US005362377A

United States Patent 119] 111] Patent Number: 5,862,377
Lee (451 Date of Patent: Jan. 19, 1999
[54] TECHNIQUE FOR SHARING INFORMATION 5,448,739 9/1995 JacobSONovevveveiiiriniiinenennnns 395/680
BETWEEN APPLICATIONS OTHER PURI ICATIONS
[75] Inventor: Kenton F. W. Lee, Palo Alto, Calit. IBM, Distributed Data Management Architecture: General
_ Information, Fourth Edition, Mar. 1993.
| 73] Assignee: Bay Networks Groups, Inc., Santa

IBM Implementation Planner’s Guide, First Edition, Jun.

Clara, Calif. 1986.

Primary Examiner—Majd A. Banankhan

Attorney, Agent, or Firm—DBlakely, Sokoloff, Taylor &
Zafman LLP

[57]

21] Appl. No.: 622,914
22| Filed: Mar. 27, 1996

Related U.S. Application Data ABSTRACT

[63] Continuation of Ser. No. 249,894, May 26, 1994, aban- A method of sharing data between a sender application and

doned. a receiwver application. The sender application and the
- 5 recerver application execute on a computer system. The
:51: Int. CL® o, G06‘F 15/163 method comprises the following steps. The receiver appli-
:52: U-.S. Clo . 395/680; 395/682 cation generates a receiver interface. The receiver applica-
h58d Fl&ld Of SEEII'Ch 395/650, 670, tion registers receiver data tokens in a registry' The data

395/680, 682, 683 tokens correspond to the data. The sender application gen-

crates a sender interface. The sender application generates

[56] Reterences Cited sender data tokens corresponding to the sender interface. A
US PATENT DOCUMENTS first token, of the sender data tokens, corresponds to one of
the receiver data tokens. The sender interface receives the
5,301,270 4/1994 Stfainberg et al. e 3457326 data and determines that the first token is registered by the
5,313,581 5/ 1594 Glokas et al. .occvcrvcincnnnnee. 395/680 receiver Interface. The sender interface transmits the data to
5,341,371 8/1994 Simpsoncccceeveeeeeeerriieneene. 370/85.4 the receiver application.
5,367,681 11/1994 Foss et al. ..ocovvvneveeennniiniininnnen. 395/683
5,388,213 2/1995 Oppenheimerc....... 395/200.75
5,390,328 2/1995 Frey et al.c.ccceiiiiiniiinnnnnene. 395/683 15 Claims, 5 DI'aWillg Sheets

333

User Selection
315

B
335

C
337

Applilgation
330

' ’ I
_...‘ C
345 357

Displa Regist
30y 30ry

™

\

A
343

Appli(gation Applilt::{ation
340 350

U.S. Patent Jan. 19, 1999 Sheet 1 of 5 5,862,377

Display
121
Keyboard
122 101

|

|
gur fo"l | Processor
ontro 123 I 109

|

Hard Copy |

Device 154 |

|

sound
Recording and

Playback

Device
125

Fig. 1

5,862,377

Sheet 2 of 5

Jan. 19, 1999

U.S. Patent

002 WaISAS MOpUIM X
012
IaNIBS X

Oc¢¢ UOIIoauUO)) HI0OM]oN

0Se 9oepau| abenbue N qiix - 99BUSIU| X [8AST MOT

062 18S 180pIp

09g uoljea||ddy

¢ ‘b4

5,862,377

Sheet 3 of 5

Jan. 19, 1999

U.S. Patent

¢ DI

0S¢

_(_o_Hmw___Q%

LGE

E,m_ mm

Ovt

co_am__a%

0l€
Ae|asSIg

omm
uoledl|day

LEY

GIE
JOIREIEINER

U.S. Patent Jan. 19, 1999 Sheet 4 of 5 5,862,377

Create Application
Wwidges
410

Create Selection Receiver Object for
Each Remote Selections Widget
420

Register One or More Lists for Each
Selection Receiver Object
430

Callback?
es

440

Y

Perform Callback Operation Given
Sender's Data List
450

FIg. 4

U.S. Patent Jan. 19, 1999 Sheet 5 of 5 5,862,377

Create Application Widgets
510

Create Selection Sender Object for Each
List To Be Sent
520

Add Send List Message to Each Send
Widget's Callback Function
530

No Callback?
540
Yes |

Amend Send List if Necessary and Cause
Send List Message
550

Request Registry
560

Find All Lists in Registry that are a Subset
of Send List
570

Access Window ID in Each List and
Transmit Send List to Each Window
580

FIg. 5

3,862,377

1

TECHNIQUE FOR SHARING INFORMATION
BETWEEN APPLICATIONS

This 1s a continuation of application Ser. No. 08/249,894,
filed May 26, 1994, now abandoned.

NOTICE

©SynOptics Communications, Incorporated, 1994. A por-
fion of the disclosure of this patent document contains
material which 1s subject to copyright protection. The copy-
right owner has no objection to the facsimile reproduction
by anyone of the patent disclosure, as it appears 1n the Patent
and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
applications communications. In particular, the present
invention describes a method and apparatus for communi-
cating information received in a first application to other
applications interested 1n that information.

2. Description of Related Art

Computers execute many programs (applications) at the
same time. Often cooperating applications need to share data
corresponding to their respective interfaces. That 1s, they
assoclate certain parts of their respective graphical user
interfaces (GUISs). For example, one application may present
a photo-realistic view of a network hub. A second applica-
fion may present a logical view of network workgroups. It
a user selects a network workgroup, 1t 1s desirable to show
all the ports on the hub corresponding to that network
workgroup. This presents the problem of how should the
information, that the user has interacted with 1n the second
application, be sent to the first application.

Typically prior art systems required that all sender appli-
cations had to be programmed to know the list of all receiver
applications. (Sender applications send data to receiver
applications when a user interacts with the sender applica-
fions. Any given application can be both a sender and a
receiver.) Thus, every sender application needed to know:
every possible receiver application; differences between the
types of information that various receivers will accept;
differences between the types of information that various
versions of any given receiver will accept.

Many problems exist with such solutions. Each time a
new receiver application 1s released, all the sender applica-
fions must be updated. Clearly, this causes administrative
difficulties for software manufacturers and users. Thus,
manufacturers and users need an easily extendible system
for communicating information between applications. Every
sender application must 1include all the receivers” additional
information. This makes writing the applications more com-
plex. Also, each sender maintains 1ts own version of the
information, causing a duplication of information. Thus, a
simpler solution to sharing information is needed.

A technique for sharing mnformation between applications
1s needed.

SUMMARY OF THE INVENTION

A technique for sharing information between applications
1s described. In one embodiment of the present invention,
sender and receiver applications are connected to one X
Window System display. The display contains a registry.
Receiver applications register information for the kinds of

10

15

20

25

30

35

40

45

50

55

60

65

2

data for which they are to be updated. Sender applications,
upon receiving an event from the display, check the registry
to find receiver applications interested 1n the sender appli-
cations’ data. When the sender applications are written, they
need only know about what information they can send. They
do not have to be written to know about all the possible
receiver applications.

One embodiment defines a method of communicating
data between a sender application and a receiver application.
The sender application and the receiver application execute
on a computer system. The method comprises the following
steps. The receiver application generates a receiver inter-
face. The receiver application registers receiver data tokens
in a registry. The data tokens correspond to the data. The
sender application generates a sender interface. The sender
application generates sender data tokens corresponding to
the sender interface. A first token, of the sender data tokens,
corresponds to one of the receiver data tokens. The sender
interface receives the data and determines that the first token
1s registered by the receiver interface. The sender interface
transmits the data to the receiver application.

Although a great deal of detail has been included 1n the
description and figures, the invention 1s defined by the scope
of the claims. Only limitations found in those claims apply
to the mvention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example,
and not limitation, 1n the figures. Like references indicate
similar elements.

FIG. 1 illustrates a computer system upon which one
embodiment of the present invention can execute.

FIG. 2 1llustrates a programmer’s view of the X Window
System.

FIG. 3 illustrates a system in which information in one
application 1s updated i1n response to user interaction with
another application.

FIG. 4 1s a flowchart illustrating registering an application
for receiving data, and receiving the data.

FIG. 5 a flowchart illustrating preparing to send data, and
sending the data.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview

An 1mproved technique for sharing user interaction
between several applications 1s described. In the following
description, numerous speciiic details are set forth such as
class names, X Window System components, etc., 1n order
to provide a thorough understanding of the present inven-
tion. It will be obvious, however, to one skilled 1n the art that
the present mnvention may be practiced without these speciiic
details. In other instances, well-known circuits, structures
and techniques have not been shown 1n detail 1n order not to
unnecessarily obscure the present invention.

Computer System

Referring to FIG. 1, a computer system upon which an
embodiment of the present invention can be implemented 1s
shown as 100. Computer system 100 comprises a bus 101,
or other communications hardware and software, for com-
municating mnformation, and a processor 109 coupled with
bus 101 for processing information. Computer system 100
further comprises a random access memory (RAM) or other

3,862,377

3

dynamic storage device 104 (referred to as main memory),
coupled to bus 101 for storing information and instructions
to be executed by processor 109. Main memory 104 also
may be used for storing temporary variables or other inter-
mediate formation during execution of instructions by
processor 109. Computer system 100 also comprises a read
only memory (ROM) 106, and/or other static storage device,
coupled to bus 101 for storing static information and instruc-
tions for processor 109.

Furthermore, a data storage device 107, such as a mag-
netic disk or optical disk, and its corresponding disk drive,
can be coupled to computer system 100. Computer system
100 can also be coupled via bus 101 to a display device 121
for displaying information to a computer user. Display
device 121 can include a frame bufler, specialized graphics
rendering devices, a cathode ray tube (CRT), and/or a flat
panel display. An alphanumeric input device 122, including,
alphanumeric and other keys, 1s typically coupled to bus 101
for communicating information and command selections to
processor 109. Another type of user mput device 1s cursor
control 123, such as a mouse, a trackball, a pen, a touch
screen, or cursor direction keys for communicating direction
information and command selections to processor 109, and
for controlling cursor movement on display device 121. This
input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), which
allows the device to specily positions 1n a plane. However,
this invention should not be limited to mput devices with
only two degrees of freedom.

Another device which may be coupled to bus 101 1s a hard
copy device 124 which may be used for printing
istructions, data, or other information on a medium such as
paper, film, or similar types of media. Additionally, com-
puter system 100 can be coupled to a device for sound
recording, and/or playback 125, such as an audio digitizer
coupled to a microphone for recording information. Further,
the device may include a speaker which 1s coupled to a
digital to analog (D/A) converter for playing back the
digitized sounds.

In one embodiment, computer system 100 1s merely a
portion of a larger computer system. In such an embodiment,
computer system 100 1s a terminal 1n a computer network

(e.g., a LAN).
X Window System

One embodiment of the present invention uses the X
Window System (X Window System is a trademark of The
Massachusetts Institute of Technology.) to facilitate the
transfer of information between applications. Other embodi-
ments use other systems for facilitating the communication
of information. For example, any system supporting a per-
sistent multi-tasking storage mechanism could be used.
Numerous references exist for the X Window System,
however, a general review of some concepts 1s presented
herein.

The X Window System 1s a network transparent graphical
windowing 1nterface for computers. Multiple applications
can execute simultaneously while connected to one display.
Network transparent execution allows the applications to run
on different computers on a network.

The X Window System 1s based on a client server model.
A single process, known as an X server, 1s responsible for all
input and output devices. The X server creates and manipu-
lates windows on the screen, produces text and graphics, and
handles mput devices such as a keyboard and mouse. A
client 1s an application that uses the X server’s facilities. A

5

10

15

20

25

30

35

40

45

50

55

60

65

4

client communicates with the X server by a local interpro-
cess communications mechanism, or a network protocol,

such as TCP/IP.

The following definitions will help 1n the understanding
of the following disclosure:

Display: a single X server process. Display can be used
interchangeably with “X server.” This definition differs
from the computer monitor “display”.

Screen: a single hardware output device. A single display
can support many screens.

Resource: each X server controls all resources used by the
window system (bitmaps, fonts, colors, etc.). Resources
are private to the X server.

Widget: a user interface component used by programmers
to create a user interface. Examples of widgets are
scroll bars, fitle bars, menus, and dialog boxes. A
widget includes a user interface window and some
procedures that operate on the window. Each widget
includes a widget ID to i1dentify that widget.

Window: a defined area on the display. Each window has
a window ID. A window 1s associated with a widget.

Callback: the act that causes some code 1n an application
to execute. Typically, the Xt Intrinsics (see below) calls
an application’s function (the callback function) when
some user activity has occurred in a window corre-
sponding to a particular widget.

Callback function: code 1n an application that defines a
function. The X server calls the function when an event
1s detected by the X server.

API: Application Programmer’s Interface.

FIG. 2 1llustrates a programmer’s view of an X Window
System 200. Note, also included 1s a widget set 250,
discussed below. Application 260 represents the application
written by the programmer. This application can be execut-
ing on a computer system such as described in FIG. 1.
Application 260 has access to various aspects of the user
interface system including: the widget set 250; the Xt
Intrinsics 240, and the low level X interface 230.

Each application 1s written to use these elements to
connect to an X server 210, over a network connection 220).
The widget set 250, in one embodiment of the present
invention, is the Open Systems Foundation (OSF)’s Motif
widget set. However, any widget set can be used. Widget set
250 implements user interface components, including scroll
bars, etc. Xt Intrinsics 240 provides a framework for com-
bining the widgets to create a complete user interface. The
low level X interface 230 provides the application with
access to the most fundamental procedures and data struc-
tures of the X Window System. In one embodiment, the low
level X interface 230, the Xt Intrinsics 240, and the widget
set 250 are written 1n C.

By connecting to the X server, each application can have
the X server 210 process events for that application. Thus,
when a user interacts with the user interface portion of the
display relating to application 260, the X server 210 notifies
the X interface 230 and Xt Intrinsics 240. Xt Intrinsics 240
in turn notifies application 260 through a callback. The X
server 210 sends the event, associated with the user
interaction, to Xt Intrinsics 240. The event 1s sent with a
window ID for identifying the window 1n which the event
occurred. Xt Intrinsics 240 uses the X interface 230 to read
the event. Xt Intrinsics 240 determines which widget cor-
responds with the window ID. Then, Xt Intrinsics 240
notifies the corresponding widget in the widget set 250. Xt
Intrinsics 240 then causes a callback function, correspond-
ing to the widget and the type of event sent from the X server

3,862,377

S

210, to execute. The callback function then often modifies
the display through a series of X commands (e.g. display
new information in a window, displaying a pop-up menu).

For further background on the X Window System, see
Scheifler, R. W. X Window System. (third edition) USA,
Digital Press, 1992; Young, D. A. The X Window System.
Programming and Applications with Xi. Englewood, N.J.,
Prentice-Hall, 1990.; and, Asente, P. J. X Window System
Toolkit: The Complete Programmer’s Guide and
Specification, Digital Press, 1990.

Sharing User Interactions Among a Number of
Applications

Overview

A method of sharing user interaction between two or more
applications 1s described. The method involves having each
receiver application register itself 1n a registry. The registry
contains 1nformation about all the receiver applications and
references to data they are to receive. When a sender
application wants to send information, the sender looks 1n
the registry for applications that are to receive the informa-
tion. The sender causes the information to be transferred to
the receivers that are to receive the mmformation.

By using some of the features of the X Window System,
one embodiment of the present invention allows multiple
applications to share information about user interaction with
those applications. Although this embodiment relies upon
the use of the X Window System, other embodiments do not
require the X Window System.

FIG. 3 1llustrates a system in which information 1n one
application 1s updated in response to user interaction with
another application.

FIG. 3 1illustrates three applications connected to one
display. In one embodiment of the present invention, each
application of FIG. 3 uses at least the X interface 230. In
another embodiment of the present invention, each applica-
tion of FIG. 3 uses the X interface 230, Xt Intrinsics 240, and
widget set 250. Application P 330 contains three widgets.
Widget A 333 relates to data A. Widget B 335 relates to data
B and widget C 337 relates to data C. For the purposes of
illustration, assume that data B represents a workgroup.
Application P 330 1s for displaying information about a
number of workgroups.

Application Q 340 includes two widgets: widget A 343;
and widget B 345. Application R 350 has two widgets:
widget B 355; and widget C 357. For the purposes of
illustration, assume that application Q 340 a view of a hub
on a network. Similarly application R 350 can represent a
view of a second hub on the network.

Assume that the user wants to select a particular
workgroup, and determine which ports on the hubs, repre-
sented 1n application Q 340 and application R 350, relate to
that workgroup. The user can select the particular work-
oroup 1n application P 330. This action 1s shown as user
selection 3135.

User selection 315 creates an X Window event. Although
the event 1s shown as directly affecting widget B 335, this 1s
a stmplification of how events are captured 1n the X Window
System. User selection 315 1s actually captured by display
310. Display 310 transmits an event and window ID to the
X 1nterface 230 and Xt Intrinsics 240. Xt Intrinsics 240
causes a callback to application P 330. (When connecting to
display 310, application P 330 gave widget set 250/Xt
Intuinsics 2440 a callback function pointer. Thus, display 310,
when detecting an event 1n the display corresponding to

10

15

20

25

30

35

40

45

50

55

60

65

6

widget B 335, eventually causes this callback.) Thus, the
callback function executes knowing that the particular work-
ogroup has been selected. The callback function generates a
list of data corresponding to the particular workgroup. Next,
the callback function causes the display 310 to store this list
of information 1n registry 320. Included in the list 1s a
receiver window ID associated with the receiver application.
The use of the receiver window ID will be discussed in
oreater detail below.

Registry 320 includes information about all the receiver
applications presently connected to display 310. Typically,
registry 320 1s an X window property. In this example,
registry 320 includes information registered by application

Q 340 and application R 350. That 1s, application Q 340
registered that it 1s 1nterested 1n data B. Application R 350
registered that 1t was interested 1n data B as well.

Application P 330 causes the user interaction data to be
sent to application Q 340 and application R 350 (the
applications interested in the information). Typically this is
done by calling functions 1n the receiving applications. Each
receiving application then updates its corresponding wid-
oets. That 1s, application Q 340 updates the information for
widget B 345 and application R 350 updates the information
for widget B 355. The updated widgets typically cause new
information to be displayed on display 310. In one
embodiment, the new 1nformation displayed shows that
information 1n the receiving application has been selected.
For example, widget B 345 and widget B 355 cause their
corresponding windows on display 310 to appear selected.
Thus, a selection of a workgroup 1n application P 330 causes

corresponding selections 1n application Q 340 and applica-
tion R 350.

Registration

For a receiver application to receive information, 1t must
register itself 1n the registry 320. Then the receiver appli-
cation can wait to receive sender information. FIG. 4 1s a
flowchart 1llustrating registering an application for receiving
data, and receiving the data.

At 410, the receiver application creates the widgets for the
receiver application’s user interface. Each widget 1s associ-
ated with a window and a number of functions. At 420, the
receiver application then creates a selection receiver object
for each widget that will receive information from other
applications. By creating a selection receiver object, the
receiver application 1dentifies the widget, 1n the user
interface, to receive the information. The receiver object
includes a pointer to a callback function in the receiver
application that will receive the sender information. In one
embodiment, the receiver’s widget, selection receiver
object, and callback functions represent a receiver interface.
However, other combinations of data structures and func-
tions can used to generate a similar receiver interface.

At 430, the receiver application registers, 1n registry 320,
onc or more lists for each selection receiver object. The
sender application uses the receiver’s registered list structure
to transier the information to the receiver application. These
lists inform sender applications of the types (or kind) of data
cach receiver application will receive. Each kind of data 1s
represented by a token. One embodiment uses OCL (Object

Control Language) for creating the lists. OCL is described in
oreater detail below.

After registration, the receiver application 1s prepared for
receiving sender information. At 440, the Xt Intrinsics 240
waits for an event. If an event 1s received, then, at 450, a
callback function, 1dentified 1n the selection receiver object,

3,862,377

7

1s executed by the recerver application. When executed, this
callback function typically changes the information in a
corresponding widget of the receiver application to show a
selection. For example, the receiver application Q 340
updates the information 1n widget B 345. The Xt Intrinsics

240 and the receiver application then wait for another
callback (steps 440 and 450).

When the receiver application shuts down, 1t deregisters
itself from registry 320. That 1s, 1t removes all the lists that
the receiver application had registered. Deregistration pre-
vents the registry 320 from being filled with lists for
applications that no longer exist.

The method of FIG. 4 can be used by multiple receiver
applications. Each receiver application registers its lists 1n
registry 320, and then waits for a callback. The receivers
register themselves when they are interested in data. New
versions ol receiver applications can register two lists for
example. One list corresponds to the previous version of the
application, the second list corresponds to the latest version
of the application.

Sending

For a sender application to send mmformation, it must first
initialize a selection send object. The sender application then
waits for a callback from the display 310. FIG. 5 1s a
flowchart 1llustrating a method of preparing to send data, and
sending the data.

At 510, like the receiver application, the sender applica-
fion must first create 1ts application widgets. At 520, the
sender application creates a selection sender object for each
list of information to be sent to other applications. Each list
typically contains information relating to some user activity
with the particular sender application. Typically, the list
contains data tokens corresponding to some user interaction.
For example, 1f the user selects a workgroup, then one of the
data tokens may correspond to the selected workgroup. By
transmitting the user interaction information that a work-
ogroup has been selected, receiving applications can change
their display information to show that the workgroup has
been selected. Step 530 reflects that each sender application
includes a send list message with each send widget’s call-
back function. When a send widget’s callback function
executes, the corresponding send list message will cause
some user 1nteraction information to be sent to other appli-
cations. Typically, the send message 1s included 1n the code
of the callback function at the time the sender application is
written. However, for completeness, step 530 has been
included. The selection sender object, the sender widget, and
the sender’s callback function represent a sender interface.
However, 1n other embodiments, other data structures and
functions can be used to provide a sender interface of similar
functionality. Thus, the sender application 1s ready to send
information responsive to some user interaction with the
application.

At 540, the sender application, through Xt Intrinsics 240,
walits for a callback. At 550, an executing callback function
prepares an amended list of sender information, i1f necessary.
The callback function also executes the send list message (as
included in the callback function in step 530).

At 560, the send list message causes a request from
display 310 to provide the information in registry 320. In
one embodiment, the information in the registry 320 1is
requested every time a send list message 1s executed. In
another embodiment, the sender applications keep track of
the registry information without having to continuously
access the registry 320 from the display.

10

15

20

25

30

35

40

45

50

55

60

65

3

At 570, the send list message causes a search to be done
of the registry information. The search looks for all lists
stored by receiver applications that are subsets of the tokens
in the send list. Thus, a set of lists 1s generated, each list
representing some receiver application that 1s to receive the
send list.

In one embodiment of the present invention, to 1improve
performance, sender applications cache the receiver lists
stored 1n registry 320. In this embodiment, registry 320
notifies sender applications when the registry 320 has been
modified. (Receiver applications typically modify registry
320 when they start or terminate execution.)

At 580, for each list representing some receiver
application, the send list message accesses the receiver’s
window ID 1n each list. Remember that when registering
itself 1 registry 320, the receiver application causes a
window ID of the a widget of the receiver application to be
included 1n each registered list. Using the receiver window
IDs, the send list 1s transmitted to each window as an event
for that window. Each receiver application will then receive
a callback. The callback includes the send list. Thus, the
sender application has efficiently and easily transmitted
information to a number of receiver applications.

Using the above technique, the sender applications do not
need to be preprogrammed with information about all other
potential receiver applications. Sender applications need
only know about what kinds of data they can transmit. Then,
sender applications need only learn of the receiver applica-
tions connected to a particular display. This makes updating
the sender and receiver systems simpler.

The above technique allows multiple sender applications
to use the same receiver applications’ registry. Thus,
receiver application information 1s not necessarily dupli-
cated 1n each sender application.

Class Structures

The following describes some of the object structures
used 1n an embodiment of the present invention. Although
these object structures have been used, the present invention
should not be restricted to using object oriented techniques.

OCL Types

In one embodiment of the present invention, sender
applications transmit data using OCL (Object Control
Language). OCL 1s an object oriented data architecture
providing a general and extensible format for exchanging
data between applications.

In one embodiment, the send list, and the lists stored 1n the
registry 320, are OCLLISTs. An OCLLIST 1s an OCL data
type consisting of an unordered list of symbol (or token),
value pairs. For some types of data exchange (for example,
between applications executing on two different computers),
OCLLISTs are encoded into architecture-neutral binary
streams at the sending end and decoded back into OCLLISTs
at the recerving end.

If only one OCLLIST 1s supplied by the receiver
application, all list item symbols and values must appear 1n
the sender’s list for the list to match (i.e., the receiver’s list
must be a subset of the sender’s). If more than one list is
supplied for a SelectionReceiver object, any list can be a
subset for the object’s callback function to be executed.

Further background on OCL can be found in “A Method
and Apparatus for Communicating Data,” U.S. patent Ser.
No. 08/235,158, filed on Apr. 28, 1994. Although a great

deal of information has been supplied on OCL, the present

3,862,377

9

invention 1s not limited to using OCL exclusively. Any data
exchange architecture can be used to communicate the send
information to the receiver application. For example, any
data exchange mechanism that supports machine architec-
ture independence and list data types having a subset like
function will suffice. One of ordinary skill in the art would
understand how to 1implement such a list data type 1n most
programming languages (¢.g. C++, C, Smalltalk, Lisp).

Selection Receiver Class

The SelectionReceiver class supports registration by the
receiver application. The C++ implementation interface is:

class SelectionReceiver {

public:

SelectionReceiver(Widget, XtCallbackProc, XtPointer pClientData);
SelectionReceiver(Widget, XtCallbackProc, XtPointer pClientData,

OCLLIST *, Boolean bCopyList = True);
~SelectionReceiver(void);
void vAddList(OCLLIST *, Boolean bCopyList = True);

void vDeleteAllLists (void);

The constructor methods specity the widget, in the user
interface, on which the data from the sender application
should be received. The constructor methods also specity an
X Toolkit style callback function to be automatically
executed when the sender data 1s received. This callback
function has a normal X Toolkit format. That 1s, the callback
transmits the widget 1D, the client data, and the call data.

The widget ID and client data are as specified 1n the
SelectionReceiver constructor method. Each widget has a
unique base window ID. This window ID 1s used 1n registry

320 to 1dentity the widget, and therefore, the receiver
application. The call data 1s a pointer to this structure:

10

25

30

35

10

copied by the SelectionReceiver class, so the receiver appli-
cation may modily or delete the list as 1t chooses. If the
receiver application no longer needs the list, 1t may disable
the copying by specifying bCopyList=False 1 the construc-
tor and/or vAddList () methods.

As noted above, receiver applications may register mul-
tiple lists. Each list corresponding to a different set of data
that the receiver 1s interested 1n receiving. This may occur,
for example, when a network device has two names. The
receiver application creates two lists, one for each name.

The receiver application may delete all of 1ts lists from the
registry 320 at any time with the vDelete AllLists() method.
However, receiver applications should execute the class

destructor method before exiting. This automatically deletes
the receiver application’s list from the registry. If a receiver
does not delete its items from the registry 320 before ceasing
execution, the SelectionSender object (see below) will
attempt to 1gnore 1nvalid entries.

Note that the X Toolkit specific functionality 1s mostly
hidden 1n the constructor method, so this class can easily be
ported to other IPC (interprocess communication - €.g.
messages to and from the X server) mechanisms.

The Selection Sender Class

The SelectionSender class supports transmitting data
from the sender application:

class SelectionSender {

public:

SelectionSender{Widget);

SelectionSender(Widget, OCLLIST *, Boolean bCopyList = True);
~SelectionSender(void);

void vSendStored(void);

vStoreList(OCLLIST *, Boolean bCopyList = True);

void vSendImmediate(OCLLIST *);

struct SelectionData {
SelectionReceiver *pSelectionRecerver;

OCLLIST *pocl;

h

The OCLLIST, 1n the call data, 1s a copy of the OCLLIST
to be sent by the sender application. The SelectionData
structure 1s owned by the SelectionReceiver class and should
not be deleted by the receiver application. The sender
application modifies the SelectionData every time a callback
1s executed. Therefore, the receiver applications should copy
interesting information in this structure, not modily the
structure.

Receiver programs may register an OCLLIST 1nitially in
the constructor method or later with the vAddList () method.
Most receiver applications will register these immediately
when they begin execution. By default, the OCLLIST 1s

50

55

60

65

The constructor method specifies an OCLLIST and a
widget within the sender application’s user interface. The

widget 1s used simply to identify the X server and need not
be associated with the OCLLIST. Typically, one OCLLIST
1s assoclated with each SelectionSender object.

The vSendStored () method should be executed when the
application wishes to send the OCLLIST to receiver appli-
cations. Normally, vSendStored () will be executed by one
or more of the sender application’s widget callback func-
tions. The method automatically reads the registry 320 to

identily the appropriate receiver applications.

The sender application may change the stored OCLLIST
at any time by executing the vStoreList () method. Both the
constructor and vStoreList methods copy the specified
OCLLIST by default. As with the SelectionReceiver class,
the copying may be disabled by specifying bCopyList=
False.

In another embodiment, the send list 1s created every time
a callback function 1s executed. The send list 1s then stored

3,862,377

11

in the SelectionSender object. The send list 1s transmitted
when the send list message 1s executed.

Finally, sender applications may occasionally want to
send an OCLLIST other than the stored list. They may do
this by using the vSendlmmediate() method. This method
sends the OCLLIST without modifying the stored
OCLLIST.

Registry

Registry 320 is an X window property (an X resource)
held by display 310. By having display 310 hold the
resource, all the display’s client applications have access to
the registry. That 1s, both receiver and sender applications
will have access to the registry.

The registry 320 contamns lists of data that receiver

applications will accept. Typically, the registry 320 1s an
array of OCLLISTs. Each OCLLIST contains a number of

OCLLISTITEMs. One OCLLISTITEM, 1n each stored list,
includes a window ID of a corresponding receiver applica-
tion. This allows the sender application to know to transmit
the send list to a particular receiver application. (The sender
application causes the send list to be copied to an X window
property associated with the receiver window ID. The X
server notifles the receiver, by an event, of the property
change.) The reason the window ID is used is because the
send list 1s handled as an event to the recerver window. Thus,
if the recerver window 1s processing other events, the
message 1s transmitted as a regular X event for the receiver
application.

Another OCLLISTITEM, 1n each list 1n the registry 320,

contains 1nformation about the receiver application’s pro-
cess ID. This process ID can be used 1n error detection. For
example, a receiver application may not have deregistered
itself from the registry 320 before ceasing execution. A

10

15

20

25

30

12

sender application can check the process ID of each poten-
tial receiver application to ensure that the receiver applica-
tion 1s still executing. Including the process ID also allows
any OCLLISTs, mn the registry 320 corresponding to a
terminated receiver application, to be found and removed.

The remaining OCLLISTITEMSs 1n each OCLLIST con-
tain tokens corresponding to data that a receiver application
will receive. Each OCLLISTITEM contains an OCLSYM-
BOL and a value. The OCLSYMBOL 1s the data identifier
(e.g. OCL__PORT). The sender and receiver applications
use the same OCLSYMBOLSs to 1dentify the same data. For
example, an recerver’s OCL__ PORT will represent the same
kind of data as a sender’s OCL__PORT. Note however, that
they do not have to internally represent the data in the same
manner. For example, the sender can represent a port inter-
nally as an integer, while a receiver can represent a port
internally as a string. Thus, sender applications need not
know how receiver applications internally represent data.

When the registry 320 1s accessed by the selection sender
object, the send list 1s compared with each receiver list in the
registry. The comparison 1s done on a per token basis. For

example, 1f a receiver list includes tokens for an OCL__
PORT and an IP___ ADDRESS, then this list will match a send

list that contains at least OCLLISTITEMSs for an OCL__
PORT and an IP ADDRESS. In one embodiment of the
present invention, both the OCLSYMBOL and the value, for

cach OCLLISTITEM, must match. In another embodiment,
a value of “*”, or null, matches any other value (e.g.

poclltem=new OCLLISTITEM(&OCLsymbol, 0) will
match any OCLLISTITEM having the same &OCLsymbol).

EXAMPLE RECEIVER APPLICATTON

The following illustrates an example receiver application
using the SelectionReceiver class.

#include «<Xm/Xm.h>
#include <Xm/Protocols.h>
#include «<Xm/RowColumn.h>
#include «<Xm/ToggleB.h>
#include <Xm/PushB.h>
#include <Selection.h>

#define OCL_ PORT “Port”
SelectionReceiver *srl, *sr2, *sr3, *sr4, *sr5;

// cleanup and exit

static void vExitCB(Widget w, XtPointer, XtPointer) {
delete srl; delete sr2; delete sr3; delete srd; delete sr3;
XtDestroyApplicationContext(XtWidgetToApplicationContext{w));

exit(0);

h

// stmple SelectionReceiver callback, just toggle state

static void vSelectionCB(Widget w, XtPointer, XtPointer callData) {
SelectionData *pSD = (SelectionData *)callData;
int state = XmToggleButtonGetState(w);

XmToggleButtonSetState(w,

h

Istate, False);

static Boolean bIsOdd(long 1Val) {

if (IVal %

= 1) return(True);

else return(False);

h

static Boolean bIsEven(long 1Val) {
if (IVal % 2 == 0) return(True);
else return(False);

h

static int iQueryPortNumber(OCLLIST *pocl) {
BOL OCLport = OCL_ PORT;
OCLLISTITEM *poclltern = pocl->Getltem(&OCLport);

OCLSYM

if (pocl:Item)

return((int) PVARZINT (poclltem-=>Value()));

else

return (—1);

3,862,377
13

-continued

h

// intelligent SelectionReceiver callback, use client & call data

static void vSmartCB{(Widget w, XtPointer clientData,
XtPointer callData)

1

SelectionData *PSD = (SelectionData *) callData;
Boolean *(*pSmartFunc)(long) = (Boolean *(*)(long)) clientData;
int iPortNumber = iQueryPortNurnber(pSD->pocl);
if ((*pSmartFunc) (iPortNumber)) {
int state = XmToggleButtonGetState(w);
XmToggleButtonSetState(w, !state, False);
h
h
// create and register OCLLIST, O 1s wild card value
static OCLLIST *poclCreateList(String pszSymbol, int iVal) {
OCLLIST *pocl = new OCLLIST();
OCLSYMBOL OCLsymbol = pszSymbol;
OCLLISTITEM *poclltem;
if (ival) }
OCLINT OCLvalue = 1Val;
poclltem = new OCLLISTITEM(&OCLsymbol, &OCLvalue);

}oelse {

poclltem = new OCLLISTITEM{&OCLsymbol, 0);
h

pocl->AddItem(poclltem);

delete poclltem;

return(pocl);

;
void main(int argc, char **argv) {

XtAppContext app;

Widget button, w, rc, top;

OCLLIST *pocl;

// shell and row column

top = XtApplnitialize(&app, “receive”, 0, 0, &argc, argv, 0, 0, 0);

rc = XtVaCreateManagedWidget(“rc¢”, xmRowColumnWidgetClass, top, 0);

// catch window manager shutdown

XmAddWMProtocolCallback (top,
XmlnternAtom(XtDisplay(top), “WM__DELETE__ WINDOW” False), vExitCB, 0);

// first 3 toggles ask for specific (symbol, value) pair

w = XtVaCreateManagedWidget(“1”, xmToggle ButtonWidgetClass, rc,
XtVaTypedArg, XmNselectColor, XmRString, “yellow”, strlen{(“yellow™)+1
0);

pocl = poclCreateList(OCL__ PORT, 1);

srl = new SelectionReceiver(w, vSelectionCB, 0, pocl);

delete pocl;

pocl = poclCreateList(OCL__ PORT, 13);

sr1->vAddList{pocl);

delete pocl;

w = XtVaCreateManagedWidget(“2”, xmToggleButtonWidgetClass, rc,
XtVaTypedArg, XmNselectColor, XmRString, “orange™, strlen{(“orange™)+1
0);

pocl = poclCreateList(OCL__PORT, 2);

sr2 = new SelectionReceiver(w, vSelectionCB, 0, pocl);

delete pocl;

w = XtVaCreateManagedWidget(“3”, xmToggle ButtonWidgetClass, rc,
XtVaTypedArg, XmNselectColor, XmRString, “green”, strlen(“green”)+1,
0)

pocl = poclCreateList(OCL_ PORT, 13);

sr3 = new SelectionReceiver(w, vSelectionCB, 0);

sr3->vAddList{pocl);

delete pocl;

pocl = poclCreateList{(OCL__PORT, 3);

sr3—>vAddList(pocl);

delete pocl;

// next 2 widgets specily symbol, use wild card for value

// client data specifies logic to interpret call data

pocl = poclCreateList(OCL__PORT, 0);

w = XtVaCreateManagedWidget{(“odd”, xmToggleButtonWidgetClass, rc,
XtVaTypedArg, XmNselectColor, XmRString, “white” strlen{“white’’)+1,
0)

sr4 = new SelectionReceiver({w, vSmartCB, (XtPointer)&bIsOdd, pocl);

w = XtVaCreateManagedWidget(“Even”, xmToggleButtonWidgetClass, rc,
XtVaTypedArg, XmNselectColor, XmRstring, “white” strlen{“white”)+1,
0)

srS = new SelectionReceiver({w, vSmartCB, (XtPointer)&bIsEven, pocl);

delete pocl;

// exit push button
button = XtVaCreateManagedWidget(“EXIT”, xmPushButtonWidgetClass, rc,

XtVaTypedArg, XmNbackground, XmRString, “red”, strlen(“red”")+1,
XmNalignment, XmALIGNMENT__CENTER,

14

3,862,377
15

-continued

0)
XtAddCallback(button, XmNactivateCallback, vExitCB, 0);
XtRealizeWidget (top);
XtAppMainLoop (app);

EXAMPLE SENDER APPLICATION
10

The following illustrates an example sender application
that uses the

#1nc]
#1nc!
#1nc]
#1nc!

#1ncl

ude <Xm/Xm.h>

ude <Xm/Protocols.h>
ude <Xm/RowColumn.h>
ude <Xm/PushB.h>

ude <Selection.h>

#define OCL_ PORT “Port”
SelectionSender *ss1, *ss2, *ss3, *ss13;

// clean up and exit
static void vExitCB(Widget w, XtPointer, XtPointer) {

h

delete ss1; delete ss2; delete ss3; delete ss13;
XtDestroyApplicationContext(XtWidgetToApplicationContext (w));

exit (0);

// callback from push button activation
// SelectionSender object 1s passed as clientData
static void vButtonCB(Widget, XtPointer clientData, XtPointer) {

h

SelectionSender *ss = (SelectionSender *) clientData;
ss—>vSendStored();

// create push button widget and one SelectionSender object per widget
// SelectionSender object can have only one OCLLIST
static SelectionSender *pAddButton(Widget parent, char *pszName,

1

h

void

char *pszSym, int 1Val)

OCLLIST *pocl = new OCLLIST();

OCLSYMBOL OCLsymbol = pszSym:;

OCLINT QCLvalue = 1Val;

OCLLISTITEM *poclltem = new OCLLISTITEM(&OCLsymbol, &OCLvalue);

pocl->AddItem(poclltem);

delete poclltem;

Widget w = XtVaCreateManagedWidget (pszName, xmPushButtonWidgetClass,
parent, 0);

// push button callback - pass SelectionSender object as client data

SelectionSender *ss = new SelectionSender(w, pocl);

delete pocl;

XtAddCallback(w, XmNactivateCallback, vButtonCB, (XtPointer) ss);

return(ss);

main(int argc, char **argv) {

XtAppContext app;

Widget w, rc, top;

// shell and row column widgets

top = XtApplnitialize{&app, “send”, 0, 0, &arge, argv, 0, 0, 0);

rc = XtVaCreateManagedWidget(“rc”’, xmRowColumnWidgetClass, top, 0);

// catch window manager shutdown message

XmAddWMProtocolCallback (top,
XmlnternAtom(XtDisplay(top), “WM_DELETE_ WINDOW”,False), vExitCB, 0);

// push button widgets

ss1 = pAddButton(rc, “one”, OCL__PORT, 1);

ss2 = pAddButton(rc, “two”, OCL_ PORT, 2);

ss3 = pAddButton(rc, “three”, OCL__PORT, 3);

ss13 = pAddButton(rc, “one+three”, OCL__PORT, 13);

// exit push button

w = XtVaCreateManagedWidget (“EXIT”, xmPushButtonWidgetClass, rc,
XtVaTypedArg, XmNbackground, xmRString, “red”, strlen(*red”) +1,
0);

XtAddCallback(w, XmNactivateCallback, vExitCB, 0);

XtRealizeWidget(top);

XtAppMainLoop (app);

16

3,862,377

17

A technique for sharing mnformation between applications
has been described.

What 1s claimed 1s:

1. A method of communicating data between a sender
application and a receiver application, said sender applica-
fion and said receiver application executing on a computer
system, said method comprising the steps of:

said receiver application registering a set of receiver data
tokens 1n a registry, said receiver data tokens corre-
sponding to a first set of data required by said receiver
application;

said sender application receiving user interaction infor-
mation representing user interaction with a graphical
interface associated with said sender application;

said sender application, responsive to the receipt of the
user 1nteraction information, identifying a set of
receiver applications to which subsets of the user
interaction information are to be transmitted based on
receiver data tokens registered 1n said registry;

said sender application transmitting a subset of the user
interaction information to said receiver application it
said receiver application 1s a member of said i1dentified
set of recerver applications; and

said receiver application updating a graphical interface
assoclated with said receiver application after receiving
the subset of the user interaction information.

2. The method of claim 1 further comprising the steps of:

said receiver application generating a receiver interface to
receive said first set of data;

said sender application generating a sender interface to
transmit the subset of the user interaction information
to said receiver interface; and wherein

said step of identifying further comprises the steps of
accessing said registry, and
comparing a set of sender data tokens corresponding to
the user interaction information with said receiver
data tokens to determine 1f said first set of data 1s a
subset of the user interaction information.

3. The method of claim 2 wherein said sender application
and said receiver application are connected to a display, said
registry 1s a resource of said display, said receiver interface
includes at least one receiver widget corresponding to a
portion of said receiver data tokens, said sender interface
includes at least one sender widget corresponding to a
portion of said sender data tokens.

4. The method of claim 3 wherein said receiver widget has
a receiver window 1identifier indicating a window 1n which
said receiver widget resides, wherein said receiver applica-
fion has a receiver callback function for receiving the subset
of the user interaction mformation, wherein said registry
includes a receiver list and said receiver data tokens are
included 1n said receiver list, and wheremn said step of
registering includes registering said receiver window 1den-
tifier.

5. The method of claim 4 further including the step of
generating a selection receiver object, said selection receiver
object corresponds to said receiver widget, said selection
receiver object includes a receiver widget identifier corre-
sponding to said receiver widget for uniquely i1dentifying
said receiver widget and a callback function pointer corre-
sponding to said callback function to facilitate invocation of
said callback function upon receipt of the subset of the user
interaction information.

6. The method of claim 2 wherein said sender interface
includes a sender OCLLIST and said sender data tokens are
included 1n said sender OCLLIST, wherein said registry

10

15

20

25

30

35

40

45

50

55

60

65

138

includes a receiver OCLLIST and said receiver data tokens
are 1ncluded 1n said receiver OCLLIST, and wherein said
receiver interface includes a data OCLLIST and the subset
of the user interaction information 1s included in said data
OCLLIST.

7. The method of claim 2 wherein said sender application
and said receiver application are connected to a display, and
wherein the graphical interface associated with the receiver
application includes an attribute dependent upon said first
set of data, said method further comprising the step of:

after said receiver application receives said first set of
data, said receiver application causing corresponding,
information mcluding said attribute to be modified 1n
said display.

8. The method of claim 1 wherein said sender application
and said receiver application are the same application.

9. The method of claim 1 wherein said computer system
comprises a first computer and a second computer, and
wherein said sender application 1s executing on said first
computer, and wherein said receiver application 1s executing
on said second computer.

10. The method of claim 2 wherein said registry includes
a plurality of receiver lists and said receiver data tokens are
included 1n one of said receiver lists and wherein said sender
interface includes a sender list and sender data tokens are
included 1n said sender list, and wherein at least one of said
recerver lists 1s a subset of said sender list.

11. Amethod of sharing user interaction between a sender
application and a receiver application, said sender applica-
tion and said receiver application having a common display,
said method comprising the steps of:

said receiver application registering a receiver token list
1In a registry, said registry 1s a resource of said display,
said receiver token list including one or more tokens
representing data associated with a first widget;

saild sender application generating a selection sender
object corresponding to a second widget, said selection
sender object including sender token information, said
sender token information mcluding one or more tokens
representing data associated with said second widget;
said common display receiving data corresponding to user
interaction with said second widget; and
said sender application communicating a subset of said
data to said receiver application upon determining said
receiver token list 1s a subset of said sender token
information.
12. A method of communicating data between a first
application and a second application comprising the steps of:
said first application program generating an application
interface for receiving user interaction information
representing user interaction with a graphical interface
assoclated with said second application;
said first application program creating a set of information
identifiers to register 1n a dynamic table, said informa-
tion identifiers representing data that i1s required for
maintenance of said application interface; and
said first application program registering said information
identifiers 1n said dynamic table making said informa-
tion 1dentifiers accessible to said second application, to
allow said second application to determine whether to
transmit user 1nteraction information to said first appli-
cation program.
13. A method of dynamically determining whether to
transmit data from a first application program to a second
application program, said method comprising the steps of:

said first application program receiving user interaction
information representing user interaction with a graphi-
cal interface associated with the first application pro-
oram;

3,862,377

19

if said second application program has registered a set of
data 1dentifiers corresponding to a subset of user inter-

action information, then said first application program

1dentifying said second application as an application to
which said subset of user interaction information 1s to

be transmitted; and

said first application program transmitting the user inter-
action 1nformation to said second application program.

14. A method of dynamically determining whether a set of
data should be communicated from a sender application to
a receiver application, said method comprising the steps of:

said receiver application registering a set of data identi-
fiers 1n a registry accessible to said sender application;

said sender application receiving user interaction infor-
mation representing user interaction with a graphical
interface associated with said sender application;

said sender application 1dentifying said receiver applica-
tion as an application to which a subset of the user
interaction mformation 1s to be transmitted by access-
ing the set of data i1dentifiers from the registry; and

said sender application communicating the subset of the
user interaction information to said receiver application
after said step of identifying identifies said receiver
application.

10

15

20

20

15. A method of sharing user interactions between two or
more applications comprising the steps of:

a first application indicating interest in a particular set of
data by registering a list of one or more tokens in a
registry accessible by both the first application and a

second application, the one or more tokens each rep-
resentative of a type of data in the particular set of data;

a second application receiving a set of event data relating
to user interaction with a graphical user interface
assoclated with the second application;

responsive to the user interaction with the graphical user
interface of the second application, the second appli-
cation determining whether or not to provide data in the
set of event data to other applications by searching the
registry for a list of tokens corresponding to a subset of
the set of event data; and

the first application updating a graphical user interface
assoclated with the first application 1n response to
receiving data relating to user interaction with the
oraphical user interface associated with the second
application.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,862,377
DATED : January 19, 1999
INVENTOR(S) Kenton F. W. Lee

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

In column 17 at line 5 insert -- , -- before “and” and following

“application”
In column 18 at line 52 delete “a” and insert -- said --

Signed and Sealed this
Fourth Day of April, 2000

Q. TODD IHCKINSON

Attesting Officer Director of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

