration for efficiently implementing a fast
scarch motion estimation algorithm i1n a semiconductor
device that has reduced physical dimensions and complex-
ity.

2. Description of the Related Art

Video signal compression 1s an important technique for
successtul video signal processing in video equipment such
as high definition television, video telephone, and video
conference systems. Because video imaging systems process
vast amounts of digital data, maintaining a data bit rate that
1s extremely low 1n the signal processing flow by utilizing a
data compression technique becomes an important factor for
smooth video signal processing. To achieve a low data bit
rate 1n the video signal processing flow, 1n other words, to
obtain a very high data compression ratio, good codec
(coding-decoding) schemes and corresponding hardware
systems are essential. Such codec systems typically imple-
ment schemes including motion compensation, digital
cosine transform, and quantization of the weight of visual
characteristics, as well as Huflman coding, and others.

Essentially, motion compensation 1s a scheme which
orcatly affects the data compression ratio achieved 1n video
image compression coding systems. This technique 1s used
to manipulate the video signal data compression based on
the specific time domain statistical characteristics of the
subject video 1mage signals. Unlike situations where suc-
cessive still 1mages are processed, a video 1mage 1s charac-
terized by the fact that two successive video 1mages fre-
quentely have relatively few differences when
corresponding constituent blocks 1n successive video 1mage
frames are compared. This 1s an advantageous characteristic
of video 1images that allows implementation of a motion
compensation scheme to achieve a high data compression
rat1o.

Motion estimation provides the basis for a motion com-
pensation technique. Good motion estimation results are
determined by the precision, speed, and efficiency achieved
by the motion estimation scheme. Various algorithms are
available for implementing motion estimation. Block match-
ing 1s an algorithm that 1s one of the easiest to 1implement
from a hardware perspective, because of its stmple steps and
rules for implementation. Commonly used block matching
algorithms 1nclude, for example, full search algorithms
(FSA), three-step search algorithms (TSSA), two-
dimensional logarithmic search algorithms (TDLSA), cross
search algorithms (CSA), orthogonal search algorithms
(OSA), and hierarchical search algorithms (HSA), among

others.

Algorithms, of which TSSA 1s representative, that imple-
ment a video 1mage block matching operation in a sequence
of multiple procedural steps, involve greatly reduced
amount of computation, since not all blocks that may have
been displayed are compared. However, these algorithms
require that subsequent process steps be performed in a
defined procedural step sequence. This 1s a processing
requirement that 1s not suitable for parallel processing. As a
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result, relatively very high throughput, low latency, and
programmability are factors which must be considered if
implementation of this category of motion estimation algo-
rithms 1s to be sucesstul.

Tree-architecture 1s an 1deal hardware configuration for
implementing such a motion estimation algorithm.
However, conventional tree architectural configurations
require the use of a large number of process elements for
substantial implementation. High latencies are thus pro-
duced 1n the process pipelines, constaining the processing
clock rate. For the purpose of outlining the characteristics of
the 1nvention, an example of such a conventional tree-
architecture using four channels 1s briefly examined below,
with reference to the accompanying drawings.

Block matching algorithms employ a scheme for com-
puting the mean absolute errors (MAE) in the compared
video 1mage blocks as the basis for the measurement of the
level of image matching. Blocks with a minimum MAE are
considered to be matched blocks. In practice, an MAE for a
compared 1mage block 1s determined by first summing all
the absolute values of the characteristic value differences
between all picture pixels in the original image block and
picture pixels 1n the corresponding compared 1image block,
and then dividing the summed absolute value by the total
number of pixels 1n the processed image block. The char-
acteristic value of the picture pixels to be differentiated
among the compared 1image blocks 1s normally the intensity
value of the displayed pixel. By definition, an original block
of a video 1mage 1s the one currently being processed, while
its corresponding compared block 1s the same video 1mage
block after 1t undergoes image motion alterations. It 1s
assumed that both the original block and the compared block
consist of the same number of image pixels arranged 1n the
same matrix. Thus, a hardware configuration for implement-
ing such a block matching scheme mvolving the computa-
tion of the MAE must at least include circuitry elements
capable of performing addition, subtraction, absolute value
operations, and determination of the minimum 1n a series of
values.

FIG. 1 schematically depicts a conventional four-channel
tree-architecture for implementing the computation of an
MAE 1n a block matching algorithm. It 1s assumed that both
the original block and the compared block consist of four
pixels. Each of the pixels m the original block and the
compared block 1s represented numerically by display char-
acteristic values, designated by the data values X1, X2, X3,
and X4 and Y1, Y2, Y3, and Y4, respectively, fetched to the
input end of the tree-architecture for processing, as shown 1n
the drawing. Each of the pixel data values may be multi-bat
data containing, for example, n bits. Thus, pixel data for the
original and compared blocks may be expressed as:

X={x_ ., X

F-12 -2

.., X5 and

':YD}

wherein the x,_, and y,__, bits are the sign bits for the pixel
data of the original and compared blocks, respectively, and
the X and Y data may thus all be positive values.

The four-channel tree-architecture shown m FIG. 1 con-
sists of a total of five computational stages that are func-
tionally organized into four sections. It 1s assumed that each
of the five computational stages requires one clock cycle to
implement a computational result for provision to the suc-
cessive stage in the process pipeline. In other words, the
tree-architecture of FIG. I takes at least five clock cycles to
complete the block matching operation, utilizing the sets of
input pixel data X and Y.

Y={Yﬂ—1: yn—zn -
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The first functional section in the tree-architecture struc-
ture 1s the absolute difference section 100, which consists of
four parallel computational members 105. Each of the four
computational members 105 1s required to determine the
value |X-Y/, or, specifically, to determine the absolute value
of the difference between the X and Y pixel data values for
cach of the four pixels of the processed 1image block.

The second functional section subsequent to the absolute
difference section 100 1s the summation section 110, which
includes two successive computational stages 112 and 114.
Two parallel adder members 118 are arranged in the first
computational stage 112, while one adder member 119 1s 1n
the second stage 114. Each of the adder members 118 1 the
stage 112 adds the outputs of two of the parallel computa-
tional members 105 in the first section 100. The outputs of
the two adder members 118 1n the computational stage 112
are then added together 1n the subsequent stage 114 by the
adder member 119. Thus, the output of the summation
section 110 1s the summation of the four absolute values of
the difference between the original and compared image
blocks obtained in the absolute difference section 100.

The third functional section 1s an accumulation section
120 that consists of at least a single accumulating adder
member 125. This 1s an independent adder member that adds
the output of the up-stream functional section 110 to the
value 1t already holds. When the video 1mage blocks to be
processed consist of a pixel matrix having more than four
pixels, this accumulation section 120 can be controlled
under proper resetting and output enabling schemes to
process four pixels at a time. However, the depicted con-
ventional tree-architecture, which can easily process four
pixels 1 a pipeline, would require more clock cycles when
the processed 1image blocks are larger than one multiple of
four pixels.

Finally, in the last functional section, a minimum deter-
mining member 135 constitutes the minimum determining
section 130, which determines the minimum wvalue from
among the outputs of the accumulation section 120.
Essentially, each of the outputs received from the accumu-
lating adder member 125 1s compared to the current mini-
mum value memory content of the minimum determining
member 135, and the smaller value 1s stored as the minimum
value 1n the memory.

Thus, after all the pixels in the processed image block
have been processed by the tree-architecture circuitry of
FIG. 1, a motion vector 140 may be obtained as the output
of the architecture, which 1s representative of a measure of
the relative image movement between the original and
compared blocks of the video 1mage.

FIG. 2 shows a schematic diagram of the computational
member 105 for the absolute difference section 100 of the
tree-architecture of FIG. 1. As shown 1n the drawing, the
computational member receives video block 1mage pixel
data mputs X and Y from the original and compared blocks,
respectively, for generation of the absolute value difference
|X-Y| by the depicted circuitry. Assuming the notation
Z=X-Y, |Z]=[X-Y] is therefore determined.

The Y data 1s provided to the mput of an exclusive-OR
(XOR) gate 210, the other input of which is tied to a constant
logical “1”. This 1s equivalent to obtaining the one’s comple-
ment 215 of the Y data which 1s provided to an adder 220 for
addition with the X data. Thus, the adder 220 turns out the
value X-Y at its S output, while the carry-out bit 224 at the
CO output of the adder 220 signifies the sign bit of this
clfective subtraction performed by the adder. Notice that
while the data X and the one’s complement of the data 'Y are
added together by the adder 220 to obtain the X-Y value, a
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4

carry-in bit (CI) having a constant logical value of “1” 1s also
added into this summation operation, 1n order to perform
subtraction by addition of the two’s complement of the data
Y.

The summation result of the adder 220, 1.e., the X-Y
value generally 1dentified by the reference numeral 225, 1s
exclusive-OR-ed by the XOR gate 230, utilizing the inverted
version 226 of the carry-out bit 224 of the adder 220 as the
conditioning bit. An inverter 222 1s used to provide this
inverted version of the carry-out bit 224. This allows the
one’s complement of the value X-Y to be provided to an
input of another adder 240 if the inverted carry-out bit 226
of the adder 220 1s a logical high. On the other hand, if the
inverted carry-out bit 226 1s a logical low, the output result
of the adder 220 can be directly provided to the B input of
the adder 240. The other, A, input of the adder 240 1s tied to
a constant logical “0”. The carry-in input CI of the adder 240
1s also driven by the mnverted version of the carry-out output
of the adder 220.

Such a double-adder arrangement as depicted 1in FIG. 2
provides the absolute value of the difference between the
mput X and Y data, which 1s held in the register 250 for
further processing. However, this circuitry has at least the
following obvious disadvantages for practical application in
the block matching scheme used 1n video 1mage processing.

First of all, since the absolute difference section 110
requires two cascaded stages of adders to obtain the absolute
value result, time latency 1n the processing pipeline of the
tree-architecture for computing the block matching MAE
becomes tight. This directly translates into a constraint on
the clock frequency that can be applied to the circuit
utilizing this architecture.

Secondly, the total number of adders required 1n con-
structing the tree-architecture for implementing the compu-
tation of a block matching MAE 1s large and increases
oreatly with the number of pixels. The number of required
process elements increases accordingly. This adds to the
overall complexity of semiconductor fabrication.

Thirdly, as the channel number 1n the architecture is
increased to simultaneously process more pixel data, the
total number of processing stages 1n the process pipeline 1s
also 1ncreased by one stage. This further increases the time
latency 1n the tree-architecture.

Further evaluation of the second adder 240 of the com-
putational member 105 shown 1 FIG. 2 for the absolute
difference section 100 m FIG. 1 reveals that the adder 240
1s used merely to add the logic value at the B input to a
constant nil “0” at the A 1nput. As a matter of fact, only the
sign bit 226 1s added to the carry-in mput CI of adder 240.
On the other hand, careful examination of the block diagram
of FIG. 1 shows that each of the adder members 118 1n the
summation section 110 of the tree-architecture of FIG. 1
utilized to sum the outputs of two corresponding computa-
tional members 105 does not use its carry-in inputs. The
second stage adder member 119, which adds the two adder
member 118 outputs together, also has a carry-in mput that
1s left unused.

A tree-architecture based on the concept of making use of
these 1dle adder inputs in the process pipeline, known as the
hierarchical search algorithm (HSA), as mentioned above,
has been developed by the present inventors and 1s 1llus-
frated 1n the block diagram shown in FIG. 3. Such an
architecture 1s disclosed 1n U.S. patent application Ser. No.
08/666,987, filed Jun. 19, 1996, which disclosure 1s incor-
porated herein by reference. Similar to the architecture of
FIG. 1, this 1s another four-channel tree-architecture design
having a total of five processing stages, also similarly
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categorized 1nto four functional sections. This HSA block
image processing circultry 1s capable of an improved,
smooth pipeline operation. After the initial five clock cycles,
a resultant motion vector 140 1s generated once every clock
cycle.

As shown 1n the block diagram of FIG. 3, the first
functional section, the absolute difference section 300, con-
sists of four parallel computational members 305. An
example of an implementation of the computational member
3035 1s llustrated 1n the schematic diagram of FIG. 4. Based
on the concept of HSA architecture, the computational
member 305 can be considered to be a simplification of the
member 105 of FIG. 2. This simplification 1s possible, as
mentioned above, by making use of the 1dle adder 1nputs 1n
the process pipeline. When compared with the computa-
tional member 105 of FIG. 2, 1t 1s noted that the member 305
of FIG. 4 includes only one adder, rather than two.

Notice that for the purpose of smooth pipeline operation,
registers are assigned to each output of each computational
member 305, adder member 318 and 319, and to the
accumulating adder member 325. These registers are used to
hold the mtermediate data and pass the data to the corre-
sponding subsequent stage of elements synchronously, so
that smooth pipeline operation can be achieved.

In the second functional section, subsequent to the abso-
lute difference section 300, namely, the summation section
310, two successive computational stages 312 and 314 are
included. As 1n the case of the conventional four-channel
tree-architecture shown 1n FIG. 1, two parallel adder mem-
bers 318 are arranged 1n the first computational stage 312,
and one adder member 319 1s included 1n the second stage
314. Each of the adder members 318 1n the first computa-
fional stage 312 adds the outputs of two of the parallel
computational members 3035 from the first section 300. The
outputs of the two adder members 318 1n the first occupa-
tional stage 312 are then added together 1n the subsequent
stage 314 by the adder member 319. Basically, this 1s a
configurational arrangement equivalent to that of FIG. 1,
except that the carry-in inputs of the adder members 318 and
319 are utilized for the summing manipulation required in
the process for obtaining the MAE.

Next, the third functional section following the second 1s
an accumulation section 320 that consists of at least a single
accumulating adder member 325. This independent adder
member 325 adds the output from the summation section
310 to the value 1t already holds. When the video image
blocks to be processed consists of a pixel matrix of more
than four pixels, the accumulation section 320 can be used
fo process four pixels at a time.

In the last functional section, a minimum determining,
member 335 constitutes the minimum determining section
330. This determines the minimum value from among the
outputs of the accumulation section 320. Each successive
output of the accumulating adder member 325 received 1s
compared to the current minimum value memory content of
the minimum determining member 335, and the smaller
value 1s stored as the minimum 1n the memory.

In the HSA architecture of FIG. 3, the computational
member 305 used 1n the absolute difference section 300 can
be one that 1s electronically simple compared to its coun-
terpart 1n the architecture of FIG. 1. As mentioned above,
only one, rather than two, adder 1s require to construct a
computational member 305. Approximately one-third of the
hardware process elements of the design of FIG. 1 can be
climinated using the HSA design.

However, if the channel number 1s doubled, such HSA
architecture still requires a tremendous increase in the total
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number of process stages 1n the pipeline. When the total
channel number 1n the tree-architecture design 1s increased
to a certain point due to practical applications 1n video 1image
processing, the resulting time latency 1s 1ncreased to a level
which greatly reduces the HSA pipeline processing effi-
clency.

SUMMARY OF THE INVENTION

It 1s therefore an object of the mvention to provide an
apparatus for implementing a block matching algorithm for
motion estimation 1n a video 1mage processing device,
which has improved time latency characteristics.

It 1s another object of the invention to provide an appa-
ratus for implementing a block matching algorithm for
motion estimation 1n a video 1mage processing device,
which has a reduced device surface area requirement when
implemented 1n a semiconductor 1ntegrated circuit.

The 1nvention achieves the above-identified objects by
providing an apparatus for implementing block matching for
motion estimation 1n a video 1image processing system. The
apparatus receives the pixel data from an original 1mage
block and the pixel data from a compared 1mage block
selected from a number of compared 1mage blocks during
video 1mage processing. The selected image blocks are
compared to determine a movement vector. The apparatus
has a multi-stage pipelined tree-architecture design that
includes four stages. The first computational stage produces
corresponding pairs of difference data and sign data. A
second compression stage 1n the process pipeline includes a
compression array that receives all the difference data and
sign data, which are added together to produce compressed
summation data and compressed sign data. The third sum-
mation stage 1n the pipeline receives the compressed sum-
mation and sign data and produces a mean absolute error for
the original and compared 1mage block pixels. A last mini-
mization stage receives the mean absolute error for each of
the compared 1mage blocks and determines a minimum
mean absolute error from among them. The compression
array includes a number of full and half adders arranged 1n
a multi-level configuration in which none of the adder
operand inputs and the carry-in iputs are left un-connected.
Semiconductor IC devices implementing the circuit configu-
ration have a reduced surface areca and improved signal
propagation time latency 1n the process pipeline.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the invention
will be apparent by way of the following detailed description
of the preferred but non-limiting embodiments. The descrip-
tion 1s made with reference to the accompanying drawings
in which:

FIG. 1 1s a block diagram of the hardware configuration
of a four-channel conventional tree-architecture design for
video 1mage processing;

FIG. 2 1s a schematic diagram of the computational
member of the tree-architecture of FIG. 1, used to perform
an absolute difference operation for the original and com-
pared 1mage blocks processed;

FIG. 3 1s a block diagram of the hardware configuration
of a four-channel conventional HSA tree-architecture design
for video 1mage processing;

FIG. 4 1s a schematic diagram of the computational
member of the HSA tree-architecture of FIG. 3, used to
perform an absolute difference operation for the original and
the compared 1mage blocks processed;
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FIG. 5§ 1s a block diagram of the hardware configuration
of a four-channel tree-architecture design for video image
processing, 1n accordance with a preferred embodiment of
the 1nvention;

FIGS. 6A, 6B, and 6C are schematic diagrams of con-

stituent portions of a first preferred embodiment of the
compression array ol the invention; and

FIGS. 7A and 7B are schematic diagrams of constituent
portions of a second preferred embodiment of the compres-
sion array of the invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As mentioned, a block matching algorithm 1s the 1mple-
mentation of a scheme for comparing an original video
image to the compared one, which 1s normally the image
immediately preceding the original one. In the following
description of the preferred embodiment of the invention,
the compared 1mages, which are frames of an entire digital
video 1mage screen, are divided into a number of blocks
organized in a matrix of predetermined vertical and hori-
zontal dimensions. For example, the video 1mage screen can
be divided into a matrix of N horizontal by N vertical blocks,
a total of NxN blocks. Each of the blocks of video 1mage to

be processed 1n turn includes a matrix of pixels.

Assuming there 1s a maximum possible amount of 1mage
object shift of w pixels in the processed original block of
image with respect to the compared one, then a range of +w
pixels next to the processed original block 1s set as the search
arca for the purpose of applying the block matching algo-
rithm. Within a short period of time after the original block
1s received, a number of NxN blocks 1n the 1mage search
arca are then designated as the possible comparison 1mage
blocks. The block matching error for the original and
compared 1mage block pair 1s then calculated, and the
corresponding image shift amount in the image block having

the minimum matching error 1s the calculated movement
vector 1n the original 1mage block.

One of the most widely used standards for measuring the
matching error using such a video image block matching
algorithm 1mplementation i1s the mean absolute error, MAE,
as mentioned above. Expressed mathematically, there 1s a
function

N N
F(k1) = _21 _21 X(0f) - Y + kj + )]
=1 j=

wherein

-w=k, 1=w;

X 1s the pixel data of the original 1image block;

Y 1s the pixel data of the compared 1mage block; and

(k, 1) represents the image shift amount of the compared
image block with respect to the original 1mage block. Thus,
the movement vector MV sought to be determined can be
expressed as

MV=(k, 1)|minMAE(k, 1) (2)

Based on equations (1) and (2), computation procedures
can be 1mplemented to search for the specific compared
image block featuring the minimum MAE when compared
to the original 1mage block. The amount of 1mage shift in
this searched block 1s the designated movement vector for
the processed 1mage block.

For the description of the preferred embodiment of the
invention, 1t 1s assumed that the original and compared

(1)
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image blocks are both NxN-pixel blocks. Image data for the
original block is expressed as X1, X2, . .., X(NxN), and
image data for the compared block i1s expressed as Y1,
Y2, ..., Y(NxN). Further, it is assumed that the pixel data
has a format of n bits, expressedly,

X={x, ., X

F-12 “rpp-2r oo

., Xy}, and

Y={Y,1, Y20 -5 Yol

wherein x,_, and y,__, are sign bits for the X and Y pixel data.
Since the sign bit 1s included as one of the data bits, X and
Y are always positive values.

Let Z=X-Y. Since X and Y are both positive values, Z 1s
also data having n bits, and can be expressed as

2={Z_ 1 Z o .. .5 Zqfs

wherein z,_, 1s the sign bit for the Z data.

A binary number S={S, |, s, -, ..., Sy} having a sign bit
s, Included in the data bits 1s manipulated to obtain 1its
two’s complement -S as follows:

n—1
-S=2 (5;$P1)-2'+1
i=()

(3)

When physically implemented 1in hardware circuitry, this
1s equivalent to exclusively OR-ing S with a binary 1 and

then adding binary 1 to the XOR-ed result. Thus,

2

which, 1n the form of hardware circuitry, 1s the S output 425
of the adder 420 1n the circuit of FIG. 4.

Then, |Z| can be determined as follows. If the sign bit
z, =1, then

n—1 | n—1 | (4)
Z=X-Y=4 T 0:®1) -2+1+ 3 x-2
i=0 =0

n—1 _
|Z|= 2 (zP1)-2+

1=0)

(5)

if, however, Z =0, then there 1s

n—1 _ (6)
|Z|= X (zig0)-2t+0
1=()
Thus,
n—1 . (7)
|Z| = 'Z[] (Zi B Zn—l) -+ z,
1=

In terms of a process algorithm, determination of the
binary value |Z|=[X-Y| can be outlined in the following
procedural steps:

a. Obtain the two’s complement of the Y data by first
obtaining the one’s complement of Y and then adding
1. In effect, this 1s digitally equivalent to mverting Y
and then adding 1.

b. Add the two’s complement of the Y data to the X data
using an adder, thereby obtaining the data Z.

c. When Z =1, signifying negative Z data has been
obtained, or, 1n other words, that Y>X, the two’s
complement of the Z data must further be obtained to
calculate |Z|, by first obtaining the one’s complement
thereof and then adding 1. When Z _,=0, signifying
positive Z data has been obtained, or, 1n other words,
that Y<X, the positive value of Z 1s therefore equal to
1Z], and requires no further processing.
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Thus, according to equation (7), the absolute value |[Z] can
be obtained by summing

n—1 _
_2 (Zi . Zn—l) -

1=()

and the 1mage data bit Z,_, together. While the 1mage data
bit Z _, 1s 1n effect the sign bit for the data Z, it can be added
into the summation at a later time, after the time at which the
other term of the summation operation is determined.
Referring back to FIG. 2 of the drawings, wherein the

computational member of the conventional tree-architecture
was used to obtain the result of equation (7), note that the
adder 240 has one data mput tied to a constant logical O,
while the carry-in 1input 1s fed by the carry-out output 226 of
the adder 220 of the previous section. Since, as mentioned
above, this carry-1n input can be implemented at a later time,
the adder 240 of the computational member of FIG. 2 can be
climinated altogether, and the computational member can be
realized by the configuration shown in FIG. 4. The output Z"
of the XOR gate 430 1s the temporary data for the computed
data |X-Y|. This data is sent to the next processing stages in
the tree-architecture together with the sign bit data z,__,
ogenerated at the mverter 422 for later processing.

FIG. § 1s a block diagram of the hardware configuration
for a four-channel tree-architecture design for video image
processing 1n accordance with a preferred embodiment of
the mvention. This depicted embodiment 1s applicable for
use 1n video 1mage processing schemes, and 1 particular to
applications for real time digital 1mage compression.
Because of the use of many similar circuit elements arranged
in a structurally repeating manner in the embodied tree-
architecture configuration, it 1s especially suitable for imple-
mentation mm a VLSI semiconductor device. In practical
application, this tree-architecture can be constructed 1n a
circuit device that receives image pixel data as an original
block of a video 1image 1n order to have 1ts movement vector
determined. After a short time period, the video 1mage has
a search area defined for the processed 1mage block, within
which a number of potential compared 1image blocks are
selected for comparison. The 1mage pixel data of these
selected compared 1image blocks are then provided to the
tree-architecture of the invention as another set of 1nputs.

As shown m FIG. 5, the process pipeline of the four-
channel tree-architecture design has a total of four compu-
tational stages (compared to the conventional tree-
architecture design of either FIG. 1 or FIG. 3, each of which
has a total of five stages). The first stage in the process
pipeline 1s a computational stage 700 that includes four
computational members 705 arranged in parallel. Each of
the four computational members 705 has two inputs, one of
which receives the original 1mage block pixel data, the other
of which receives pixel data from the compared image
block. The original and compared image block pixel data 1s
received from corresponding locations.

For example, the four computational members 705
receive the four sets of pixel data input simultaneously. X1,
X2, X3, and X4 are pixel data from the original 1image block,
while Y1, Y2, Y3 and Y4 are pixel data from the compared
image block at the corresponding locations. Thus, the first
pair of original/compared pixel data X1 and Y1 1s provided
to one of the computational members 705 for processing,
while the second pair X2 and Y2 of pixel data 1s provided
to another computational member 705, and so on, as shown
in FIG. §.

The computational member 705 used to process the
original and compared 1mage pixels can be similar to the one
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shown 1n FIG. 4 and described above. As schematically
shown 1n the drawing, each of the computational members
705 has a pair of output signals, one of which 1s the
temporary Z" output for the value |X-Y| and the other of
which is the sign bit data z,_, In FIG. 5, temporary [X-Y]
data for the four channels are designated as A, A,, A, and
A,, and the sign bit data z__, are designated as B,, B,, B,
and B,, respectively.

Outputs of each of the computational members 705 1n the
first pipeline stage 700 of the tree-architecture are then
provided to a data compression array 1n the second stage, the
data compression stage 710. Essentially, the first stage 700
in the process pipeline processes to a point equivalent to
obtaining an un-signed |X-Y| value, as the sign bit data z,__,
is calculated into the evaluation of the absolute value |Z] in
a later stage of the process pipeline, as mentioned above.

Note, however, that register members 750 are connected
at the outputs of the computational members 705 1n the
computational stage 700. As described above, this 1s neces-
sary for proper control of the synchronized pipeline clock

fiming, in order to obtain correct process results.

Then, in the data compression stage 710, a compression
array 715 receives as mputs the Al, B1, A2, B2, A3, B3, and
A4, B4 output pairs from the four computational members
705, respectively. The compression array 715 also has a pair
of feedback lines connected through corresponding registers
750 from the output thereof The compression array 715
sums together the temporary absolute value data A1, A2, A3,
and A4, the corresponding data sign bits B1, B2, B3, and B4,
and the carry-in input of the summation in the previous clock
cycle for the four channels 1n the pipeline. The result of the
summation operation performed by the compression array
715 1s buffered by the register 750 and includes a summation
output S and a carry-out output C. A compression array 715
suitable for performing this operation can be a full-adder
array or a 4/2-ratio compression array. Examples of detailed
circuitry structure utilized to implement the compression
array 715 will be described in the following paragraphs.

When the amount of pixel data of the subject image block
1s too great to be processed 1n one passage through the four
channel pipeline of FIG. 5, intermediate compression result
data S and C are buffered at registers 750 at the output of the
compression array 715 and are fed back to inputs of the
compression array 715 1itself as the S and C 1inputs,
respectively, to be summed 1n the subsequent clock cycle.
This feedback routine can be repeated until all pixel data are
accounted for. At this stage, the resultant data 1s provided to
the next pipeline stage 720 as data S' and ', since the result
of the circuitry implementation of equation (1), which
involves the repeated cyclic summation operation outlined
above, has been determined.

In the subsequent process pipeline stage, namely the
summation stage 720, an adder 725 1s used to perform the
necessary operation. In effect, the summation stage 720
sums the temporary data S' and C' together, and provides the
sum to the next pipeline process stage.

The fourth pipeline process stage 1n the embodied tree-
architecture design 1s minimization stage 730. A minimum
value evaluator member 735 determines a minimum value
among the data generated by the summation stage 720.
During each pipeline processing cycle, the summation result
provided by the summation stage 720 1s compared with a
current minimum value held 1n the minimum value evaluator
member 735. Essentially, the minimization stage 730 selects
a minimum value by comparing between the calculated
image pixel MAE for each processed 1image block to that of
the compared 1mage. Whichever 1s smaller 1s selected and
stored as the minimum value. Once comparisons for the
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image blocks 1n the search area of the compared 1image block
are complete, the relative 1mage shift in the image block
having the minimum MAE 1s identified as the movement
vector MV of the processed original image. Thus, output of
the process pipeline stage 730 is the result of equation (2) set
forth above.

Practically, image blocks of 16x16 pixels are commonly
applied to the hardware configuration for obtaining the
movement vector when processing video 1image. Pixel data
having a format of eight bits are generally suflicient 1n most
cases to properly convey the S and C data required for video
image pipeline processing using the tree-architecture of the
invention. The following paragraphs describe a preferred
embodiment of the full-adder array used to construct the
tree-architecture of the invention. As mentioned above, since
an 8-bit pixel data format 1s used, a 16-bit data string internal
to the full-adder array 1s necessary. This 1s based on the
assumption that 16x16 1mage blocks to be processed by
passage through the four-channel tree-architecture of FIG. 5
would take at least 64 (2°) passes through the process
pipeline.

FIGS. 6A, 6B, and 6C respectively depict portions of a
complete adder array arrangement to be utilized as the
digital electronic circuitry elements for producing the 16-bit
results of the embodied tree-architecture design of the
invention. Essentially, these digital electronic circuitry ele-
ments are used to construct the compression array 710 of the
tree-architecture of FIG. 5. The adder array includes full
adders 6001 as shown 1n FIGS. 6A and 6B, and half adders
6101 as shown m FIG. 6C. The full adder 6001 1s a basic
binary adder having three operand 1nputs X, Y, and Z, as well
as a summation output S and a carry-out output C, as shown
in the drawing. As persons skilled 1n the art will appreciate,
the three mputs X, Y, and Z are the two add operands and one
carry-1n operand, respectively, as 1s commonly annotated 1n
related literature. The half adder 6101 1s a conventional halt
adder, which does not include a carry-in input.

In this full-adder array embodiment, the original 1mage
pixel data Al, A2, A3, and A4 may be expressed as {Al.,
Al ... Al },{A2 A2, ... ,A2,},{1A3 ,A3,,...,A3 },
and {Ad.,, Ad., . . ., Ad,}, respectively. Likewise, the
intermediate summation S and carry-out C data can be
expressed as {S,5,S,4, . .., Syt and {C 5, Ciyy ..., Gyt
respectively.

As shown 1n FIG. 6A, cach of the three least significant
bits (LSB) 0, 1, and 2 of the full-adder array is implemented
in circuitry having the same hardware configuration.
Essentially, a total of four full adders 6001 are used to
construct the sub adder array for each of the three LSB. For
example, 1n the case of bit 0, two full adders 6001 are
arranged 1n parallel at the top level to provide a total of six
inputs to accommodate four LSB of data Al, A2, A3, and
A4, namely bits Al,, A2,, A3,, and A4,, respectively, the
LSB of the S data, namely S, and the single bit of data B1.
Two of the four summation outputs from the two full adders
at the top level, that 1s, the two S outputs, are provided to two
of the three mnputs of the full adder at the center level. The
other two outputs, that 1s, the carry-out outputs, are relayed
to the sub adder array cascaded at the center and bottom
levels of the stage for bit 1. A third input of the center-level
full adder for bit 0 receives a single bit of data B2. Then, at
the bottom level of the sub adder array for bit 0, another full
adder receives the summation output S of the center-level
full adder, while the other two inputs thereof receive single
bits of data B3 and B4, as shown 1n the drawing. Summation
S and carry-out C outputs of this bottom-level full adder
form the LSB output of the compression array 710. In
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essence, they are summation output S'y and carry-out output
(', of the processed pipeline.

In the second and third LSB, that 1s, bits 1 and 2,
respectively, an arrangement similar to that described above
for data bit 0 1s utilized to produce second and third LSB
outputs of the compression array 710, namely, output pairs
S',, C', and S',, C',, respectively. Inputs 1n the second LSB
circuitry corresponding to those receiving B2, B3, and B4 in
the LSB subarray receive carry-out outputs from the adders
of bit 0. Meanwhile, the mput in the second LSB circuitry
corresponding to that receiving Bl in the LSB subarray
receives the C, feedback of the compression array itself. The
third LSB bit circuitry 1s similarly arranged. This similar
hardware circuitry configuration 1s repeated for subsequent
sub adder arrays up to and including bit 6, although the
subarrays for bits 3 through 6 are not shown 1n the drawing.

FIG. 6B shows that the sub adder array for bit 7 has a
hardware configuration that 1s very similar to that of bits
0-6. The carry-out outputs of three of the four full adders,
however, are provided to a sub adder array at the very next
cascaded stage which has a different hardware configuration.
As shown 1n the drawing, the bit 8 circuit configuration
includes two full adders, while the bit 9 circuit configuration
has one single full adder.

As shown 1 FIG. 6C, the sub adder arrays for bits 10—15
have basically the same hardware circuit configuration.
Essentially, the hardware circuitry of each of these six
subarrays 1s a stmple half adder 6101 that adds the S and C
data bits as shown 1n the drawing. That 1s, each half adder
6101 receives as mputs the sum output from that stage and
the carry-out output from the previous stage.

FIGS. 7A and 7B show constituent portions of the digital
clectronic circuitry mncluded 1n a second embodiment of the
compression array 710 for the tree-architecture design of
FIG. 5. The circuitry depicted in FIGS. 7A and 7B 1s built
around an array of 4/2-ratio compressors. Data correspond-
ing to those 1 the embodiment of FIGS. 6A, 6B, and 6C
have the same reference numeral designations 1n FIGS. 7A
and 7B. Three types of adders are included 1n this compres-
sion array. That 1s, 4/2-ratio compressors 7001, a full adder
7091, and half adders 7101 are used as the building blocks
for the compression array.

Essentially, a 4/2-ratio compressor 7001 1s equivalent to
two parallel-connected full adders 6001 described above 1n
relation to the first embodiment of FIGS. 6A, 6B, and 6C. As
shown in the drawing, each of the 4/2-ratio compressors
7001 has five inputs 11, 12, 13, 14, and carry-1n (i, as well as
three outputs C, S, and carry-out Co. Operation on the five
inputs by each 4/2-ration compressor produces the three
outputs C, S, and Co. The C output functions as the second
L.SB sum output bit, and the S output as the LSB sum output
bit.

Thus, with reference to FIG. 7A, 1t can be observed that
the combination of the two 4/2-ratio compressors 7001
connected 1n series for each of the LSB bits 0—7 provides the
nine mnputs needed to accommodate the data bits Al,, A2,

A3, A4, S,, B1, B2, B3, and B4, as 1n the case of the first
embodiment shown 1n FIGS. 6A, 6B, and 6C. Thus, 1t can
be casily seen that the circuitry hardware configuration
shown 1n FIGS. 7A and 7B 1s 1n fact equivalent to that shown
in FIGS. 6A, 6B, and 6C. Specifically, similar to the case of
the configuration shown 1n FIGS. 6A and 6B, cach of bits
0-7 of the 4/2-ratio compressor-based embodiment has two
cascade-connected 4/2-ratio compressors, connected to
function as an equivalent of the four full adder configuration.
Bit 8 1s a single 4/2-ratio compressor, corresponding to the
two full-adder configuration shown 1n FIG. 6B. Bit 9 is the




3,864,372

13

same as the full adder shown 1n FIG. 6B, and bits 10-16 are
the same as the half adders shown 1 FIG. 6C. Thus, the

4/2-ratio compressor-based compression array, which 1s
similar to the configuration of the first embodiment shown in
FIGS. 6A, 6B, and 6C, receives mputs Al, A2, A3, A4, Bl,
B2, B3, and B4, as well as the feedback S and C data, so as
to generate the 16-bit S' and C' data sets.

In substantial applications, the compression array 710

(FIG. §), whether built around either full adders or 4/2-ratio
compressor elements can be compared to conventional
implementations 1n terms of the total number of logic gates
to evaluate the implementation cost. When the full adder
implementation 1s employed, one full adder accounts for
seven logic gates, while one half adder accounts for four.
Thus, a four-channel full-adder-based compression array
requires a total of 269 logic gates to construct. On the other
hand, the signal propagation time delay through one full
adder 1s equivalent to that for a series connection of two
logic gates. The full adder-based compression array has a
coniiguration of three levels of cascade connection of these
full adders, therefore a total time delay of six logic gates 1s
required, although this time latency 1s smaller than the time
delay 1in the mimimum value evaluator member at the last
stage of the tree-architecture shown 1 FIG. §.

In contrast, the compression array 710 of FIG. § built
around the 4/2-ratio compressor elements has an equivalent
logic gate count of 218 and a time latency of six logic gates.
This 1s because a 4/2-ratio compressor element includes 11
logic gates, and each element has a signal propagation delay
equal to that of three series logic gates. Time latency 1n such
a 4/2-ratio compressor-based compression array 1s still
smaller than that 1n the minimum value evaluator member
connected at the last stage of the tree-architecture design.

Thus, based on either embodiment of the hardware cir-
cuitry configuration shown in FIGS. 6A, 6B, and 6C and
FIGS. 7A and 7B, it 1s possible to construct a compression
array for the tree-architecture design of FIG. § that 1s
completely arranged 1n a single process pipeline having a
total of four pipeline stages. With an architecture having
more than 32 channels arranged 1n two process pipelines, the
total number of processing pipeline stages 1s five.

Table 1 below outlines a comparison between compres-
sion array embodiments built around full adders and 4/2-
ratio compressor elements. In the table, m represents the
total number of channels established 1n the process pipeline.
N, and N,, represent the total number of stages in the
pipeline for the full adder- and 4/2-ratio compressor-based
configurations, respectively. D, and D, , represent the time
delay internal to the pipeline for the full adder- and 4/2-ratio
compressor-based configurations, respectively. Note that
Dy, and D, are expressed in units of the basic time delay
amount, T, for one two-input NAND logic gate.

TABLE 1

m Nga Dga N4y D,y
4 3 6T 2 6T

ol 5 107t 3 Ot
16 6 127 4 127
32 8 167 5 157
64 10 20t 6 18T
128 11 2271 7 21t

An examination of Table 1 shows that as the total number
of channels increases, neither the number of stages nor the
fime delay in either the full adder-based or the 4/2-ratio
compressor-based configuration experiences a proportional
increase. The increase of these parameters 1s actually more
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oradual than the channel number increase. For example,
while the number of channels increases from four to 128, an
increase of 3,200%, the total number of process stages
increases by less than 370% (11/3), and the time latency
increase is also than 370% (22/6).

Table 2 below compares the time latency characteristics
of the tree-architecture of the invention to that of the
conventional configuration shown in FIG. 3. In the table, T,
1s a basic operational clock cycle time unit. T, ., Tx,, and
T,, are time delays 1n the process pipeline for the conven-
titonal architecture of FIG. 3, the full adder-based
conilguration, and the 4/2-ratio compressor-based compres-
sion array, respectively.

TABLE 2

1T Tas TEa Ty
4 5 TP 4T13- 4 f'P

8 6TP 4TP 4 f'P
16 7TP 4Tp 4 f'P
32 STP 5 TP 5 TP
64 QTP 5 Tp 5 ?p
128 1 DTP 5 TP 5 f'P

The data of Table 2 show that as the total number of
channels increases, both compression array designs of the
invention experience a much smaller time latency than the
conventional design, approximately half the time latency

over the subject range.

Table 3 below compares the estimated semiconductor
integrated circuit device surface area of a circuit utilizing the
tree-architecture of the invention i1s implemented with the
surface area of a circuit utilizing the conventional architec-
ture shown 1n FIG. 3. In the Table A, represents the
estimated surface area for the tree-architecture utilizing the
full adder-based compression array shown 1n FIGS. 6A, 6B,
and 6C. A, . represents the surface area for the conventional
design.

TABLE 3
o Aga (ﬂmz) Aps (ﬂmz) Aps/Apa
4 1064 x 484 1064 x 665 1.37
o 1324 x 759 1761 x 966 1.69
16 2042 x 1026 2630 x 1427 1.79

The data of Table 3 shows that the device surface area
required for the conventional implementation 1s always
larger than that for the circuit of the present invention built
around the full adder-based compression array. And, as the
channel number increases, the A, /A, ratio increases as
well. This indicates that as the channel number increases, the
surface area requirement for the device increases as well, but
to a lesse extent when utilizing the circuit architecture of the
invention.

Thus, the mvention 1s characterized by at least the fol-
lowing advantages. First of all, as the number of channels 1n
the process pipeline architecture based on the compression
array of the mmvention increases, the total number of process
stages 1s smaller than the number required by conventional
architectures. This reduction results directly in an increased
processing efficiency. In other words, based on the same
number of processing channels and the same operating clock
frequency, the architecture of the invention allows operation
at a higher data throughput than with conventional systems.

Secondly, regardless of whether the full adder-based or
4/2-ratio compressor-based compression array 1s utilized,
the total number of equivalent logic gates of the architecture
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of the invention 1s always smaller than the number used 1n
the conventional parallel adder-based accumulation tree-
architecture design. Therefore, when implemented 1 a
physical semiconductor device, the dimensions are always
far smaller when using the architecture of the mnvention.

While the invention has been described by way of
example and 1n terms of preferred embodiments, it 1s to be
understood that the invention 1s not limited to the disclosed
embodiments. To the contrary, it 1s intended to include
various modifications and similar arrangements. Therefore,
the scope of the appended claims should be accorded the
broadest interpretation so as to encompass all such modifi-
cations and similar arrangements.

What 1s claimed 1s:

1. An apparatus for implementing block matching for
motion estimation 1 a video 1mage processing system,
wherein the apparatus receives pixel data from an original
image block and pixel data from a compared 1mage block
selected from among a plurality of possible compared image
blocks for determining a movement vector, the apparatus
comprising:

a computational stage for receiving the original image
block pixel data and the compared 1mage block pixel
data and for generating corresponding difference data
and sign data;

a compression stage, mcluding a compression array for
receiving said difference data and said sign data, for
generating compressed summation data and com-
pressed sign data;

a summation stage for receiving said compressed sum-
mation data and said compressed sign data, and for
generating a mean absolute error for said original
image block pixel data and said compared 1image block
pixel data; and

a mimimization stage for receiving said mean absolute
error for each said selected compared 1image block and
for determining a minimum mean absolute error from
among mean absolute errors calculated for different
compared 1mage blocks;

wherein said compression array includes a plurality of
adder elements arranged 1n a multi-level arrangement
such that all adder operand inputs and carry-in 1inputs of
said plurality of adder elements 1s disposed to receive

an mput signal level.

2. The apparatus of claim 1, wherein said adder elements
in said compression array include a plurality of full adders
and a plurality of half adders.

3. The apparatus of claim 2, wherein said difference data
represents a difference between said original 1mage block
pixel data and said corresponding compared 1mage block
pixel data, and wherein said sign data represents sign
information of said difference data.

4. The apparatus of claim 1, wherein said adder elements
1in said compression array include a plurality of compressor
clements, a plurality of full adders, and a plurality of half
adders.

5. The apparatus of claim 4, wherein said compressor
clements are 4/2-ratio compressors.

6. The apparatus of claim 5, wherein said compression
array receives said compressed summation data and com-
pressed sign data as feedback inputs.

7. The apparatus of claim 1, wherein said computational

stage further comprises a plurality of computational
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members, wherein said computational members are
arranged 1n parallel and each has a pair of inputs, wherein
onc of said pair of mputs 1s connected to receive said
original 1mage block pixel data and the other of said pair of
inputs 1s connected to receive corresponding compared
image block pixel data, and wherein said computational

members produce corresponding difference data and sign
data.

8. The apparatus of claim 7, wherein said compression
array receives all said difference data and said sign data
ogenerated by said plurality of computational members, and
sald compression array adds all said input difference data
and said sign data to generate said compressed summation
data and compressed sign data.

9. An apparatus for implementing block matching for
motion estimation 1n a video 1mage processing system,
wherein the apparatus receives pixel data from an original
image block and pixel data from a compared 1mage block
selected from among a plurality of possible compared image
blocks for determining a movement vector, the apparatus
comprising:

a computational stage including a plurality of computa-
tional members, wherein said computational members
are arranged 1n parallel and each has a pair of 1nputs,
wherein one of said pair of inputs 1s connected to
receive said original 1mage block pixel data and the
other of said pair of inputs 1s connected to receive said
corresponding compared 1image block pixel data, and
wherein said computational members produce corre-
sponding difference data and sign data, said difference
data representing a difference between said original
image block pixel data and said corresponding com-
pared 1mage block pixel data, and said sign data rep-
resenting sign information of said difference data;

a compression array for receiving said difference data and
said sign data generated by said plurality of computa-
tional members, for adding said difference data and said
sign data to generate compressed summation data and
compressed sign data;

a summation stage for receiving said compressed sum-
mation data and said compressed sign data, and for
generating a mean absolute error for said original
image block pixel data and said compared 1image block
pixel data; and

a minimization stage for receiving said mean absolute
error for each said selected compared image block;

wherein said compression array includes a plurality of
adder elements arranged 1in a multi-level arrangement
such that all adder operand inputs and carry-in inputs of
said plurality of adder elements 1s disposed to receive
an 1nput signal level.

10. The apparatus of claim 9, wherein said adder elements
in said compression array include a plurality of full adders
and a plurality of half adders.

11. The apparatus of claim 9, wherein said adder elements
in said compression array include a plurality of compressor
clements, a plurality of full adders, and a plurality of half
adders.

12. The apparatus of claim 11, wherein said compressor
clements are 4/2-ratio compressors.
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