United States Patent |9

Fukui et al.

US005360110A
(11] Patent Number: 5,860,110
(45] Date of Patent: Jan. 12, 1999

[54] CONFERENCE MAINTENANCE METHOD
FOR CACHE MEMORIES IN MULTTI-
PROCESSOR SYSTEM TRIGGERED BY A
PREDETERMINED SYNCHRONIZATION
POINT AND A PREDETERMINED
CONDITION

|75] Inventors: Toshiyuki Fukui, Kawasaki;

Kazumasa Hamaguchi; Shuichi
Nakamura, both of Yokohama, all of
Japan

73] Assignee: Canon Kabushiki Kaisha, Tokyo,
Japan

21] Appl. No.: 699,105
22| Filed: Aug. 16, 1996

[30] IForeign Application Priority Data

Aug. 22, 1995 [IP] Japan ..cceeeeoeeoeeeeeereennn. 7-213373
Aug. 22, 1995 [IP] Japan ...ccoceooeoeeeeeereennn. 7-213374
Aug. 22,1995 [IP] Japan ..cceeeeeoeeeeereeeeennene. 7-213375
51] Inmt. CL® e, GO6F 13/00
52] US.CL o, 711/141; 711/143; 711/147
58] Field of Search 395/468, 469,

395/4770, 471, 472, 473

5,577,218 11/1996 Hamaguchicceeoueeennennnnnns, 395/405

OTHER PUBLICATTONS

Microsoft Press, Computer Dictionary, Second Edition, pp.
379-380, 1994.

“Lazy Release Consistency for Software Distributed Shared
Memory” by Peter Keleher et al.

“Delayed Consistency and Its Effects on the Miss Rate of
Parallel Programs™ by Michel Dubois, Jin Chin Wang, Luiz
A. Barroso, Kangwoo Lee and Yung—syau Chen, 1991 ACM
pp. 197-206.

Primary Fxaminer—ITod R. Swann

Assistant Examiner—Esteban A. Rockett

Attorney, Agent, or Firm—Titzpatrick, Cella, Harper &
Scinto

57 ABSTRACT

When a synchronization point 1s determined to maintain the
coherence of data 1 a multi-processor system, and data
write-back operations from caches to a main memory are
simultaneously performed at the determined point, the traffic
1s concentrated, resulting 1 poor eificiency. In view of this
problem, the write-back operations of cache data are arbi-
trarily performed when a predetermined condition 1s satis-
fied. Alternatively, when the number of copies which are
updated 1n the cache and do not match the corresponding
data 1n the main memory exceeds a predetermined value,

[56] References Cited _ _ _ _
cache data are written back. With this control, the write-back
U.S. PATENT DOCUMENTS operations of copies stored 1n cache can be prevented from
5,386,546 171995 Hamaguehiovvvveerrvrreeerr 30954425 ~ Peing concentrated at the synchronization point.
5,524,233 6/1996 Milburn et al. .coooevvvvveeennnnnnnn. 395/468
5,524,234 6/1996 Martinez, Jr. et al. ...ocouvueee, 395/468 11 Claims, 40 Drawing Sheets
10 20
 PROCESSOR PROCESSOR
14 PROCESSOR i) i 24 PROCESSOR

el </ BUS R N Z BUS

a i i A

LU NS s Dovee —143 SN RO SN A ;

140 142
Y
11 21
CACHE CACHE
| i
—-1b2 —~-1572
M\ M~
151 ADDRESS BUS e

12

152 DATA BUS

153 CONTROL BUS

MAIN MEMORY

15 SHARED
BUS

' BUS ARBITER

16

U.S. Patent Jan. 12, 1999 Sheet 1 of 40 5,860,110

FIG.T

10 20

PROCESSOR PROCESSOR
1 4PROCESSOR 2 4 PROCESSOR
/ 1 T N N 2. BUS
s ! ' |
Ll T— 1143 S e N :
140 i 142

11 21

152 152
153 191 153
151 ADDRESS BUS ;-"--,

.I 152 DATA BUS .
-. 153 CONTROL BUS

153 153 }
15 SHARED

BUS
MAIN MEMORY - BUS ARBITER

12 16

5,860,110

Sheet 2 of 40

Jan. 12, 1999

U.S. Patent

GG |

G 1

¢Sl
4/1 Y1vQ

SNg QJ4VHS

10d1NOJ 41 SNg Q3Y¥VHS val

161

d01J313S

vll

HOLVYVdWOD |
- AN
|
— 9Y14
WVES | ooivig [OYL SS3YAQY
V1VQ e———

J0d1NOD %2078 3HOVI GL 1

1G 1
4/1 SS34aqy

SNE QJ4VHS

4/1 V1Y¥Q

SNY d0SS3004d

14!

1-SS34AQY ¢l |
1041NGD 41 SNE d0SS3I0H4 061

44

¢ Ol4

4/1 $S3Yaay
SNY d405S3904d

lv |

961

J041NOD
d01VdVYdNOO
9l1

43151934
JVNYILIN |

d3IN3IN03S
10d1NOD JHOVD

o7 1

€G1l

4/1 T0H1NOD

SN8 QJYVHS

1U0)-S
G6 |

L1

1U0)-7
b6

4/1 T1041NOD

SNd 40SS3004d

vl

U.S. Patent Jan. 12, 1999 Sheet 3 of 40 5,860,110

FIG.3

LOAD COMMAND 1SSUED

S301

YES
[(READ HIT PROCESSING]

DOES ADDRESS

TAG STORE MATCHING
ADDRESS?

NO
[READ MISS PROCESSING]

I CACHE MISS PROCESSING l

SUPPLY DATA TO PROCESSOR t—9S303

U.S. Patent Jan. 12, 1999 Sheet 4 of 40 5,860,110

FIG.4

STORE COMMAND ISSUED

S401

YES
[WRITE HIT PROCESSING]

DOES ADDRESS TAG STORE
MATCHING ADDRESS?

NO
[WRITE MISS PROCESSING]

| CACHE MISS PROCESSING I S402

S403
WRITE DATA
FROM PROCESSOR

U.S. Patent

Jan. 12, 1999 Sheet 5 of 40
CACHE MISS
S S501
CACHE REPLACEMENT NO

REQUIRED?
YES

SELECT BLOCK TO BE S502
REPLACED
I WRITE-BACK PROCESSING I 5203

ISSUE SHARED BUS USE 3504
REQUEST TO BUS ARBITER |

S505

IS USE OF SHARED NO
BUS GRANTED?
YES
|SSUE READ REQUEST S506

TO MAIN MEMORY

TRANSFER DATA FROM MAIN | _g5o7
MEMORY TO SHARED BUS

REGISTER DATA IN ENTRY S508
OF SRAM IN CACHE

SET FLAG CORRESPONDING
TO ENTRY 5909

5,860,110

5,860,110

NVI10. 39 0L JHOVD
v09S 40 9Y14 SNLVLS 13S

JHOVO 40 9V
SNLVLS 31Val IVANI

= Vi3S 008 ANONIN NIVH NI
i 7o, VLVQ MOvE-3LIHM 311K
> Q1VA "ONTHOLVI 3401S OVL
z . oAy S SN AIUVHS OLNO
-
z ©H9S T 1S3N03Y XOvE-ILI4M NSS!
Jovo 4l |1 0% Y0018 V1VQ.ALY1Q, 40
2 1957 NI vl SS3aav Howvas | . NOILVH3d0 YOVE-3LI¥M
2 “ >3] AL1H014d-H0T 3LNO3X3
N _ .
- ' oN LOILNVHO SNS
. SN q34VHS NO | !
g L19S ™ 153n03Y ¥ovE-3LIEM dOONS | ! 03dvhS 40 350 S|

10018 vivd.Alald, 40

NOI1Vddd0 MOVE-3lidM
AL1d01dd-HOIH 31N03X3

-3d1S dOONS (9 *301S 1S3n03Y (e

9 Ol

U.S. Patent

5,860,110

Sheet 7 of 40

Jan. 12, 1999

U.S. Patent

ON 15S3004d
LIH Qv3d 3HVO(®

9N 15S3004d
LIH 31188 FHOVO(D

ON1SS3004d XOva-3L114m (B

ON 1 SS3004d
LIH 31144 FHVO QO

IN 15S3004d
LIH V34 3HVO ©

40SS3904d 40SS3004d
YIHLONY WOY
YIHLONY WOY
NO1 LOVSNVYL
NOTLIVSNVeL ON11¥Q1 VAN B)

ON1LYaITVANI ©

ON| SSII0Y
SSIN avay FHOVO

AN

ON1SS300Yd
SSIN ALI¥A IHIVO D

aNd

ON

5,860,110

10018 .Aldid., 40
808S NOI1YYd3d0 XOVa-JLlIuM
AL1d01dd-HO1H 31N03X3

A0018 LAldld, d0
NOI1Vd3d0 MOVE-3LiaM
AL1d014d-A01 J1NO3X3

¢NX018 LALYHI1Q,
010H 3HOYO S30d

SJA

G08S

A018 .ALdId. 40

NOI1vd3dd0 XOva-dliuM
ALIH01dd-HOIH J1no3Xd

153034 SNg dJdavHS JNSSi

¢QILNVHI
A1LIONdAI SNE AJUVHS

30 35N S
608S

J 08S P08S
S3A

Sheet 8 of 40

¢Q30V1d3
39 01 0019 SV 43193135
A0018 .ALd14, S

15JN034 SNG A3avHS JNSS|
£08S

ON

S3A

908S

CANVAWOD INAS
dINSS| H0SSJ00dd SYH

ON
¢08S

Jan. 12, 1999

SJA

$X00718 LALYIG,
d10H JHOVD S3J0d

e " N

L08S

ON1SS3004da

8 Dl Yova-3L1 A

U.S. Patent

5,860,110

Sheet 9 of 40

Jan. 12, 1999

U.S. Patent

« 698 991

€Gl

.Tsm 691

gt =N = PSS EESW W W w R TERE GG R O ok B e W W

ll

9691

11N3419
NOIL1VNIdNO9

d31 184V SN4

9691

 CE E R N R FEIEEEEES s e a®

1109 891

«89 191

« 048 ¢91

« 149 191

£G4l

INVHO LIOINdAI NO 43SV8 1SJN03Y SNE NO g3sve 1S3N034 SN9 NO Q3Své
¢ H3LSYN Sng A9 3sn ¢ HI1SYN SNg A9 3sn | 431LSYN SN A8 3sSN

5,860,110

m m R "l
3 “ “ N
S " “ o\
- _ _ . _ \ *Nmum
= SNg 40 3SN H04 LNVYO LIOMdiNl m S e R
> m m /T T\l +198
m “ 1\ | A
. _ n B
=) m m Y R
. | " AR +148
a _ _ _ “ “ “
5 N0
= ! _ _ _ ' \

01 Dl

U.S. Patent

U.S. Patent Jan. 12, 1999 Sheet 11 of 40 5,860,110

FIG.11

SYNC COMMAND |SSUED

| WRITE-BACK PROCESSING | S1101

5,860,110

Sheet 12 of 40

Jan. 12, 1999

U.S. Patent

A0018 .Aldld. 40

NO|1VH3d0 Mova-dL|aM
AL1401dd-K01 11N93X3

1531034

SN Q3HYHS JNSS|
¢lLelS S3A

¢IHON 40 JNIL
40 d0143dd d3aNIN4313034d
404 1V 1ddX .84 S|

L1C1S

S
ON

ON

6021S

2018 .ALdid, 40
NO11Vd3d0 MOv3-31|aM
AL1H01d4-R01T 41N03Xd

E

¢QJLINVHO
ATLIONdAT SN8 JJYVHS
40 35N Si

ON

¢N0019 LALYIQ. SJA

010H 3HOVD S40d

A00718 ALdld. H01[G021S

NOI1V43d0 XOVE-JLldm
ALIH01dd-HOIH 31N23X3

A0018 LALd1d. 30
NOIL1Yddd0 AOVE-J1lidM
AL14018d-HOIH d1N03X3

1S3N034
A SNY dJuvHS dJNSS|

1S3N03d
SNY dJ4VHS JNSS|

€0CIS

SdA

¢330V 143
39 01 Y0018 SV 44103135
20014 .Aldld. SI

ON

S3A

90¢ 1S

CANVINROD ONAS
dINSS| d0SS330dd SVH

¢A0018 LALYI(

ON1SS3004d HovE-Jl1aM

5,860,110

Sheet 13 of 40

Jan. 12, 1999

U.S. Patent

A018

LALYIQ, 20 NOILYYIO || goeis LALH1Q. 40 NOILVY3dO
¥ova-3L18M 31n03x3 || ¥Ova-3LI¥N 3LN93X3

A9013

SdA

1S3N034 SN d34vHS
AL14014d-HOIH dNSSi

¢NIALD ST 98
G31VY3NIO 1S3N034 SNd
114014d-HO1H S|

40434

ON LOE LS

S3A

0LEILS

¢30V1d3Y

1531034 SNd A4dVvHS
AL14014d-M0 1 JNSSI

60 1S 90¢€ 1S

A0018 .Aldld. S

€l 9Ol

POEILS

38 01 %0149 SV 4dlod13s

GOEILS

ON
¢OEILS

ON
10ELS

ddnsSi d¥0SS3008d SYH

ON

$&N00718 ALY,
J10H JHIOVD S30d

AJ01d
«Ald1d. 40 NOI11Vd3do
AVE-3L18M 31N03X3

1S3N03d SN8 dJavHS
AL1H018d-HIYIH JNSS|

E0CILS

S3A

LANVIRINOD ONAS

SdA

(X018 WAL,
J10H FHOVI S30d

ON1SSJ004d
AVE-AL1HM

S3dA

5,860,110

Sheet 14 of 40

Jan. 12, 1999

U.S. Patent

£G1

299991

1og g9l

-

‘

'--h-l---

" y3Liewv sng
569 |
P69 |

%

>

L I B B BN BN BN BN BN B BN BN BN BN il ovm e e ok = i R B e o e L I B OB OB OB W O O N N N N LI I N I B I N N N I NN I[N E Y EEEEERERE --.

‘-hn------

2104 891

x84 191

«6d1 V91
£Gl
«d1€91

«048 ¢91

.15 191

5,860,110

Sheet 15 of 40

Jan. 12, 1999

U.S. Patent

¢ Y3LSYN Sng Ag 3N

IIII-III'-.

¢ 431SYWN Sng A8 3SN

B L

| 43LSYW SN A9 3sN

- e e

x84
AV

x0d |
xbd]

A

«198
At

1 48

A 104

U.S. Patent Jan. 12, 1999 Sheet 16 of 40 5,860,110

FIG.16A

BG1™

U.S. Patent Jan. 12, 1999 Sheet 17 of 40 5,860,110

FIG.1TA

BG2"

* BG2" = IMMEDIATELY PRECEDING
VALUE OF BG2*

* BB*=L

FIG.17B

BG1’

5,860,110

Sheet 18 of 40

Jan. 12, 1999

U.S. Patent

9¢ £t

4311184V FOV44dINI

SN8 QJUYHS JAONG3IN|
Snd J3YYHS S€

¢t 1 €

AdONIR

N VIt 3JHIYI

SN8 H0SS3204d vE

0o~ 40S53004d
300N

SNg Va0 19 v

9¢ £¢

4311848V FJOV4d41NI
SN8 QJavhS JQONddLN|

SNG Q3UVHS S¢

¢é ¥4

AdON3N

N IV JHOVD

SN H0SS3004d ¥ ¢

02 d0554904d
440N

81 Ol

d31184V

1 sng 1vg019

91 el

431184V JOV4Y43LNI
SNY Q34VHS JQONYILIN|

SN8 J34YHS G 1

¢l 1 |

AHOW 3K

SN 40SS300dd ¥ |

0 1 —{ 40$$3204d
3A0N

U.S. Patent Jan. 12, 1999 Sheet 19 of 40 5,860,110

FIG.19

12

PROCESSOR MAIN MEMORY

_14PROCESSOR
: " BUS
= MEMORY 123
143 CONTROL BUS
142 DATA BUS
R
— 122

141ADDRESS BUS
121 ROV HEMORY | | p1ReCTORY
CACHE sEQUENCER [| UNIT
Ty [T
.

l. 152 DATA BUS e
153CONTROL BUS f
INTERNODE SHARED Bus| 2 DHARED

INTERFACE 13 ARBITER SUS

131
132 16
133
.. 41 ADDRESS BUS
— 42DATA BUS
o

. "--T; 43 CONTROL BUS
GLOBAL BUS |5 AGRIBAL
ARBITER

U.S. Patent Jan. 12, 1999 Sheet 20 of 40 5,860,110

FIG.20

12 MAIN MEMORY

MEMORY 123

DIRECTORY
FLAG

121

MAIN MEMORY
CONTROL

SEQUENCER 124
122
DIRECTORY
UNIT 158

MAIN MEMORY
CONTROL BUS
INTERFACE

MAIN MEMORY
ADDRESS BUS
INTERFACE

MAIN MEMORY
DATA BUS

INTERFACE

153 151 152
SHARED SHARED SHARED
CONTROL BUS ADDRESS BUS DATA BUS

U.S. Patent Jan. 12, 1999 Sheet 21 of 40 5,860,110

FIG.21

S1701
YES [READ HIT PROCESSING]

DOES ADDRESS

TAG STORE MATCHING
ADDRESS?

NO [READ MISS PROCESSING] 1709
SSUE DATA REQUEST ONTO | 1703 SUPPLY DATA T0 PROCESSOR
SHARED BUS IN NODE ' -

$1704 (END)

DOES LOAD ADDRESS YES
INDICATE MAIN MEMORY [N
LOCAL NODE ?
NO S1710

ISSUE DATA REQUEST ONTO
GLOBAL BUS

ISSUE DATA REQUEST S1711

TO MAIN MEMORY
| IN REMOTE NODE

S1712 S1705
REGISTER DATA REQUEST ISSUE DATA REQUEST TO
EBPYﬂﬂffgssTlg‘G' SOURCE CACHE N MAIN MEMORY IN LOCAL
NODE]MO DIRECTORYOF REMOTE NODE NODE
S1713 S1706
TRANSFER DATA FROM MAIN REGISTER DATA REQUEST _]
MEMORY OUTSIDE NODE SOURCE CACHE IN
ONTO GLOBAL BUS DIRECTORY OF LOCAL NODE
{__ [PROCESS ING
S1714 S1707 | BY MAIN
TRANSFER DATA FROM TRANSFER DATA FRoMMan | | MEMORY
GLOBAL BUS ONTO SHARED MEMORY IN LOCAL NODE
BUS IN NODE ONTO SHARED BUS INNODE | |
. S1715 S1708
RECEIVE DATA BLOCK RECEIVE DATA BLOCK
(REPLACE PROCESSING) (REPLACE PROCESSING)
S1716 ' S1709

SUPPLY DATA TO PROCESSOR SUPPLY DATA TO PROCESSOR
_END

U.S. Patent Jan. 12, 1999 Sheet 22 of 40 5,860,110

EXECUTE WRITE-BACK

OPERATION OF DATA BLOCK F I G ' 2 2
ISSUE WRITE-BACK REQUEST | 51801

ONTO SHARED BUS IN NODE

51802

IS WRITE-BACK
ADDRESS PRESENT IN
NODE?

NO

ISSUE WRITE-BACK REQUEST
AND TRANSFER WRITE-BACK 51808
DATA ONTO GLOBAL BUS

YES

ISSUE INTERNODE WRITE-
BACK REQUEST TO MAIN S1809
MEMORY I[N REMOTE NODE

$1810 S$1803
SEARCH DIRECTORY IN SEARCH DIRECTORY OF
REMOTE NODE LOCAL NODE
S1811 >1804

S ANOTHER VES IS ANOTHER VES
CACHE REGISTERED IN CACHE REGISTERED IN
DIRECTORY? | DIRECTORY?

NO

EXECUTE INVALIDATING
PROCESSING OF DATA
BLOCK IN DETECTED

EXECUTE INVALIDATING
PROCESSING OF DATA
BLOCK IN DETECTED

CACHE CACHE
S1813

WRITE WRITE-BACK DATA WRITE WRITE-BACK DATA | _s1806
IN MAIN MEMORY OF IN MAIN MEMORY IN LOCAL

REMOTE NODE NODE

SUPPLY COMPLETION SUPPLY COMPLET ION S1807
MESSAGE TO WRITE-BACK MESSAGE TO WRITE-BACK

REQUEST SOURCE REQUEST SOURCE

S1814

LINN AHOWdN NIV Z |

AHOWIN 07|

91

5,860,110

d11 134V
SNd

- -] - - - -

SNg H0SS3o0oHd 2 —- s SNd H0SSIN0Hd ¥ L —.. s

07 H0SS3004d Ol 40SS3204d

£¢ Ol

5 ~
w mm:m V1Va 26| H S N
g SN9 SSIUAQY LG L ~—— o
¢ 9 .~
EE 1G1 egl | 261 161
2 7 LINN JHOVD o LINA 3HOVD
&N
5 snd SS3xaav SNg SSI¥Aay
: SNg TOHLNOD V2 V¢ sng 1041N0D EV L vl
= SNg Y1vda Sng Y1vda
v g

U.S. Patent

5,860,110

Sheet 24 of 40

Jan. 12, 1999

U.S. Patent

SN8 V.Ivd

Sng ss3yaay Sng J04LNOD
1207 V20 907
2G| 1G1 G |
JOV4Y43INI . J9V44IIN| 96 | 3OV44IIN]
GG 1 Sng viva - sngd ss3yaay SNg T041NOD
V207 vl cll W01 2L Y207
AYON3IN
WAL
- - q3giyosud | !
AYINT Y1va
SNLVIS 1 55340dy 43LNNOD 4IININDIS
oy 14 T041NOD
SNLYLS JHIV)
L 4+] 4 4] A ¥
—— 1Al il T
2L dnOY9 IN1T TYNOIS
= ¥019373S = 4O1VHYdNOD T081NOJ SNLYLS 521
— — —/ IN1T T0HLNOD
S — HOLVHYJN0D 9. _/_
gLl Gll ‘ —
JOV4Y4IIN| JOV44IIN| 39V44IIN|
G| sng v1va by 1~ SNG SS3HAQY gy |~ SNg T0YLINOD
40SSII04d 40SS3904d 40SSII04d
mwmmmww“m SnNg $S3yaaqy SnNg T041NOD
. 40SS3004d 40SS3004d
24! .vN O_n_ 11 ey |

U.S. Patent Jan. 12, 1999 Sheet 25 of 40 5,860,110

FIG.25

LOAD COMMAND [SSUED

S2501

YES
[READ HIT PROCESSING]

DOES ADDRESS TAG STORE
MATCHING ADDRESS?

NO

[READ MISS PROCESSING]
OCESSING
READ MISS PROCESSIN S2502 S2506

'ISSUE DATA REQUEST TRANSFER DATA TO
ONTO LOCAL BUS PROCESSOR

S2503
TRANSFER DATA FROM m
MAIN MEMORY IN NODE

ONTO LOCAL BUS

EXECUTE REPLACE
DATA BLOCK

PROCESSING OF | 52504

TRANSFER DATA TO S2505
PROCESSOR

5,860,110

Sheet 26 of 40

Jan. 12, 1999

U.S. Patent

d11NN0O OV 14
SNLVLS 13534

INISS3004d
Ava-1114h Yivad 3100dX3

L092S

SE P
909¢S

G09¢2S

¥09¢2S

€09¢S

8092ZS |

ON

¢ANTVA 439143S34d
(330Xd 441NN0J 9V14 SNLviS 40
AN IVA S304

431NN0Y 9V
SALVLS INIWFHONI

Aldld. 38 0L
OV1d SNLVIS 135S

d0SS3004d

NO4d VLVA Y3d4SNYHL

S3A
109¢S

9¢ 9l

ON1SS3004d
SSIN dv3y 31NJ3X3

209287 o

¢SS3HAQY
ONTHOLVN JH01S 9V1 SS34aqy
5304

@3INSS1 ANYANOD 3HO01S

U.S. Patent Jan. 12, 1999 Sheet 27 of 40

FIG.27

SYNC COMMAND ISSUED

S2701

DOES STATUS FLAG
STORE AT LEAST ONE
"DIRTY" FLAG?

NO

YES

EXECUTE WRITE-BACK
PROCESSING OF “DIRTY” 52702
DATA BLOCK

SET STATUS FLAG OF
PROCESSED DATA BLOCK 52703

10 BE “CLEAN”

5,860,110

DECREMENT STATUS $2704 m
"~ FLAG COUNTER

5,860,110

Sheet 28 of 40

Jan. 12, 1999

U.S. Patent

_ 3JHOVO 40
ON1SS300Hd ONILYQITVANI

20018 V1vad 31nJ3X3
L08¢S

908¢S

G08¢S

082S

¢LINN 3HIVD
d3HLONV A8 Q3HVHS %0079 YLvd
40 AdOD S|

€08¢S
1INN 3HIYD H3HIONY Ag
SN8 TvI01 NO V1vd dOONS
“ ¢08¢S
108¢S

8¢ 9l

JOVSSIN NOI 1371dWOD
JAI303H

J04N0S 1S3N03Y
AVE-IL1HM OL JIVSSIN
NOIL31dNOD A1ddNS

AHON3N NIVH NI
VLVQ OVE-3L1HM JL1HM

SN8 1VO071 OLNO
1S3N034 MOva-3ILiHM 3INSS|

A0018 Viva 40
1S3N03H MOVEa-3LI14HM

U.S. Patent Jan. 12, 1999 Sheet 29 of 40 5,860,110

FI1G.29

REPLACE REQUEST
OF DATA BLOCK

REPLACE DATA BLOCK DETECT
DATA BLOCK TO BE REPLACED S2901
BASED ON ALGORI|THM

52902

DETECTED DATA BLOCK= YES
“DIRTY" BLOCK? S2904
N5 EXECUTE WRITE-BACK
PROCESSING OF “DIRTY”
DATA BLOCK
S2903 S2905

LOAD DATA INTO ENTRY OF LOAD DATA INTO ENTRY OF
DETECTED DATA BLOCK DETECTED DATA BLOCK

5,860,110

Sheet 30 of 40

Jan. 12, 1999

U.S. Patent

ON1SS3004d
LIH av3y4 3HWI(®)

ON 1SS3004d
LIH 31184 3HOVO O
ON 1 SS3008d
ON 1SS3904d
LIH Qv3y 3HVO (©
LIH 3L14M mzoé@/
®
ON1SS3004d V_Sm..m:mi
¢ o
NO I LOVSNYYHL
NO | LOVSNYYL
oNILYalT¥ANI © ON11va1VANI @D

\

IN13553004dd

SSIN 3L14M FHOVO @
ON 1 SS3J04d

SSIW av3y JHovI O

0¢ DIl

U.S. Patent Jan. 12, 1999 Sheet 31 of 40 5,860,110

TINE 10 11 12 21 20
l PROCESSOR CACHE MAIN CACHE PROCESSOR
UNIT MEMORY UNIT
UNIT ISSUE LOAD COMMAND

|SSUE LOAD COMMAND "LOAD™ DATA TO ADDRESS 8000000

TO ADDRESS 8000000 REQUEST
s

TRANSFER --— OATA LOAD

DATA

DATA LOAD
TIMET

ISSUE STORE COMMAND | "STORe" | =W | 'hANSTRERTIpmmmmmmmeemmmsmspeesmsesmesscnennee-
TO ADDRESS 8000000
e —1 | |
|ISSUE SYNC
COMMAND TIME3

COMPLET ION

U.S. Patent Jan. 12, 1999 Sheet 32 of 40 5,860,110

FI1G.32

TIME
10 11 12 21 20
l PROCESSOR CACHE MAIN CACHE PROCESSOR
UNIT MEMORY UNIT
UNIT
ISSUE LOAD COMMAND | "LOAD" DATA
TO ADDRESS 8000000 REQUEST
LILL. =3 S S TRANSFER | e e
ISSUE STORE COMMAND | "STORE" ISSUE LOAD COMMAND
TO ADDRESS 8000000 ——=- TO ADDRESS 8000000
TIMEZ -DATA------=}--. o 10712 N S A
REQUEST
TIME3 '
----------- "STORE™ """} 2w === r== =T~ TRANSFER---f----=-m-emee i oo e

ISSUE STORE — — WRITE BACK
COMAND TINEA e

TO ADDRESS oo oo oo
£8000001 TIMES | COMPLET [ON-===-JF=rrmmmmm oo e e e

T M‘EG """""""""" -. """""""""""""""""""""""""""""""""""
__________________________ COMPLET ION
TIMEY | T
WRITE BACK

(£8000001)

5,860,110

Sheet 33 of 40

Jan. 12, 1999

U.S. Patent

JOV4441IN|
JAONYdLIN|

sng 1vo01 GE

EE

Z¢ g

1IND 11NN
AHONIN JHIVI

NIVN
SNA H0SS300dd vE

0e ~1 40SS3004d
300N

Sng 1vdo 1D v

EMLELERY)
JAONdLN|

SNg 1201 &¢

€¢

¢é 1 ¢

11NN LINN
AHOW3N JHIV)

NIVK
SNG 40SS30048d v ¢

07~ 40SS3I04d
300N

€t Ol

431188V
sSNg 1vdo 19

gl EMLE LRI

J0ONd31NI
sng 1vIo01 G

¢l L 1

LINN LIND
AJONIN JHOVY)
NIVW

SN H0SSJJ04d v 1

0 |~ H0SS3I04d
300N

5,860,110

Sheet 34 of 40

Jan. 12, 1999

U.S. Patent

sng a0 v

SNG T04LINOD EV

SNg vivd ¢y
SNg S$SJ4Aav 1L

- . a s -‘

i

sng Vo011 Gl

SNE '1041NOD €S

SNg viva 26l
SNG SS34aAAY LG

)
]

1
¥

LT Rl R R

i

¢cl

¢l

¢l

439N3N03S
>mopowmqm 1041NOJ
AHOW3N NIVW

AJONIW

LINN AHONIN NIVK

142

431184y
sng 1vao 1o

JOV443IN|
JAONYGALN|

L1 LINN JHOVD

SNg $S34AQY

A

SNG TOHINOIEY L —1 g 8 4|
SNg V.1va
SNg H0SSI0Md ... T—2vl
L~ ... e

)=

U.S. Patent Jan. 12, 1999 Sheet 35 of 40 5,860,110

FIG.35

12

MAIN MEMORY UNIT 123

MEMORY

122

DIRECTORY UNIT

MAIN MEMORY
CONTROL

DIRECTORY
FLAG

SEQUENCER

124

1959 158

MAIN MEMORY
UNIT CONTROL

MAIN MEMORY
UNIT ADDRESS

MAIN MEMORY

UNIT DATA

BUS INTERFACE BUS INTERFACE

BUS INTERFACE

153 151 152
LOCAL LOCAL LOCAL
CONTROL BUS ADDRESS BUS DATA BUS

U.S. Patent Jan. 12, 1999 Sheet 36 of 40 5,860,110

FIG.36

S3601

DOES ADDRESS
TAG STORE MATCHING
ADDRESS? S3616

NO [READ MISS PROCESSING] ggggggggﬁmﬂ T0
|SSUE DATA REQUEST

ONTO LOCAL BUS 53002
 END__

“YES [READ HIT PROCESSING]

S3603

DOES LOAD
ADDRESS INDICATE MAIN
MEMORY |N NODE?

YES

[CACHE UNIT] NO

ISSUE DATA REQUEST
ONTO GLOBAL BUS 53604

—_—_-_—__-___-__—___-—-'—‘“"_-*——-—_I

[INTERNODE |INTERFACE] S3605

|SSUE DATA REQUEST TO MAIN
MEMORY IN REMOTE NODE

A I I Ery e iy B A IS aeE Dae e she i skl AR R

N Ve ey e e s iy el SAE DD D DD D DY T DD T TR DpE 0 EEE ESpE SEEmE I S S SIS S ST S S S-S SS-_-_- -

[MAIN MEMORY UNIT] S3606

REGISTER DATA REQUEST
SOURCE CACHE IN DIRECTORY
IN REMOTE NODE

S3611
ISSUE DATA REQUEST T0 MAIN
MEMORY IN LOCAL NODE

TRANSFER DATA FROM MAIN REGISTER DATA REQUEST

MEMORY OUTSIDE NODE ONTO SOURCE CACHE IN DIRECTORY
GLOBAL BUS IN LOCAL NODE

[INTERNODE INTERFACE] S3608 T MA3361 3
IN
gmgSEEEAEAgﬁsFROM GLOBAL BUS MEMORY IN NODE ONTO LOCAL

BUS

EXECUTE REPLACE PROCESSING EXECUTE REPLACE PROCESSING
OF DATA BLOCK OF DATA BLOCK

TRANSFER DATA TO PROCESSOR TRANSFER DATA TO PROCESSOR

S3610 S3615

U.S. Patent Jan. 12, 1999 Sheet 37 of 40 5,860,110

WRITE-BACK REQUEST
OF DATA BLOCK F I G ' 3 7

ISSUE WRITE-BACK REQUEST S3701
ONTO LOCAL BUS

S3702

ADDRESS INDICATE MAIN
MEMORY IN NODE?
[CACHE UNIT] N0
|SSUE WRITE-BACK REQUEST S3703

AND TRANSFER WRITE-BACK
DATA ONTO GLOBAL BUS

[INTERNODE
INTERFACE] S3704

ISSUE WRITE-BACK REQUEST
TO MAIN MEMORY IN REMOTE| """ f---"-=~—===—--——-

______ NODE_____ | [SEARCH DIRECTORY IN 53711
LOCAL NODE

SEARCH DIRECTORY IN
REMOTE NODE S3705 S3712

[MAIN MEMORY UNIT] S3706 IS ANOTHER
CACHE REGISTERED (N
1S ANOTHER

DIRECTORY?
CACHE REGISTERED IN

S3710

ISSUE WRITE-BACK REQUEST

TO MAIN MEMORY IN LOCAL
NODE

YES

YES

D IRECTORY? NO
S3713
NO 53707 | I'EXECUTE DATA BLOCK
EXECUTE DATA BLOCK INVAL I DAT ING
INVAL IDAT ING PROCESS ING OF

PROCESSING OF
DETECTED CACHE

DETECTED CACHE

S3708 S3714
WRITE WRITE-BACK DATA IN WRITE WRITE-BACK DATA IN
MAIN MEMORY IN REMOTE MAIN MEMORY IN LOCAL
NODE NODE
S3715
SUPPLY COMPLET ION SUPPLY COMPLETION
MESSAGE TO WRITE-BACK MESSAGE TO WRITE-BACK
REQUEST SOURCE REQUEST SOURCE |
S3709

U.S. Patent Jan. 12, 1999 Sheet 38 of 40 5,860,110

FIG.38

TIME 40 11 12 20 21 30 31
l PROCESSOR CACHE MAIN PROCESSOR CACHE PROCESSOR CACHE
UNIT MEMORY UNIT UNIT
UNIT ISSUE LOAD COMMAND
TO ADDRESS 8000
ISSUE LOAD COMMAND | "LOAD" |DATA (:h e

TO ADDRESS 8000000 REQUEST "LOAD"
__——=IDATA >
REQUEST

DATA ISSUE_LOAD COMMAND
TO ADDRESS 8000000
DATA

TRANSFER
"LOAD"
TRANSFER
DATA LOAD

WRITE

TIME3 |COMMAND™| pack
TIMEZ " e SR PSRN CURRRRSRIRNY SRS BOSSRNN
TINES 1 7 T T
INVAL IDAT ING
INVAL IDAT ING
TIMEG_ | | 99!?5@9
COMPLET I ON

U.S. Patent Jan. 12, 1999 Sheet 39 of 40 5,860,110

FIG.39

TIME

10 11 12 20 21 30 31
l PROCESSOR CACHE MAIN PROCESSOR CACHE PROCESSOR CACHE
UNIT MEMORY UNIT UNIT
UNIT
|SSUE LOAD COMMAND
TO ADDRESS 18000000
|SSUE LOAD COMMAND |_"LOAD" | DATA Q

TO ADDRESS 80000 REQUEST LOAD”
00 -.-- DATA - [—=
REQUEST

DATA
DATA
Joan | TRANSFER .<

DATA
TRANSFER | =

TIME] DATA
ISSUE STORE —— """ "STORE™-j"--rorrmemrpremessssmessseepe K710 2 I e A
COMMAND TIME?
TO ADDRESS oo e e e
8000000

ISSUE LOAD COMMAND — | "LOAD"
TO ADDRESS 8000000 —

DATA REOUE?T
DATA TRANSFER

TIME3 ,_
ISSUE STORE —"+ 1" STORE ™|z
COMMAND —— -
TO ADDRESS TIM4 (faoooom) _
B e s I A S
TIMES INVAL | DAT ING
COMMAND II||||-
INVAL IDAT ING |
I

TIMEG | .S .D -----------
COMPLET ION

TIMET el
TIMER |
WRITE BACK

(£8000000)

U.S. Patent Jan. 12, 1999 Sheet 40 of 40 5,860,110

FIG.40

DIRECTORY
MODULE FOR LOADING DATA INTO CACHE

MODULE FOR COUNTING BLOCKS UPDATED IN CACHE

MODULE FOR WRITING BACK DATA BLOCKS TO MAIN MEMORY I[N
ACCORDANCE WITH NUMBER OF COUNTED BLOCKS

MODULE FOR SIMULTANEOUSLY WRITING BACK DATA BLOCKS
UPDATED IN CACHE

J,860,110

1

CONFERENCE MAINTENANCE METHOD
FOR CACHE MEMORIES IN MULTI-
PROCLESSOR SYSTEM TRIGGERED BY A
PREDETERMINED SYNCHRONIZATION
POINT AND A PREDETERMINED
CONDITION

BACKGROUND OF THE INVENTION

The present invention relates to a coherence maintenance
method for cache memories in information processing appa-
ratus 1n which a plurality of processors which are connected
by an 1nterconnection network via caches operate parallel to
cach other.

In a parallel computer system, 1n order to attain a high-
speed response to an access request 1ssued from a processor
fo a main memory, and to reduce the traffic on the 1ntercon-
nection network, each processor often has a cache memory.
Memory access requests issued from each processor are
executed via a cache memory that stores copies of data
blocks to be subjected to these memory accesses. In the
parallel computer system, a plurality of cache memories may
often store copies of an identical data block. In order to
guarantee the coherence of these copies, various methods
have been proposed and realized.

A snoop method 1s generally used 1 a parallel computer
system which uses a bus or the like that can monitor all the
fransactions as a connection network for interconnecting
between processors, and between processors and a main
memory. In the snoop method, the cache memory monitors
all the transactions 1ssued on the connection network, and 1f
the memory stores a copy of a data block as a transaction
target, the cache memory performs a required coherence
maintenance operation.

On the other hand, a directory method 1s used 1n a parallel
computer system which uses a network that cannot monitor
all the transactions as a connection network for intercon-
necting between processors, and between processors and a
main memory. In the directory method, caching information
indicating a cache memory that stores a copy of a data block
1s stored and managed 1n a storage device called a directory
in units of data blocks or an equivalent. When a processor
Issues a transaction, a cache memory that stores a copy of the
data block as a transaction target 1s informed of the genera-
tion of the transaction, on the basis of the caching informa-
tion obtained from the directory, thus maintaining the coher-
€Nnce among copies.

In order to suppress access latency with respect to a
memory, various relaxed memory coherence models have
been proposed and realized.

In general, mn a relaxed memory coherence model, a
synchronization point 1s set 1n a processing sequence, and
when the processing has reached the synchronization point,
memory transactions issued so far must be reflected 1n a
system. This means that memory transaction results need not
be reflected 1n the system before the synchronization point.

When a conventional cache coherence maintenance
method 1s used 1n a parallel computer system that adopts
such relaxed memory coherence model, an unnecessary
coherence maintenance operation 1s executed every
fransaction, and its overhead inadvertently increases the
memory access latency contrary to the purpose of the
relaxed memory coherence model.

In order to solve this problem, the assignee of the present
applicant has already proposed a system which can reduce
the overhead and can improve the performance of the system

10

15

20

25

30

35

40

45

50

55

60

65

2

by delaying execution of the cache coherence maintenance
operation to the timing of the synchronization point at which
memory transactions need be reflected in the system 1n the
relaxed memory coherence model.

However, 1n such system which reduces the overhead due
to unnecessary cache coherence maintenance operations by
delaying the execution of the cache coherence maintenance
operation to the timing of the synchronization point at which
memory transactions need be reflected in the relaxed
memory coherence model, the cache coherence maintenance
operations are all performed at the timing of the synchro-
nization point. For this reason, the traffic concentrates on the
interconnection network at the timing of the synchronization
point, and as a result, the utilization efficiency of the
interconnection network falls considerably at the timing of
the synchronization point.

SUMMARY OF THE INVENTION

The present invention has been made 1n consideration of
the above situation, and has as its object to provide an
information processing apparatus which can reduce over-
head due to execution of unnecessary coherence mainte-
nance operations, and can also reduce processing overhead
upon execution of synchronization operations by avoiding a
decrease 1n utilization efficiency of an interconnection net-
work due to concentration of traffic on the interconnection
network at the timing of a synchronization point, and its
control method.

In order to achieve the above object, according to the first
aspect of the present invention, there 1s provided an infor-
mation processing system which includes a plurality of
connection network use subjects each including a plurality
of processor units, cache memory units connected to said
plurality of processor units, and a main memory unit, and a
connection network for interconnecting said plurality of
connection network use subjects, and executes coherence
maintenance processing for maintenance coherence of con-
tents of a data block stored 1n the cache memory unit
connected to the processor unit when processing of each of
said plurality of processor units has reached a predetermined
state, wherein even before the processing of the processor
unit reaches the predetermined stage, when a state of said
information processing system satisfies a predetermined
condition, and a copy of data stored in at least one of said
cache memory units 1s updated, the cache memory unit that
stores the updated copy executes the coherence maintenance
processing for maintaining the coherence of the contents of
the data block stored 1n said cache memory unit.

With the above-mentioned arrangement, since the con-
tents of each cache memory unit are written back to the main
memory unit while the bus 1s not busy, an operation for
maintaining the coherence between the data contents of the
main memory unit and the cache memory units 1s performed
as needed, and this can reduce the trafhic of the system.

The 1nformation processing apparatus and its control
method according to the present invention provide a cache
coherence maintenance operation mechanism for improving
the performance of a parallel computer system that adopts a
relaxed memory coherence model, and can improve the
processing performance of the entire system by reducing
processing overhead upon execution of synchronization
operations while avoiding a decrease 1n utilization efficiency
of an 1nterconnection network upon concentration of traffic
on the mterconnection network at the timing of a synchro-
nization point.

Other features and advantages of the present invention
will be apparent from the following description taken in

J,860,110

3

conjunction with the accompanying drawings, 1n which like
reference characters designate the same or similar parts
throughout the figures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing an example of the
arrangement of a system that realizes the present invention;

FIG. 2 1s a block diagram showing the arrangement of a

cache used 1n the example of the arrangement of the present
mvention;

FIG. 3 1s a flow chart showing the control sequence or
procedure upon execution of a LOAD 1nstruction used in the
first embodiment of the present mnvention;

FIG. 4 1s a flow chart showing the control sequence upon
execution of a STORE instruction used 1n the first embodi-
ment of the present invention;

FIG. 5 1s a flow chart showing the control sequence of
cache miss processing upon execution of the LOAD/STORE
instruction used in the first embodiment of the present
mvention;

FIG. 6 1s a flow chart showing the control sequence of
write-back processing of “DIRTY” data of the cache used in
the first embodiment of the present invention;

FIG. 7 1s a status transition diagram of a cache status flag
in the first embodiment of the present invention;

FIG. 8 1s a flow chart showing the control sequence upon
execution of cache write-back processing used in the first
embodiment of the present invention;

FIG. 9 1s a block diagram showing the arrangement of a
shared bus arbiter in the first embodiment of the present
mvention;

FIG. 10 1s a chart showing an example of the bus
arbitration protocol used in the first embodiment of the
present invention;

FIG. 11 1s a flow chart showing the control sequence upon
execution of a SYNC nstruction used 1n the first embodi-
ment of the present mnvention;

FIG. 12 1s a flow chart showing the control sequence up
fo execution of cache write-back processing used in the
second embodiment of the present 1nvention;

FIG. 13 1s a flow chart showing the control sequence upon
execution of cache write-back processing used 1n the third
embodiment of the present invention;

FIG. 14 1s a block diagram showing the arrangement of a
shared bus arbiter 1n the third embodiment of the present
mvention;

FIG. 15 1s a chart showing an example of a bus arbitration
protocol used m the third embodiment of the present inven-
t1on;

FIGS. 16A and 16B are truth tables for generating output
signals of the shared bus arbiter used in the third embodi-
ment of the present invention;

FIGS. 17A and 17B are truth tables for generating output
signals of the shared bus arbiter used 1n the third embodi-
ment of the present mnvention;

FIG. 18 1s a block diagram showing the arrangement of a
system that realizes the fourth embodiment of the present
mvention;

FIG. 19 1s a block diagram showing the arrangement of a
computer node according to the fourth embodiment of the
present mvention;

FIG. 20 1s a block diagram showing the arrangement of a
main memory and a directory in the fourth embodiment of
the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 21 1s a flow chart showing the control sequence upon
execution of a LOAD instruction used in the fourth embodi-

ment of the present mnvention;

FIG. 22 1s a flow chart showing the control sequence of
write-back processing of “DIRTY” data of a cache used 1n
the fourth embodiment of the present invention;

FIG. 23 1s a block diagram showing the arrangement of an
information processing system according to the fifth

embodiment of the present invention;

FIG. 24 15 a block diagram showing the arrangement of a
cache unit 1n the fifth and sixth embodiments;

FIG. 25 1s a flow chart showing the processing executed
by the cache unit upon execution of a LOAD instruction in
the fifth embodiment;

FIG. 26 1s a flow chart showing the processing executed
by the cache unit upon execution of a STORE 1nstruction in
the fifth and sixth embodiments;

FIG. 27 1s a flow chart showing the processing executed
by the cache umit upon execution of a synchronization
mstruction in the fifth and sixth embodiments;

FIG. 28 1s a flow chart upon execution of write-back
processing to a main memory in the fifth embodiment;

FIG. 29 1s a flow chart showing the processing executed
upon replacing data blocks in the fifth embodiment;

FIG. 30 1s a status transition chart of a status flag 1n the
fifth and sixth embodiments;

FIG. 31 1s a chart showing an example wheremn the
coherence maintenance operation 1s postponed until the
Issuance timing of a synchronization instruction in the fifth
embodiment;

FIG. 32 1s a chart showing an example wheremn the
coherence maintenance operation 1s postponed until the
number of DIRTY blocks becomes equal to or larger than a
prescribed value m the fifth embodiment;

FIG. 33 1s a block diagram showing the arrangement of an
information processing system according to the sixth
embodiment of the present invention;

FIG. 34 1s a block diagram showing the arrangement of a
computer node 1n the sixth embodiment;

FIG. 35 15 a block diagram showing the arrangement of a
main memory unit in the sixth embodiment;

FIG. 36 1s a flow chart showing the processing executed
by a cache unit upon execution of a LOAD instruction in the
sixth embodiment;

FIG. 37 1s a flow chart showing the processing executed
upon execution ol write-back processing to the main
memory 1n the sixth embodiment;

FIG. 38 1s a chart showing an example wheremn the
coherence maintenance operation 1s postponed until the
Issuance timing of a synchronization instruction in the sixth
embodiment;

FIG. 39 1s a chart showing an example wheremn the
coherence maintenance operation 1s postponed until the
number of DIRTY blocks becomes equal to or larger than a
prescribed value in the sixth embodiment; and

FIG. 40 15 a view showing the memory map of a recording,
medium that stores program modules for realizing the fifth
embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

| First Embodiment |

The first preferred embodiment of the present invention
will be described 1n detail hereinafter with reference to the

accompanying drawings.

J,860,110

S

<Arrangement of Multi-processor System>

FIG. 1 1s a block diagram showing the arrangement of a
first multi-processor system for realizing the present inven-
fion.

Processors 10 and 20 are respectively connected to caches
11 and 21 via processor buses 14 and 24. The caches 11 and

21 are connected to a main memory 12 and are also
connected to each other via a shared bus 15. Each cache

updates data stored therein or reflects 1ts contents 1n the main
memory 12 on the basis of a request from the processor, and
snoops address mformation or the like flowing on the bus to
execute 1ts maintenance. A bus arbiter 16 arbitrates the right

of use of the shared bus 15. The shared bus 15 includes an
address bus 151, a data bus 152, and a control bus 153, and

the processor bus 14 includes an address bus 141, a data bus
142, and a control bus 143. The same applies to the
processor bus 24.

FIG. 2 shows the arrangement of the caches 11 and 21

shown 1n FIG. 1.
The main body of each cache comprises a cache control
sequencer 111 for controlling the entire cache, an address tag

112, a status flag 113, an SRAM 114, a comparator 115, a
selector 116, interfaces 144 to 146 with the processor bus,
and mnterfaces 154 to 156 with the shared bus. A combination
of the address tag 112, the status flag 113, and the SRAM
114 correspond to a group of data.

Note that the SRAM 114 constitutes a data block for
holding data. The address tag 112 holds the address of a data
block stored 1n the SRAM 114, and the status tlag 113 holds
the status data of data on the SRAM 114. The status data will
be explained later. The comparator 115 compares the con-
tents of the address tag 112 with an address supplied from
the processor bus 14 or the shared bus 15. The selector 116
selects data in the SRAM 114 in accordance with the
comparison result of the comparator 115. The address
comparison/selection processing by the comparator 115 and
the selector 116 can discriminate whether the cache stores
target data of some request. If the cache stores the target
data, the data can be selected. The cache control sequencer
111 controls the respective modules in the cache.

In this embodiment, the 2-way set associative arrange-
ment 1s used. However, the present invention 1s not limited
to this specific arrangement. These caches are connected to
the processors via the processor bus address interface 144,
the processor bus data interface 145, and the processor bus
control interface 146, and executes data supply processing
or the like 1n accordance with a request from the processor.
These caches are connected to the shared bus 15 via the
shared bus address interface 154, the shared bus data inter-
face 155, and the shared bus control interface 156. In
accordance with a request supplied from the processor, each
cache loads data from the main memory 12 therein when a
cache miss has occurred, writes back cache information to
the main memory, and changes the status flag 113 therein on
the basis of control mnformation supplied from the other
cache.

In this embodiment, assume that the system with the
arrangement shown 1n FIGS. 1 and 2 uses a write-back type
cache memory invalidating protocol. In the invalidating
protocol, after a certain data block 1s loaded 1nto the cache,
it the data block 1s written back from the other cache to the
main memory, the data block 1s invalidated. An example will
be described below wherein the coherence of the cache
memories 15 guaranteed on the basis of the cache memory
control method that 1s compatible with the relaxed memory
coherence model under the above-mentioned condition.

More specifically, the multi-processor system according,
to the present invention uses a protocol for guaranteeing the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

coherence of the cache memories at the time of 1ssuance of
a synchronization instruction (to be referred to as a SYNC
instruction hereinafter) from the processor. In order to
improve the performance of the system, the system allows
the write-back operation of a data block, which will be
written back from the cache memory to the main memory at
the time of 1ssuance of a SYNC instruction 1n future, 1.e., a
data block which 1s rewritten with the latest value 1n the
cache memory and does not reflect its value in the main
memory (to be referred to as a “DIRTY” block hereinafter),
while the shared bus 1s not used by another bus master. The
operation sequence and arrangement of the multiprocessor
system according to the present invention will be described
in detail below. Note that a cache block which has a value
matching the value of the corresponding data block in the
main memory since 1t 1s read out from the main memory or

1s written back to the main memory will be referred to as a
“CLEAN” block hereinafter.
<Basic Operation of Cache System>

The basic operation of this cache system itself will be
described below with reference to FIGS. 1 and 2, and the
flow charts 1n FIGS. 3 to 5.

| LOAD Instruction]

FIG. 3 shows the control sequence by the cache 11 upon
execution of a LOAD instruction for loading a data block
from the main memory 12 to the processor 10. In the
following description, assume that a LOAD 1nstruction 1s
1ssued by the processor 10.

Referring to FIG. 3, the comparator 115 compares an
address output onto the address bus 141 with the address
stored in the address tag 112 (step S301), and if a cache read
hit occurs with respect to the LOAD 1nstruction 1ssued by
the processor 10, the cache 11 supplies data from the SRAM
114 to the processor 10 (step S303).

On the other hand, 1f a cache read miss occurs with respect
to the LOAD instruction 1ssued by the processor 10, the
cache 11 performs cache miss processing. In this processing,
the cache 11 loads data from the main memory 12 (step
S302), and supplies data from the SRAM 114 to the pro-
cessor 10 (step S303). In this case, the cache 11 does not
supply the corresponding data to the processor 10 until the
data that caused the cache read miss 1s supplied to the cache
11.

The read cache miss processing 1s performed in the
sequence shown 1 FIG. 5.

It is checked if cache replacement is required (step S501).
That 1s, when all the memory space of the SRAM 114 is
used, and no empty area 1s available, a new block to be
loaded replaces a used block. Upon replacement, the block
to be replaced 1s determined by a predetermined method
(e.g., the block least recently replaced, a block determined in
accordance with a predetermined priority order, or the like)
(step S502). The block to be replaced is written back to the
main memory 12 (step S503). As a result of the write-back
processing, a match between the block to be replaced 1n the
cache 11 and the corresponding data block in the main
memory 1s guaranteed, and the block can be deleted from the
cache.

In this state, a use request of the shared bus 15 1s 1ssued
to the bus arbiter 16 (step S504).

After the use of the shared bus 15 1s granted, the cache 11
transfers an address of the read access onto the shared
address bus 151, 1ssues a read request onto the shared
control bus 153, and waits until data 1s supplied onto the
shared data bus 152 (step S506).

The main memory 12 accepts the read request and the
address of the read access, and supplies data onto the shared

data bus 152 (step S507).

J,860,110

7

The cache 11 registers the data supplied onto the shared
data bus 152 1n the entry of the corresponding data block of
its SRAM 114 (step S508).

Thereafter, the cache 11 sets a predetermined value 1n the
status flag 113 (step S509). The value of the status flag 113
will be described later. In this case, 1if a read miss has

occurred, “CLEAN” 1s set; 1f a write miss has occurred,
“DIRTY” 1s set.

In this manner, 1f a cache miss has occurred, the cache can
execute the LOAD instruction by reading out a required data

block from the main memory 12.
|STORE Instruction]

FIG. 4 shows the control sequence by the cache 11 upon
execution of a STORE instruction for writing data from the
processor 10 1n the cache 11. In the following description,
assume that the STORE instruction 1s 1ssued by the proces-
sor 10.

Referring to FIG. 4, 1t 1s checked by comparing an address
output onto the address bus 141 with the address stored in
the address tag 112 by the comparator 115 if the addresses
match, 1.€., a cache hit has occurred with respect to the
STORE instruction issued by the processor 10 (step S401).
If a cache write hit has occurred, the processor 10 supplies
data to the cache 11, and the cache stores the supplied data

(step S403).

On the other hand, 1f a cache write miss has occurred with
respect to the STORE 1nstruction 1ssued by the processor 10,
the cache miss processing shown i FIG. 5 1s performed
(step S402) to obtain the corresponding entry in the cache.
Thereafter, cache write hit processing i1s performed.

As described above, the LOAD and STORE instructions
are processed 1n the cache.

ISYNC Instruction]

Processing for a SYNC istruction will be described
below with reference to FIG. 11. The SYNC instruction 1s an
instruction with which the processor requests to reflect
memory transactions issued so far in the system. In this
embodiment, the SYNC instruction 1s an instruction for
forcibly writing back a DIRTY block so as to maintain the
coherence of the data block 1n the cache. Upon detection of
the SYNC 1nstruction by, €.g., decoding a control signal, the
cache control sequencer 111 executes write-back control 1n
write-back processing (to be described below) shown in
FIG. 8. Thus, the coherence of the system can be held.

| Write-back Control (Description Using Flow Chart)]

The control sequence until data 1s written back from the
cache to the memory as the characteristic feature of this
system will be described below with reference to the flow
chart 1n FIG. 8. This sequence 1s executed 1n the “write-back
processing” step in FIGS. 5 and 11.

The characteristic feature of this system resides 1n that the
write-back operation of the cache 1s executed in correspon-
dence with a relaxed memory coherence model.

In a conventional system, when a data block of a cache of
a given processor are rewritten with the latest value, and
thereafter, another processor makes a read access to a data
block (“DIRTY” block) whose value is not reflected in the
main memory, the write-back operation 1s executed.
However, 1n this system, this write-back operation 1s not
performed. In the system of this embodiment, the write-back
operation 1s performed:

1: when the processor issues a SYNC instruction (FIG.
11);

In this case, all “DIRTY” blocks 1n the cache are written
back to the main memory.

2: when a cache miss has occurred, and a “DIRTY” block
is selected as the block to be replaced (step SS03 in
FIG. §);

10

15

20

25

30

35

40

45

50

55

60

65

3

In this case, only the block to be replaced i the cache 1s
written back to the main memory.

The write-back operation in these cases 1 and 2 will be
referred to as a high-priority write-back operation here-
inafter since the cache itself acquires the right of use of
a bus by 1ssuing a shared bus request and executes the
write-back operation.

3: when a “DIRTY” block 1s present 1n the cache, and the
shared bus 1s not requested explicitly by any other bus
masters,

In this case, when the shared bus 1s not requested explic-
itly by any other bus masters, “DIRTY” blocks are
sequentially written back to the memory. In this
embodiment, whether or not the shared bus 1s not
requested explicitly by any other bus masters 1s deter-
mined by checking if the shared bus i1s mmplicitly
oranted by the shared bus arbiter. No shared bus request
1s 1ssued to execute this write back operation. The
implicit grant for the use of the shared bus will be
described 1n detail later.

The write-back operation 1n case 3 will be referred to as

a low-priority write-back operation hereinafter.

The write-back operation 1s performed in the abovemen-
tioned three cases. The write-back control operations in the
respective cases are realized by the sequence shown 1n FIG.
8.

When write-back processing 1s started, 1t 1s checked 1f a
“DIRTY” block is present in the cache (step S801). If YES
in step S801, 1t 1s tested if the write-back operation has been
started 1n response to a SYNC instruction issued by the
processor (case 1) (step S802). If YES in step S802, the
cache control sequencer 111 issues a shared bus request (step
S803), and a high-priority write-back operation is repeti-
fively executed until all the “DIRTY” blocks in the cache are
written back (steps S804 and S805).

In case 2 (called from FIG. §), 1.e., if a “DIRTY” block
that caused a cache miss is to be replaced (YES in step
S806), a shared bus request 1s issued to obtain a grant for the
use of the shared bus 15 (step S807), and a high-priority
write-back operation of the “DIRTY” block to be replaced to
the main memory 12 is then performed (step S808).

In case 3, 1f the use of the shared bus 1s implicitly granted
(YES in step S809), a low-priority write-back operation of
“DIRTY” blocks is performed (step S810).

FIG. 6 shows the control sequence upon execution of the
write-back processing of a “DIRTY” data block to the main
memory, 1.€., the sequence upon execution of the high-
priority write-back operation (steps S804 and S808) and the
low-priority write-back operation (step S810) in the write-
back sequence shown 1n FIG. 8. In the following description,
the cache 11 performs write-back processing to the main
memory 12.

The high-priority write-back processing mm FIG. 6 1s
started 1mmediately after the cache 11 requests the right of
use of the shared bus 15. In the high-priority write-back
execution sequence 1n FIG. 6, the cache 11 gains the right of
use of the shared bus 15 (YES in step S601), thereafter,
transfers write-back request source information onto the
shared control bus 153 and an address of the write-back
access onto the shared address bus 151, and 1ssues a write-
back request onto the shared control bus 153 (step S602).
The cache 11 then supplies data to be written back onto the
shared data bus 152 to write the data in the main memory 12
(step S603). Thereafter, the cache 11 sets the status flag of
the written-back cache block to be “CLEAN" (step S604).

The low-priority write-back execution sequence 1s started
from step S602 since no shared bus request 1s 1ssued.

J,860,110

9

On the other hand, when the cache 11 generates a write-
back request, a cache other than the cache 11 (e.g., the cache
21) snoops the address transferred on the shared bus 15 (step
S611), and searches the address tag therein (step S612). As
a result of searching, if the address tag holds a copy of data
of the snooped address 1n an effective state, 1.e., “DIRTY” or
“CLEAN” (step S613), the status flag corresponding to the
data block held in the effective state is invalidated (set to be
“INVALID”). This invalidating operation is the coherence
maintenance operation in this embodiment.

As described above, when the write-back processing 1s
performed, the copy of the written-back data held in the
cache subjected to the write-back processing 1s validated
since 1t matches data held 1in the main memory, and copies
of the written-back data held 1n other caches are invalidated,
thus maintaining the coherence of the data.

| Status of Cache Block]

FIG. 7 1s a transition diagram of the status flag upon
execution of memory transactions, and summarizes the
fransition state of the status flag as a result of control of the
cache control sequencer 1n accordance with FIGS. 3 to 6,
FIG. 8, and FIG. 11. The following explanation will be given
while taking the status flag 113 of the cache 11 as an
example.

Referring to FIG. 7, status “INVALID” indicates that a
data entry managed by the status flag 113 1s invalid. Status
“CLEAN” 1ndicates that a data entry managed by the status
flag 113 matches the corresponding data in the main
memory. This data entry stores the same value as that 1 the
main memory, but the data entry of the other cache may store
the latest value. Status “DIRTY” indicates that a data entry
managed by the status flag 113 1s rewritten with the latest
value at least once after 1t 1s loaded from the main memory,
and the rewritten value 1s not reflected 1n the main memory.
This data entry stores the latest value. Such status transits in
correspondence with the processing, as shown 1 FIG. 7. In
the following description, numerals enclosed in circles cor-
respond to those i FIG. 7.

(1) When a LOAD instruction is issued from the proces-
sor 10 with respect to a copy of status “INVALID”,
cache miss processing 1s performed, and the status flag
transits to status “CLEAN”.

(2) When a STORE instruction is issued from the pro-
cessor 10 with respect to a copy of status “INVALID?,
cache miss processing 1s temporarily executed, and the
copy 1s updated with data read out immediately after

the processing. For this reason, the status flag transits to
status “DIRTY™.

(3) When a LOAD instruction is issued from the proces-
sor 10 with respect to a copy of status “CLEAN?, cache
read hit processing 1s executed, and the status flag

transits to status “CLEAN".

(4) When a STORE instruction is issued from the pro-
cessor 10 with respect to a copy of status “CLEAN”,
cache write hit processing 1s executed, and the status
flag transits to status “DIRTY”.

@ When a snoop hit has occurred with respect to the
write-back processing for data of status “CLEAN” by
an external bus master, a coherence maintenance opera-
tion (an invalidating transaction from another

processor) 1s executed; and the status flag transits to
status “INVALID”.

(6) When a LOAD instruction is issued from the proces-
sor 10 with respect to data of status “DIRTY”, cache
read hit processing 1s executed, and the status of the
status flag remains “DIRTY”.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

(7) When a STORE instruction is issued from the pro-
cessor 10 with respect to data of status “DIRTY”, cache

write hit processing 1s executed, and the status of status
flag remains “DIRTY”.

When write-back processing to the main memory 1s
executed for data of status “DIRTY”, the status flag
transits to status “CLEAN”.

@ When a snoop hit has occurred with respect to
write-back processing for data of status “DIRTY” by an
external bus master, a coherence maintenance opera-
tion (an 1invalidating transaction from another
processor) 1s executed, and the status flag transits to
status “INVALID".

With the above-mentioned status transition, the coherence
between the cache blocks and the main memory in the
arrangement of FIG. 1 can be held.
<Arrangement & Operation of Bus Arbiter>

In order to realize the low-priority write-back operation as
the characteristic feature of the present invention, the
arrangement for implicitly granting the use of the shared bus
from the bus arbiter to a cache will be described below with
reference to FIGS. 9 and 10.

FIG. 9 shows the arrangement of the bus arbiter 16.

The bus arbiter 16 receives a shared bus request signal
(BR1*) 161 and a shared bus request signal (BR2*) 162
respectively from the caches 11 and 21 as signals included
in the control bus 153. The shared bus request signals 161
and 162 are true (presence of request) when they are at L
level.

The bus arbiter 16 outputs a shared bus grant signal
(BG1*) 165 and a shared bus grant signal (BG2*) 166
respectively to the caches 11 and 21. These signals are also
true (request granted) when they are at L level.

Furthermore, the bus arbiter 16 receives a bus busy signal
(BB*) 167 indicating whether or not each bus master is
using the shared bus. The bus busy signal 167 indicates that
the bus master 1s using the bus when it 1s at L level. The bus
arbiter 16 1s a synchronous circuit, and the respective signals
are latched by latches 1694 to 169¢ 1n response to the rising
edges of system clocks (BCLK) 168. Depending on the
combination of the latched signals, a combination circuit
160 performs status transition.

FIG. 10 shows an example of the arbitration timing of the
shared bus. In this embodiment, the bus masters output bus
use requests, as shown 1n FIG. 10. That 1s, the shared bus
arbitration 1s performed in such a manner that the bus
master, which recognizes that 1t 1s granted the use of the bus
(BG*=L) at the timing of the rising edge of the bus clock
(BCLK) which satisfies the signal BB*=H, asserts the signal
BB* to L 1n the next bus cycle to declare the use of the
shared bus, and keeps asserting the signal BB* while 1t 1s
using the shared bus.

The basic of this arbitration algorithm 1s that after a
change 1n signal BB* from H to L 1s detected, 1.e., after a
certain bus master begins to use the bus, arbitration for the
right of use of the bus 1s started, and a bus master with the
highest priority 1s granted the use of the bus at the time of
the end of the arbitration.

The priority order at the beginning of arbitration is as
follows.

The bus masters are classified into the following two
oroups on the basis of the presence/absence of a bus use
request.

Priority A: a bus master that 1ssues a bus request

Priority B: a bus master that does not issue any bus
request but currently has the right of use of the bus
Note that priority A>priority B.

J,860,110

11

The order of bus masters in the group of priority A 1s
determined by the round robin method.

If there are N bus masters (in this embodiment, N=2) and
a bus master with bus master number 1 (0Z1=EN -1) is

currently using the bus, the order 1n the group of priority A 5

1s defined by:

(i+1)mod N>(i+2)mod N >. .. >({+N-2)mod N >(i+N-1)mod N>i

The right of use of the bus is assigned to bus masters that
1ssue bus requests in this order.

Only when none of bus masters 1ssue bus requests, the bus
master which currently has the right of use of the bus
continues to be granted the use of the bus. Such grant for the
use which 1s given without any use request i1s called an
implicit grant for the use.

The arbitration 1s completed when the next bus master 1s
determined in accordance with the priority (when BG* is
asserted). In this case, if the next bus master is determined
by the arbitration on the basis of the implicit grant for the use
of the bus, and another bus master 1ssues a bus use request
before the bus master which 1s implicitly granted the use
recognizes 1ts own right of use of the bus at BB*=H,
re-arbitration i1s performed.

Referring to FIG. 10, the cache 11 (bus master 1) issues
a shared bus request BR1*. Upon detection of the request at
the timing t1, the bus arbiter 16 outputs a grant signal BG1*
for the request betfore the next clock timing t2. The cache 11
outputs a bus busy signal BB* to occupy the bus. During this
interval, when the cache 21 (bus master 2) issues a bus
request BR2*, the bus arbiter 16 detects the request at the
fiming t3, and outputs a grant signal BG2* in accordance
with priority. The cache 21 waits while the cache 11 1s using,
the bus, and recognizes at the timing tS that the shared bus
15 1s not used. Then, the cache 21 outputs a bus busy signal
BB* to use the bus.

When the cache 21 quits the bus request, 1.€., sets the
signal BR* at H, the bus arbiter 16 keeps granting the use of
the bus to the cache 21 as the current bus master since none
of bus masters 1ssue shared bus requests. This grant 1s the
implicit grant for the use with respect to the cache 21.
Although the cache 21 temporarily releases the bus, it
restarts the use of the bus since the cache 21 detects at the
fiming t6 that 1t 1s continuously granted the use of the bus.

In this embodiment, the cache write-back processing 1s
performed at this timing, i.e., the timing (b) in FIG. 10 on the
basis of the implicit grant for the use, and corresponds to
steps S809 and S810 in FIG. 8.

In this manner, in FIG. 10, the signal BG2* 1s kept
supplied to the cache 21 after the signal BR2* has changed
to H ((a) in FIG. 10). This portion corresponds to the implicit
orant for the use of the bus, and the cache 21 re-uses the bus
without asserting the signal BR2* ((b) in FIG. 10).

With this control, when the shared bus 1s not used, the bus
arbiter 16 can implicitly grant the use of the bus to the bus
master that has used the bus immediately therebefore.
<Write-back Control (Description Based on Signals)>

How to execute the low-priority write-back operation
when the use of the bus 1s mmplicitly granted will be
explained below with reference to FIG. 2. The following
description corresponds to a detailed one of steps S809 and
S810 1n FIG. 8.

Referring to FIG. 2, when no access 1s made from outside
the cache, the cache control sequencer 1ssues the value of an
internal register 196 on an address-m signal line 171, and
checks the status of the status flag 113 obtained in response
to the 1ssued value via a status signal line 192. As a resullt,
if 1t 1s determined that the status of the block of interest is

10

15

20

25

30

35

40

45

50

55

60

65

12

“DIRTY”, the cache control sequencer controls the shared
bus control interface 156 via an S-Cont signal line 195 to
perform a low-priority write-back operation of the “DIRTY”
block upon reception of an implicit shared bus use grant
signal.

Upon recognizing that the signal BG1* 165 1s at L level
at the leading edge of the bus clock BCLK 168 that satisfies
BB*=H although the signal BR1* is not to be asserted (i.¢.,
the implicit grant for the use of the bus), the shared bus
control interface 156 drives the signal BB* to L level to
declare the use of the shared bus. Since the acquired right of
use of the bus 1s an implicit one, the operation of another bus
master 15 not disturbed.

Upon recognizing acquisition of the right of use of the
shared bus 15, the cache control sequencer 111 generates an
address of data to be written back on the basis of an address
on the address-m signal line 171, a host address on an
address-h' signal line 173 obtained based on the address on
the line 171, and the like, and supplies the generated address
to the shared bus address interface 154 to output it onto the
shared bus 15. At the same time, data to be selected at that
time on the SRAM 114 1s selected by a select signal 193 for
the selector 116, which signal 1s obtained by passing a
comparator control signal 176 through the comparator 1135,
and the selected data 1s output onto a Data signal line 174.
The output data 1s output onto the shared bus via the shared
bus data interface 155, thus executing a write-back operation
to the main memory 12.

At the same time, the cache 21 snoops the bus. When the
above-mentioned write-back operation 1s executed, the
cache 21 checks data held therein, and invalidates the status
flag 113 upon detection of a corresponding entry.

With this mechanism, 1n a system which uses a protocol
that guarantees the coherence of cache memories at the time
of 1ssuance of a SYNC instruction for synchronization from
a processor, a data block, which will be written back from
the cache memory to the main memory at the time of
issuance of a SYNC instruction 1n future, can be written
back while the shared bus 1s not used by another bus master.
For this reason, the write-back operations can be prevented
from being concentrated at a given time point, and high
system performance can be realized.

|Second Embodiment |

In the first embodiment, even when a low-priority write-
back request 1s present in the cache, the cache control
sequencer 111 cannot write back corresponding data to the
main memory 12 unless the bus arbiter 16 implicitly grants
the use of the bus. In this method, when a bus master having
no write-back request 1s implicitly granted the use of the bus,
and does not use the bus, if another bus master has a
low-priority write-back request, the use efficiency of the bus
lowers.

In view of this problem, in the system of the second
embodiment, even when a certain bus master 1s implicitly
oranted the use of the bus, 1f the bus master does not use the
bus and another bus master has a low-priority write-back
request, the implicit grant for the use of the bus 1s canceled,
and the bus master having the low-priority write-back
request 1s granted the use of the bus, thereby improving the
use efficiency of the bus.

The arrangement of the entire system, the arrangement of

the cache system, and the flows of the respective processing
operations are the same as those shown 1n FIGS. 1 to 7 in the
first embodiment.

FIG. 12 shows the control sequence upon execution of
write-back processing of the cache 1n the second embodi-
ment. The ditference from FIG. 8 in the first embodiment 1s

J,860,110

13

that a new path 1s added as the execution method of the
low-priority write-back operation. That 1s, 1n this
embodiment, the write-back operation 1s performed 1n the
following four cases (i.e., case 4 in addition to cases 1 to 3
of the first embodiment):

1: when the processor 1ssues a SYNC 1nstruction,

2: when a cache miss has occurred, and a “DIRTY” block
1s selected as the block to be replaced,

3: when a “DIRTY” block 1s present 1n the cache and the
shared bus 1s not busy, and

4: when a “DIRTY” block 1s present in the cache, and
another bus master does not use the bus although the
cache 1s not granted the use of the shared bus (including
a case wherein another bus master 1s implicitly granted
the use of the bus).

Cases 1 to 3 have been described in the above
embodiment, and a detailed description thereof will be
omitted. In case 4, a bus master which 1s to perform the
write-back operation can determine this case, since none of
the other bus masters use the bus, although 1t 1s not assigned
the right of use of the shared bus. The write-back operation

in case 4 1s also called the low-priority write-back operation.
In FIG. 12, steps S1201 to S1210 are substantially the

same as steps S801 to S810, except that 1f 1t 1s determined
in step S1209 that a certain cache 1s not granted the use of
the shared bus, and 1f a bus busy signal BB* 1s kept at H
level for a predetermined period of time, 1.€., the bus 1s not

used for a predetermined period of time (YES in step
S1211), a shared bus request is issued (step S1212), and a

write-back operation of DIRTY data is executed (step
S1213). Note that the write-back operation in step S1213 is
called from step S601 of confirming the grant for the use
with respect to the bus request as i1n the high-priority
write-back operation since a shared bus request 1s to be
1ssued, although 1t 1s the low-priority write-back operation.

The apparatus and sequence for realizing case 4 above
will be described 1n detail below.

Referring to FIGS. 2 and 9, when no access outside the
cache 1s made, the cache control sequencer 111 issues the
value of the internal register 196 on the address-m signal line
171, and checks the status of the status flag 113 obtained 1n
response to the 1ssued value via the status signal line 192. As
a result, 1f 1t 1s determined that the status of the block of
interest 1s “DIRTY™, the cache control sequencer controls
the shared bus control interface 156 via the S-Cont signal
line 195 to perform a low-priority write-back operation of
the “DIRTY” block upon reception of an implicit shared bus
use grant signal.

Upon reception of the low-priority write-back request, the
shared bus interface 156 waits for the implicit grant for the
use of the bus. At the same time, the interface 156 monaitors
the state of the shared bus to check if another bus master 1s
implicitly granted the use of the bus but does not use the bus
in practice (shared bus inactive state).

In this embodiment, the shared bus 1nactive state 1S
recognized as a state wherein the bus master of interest 1s not
oranted the use of the bus, and the signal BB* 167 1s kept
at H for a predetermined time period T or longer.

The predetermined time period T 1s a value determined as
the protocol of the shared bus, and T=2 when the protocol
shown 1n FIG. 10 1n the first embodiment 1s used.

The shared bus control interface 156 that recognized the
shared bus 1active state by detecting T £2 drives a bus
request signal BR1* to L so as to seek the right of use of the
bus. Upon reception of the grant for the use of the bus in the
form of a grant signal BG1*=L, the shared bus control
interface 156 drives the signal BB* 167 to L to execute a
low-priority write-back operation.

10

15

20

25

30

35

40

45

50

55

60

65

14

Upon recognizing acquisition of the right of use of the
shared bus, the cache control sequencer 111 generates an
address of data to be written back on the basis of an address
on the address-m signal line 171, a host address on the
address-h' signal line 173 obtained based on the address on
the line 171, and the like, and supplies the generated address
to the shared bus address interface 154 to output it onto the
shared bus 15. At the same time, data to be selected at that
time on the SRAM 114 1s selected by a select signal 193 for
the selector 116, which signal 1s obtained by passing a
comparator control signal 176 through the comparator 1135,
and the selected data 1s output onto the Data signal line 174.
The output data 1s output onto the shared bus via the shared
bus data interface 155, thus executing a write-back operation
to the main memory 12.

Once granted the use of the bus, the shared bus control
interface 156 deasserts the signal BR1* at that time, and
executes the subsequent low-priority write-back operation
on the basis of the implicit grant for the use of the bus.

At the same time, the cache 21 snoops the bus. When the
above-mentioned write-back operation 1s executed, the
cache 21 checks data held therein, and 1invalidates the status
flag 113 upon detection of a corresponding entry.

With this mechanism, 1n a system which uses a protocol
that guarantees the coherence of cache memories at the time
of 1ssuance of a SYNC instruction for synchronization from
a processor, a data block, which will be written back from
the cache memory to the main memory at the time of
issuance of a SYNC instruction in future, can be written
back while the shared bus 1s not used by another bus master,
thus improving the system performance.

Furthermore, 1in addition to the effect of the first
embodiment, 1n this embodiment, when the shared bus 1s not
used, the cache can perform a write-back operation by
acquiring the right of use of the bus even through 1t 1s not
assigned the right of use of the bus. Therefore, a bus master
other than that which used the bus latest can perform the
write-back operation by seeking a grant for the use by
1ssuing a bus request, and an implicit grant for the use of the
bus given thereafter. For this reason, the write-back opera-
fion can be frequently performed, and write-back transac-
fions can be prevented from being concentrated.

| Third Embodiment |

The arrangement and some control operations of a multi-
processor system according to the third embodiment are the
same as those of the system in the first embodiment shown
in FIGS. 1 to 7 and FIG. 11. However, write-back control
(step S503 in FIG. §) and the arrangement of the bus arbiter
16 arc different from those in the first embodiment. The
characteristic feature of this embodiment will be mainly
described below.

| Write-back Control]

The control sequence until data 1s written back from the
cache to the memory as the characteristic feature of this
system will be described below with reference to the flow
chart 1n FIG. 13.

The characteristic feature of this system lies 1n that the
write-back operation of the cache i1s executed 1n correspon-
dence with a relaxed memory coherence model. In a con-
ventional system, a write-back operation 1s executed when
another processor makes a read access to a “DIRTY” block
which has been rewritten with the latest value 1n the 1ts own
cache. However, the system of this embodiment does not
perform the write-back operation at this timing. The write-
back operation 1s performed in the following cases:

1: when the processor 1ssues a SYNC instruction;

In this case, all “DIRTY” blocks 1n the cache are written
back to the main memory.

J,860,110

15

2: when a cache miss has occurred, and a “DIRTY” block
1s selected as the block to be replaced;

In this case, only the block to be replaced 1n the cache 1s
written back to the main memory.

3: when a “DIRTY” block is present 1n the cache, and the
shared bus 1s not busy;

In this case, when the shared bus 1s not busy, “DIRTY”
blocks are sequentially written back to the memory.
When a transaction of higher priority is generated (e.g.,
a processor generates a SYNC instruction) during
execution of this write-back operation, the shared bus
request 1s switched to a high-priority mode.

In case 1, upon detection of i1ssuance of the SYNC
instruction from the processor by, e€.g., decoding a control
signal, the cache control sequencer 111 repetitively executes
write-back operations for all “DIRTY” blocks 1n the cache.

Case 2 corresponds to a case wherein a cache miss has
occurred, and the write-back operation 1s performed after the
cache control sequencer 111 detects the block to be replaced
by a replacement algorithm such as LRU when a cache block
1s to be replaced.

Since case 3 concerns the characteristic feature of this
embodiment, the apparatus and sequence for realizing case
3 will be described 1n detail below with reference to the
sequence shown 1n FIG. 13. FIG. 13 shows the control
sequence of the cache control sequencer upon execution of
the write-back operation.

When write-back processing 1s started, i1t 1s checked 1if a
“DIRTY” block is present in the cache (step S1301). If YES
in step S1301, i.¢., if case 1 above 1s determined (called from
FIG. 11), it 1s detected if the write-back operation has been
started 1n response to a SYNC instruction issued by the
processor (step S1302), and the cache control sequencer 111
issues a high-priority shared bus request (step S1303),
thereby repetitively executing write-back operations until all
the “DIRTY” blocks in the cache are written back (steps
S1304 and S1305).

If case 2 above 1s determined, 1.e., 1f a “DIRTY” cache
block 1s to be replaced upon occurrence of a cache miss
(YES in step S1306), the cache control sequencer 111 issues
a high-priority shared bus request to obtamn a grant for the
use of the shared bus 15 (step S1307). Thereafter, the
sequencer 111 writes back a cache block to be replaced to the
main memory 12 (step S1308).

If case 3 1s determined, the cache control sequencer 111
issues a low-priority shared bus request (step S1309), and it
1s checked 1f a high-priority bus request 1s issued before it
receives the grant for the use (signal BG*) (step S1310). If
such request 1s not issued (NO in step S1310), the sequencer
111 writes back “DIRTY” blocks (step S1311).

The control sequence upon execution of the write-back
processing of a “DIRTY” data block to the main memory
(steps S1304, S1308, and S1310) is the same as the high-
priority write-back processing of the “DIRTY” block m FIG.
6, and a detailed description thereof will be omitted. Also,
the status flag transits as shown 1 FIG. 7.
<Write-back Control (Description Based on Signals)>

The write-back control has been described 1n terms of its
sequence. In the following description, the write-back con-
trol including issuance of a low-priority shared bus request
as the characteristic feature of this embodiment will be
explained 1n view of signal control.

| Cache]

In FIG. 2, when no access outside the cache 1s made, the
cache control sequencer 1ssues the value of the internal
register 196 on the address-m signal line 171, and checks the
status of the status flag 113 obtained 1n response to the 1ssued

10

15

20

25

30

35

40

45

50

55

60

65

16

value via the status signal line 192. As a result, if 1t 1s
determined that the status of the block of interest is
“DIRTY”, the cache control sequencer controls the shared
bus control mterface 156 via the S-Cont signal line 195 to
drive a low-priority shared bus request signal. With this
control, the shared bus control interface 156 drives a shared
bus request signal (BR1*) 161 and a bus request priority
signal indicating low priority to L with respect to the bus

arbiter 16. The bus request priority signal 1s a signal LP1*
163 1n FIG. 14, and 1s included in the control bus 153.

| Bus Arbiter]

The bus arbiter 16 that received the abovementioned
signals operates as follows. FIG. 14 shows the arrangement
of the bus arbiter 16.

The bus arbiter 16 receives a shared bus request signal
(BR1*) 161 and a bus request priority signal (LP1*) 163 of
the cache 11, and a shared bus request signal (BR2*) 162 and
a bus request priority signal (LP2*) 164 of the cache 21,
respectively from the caches 11 and 21 as signals included
in the control bus 153. The shared bus request signals 161
and 162 are true when they are at L level. The bus request
priority signals 163 and 164 indicate low priority when they
are asserted to L level.

The bus arbiter 16 outputs a shared bus grant signal
(BG1*) 165 and a shared bus grant signal (BG2*) 166
respectively to the caches 11 and 21. These signals are also
true when they are at L level.

Furthermore, the bus arbiter 16 receives a bus busy signal
(BB*) 167 indicating whether or not each bus master is
using the shared bus (when BB*=L, it indicates that a certain
bus master is using the bus). The bus arbiter 16 1s a
synchronous circuit, and the respective signals are latched in
response to the rising edges of system clocks (BCLK) 168.
Depending on the combination of the latched signals, a
combination circuit 160 makes status transitions.

FIG. 15 shows an example of the arbitration timing of the
shared bus. In this embodiment, bus arbitration 1s performed
as follows. The shared bus masters output bus use request
signals BR*, as shown 1n FIG. 15. Upon recognizing that 1t
is granted the use of the bus (BG*=L) at the timing of the
rising edge of the bus clock (BCLK) upon detection of
BB*=H (bus master 1 is in this state at the timing t1 in FIG.
15), the bus master asserts the signal BB* to L in the next
bus cycle to declare the use of the shared bus, and keeps
asserting the signal BB* while 1t 1s using the shared bus.

The basic rule of this arbitration algorithm 1s that after a
change 1n signal BB* from H to L is detected (after a certain
bus master begins to use the bus), arbitration for the right of
use of the bus 1s started, and a bus master with the highest
priority 1s granted the use of the bus at the time of the end
of the arbitration.

The priority order at the beginning of arbitration is as
follows. The bus masters are classified into the following
three groups on the basis of the presence/absence of a bus
request.

Priority A: a bus master that 1ssues a high-priority bus
request

Priority B: a bus master that issues a low-priority bus
request

Priority C: a bus master that does not issue any bus
request but currently has the right of use of the bus
Note that priority A>priority B>priority C.

The order of bus masters 1n each priority group 1s deter-
mined by the round robin method. That 1s, if there are N bus
masters (in this embodiment, N=2) and a bus master with
bus master number 1 (0=1=N-1) 1s currently using the bus,
the order 1s defined by:

J,860,110

17

(i+1)mod N>{(i+2)mod N >. . . >({+N-2)mod N >({+N-1)mod N>i

The right of use of the bus 1s assigned to bus masters that
1ssue bus requests 1n this order. If the right of use of the bus
1s not assigned to any bus masters immediately before the
beginning of the arbitration (at the beginning of the opera-
tion of the system), the right of use of the bus is assigned to
a bus master with smallest bus master number 1.

The arbitration 1s completed when the next bus master 1s
determined in accordance with the priority (when BG* is
asserted). In this case, if a bus request included in a
higher-priority group 1s generated before the bus master
determined by the arbitration recognizes its own right of use
of the bus based at BB*=H, re-arbitration 1s performed.
Once the bus master 1s determined, 1f a request with higher
priority based on the round robin method 1s 1ssued in the
identical priority group, no re-arbitration 1s performed.

With this control, the bus arbiter 16 can grant permission
to write back a “DIRTY” block to the memory to each cache
only when the shared bus 1s not actually busy.

FIGS. 16 A to 17B show the truth tables showing the logic
for performing the above-mentioned arbitration by the bus
arbiter 16. FIGS. 16A and 16B show the truth table for the
signal BG1* and FIGS. 17A and 17B show the truth table for
the signal BG2*. In FIG. 16 A, bus master 1 1s uncondition-
ally granted the use of the bus 1n the following two cases. In
the first case, the signal BR1* =L and the signal BR2* =H
irrespective of the value of the priority signal, 1.€., only bus
master 1 1s seeking the use of the bus. In the second case,
BR1*=L, LP1*=H, BR2* =1, and LP2*=L, 1.e., bus master
1 1ssues a high-priority bus request, and bus master 2 1ssues
a low-priority bus request.

RR1 indicates a case wherein arbitration must be per-
formed 1n an 1dentical priority group, and FIG. 16B shows
its contents. More speciiically, 1n this case, since the priority
order 1s determined 1n accordance with the above-mentioned
round robin method, a bus master having a number next to
that of the bus master granted the use immediately before the
arbitration 1s granted the use. In this embodiment, since two
bus masters are used, if the immediately preceding BG2*
(=BG2") 1s L, BG1* is set to be L.

The same applies to the signal BG2*. In this case, as
shown 1n FIGS. 17A and 17B, signal number 2 replaces 1 1n

FIGS. 16A and 16B.

A case will be described below while taking FIG. 15 as an
example. At the timing t2, the signal BR1* 1s H, the signal
BR2* 1s L, and these signals have equal priority. For this
reason, as a result of arbitration, the signal BG2* 1s set to be
L, and bus master 2 1s granted the use of the bus.

At the timing t3, since none of bus masters 1ssue bus
request signals, a bus master that has the right of use of the
bus at that time 1s granted the use. For this reason, bus master
2 temporarily releases the bus at the next clock timing, but
immediately restarts the use of the bus since 1t 1s granted the
use.

The method of outputting a bus use grant signal from the
bus arbiter has been described. The caches as bus masters
operate as follows 1n correspondence with the arbitration
result of the bus arbaiter.

Referring to FIG. 2, the cache control sequencer 111

recognizes that the signal BG1* 1s at L at the rising edge of
the bus clock BCLK 168 that satisfies BB =H with respect

to the signals BR1* 161 and Lpl* 163. The cache control
sequencer 111 generates an address of data, for which the
bus request 1s 1ssued, on the basis of an address on the
address-m signal line 171, a host address on the address-h'
signal line 173 obtained based on the address on the line 171,
and the like, and supplies the generated address to the shared

10

15

20

25

30

35

40

45

50

55

60

65

138

bus address interface 154 to output 1t onto the shared bus. At
the same time, data to be selected at that time on the SRAM
114 1s selected by a select signal 193 for the selector 116,
which signal 1s obtained by passing a comparator control
signal 176 through the comparator 115, and the selected data
1s output onto the Data signal line 174. The output data is
output onto the shared bus via the shared bus data interface
155, thus executing a write-back operation to the main
memory 12.

At the same time, the cache 21 snoops the bus. When the
above-mentioned write-back operation i1s executed, the
cache 21 checks data held therein, and 1invalidates the status
flag 113 upon detection of a corresponding entry.

With this mechanism, 1n a system which uses a protocol
that guarantees the coherence of cache memories at the time
of issuance of an instruction for synchronization (to be
referred to as a SYNC instruction hereinafter) from a
processor, a data block, which will be written back from the
cache memory to the main memory at the time of 1ssuance
of a SYNC 1nstruction 1n future, 1s written back 1n advance
when the shared bus 1s not used by another bus master, thus
improving the system performance.

| Fourth Embodiment]

In the above embodiments, the method of snooping the
bus 1s used 1n the coherence maintenance operation of the
cache memories. However, 1n a parallel computer system
that uses a connection network for interconnecting between
processors and between processors and a main memory,
which network can hardly monitor all the transactions, a
directory method 1s used. Such case will be described below
as the fourth multiprocessor system according to the present
invention. Common drawings and reference numerals
described in the third embodiment will be quoted 1n this
embodiment.
<System Arrangement>

FIG. 18 1s a block diagram showing the arrangement of
the fourth multi-processor system according to the present
invention.

Referring to FIG. 18, reference numerals 1, 2, and 3
denote computer nodes. Processors 10, 20, and 30 are
respectively connected to caches 11, 21, and 31 via proces-
sor buses 14, 24, and 34. The caches 11, 21, and 31 are
respectively connected to main memories 12, 22, and 32,
and 1internode interfaces 13, 23, and 33 via shared buses 15,
25, and 35. A global bus 4 connects the internode interfaces
13, 23, and 33. The right of use of the global bus 4 1s
arbitrated by a global bus arbiter 5.

In FIG. 18, the number of computer nodes connected 1s 3.
However, the present invention 1s not limited to three nodes.
Also, each node includes a pair of processor and cache.
However, the number of pairs of processors and caches 1s
not limited to one parir.

The system of this embodiment 1s an information pro-
cessing system which has the arrangement as shown 1n FIG.
18 and performs coherence control adopting a relaxed
memory coherence model that guarantees the coherence of
data at the time of 1ssuance of a SYNC instruction from a
processor. When each cache holds a data block (“DIRTY”
block), which is rewritten with the latest value but does not
reflect 1ts value in the main memory thereafter, and the
olobal bus and the shared bus in each node are not used by
another bus master, the cache performs a write-back pro-
cessing of the “DIRTY” block to the corresponding main
memory. On the other hand, when a copy of data 1n the data
block of interest 1s held 1n another cache, the cache that
holds the copy executes a coherence maintenance transac-
tion with respect to the held cache data block. In this manner,

J,860,110

19

the system of this embodiment can distribute the traffic of
coherence maintenance transactions peaked at the time of
1ssuance of a SYNC 1instruction.

FIG. 19 shows the internal arrangement of the computer
node as a portion of this embodiment. FIG. 19 shows the
arrangement of the computer node 1 as an example, and the
computer nodes 2 and 3 also have the same arrangement as
that of the computer node 1.

Referring to FIG. 19, the processor 10 can 1ssue multiple
memory accesses, and has a special instruction (SYNC
instruction) for completing the multiple-issued memory
accesses while warranting the coherence of the relaxed
memory coherence model.

Referring to FIG. 19, the main memory 12 includes a
main memory control sequencer 121, a memory 123, and a
directory unit 122. The processor bus 14 consists of three
sets of signal lines, 1.¢., an address bus 141, a data bus 142,
and a control bus 143, that connect the processor 10 and the

cache 11. Intranode shared buses 151, 152, and 153 are
respectively an address bus, a data bus, and a control bus for
connecting the cache 11, the internode interface 13, and the
main memory 12. The global bus 4 for connecting the nodes
1, 2, and 3 includes an address bus 41, a data bus 42, and a
control bus 43, that connect the internode interfaces 13, 23,
and 33. The global bus arbiter § arbitrates the right of use of
the global bus 4.

Since the arrangement of the caches 11 to 31 is the same
as that 1in the above-mentioned embodiment, the arrange-
ment shown 1n FIG. 2 will be quoted. FIG. 2 exemplifies the
arrangement of the cache 11, and the caches 21 and 31 have
the same arrangement as that of the cache 11. Also, the
protocol of the cache 1s a write-back 1nvalidating type
protocol, and the status transition of the flag of the cache 1s
the same as that shown in FIG. 7. Since they have already
been described 1n detail 1n the first embodiment, a detailed
description thereof will be omitted.

The operation of the cache system of this embodiment
will be briefly described below with reference to FIGS. 18,
19, 20, 21, and 22.

FIG. 20 shows 1n more detail the arrangement of the main
memory 12 as a portion of the system of this embodiment.
The directory unit 122 has a directory flag 124, and the main
memory control sequencer 121 controls the entire main
memory 12.
<Control of LOAD Instruction>

FIG. 21 shows the control sequence in the cache 11, the
main memory 12, and a remote node upon execution of a
LOAD mstruction by the processor 10 1n the system of this
embodiment. Note that a node which 1s executing an 1nstruc-
tion such as a LOAD instruction will be referred to as a local
node heremnafter, and other nodes will be referred to as
remote nodes herematter.

Referring to FIG. 21, when a cache read hit has occurred
with respect to the LOAD instruction 1ssued by the proces-
sor 10, 1.e., an address tag of the cache 11 stores an address
matching that of the data block to be loaded (YES in step
S1701), the cache 11 supplies data to the processor 10 (step
S1702).

On the other hand, when a cache read miss has occurred
with respect to the LOAD instruction 1ssued by the proces-
sor 10, the cache 11 1ssues an access request onto the shared
bus 15 (step S1703). In this case, the cache 11 does not

supply any data to the processor 10 until 1t receives data that
caused the cache read miss.

When a cache read miss has occurred and the memory

access 1s made with respect to the main memory 12 1n the
computer node 1 (local node) (YES in step S1704), the
cache 11 requests data to the main memory 12 (step S1705).

10

15

20

25

30

35

40

45

50

55

60

65

20

The subsequent steps S1706 and S1707 are to be executed
by the main memory control sequencer 121 1n the main
memory 12, and the control sequencer 111 of the cache 11
restarts control upon reception of the processing result in
these two steps. The main memory control sequencer 121
registers the directory flag 124 corresponding to the cache 11
in the directory unit 122 in the main memory 12 (step
S1706). Then, the main memory control sequencer 121

transfers the data requested by the cache 11 to the cache 11
via the shared bus 15 (step S1707).

The cache 11 receives the data via the shared data bus 152
and reads the corresponding entry in the SRAM 144 (step
S1708). Thereafter, the cache 11 supplies data to the pro-
cessor 10 (step S1709).

On the other hand, when a cache read miss has occurred
and the memory access 1s made with respect to the main
memory (€.g., the main memory 22) in the node (remote
node) other than the computer node 1 (NO in step S1704),
the mnternode mterface 13 of the node 1 1ssues a data request
to the 1nternode interface 23 1n the node 2 via the global bus

4 (step S1710).

The subsequent steps S1711 to S1713 are processed by
the main memory control sequencer in the node 2.

Upon reception of the data request, the internode interface
23 1ssues a data request to the main memory 22 together with
data request source information (step S1711), and the main
memory 22 registers the directory tlag corresponding to the
cache as the data request source in its directory unit (step
S1712). The main memory 22 supplies data to the internode
interface 23, and the internode 1nterface 23 transters the data
onto the global bus 4 (step S1713).

When the data i1s output onto the global bus 4 in this
manner, the internode interface 13 of the node 1 reads the
data on the global bus 4, and transfers it onto the shared bus
15 (step S1714). The cache 11 receives this data and replaces
a data block therein by the received data (step S1715). After
the desired data 1s loaded into the cache 11, the cache 11
supplies the data to the processor 10 (step S1716).

As described above, either a local or remote node can load
data to be loaded 1nto 1ts cache, and a processor can access
the data in the cache.

The buses 1n the local node are managed by the shared bus
arbiter 1n the same sequence as that described 1n the above
embodiment. In this case, there are two bus masters, 1.e., the
cache and the mternode interface. Also, the global bus 4 1s
managed by the global bus arbiter 5. The arbiter S manages
the bus 1n the same manner as 1n the above embodiment to
have the mternode interfaces of the respective nodes as bus
masters.

Note that the control sequence upon 1ssuing a STORE
mnstruction 1s the same as that shown 1n FIG. 4 1n the first
embodiment, and a detailed description thercof will be
omitted. In this embodiment, however, the cache miss
processing 1n step S402 in FIG. 4 1s replaced by processing
after the read miss processing executed when NO 1s deter-
mined 1n step S1701 in FIG. 21.
<Write-back Processing>

The write-back control 1n this system 1s the same as that
shown 1n FIG. 13 1n the third embodiment, but the bus
request sequence 1s rather complicated due to the presence
of the local bus (shared bus) and the global bus. Also, the
write-back control 1s executed when a STORE 1nstruction or
SYNC instruction 1s 1ssued, or when a cache miss has
occurred as 1n the sequence of the third embodiment shown
in FIG. 13.

Referring to FIG. 13, the first occasion of the write-back
operation of a “DIRTY” block 1s the 1ssuance of a SYNC

instruction from the processor 10.

J,860,110

21

That 18, when the cache 11 stores at least one “DIRTY”
block, and the processor 10 1ssues a SYNC instruction,
write-back processing of such “DIRTY” blocks to the main
memory 1s executed. When a SYNC struction 1s 1ssued,
write-back processing of “DIRTY” blocks to the main
memory 1s repetitively executed until all “DIRTY” blocks
are written back.

As for the use requests of the bus 1n the node and the bus
for connecting the nodes, this processing i1s executed in
response to a high-priority bus request as 1n a normal bus
access. Upon execution of write-back processing of
“DIRTY” blocks to the main memory, the main memory
control sequencer 121 updates the contents of the main
memory, and searches the directory flag of the directory
corresponding to a data block to be updated. When a cache
other than the cache which i1s subjected to the write-back
operation of “DIRTY” blocks holds a copy of the data as
shared data, a coherence maintenance transaction 1s
executed for the cache data block held as shared data.

In this embodiment, the coherence maintenance transac-
fion 1s an 1nvalidating type transaction, but the present
invention 1s not limited to this.

The second occasion 1s a case wherein a “DIRTY” block
1s selected as the block to be replaced 1n the cache. In this
case, substantially the same processing as that executed
upon 1ssuing a SYNC 1nstruction 1s executed, except that
write-back processing of “DIRTY” blocks to the main
memory 1s performed 1n correspondence with the number of
cache blocks to be replaced.

The third occasion 1s a case wherein the cache control
sequencer undertakes writing back “DIRTY” blocks without
disturbing the operations of other bus masters when the
interconnection network 1s not busy. This operation 1s the
characteristic feature of the present invention.

FIG. 22 shows 1n detail the write-back processing of
“DIRTY” blocks in FIG. 13 1n this embodiment. In the
following description, assume that the cache 11 executes the
write-back processing to the main memory. Note that a
description about the arbitration control for the right of use
of the bus will be 1gnored herein.

The sequence shown 1n FIG. 22 1s started after a high- or
low-priority shared bus request 1s 1ssued, and the grant for
the use of the bus 1s acquired from the bus arbiter 16.

Referring to FIG. 22, the cache 11 transfers write-back
request source mmformation onto the shared control bus 153
and the address of the write-back access onto the shared
address bus 151, and 1ssues a write-back request onto the
shared bus 15 (step S1801). The cache 11 supplies data to be
written back onto the shared data bus 152, and waits until the
written-back data 1s supplied to the entry of the correspond-
ing main memory, the required coherence maintenance
operation 1s completed, and the write-back processing to the
main memory 1s completed. Steps S1803 to S1807 are
executed by the main memory 1n the local node that received
the write-back request, and steps S1809 to S1814 are
executed by the remote node. In this manner, the processing
branches into two paths depending on whether or not the
write-back address 1s the local node.

(1) When the address of the write-back processing is
present in the main memory 12 in the computer node 1 (YES
in step S1802):

The main memory control sequencer 121 receives the
write request, the address of the write-back access, and the
data supplied onto the shared data bus 152, and searches the
directory unit 122 1n the main memory 12 to check if a
directory flag for a cache other than the cache 11 as the
write-back request source is registered (step S1803). When

10

15

20

25

30

35

40

45

50

55

60

65

22

a cache other than the cache 11 holds a copy of the data 1n
a valid state (YES in step S1804), the main memory control
sequencer 121 executes a coherence maintenance operation
for the cache that holds the copy. That 1s, the main memory
control sequencer 121 1ssues an invalidating processing
instruction for mnvalidating the corresponding data block to
the node which has a copy of the data block registered in the
directory (step S1805). Upon reception of this instruction,
the destination node sets the status flag of the corresponding
data block 1n the cache to be “INVALID”. In this case,
although the shared bus and the global bus are used, since a
high-priority bus request 1s 1ssued, the data coherence main-
tenance operation can be performed quickly.

Then, the entry of the corresponding data in the memory
123 1s updated with the data sent together with the write-
back request (step S1806). Upon completion of this
processing, the cache 11 is notified of completion of the
write-back operation to the main memory (step S1807).

In this embodiment, the coherence maintenance operation
1s an 1nvalidating type transaction, but this embodiment is
not limited to this specific transaction.

(2) When the address to be subjected to the write-back
processing to the main memory 1s present 1n the main
memory (e.g., 22) outside the computer node 1 (NO 1n step
S1802):

The internode interface 13 receives the write-back
request, the address of the write-back access, and the data
supplied onto the shared data bus 152, and issues a global
bus request to the global bus arbiter 5. After the interface 13
1s granted the use of the bus, 1t outputs write-back request
source 1nformation onto the global control bus 43, and
outputs the address of the write-back access onto the global
address bus 41. Also, the interface 13 transfers the data of
the write-back access onto the global data bus 42, and 1ssues
a write-back request to the internode interface 23 (step
S1808).

Upon reception of the write-back request and the address
of the write-back access, the internode interface 23 outputs
the write-back request source information onto a shared
control bus 253 of the node 2. Also, the interface 23 outputs
the address of the write-back access onto a shared address
bus 251. Furthermore, the interface 23 transfers the data of
the write-back access onto a shared data bus 252, and 1ssues
a write-back request onto the shared control bus 253 (step
S1809). The bus request in this case 1s a high-priority global
bus request 1n the case of a write-back access for a SYNC
instruction and cache replacement; otherwise, 1t 1s a low-
priority global bus request.

Upon reception of the write-back request, the address of
the write-back access, and the data supplied onto the shared
data bus 252, the main memory 22 searches a directory unit
222 therein to check if a directory flag for a cache other than
the cache 11 as the write-back request source 1s registered
(step S1810). When a cache other than the cache 11 holds a
copy of the data in a valid state (YES in step S1811), a
coherence maintenance operation 1s executed for the cache
that holds the copy (step S1812). This processing is the same
as that 1n step S1805 above.

Thereafter, a main memory control sequencer 221 updates
the corresponding data 1n a memory 223 with the data to be
written back, which is received together with the write-back
request (step S1813).

Upon completion of the write-back processing, the inter-
node interface 23 nofifies the internode interface 13 of
completion of the write-back processing to the main
memory. The mternode mterface 13 notifies the cache 11 of
completion of the write-back processing (step S1814).

J,860,110

23
<Low-priority Write-back>

The control sequence for writing back “DIRTY blocks to
remote memory while the cache i1s not accessed as the
characteristic feature of the present i1nvention will be
described 1n more detail below with reference to FIGS. 2,
14, and 19.

Referring to FIG. 2, when no access 1s made from outside
the cache, the cache control sequencer 1ssues the value of the
internal register 196 on the address-m signal line 171, and
checks the status of the status flag 113 obtained in response
to the 1ssued value via the status signal line 192. As a result,
if 1t 1s determined that the status of the block of interest 1s
“DIRTY”, the cache control sequencer controls the shared
bus control interface 156 via the S-Cont signal line 195 to
drive a low-priority shared bus request signal. With this
control, the shared bus control interface 156 sets a shared
bus request signal (BR1*) 161 and a bus request priority
signal (LP1*) indicating the low-priority request at L level
with respect to the bus arbiter 16.

Upon reception of this request, the shared bus arbiter 16
orves the right of use of the shared bus 15 1n the node 1 to
the cache 11 according to the rule shown in FIGS. 16 A and
16B when 1t does not receive any high-priority bus request
from another bus master 1n the node 1. Since this process has
already been described 1n the third embodiment, a detailed
description thereof will be omitted.

The cache control sequencer 111 that acquired the right of
use of the shared bus 15 1ssues, to the internode interface 13,
a request for performing an internode low-priority write-
back operation to the main memory 22 in the node 2 via the
olobal bus 4. More specifically, the sequencer 111 writes the
address, data, and the like to be written back in low-priority
write-back internal registers 131 (address), 132 (data), and
133 (control) in the internode interface 13.

Upon reception of the mternode low-priority write-back
request, the internode interface 13 1ssues a low-priority
request of the global bus 4 to the global bus arbiter § that
performs arbitration control of the global bus. Upon recep-
tion of this request, the global bus arbiter 5 gives a grant for
the use of the global bus 4 to this internode low-priority
write-back request only when 1t does not receive any use
request from another internode 1nterface, as 1n arbitration of
the shared bus 1 the node. Upon reception of the grant for
the use of the global bus, the internode interface 13 com-
municates with the mternode interface 23 in the node 2 to
fransmit an internode low-priority write-back request to the
main memory 20 to it.

Upon reception of the mternode low-priority write-back
request from the cache 11, the internode mterface 23 1ssues
a low-priority bus request to the intranode shared bus 25 on
the basis of the received information. In the node 2 as well,
the right of use of the shared bus 25 1s stmilarly arbitrated,
and the internode interface 23 i1s granted the use of the
shared bus 25 1n accordance with the predetermined rule
only when no other bus masters in the node 2 issue any
high-priority bus request. The internode 1nterface 23 granted
the use of the shared bus 25 executes a write-back operation
to the main memory 22. The main memory control
sequencer 221 subjected to the write-back operation reflects
the contents of the write-back operation 1n the memory 223,
and searches for a directory flag 224 of the directory
corresponding to the data block to be written back to the
main memory 22. When a copy of data 1s held in a cache
other than the cache 11 1n the node 1, which executed the
write-back operation of a “DIRTY” block, a coherence
maintenance transaction 1s executed for the cache data block
that holds the copy.

10

15

20

25

30

35

40

45

50

55

60

65

24

Upon execution of this coherence maintenance operation
a high-priority bus request 1s generated as i1n the normal
processing 1n consideration of nature of the cache transac-
tion. When the coherence maintenance operation (for invali-
dating the corresponding entry in this case) 1s completed, the
main memory control sequencer 221 1n the node 2 notifies
the cache control sequencer Ill of a message indicating this
as a high-priority message. Upon reception of the message,
the cache control sequencer 111 changes the status flag 113
of the entry subjected to the write-back processing from
“DIRTY” to “CLEAN” (a state wherein the data values on
the cache 11 and the main memory 22 match each other). In
this manner, a series of write-back operations end.

In these operations, low-priority requests are queued
when another bus master issues a bus use request. More
specifically, when each internode interface receives a low-
priority write-back request and also receives a high-priority
processing request before it processes the former request, the
high-priority processing request 1s preferentially processed.
In this case, only when the contents of the high-priority
processing request are 1ssued by the same bus master as that
which previously 1ssued the low-priority write-back request,
and the later processing request 1s a high-priority write-back
request, the queued low-priority write-back request 1s pro-
cessed as a high-priority one prior to the processing of the
later request.

As described above, 1n the multi-processor system con-
stituted by connecting a plurality of computer nodes via the
cglobal bus, cache write-back processing can be arbitrarily
performed as long as no high-priority bus request 1s
oenerated, and write-back transactions can be prevented
from being concentrated at one timing.

| Fifth Embodiment]

FIG. 23 1s a block diagram showing the arrangement of
the fifth embodiment of a system for realizing the present
invention.

Referring to FIG. 23, processors 10 and 20 are respec-
tively connected to cache units 11 and 21 via processor buses
14 and 24.

Referring to FIG. 24, the processor 10 can 1ssue multiple
memory accesses, and has a special instruction (SYNC
instruction) for completing the multiple-issued memory
accesses under the coherence guarantee of a relaxed coher-
ence model.

The cache units 11 and 21 are connected to a main
memory unit 12 and a bus arbiter 16 via a local bus 15. The
cache umits 11 and 21 update the data entries of data block
therein and reflect them in the main memory unit 12 on the
basis of requests from the processors. Also, the cache units
11 and 21 execute cache maintenance by snooping address
information or the like on the local bus 185.

The bus arbiter 16 arbitrates the right of use of the local
bus 135.

The system of this embodiment performs coherence con-
trol adopting a relaxed memory coherence model that guar-
antees data coherence at the time of issuance of a SYNC
instruction which 1s explicitly supplied from the processor.
In this system, a cache control sequencer for controlling the
coherence maintenance operation of the cache performs
write-back processing of data blocks in the DIRTY state 1n
the cache to the main memory unit when the number of data
blocks (DIRTY blocks) whose values are not reflected in the
main memory unit becomes equal to or larger than a
prescribed value, and executes a coherence maintenance
operation 1f necessary, 1n addition to the time of 1ssuance of
the SYNC 1nstruction. In this manner, the write-back pro-
cessing ftraffic to the main memory and the coherence

J,860,110

25

maintenance operation traffic, which concentrate at the time
of 1ssuance of the SYNC i1nstruction, can be distributed.

FIG. 24 shows the arrangement of the cache unit as a
portion of this embodiment. FIG. 24 shows the arrangement
of the cache unit 11, and the cache unit 21 has the same
arrangement.

Referring to FIG. 24, reference numeral 144 denotes a
processor address bus interface for connecting a processor
address bus 141; 145, a processor data bus interface for
connecting a processor data bus 142; and 146, a processor

control bus interface for connecting a processor control bus
143.

Reference numeral 154 denotes a local address bus inter-
face for connecting a local address bus 151; 155, a local data
bus interface for connecting a local data bus 152; and 156,
a local control bus interface for connecting a local control

bus 153.
Reference numeral 114 denotes a data entry for holding

data; 112, an address tag for holding the address of the data
entry 114; and 113, a status flag for holding the status of the
data entry 114. These portions comprise a set of memory
clements such as an SRAM, but the present invention is not
limited to this specific arrangement.

Reference numeral 115 denotes a comparator for com-
paring the contents of the address tag 112 with addresses on
the processor address bus 141 and the local address bus 151.
Reference numeral 116 denotes a selector for selecting data
in the data entry 1n accordance with the comparison result of
the comparator 115.

Reference numeral 111 denotes a cache control sequencer
for controlling the respective modules in the cache unait.

In this embodiment, the cache unit adopts a 2-way set
assoclative arrangement. However, the present invention 1s
not limited to this specific arrangement.
<Processing Sequence of LOAD Instruction>

FIG. 25 shows the control sequence upon execution of a
LOAD instruction for loading data into the processor in the
cache unit with the above-mentioned arrangement. In the
following description, assume that the LOAD instruction 1is
issued by the processor 10.

Referring to FIG. 25, when a cache read hit has occurred

with respect to the LOAD instruction 1ssued by the proces-
sor 10 (YES in step S2501), the cache unit 11 supplies a data

block to the processor 10 (step S2506).

When a cache read miss has occurred with respect to the
LLOAD instruction issued by the processor 10 (NO 1n step
S2501), the cache unit 11 1ssues a read request onto the local
bus 15 (step S2502). In this case, the cache unit 11 does not

supply the corresponding data block to the processor 10 until
it receives the data block that caused the cache read miss.

The cache unit 11 transfers the address of the read access
onto the local address bus 151, 1ssues a read request onto the
local control bus 153, and waits execution until the data
block 1s supplied onto the local data bus 152. However, the
present mvention 1s not limited to this specific sequence in
this embodiment.

Upon reception of the read request and the address of the
read access, the main memory unit 12 supplies the data
block onto the local data bus 152, and the cache unmit 11
receives the supplied data (step S2503).

The cache unit 11 replaces the data block supplied onto
the local data bus 152 in the entry of the corresponding data
block therein (step S2504). This processing will be
described 1n detail later with reference to FIG. 29.

The cache unit 11 supplies the data block to the processor
10 (step S2505).

In this manner, the cache unit 11 supplies data to the
processor 1n response to the LOAD instruction.

10

15

20

25

30

35

40

45

50

55

60

65

26

<Control Sequence of STORE Instruction>

FIG. 26 shows the control sequence by the cache unit
upon execution of a STORE instruction for storing data from
the processor. In the following description, assume that the
processor 10 1ssues a STORE instruction.

Referring to FIG. 26, when a cache write hit has occurred
with respect to the STORE instruction issued by the pro-
cessor 10, data to be stored 1s received from the processor
(step S2603), and the status flag corresponding to the data is
set to be “DIRTY” (step S2604). At the same time, the value
of a status flag counter 117 1s incremented by 1 (step S2605).

When the number of DIRTY blocks in the cache unit 11
has become equal to or larger than a prescribed value set 1n
the status flag counter 117, write-back processing of DIRTY
blocks to the main memory unit is executed (step s2607).
After the write-back operation, the status flag counter 1s reset
(step S2608). In this embodiment, assume that the pre-
scribed value of the number of DIRTY blocks 1n the cache,
which value 1s used for determining whether or not write-
back processing of DIRTY blocks to the main memory 1s to
be executed, 1s pre-set 1in a prescribed value memory in the
status flag counter 117. However, the storage position of the
prescribed value 1s not limited to the status flag counter.

Note that the write-back processing 1s attained by select-
ing a DIRTY block, and executing the processing shown in
FIG. 28 for the selected block.

When a cache write miss has occurred with respect to the
STORE 1nstruction i1ssued by the processor 10, 1.¢., 1f the
address tag 1n the cache unit does not store any correspond-
ing address, cache read miss processing, 1.€., the processing
in step S2502 and the subsequent steps i FIG. 25 1s
performed (step S2602). Thereafter, the cache write hit
processing 1s performed.

In this manner, 1n the STORE processing of data, when
the number of blocks which are changed to the DIRTY state
by the STORE processing exceeds the predetermined value,
the data blocks in the cache are written back to the main
memory unit.
<Sequence of SYNC 1nstruction processing:>

FIG. 27 shows the control sequence upon execution of a
SYNC i1nstruction for writing back the contents of a data
block which may be accessed by a plurality of processors to
the main memory to match the contents of the main memory
with those of the cache. In the following description, assume
that the processor 10 1ssues a SYNC instruction.

Referring to FIG. 27, when the processor 10 issues a
SYNC 1nstruction, 1f at least one DIRTY block 1s present in
the cache unit 11 (YES in step S2701), write-back process-
ing of the DIRTY block to the main memory 1s executed
(step S2702). In this embodiment, the write-back processing
of the DIRTY block to the main memory 1s repetitively
executed until all DIRTY blocks are written back. However,
the present invention 1s not limited to this sequence.

After the DIRTY block 1s written back, the status flag of
the data block subjected to the write-back processing 1s set
to be “CLEAN” (step S2703), and the value of the status flag
counter is decremented (step S2704).

In this manner, all blocks 1n the DIRTY state can be
written back to the main memory, and can be restored to the
CLEAN state.
<Sequence of Write-back Processing>

FIG. 28 shows the control sequence upon execution of the
write-back processing to the main memory. In the following
description, assume that the cache unit 11 issues a request of
write-back processing to the main memory. Note that the
broken arrow 1n FIG. 28 indicates a shift in the subject of
control.

J,860,110

27

Referring to FIG. 28, the cache unit 11 1ssues write-back
request source mformation onto the local control bus 153,
and outputs an address of this write-back access onto the
local address bus 151. Also, the cache unit 11 1ssues a
write-back request onto the local control bus 153, and
supplies a data block to be written back onto the local data
bus 152. The cache unit 11 waits execution until the written-
back data 1s supplied to the entry of the corresponding main
memory, the required coherence maintenance operation 1s
completed, and the write-back processing to the main
memory 1s completed (step S2801). Upon reception of a
completion message (step S2804), the write-back processing
ends.

Upon reception of a read request, the address of the
write-back access, and the data block supplied onto the local
data bus 152, the main memory unit 12 writes the received
data in the entry of the corresponding data block (step
S2802). Thereafter, the main memory unit supplies a
completion message to the request source (step S2803).

At the same time, a cache unit other than the cache unit
11 snoops the address transferred on the local bus 18§ (step
S2805). If a copy of the data is held in a valid state (CLEAN
or DIRTY state), the cache unit executes a coherence main-
tenance operation with respect to the data block held in the
valid state (step S2807). In this embodiment, the coherence
maintenance operation 1s an invalidating transaction for
invalidating copies, other than the written-back copy, of an
identical data block stored in a plurality of caches. However,
the present invention 1s not limited to this transaction. The
invalidating operation is attained by setting the status flag
113 to be “INVALID”.
<Sequence of Replace Processing>

FIG. 29 shows the control sequence upon execution of the
replace processing of a data block. In the following
description, assume that the cache unit 11 executes replace
processing of a data block.

Referring to FIG. 29, when a data block replace request 1s
1ssued, the cache unit 11 detects the data block to be replaced
in accordance with a data block replacement algorithm such
as an LRU (step S2901).

When the detected data block to be replaced 1s 1n the
DIRTY state, the cache unit 11 executes write-back process-
ing of the DIRTY block to the main memory (step S2904).

When the data block to be replaced 1s 1n a state other than
the DIRTY state, or when the write-back processing of the
data block 1n the DIRTY state to the main memory has been
completed, the cache unit 11 loads the data block to the data
entry of the corresponding data block (step S2903 or S2905).

When a data block 1s loaded into the cache, available
cache entry 1s allocated by executing this replace processing,
and a new data block 1s loaded into allocated entry.
<Status transition of Data Block>

FIG. 30 1s a state diagram of the status flag upon execution
of memory transactions. The status flag of the cache unit 11
will be exemplified below.

Referring to FIG. 30, status “INVALID” indicates that a
data entry managed by the status flag 113 1s invalid. Status
“CLEAN” 1ndicates that a data entry managed by the status
flag 1s not rewritten after 1t 1s loaded from the main memory
unit. The data entry stores the same value as that in the main
memory unit, but the data entry in another cache unit may
store the latest value. Status “DIRTY” indicates that a data
entry managed by the status flag 113 1s rewritten with the
latest value at least once after 1t 1s loaded from the main
memory, and the rewritten value 1s not reflected in the main
memory. This data entry stores the latest value.

The status of the status flag transits as follows.

10

15

20

25

30

35

40

45

50

55

60

65

23

(1) When the processor 10 issues a LOAD instruction
with respect to a data block 1n an INVALID state, the
status flag transits to CLEAN.

(2) When the processor 10 issues a STORE instruction
with respect to a data block 1n an INVALID state, cache
read miss processing 1s temporarily executed, and the
status flag transits to CLEAN. Thereafter, cache write

hit processing 1s executed, and the status flag transits to
DIRTY.

(3) When the processor 10 issues a LOAD instruction
with respect to a data block 1in the CLEAN state, the
status flag transits to CLEAN.

(4) When the processor 10 issues a STORE instruction
with respect to a data block 1n the CLEAN state, the
status flag transits to DIRTY.

(5) When a coherence maintenance operation is executed
with respect to a data block 1in the CLEAN state, the
status flag transits to INVALID.

(6) When the processor 10 issues a LOAD instruction
with respect to a data block 1in the DIRTY state, the
status flag transits to DIRTY.

(7) When the processor 10 issues a STORE instruction
with respect to a data block in the DIRTY state, the
status flag transits to DIRTY.

When the processor 10 1ssues a SYNC instruction with
respect to a data block 1n the DIRTY state, the status
flag transits to CLEAN.

@ When write-back processing to the main memory 1s
executed with respect to a data block 1n the DIRTY
state, the status flag transits to CLEAN.

@0 When a coherence maintenance operation is executed
for a data block 1n the DIRTY state, the status flag
transits to INVALID.

To help understand the coherence maintenance operation
according to the present invention, a case wherein the
coherence maintenance operation 1s postponed until the
issue timing of a SYNC instruction as the characteristic
feature of this system, and a case wherein the coherence
maintenance operation 1S postponed until the number of
DIRTY blocks becomes equal to or larger than a prescribed
value, will be explained 1n turn below.

More speciiically, for example, the processors 10 and 20
1ssue LOAD 1nstructions with respect to address £18000000.
After the processing operations of these LOAD instructions
are completed, the processor 10 1ssues a STORE 1nstruction
with respect to address 18000000. In this case, the coherence
maintenance operation 1s not executed for the cache unit 21
at the time of 1ssuance of the STORE instruction, but 1s
executed when the processor 10 1ssues a SYNC instruction.
How to realize this processing will be explained below with
reference to FIG. 31.

Similarly, the processors 10 and 20 issue LOAD instruc-
tions with respect to address 8000000, and thereafter, the
processor 10 1ssues a STORE instruction with respect to
address £8000000. In this case, an i1nternode interface 13
does not execute a coherence maintenance operation for the
cache unit 21 at the time of 1ssuance of the STORE
instruction, but executes a coherence maintenance operation
when the number of DIRTY blocks becomes equal to or
larger than a prescribed value (2 in this embodiment). How
to realize this operation by the mechanisms of the cache
units 11 and 21 will be explained below with reference to
FIG. 32.
<Coherence maintenance (Based on SYNC Instruction)>

FIG. 31 1s a timing chart showing an example of the
coherence maintenance operation of this embodiment.

J,860,110

29

Assume that address £8000000 1s assigned to the main
memory unit 12.

At time 1, the processors 10 and 20 1ssue LOAD instruc-
fions to address £8000000, and have completed loading of
data from the main memory unit 12. At this time, the status
flags 113 and 213 in the cache units 11 and 21 corresponding
to address 8000000 are respectively CLEAN.

At time 2, the processor 10 1ssues a STORE 1nstruction to
address 18000000, and completes processing of the STORE
mstruction. At this time, neither a local bus access nor a
coherence maintenance operation are executed. The status
flag 113 1n the cache unit 11 1s changed to DIRTY as a result
of the STORE 1nstruction issued by the processor 10. Also,
the value of the status flag counter 117 1s incremented. As a
result, the number of DIRTY blocks becomes 1.

At time 3, the processor 10 1ssues a SYNC 1nstruction.

At time 4, write-back processing of the data block of
address 18000000 held m the DIRTY state 1n the cache unit
11 1s executed 1n response to the SYNC 1nstruction 1ssued by

the processor 10 at time 3.

At time 5, the data entry in the cache unit 21 1s invalidated
by the write-back processing of the data block of address
8000000 to the main memory executed at time 4.

At time 6, upon acknowledge of a message indicating
completion of the coherence maintenance operation, the
cache unit 11 which has completed the write-back process-
ing to the main memory supplies a completion message of
the SYNC instruction to the processor 10, thus completing
the processing of the SYNC instruction issued at time 3.

In this manner, a SYNC 1nstruction 1s 1ssued before the
number of DIRTY blocks becomes equal to or larger than 2,
and write-back processing 1s executed i1n response to this
instruction.
<(Coherence maintenance Using Number of DIRTY Blocks
as Trigger>

FIG. 32 1s a timing chart showing another example of the
coherence maintenance operation of this embodiment.

Assume that addresses 18000000 and 18000001 are
assigned to the main memory unit 12.

At time 1, the processor 10 i1ssues a LOAD instruction
with respect to address 18000000, and completes loading of
data from the main memory unit 12. The status flag 113 1n
the cache unit 11 1s CLEAN.

At time 2, the processor 10 1ssues a STORE 1nstruction
with respect to address 18000000, and completes processing,
of the STORE i1nstruction. At this time, no coherence main-
tenance operation 1s generated. The status flag 113 1n the
cache unit 11 1s changed to DIRTY as a result of the STORE
instruction 1ssued by the processor 10. Also, the value of a
status flag counter 117 1s incremented. The value of the
counter 117 becomes 1.

At time 3, the processor 20 1ssues a LOAD i1nstruction
with respect to address 8000000, and completes processing,
of the LOAD 1nstruction. At this time as well, the cache unit
21 merely loads a data block from the main memory unit 12,
and no coherence maintenance operation 1s executed. As a
result of the LOAD 1instruction, a status flag 213 1n the cache
unit 21 1s CLEAN.

At time 4, the processor 10 1ssues a STORE 1nstruction
with respect to address 18000001, and completes processing,
of the STORE instruction. When the value of the status flag
counter 117 1s incremented, the wvalue of the counter
becomes 2. Since the number of DIRTY blocks becomes
equal to or larger than the prescribed value (2), write-back
processing to the main memory 1s executed.

At time §, the data entry of the cache unit 21 1s invalidated
by the write-back processing of the data block of address
8000000 to the main memory executed at time 4.

10

15

20

25

30

35

40

45

50

55

60

65

30

At time 6, write-back processing of the data block of
address 18000001 to the main memory 1s executed.

At time 7, the write-back processing of the data block of
address 18000001 to the main memory 1s completed.

As described above, when the number of data blocks 1n
the DIRTY state becomes equal to or larger than the prede-
termined value (2 in this embodiment), write-back process-
ing 1s executed. For this reason, even when a coherence
maintenance operation 1s executed in response to a SYNC
mstruction, the number of data blocks to be written back left
in the respective cache units 1s smaller than the predeter-
mined value, and overhead due to bus saturation or the
synchronization operation can be reduced.

The object of the present invention achieved by the
function of the apparatus or method can also be achieved by
a storage medium that stores a program in the apparatus
which realizes the above-mentioned present invention. More
specifically, the storage medium 1s loaded into the apparatus,
and the program 1itself read out from the storage medium
achieves the novel function of the present invention. For this
reason, the structural feature of the program executed by the

cache unit according to the present invention 1s as shown in
FIG. 40.

| Sixth Embodiment]

The sixth embodiment of the present invention will be
described 1n detail below with reference to the accompany-
ing drawings.

FIG. 33 1s a block diagram showing the arrangement of
the sixth embodiment of a system for realizing the present
invention.

Referring to FIG. 33, reference numerals 1, 2, and 3
denote computing nodes. Processors 10, 20, and 30 are
respectively connected to cache units 11, 21, and 31 via
processor buses 14, 24, and 34.

The cache units 11, 21, and 31 are respectively connected
to main memory units 12, 22, and 32, and internode inter-
faces 13, 23, and 33 via local buses 15, 25, and 35. A global
bus 4 connects the internode interfaces 13, 23, and 33 and a
olobal bus arbiter 5.

In FIG. 33, the number of computing nodes connected 1s
3. However, the present invention i1s not limited to three
nodes.

The system of this embodiment performs coherence con-
trol adopting a relaxed memory coherence model that guar-
antees data coherence at the time of 1ssuance of a SYNC
instruction which 1s explicitly supplied from the processor.
In this system, a cache control sequencer for controlling the
coherence maintenance operation of the cache performs
write-back processing of data blocks in the DIRTY state 1n
the cache to the main memory unit when the number of
DIRTY blocks becomes equal to or larger than a prescribed
value, and executes a coherence maintenance operation if
necessary, 1n addition to the time of 1ssuance of the SYNC
instruction. In this manner, the write-back processing traffic
to the main memory and the coherence maintenance opera-
tion traffic, which concentrate at the time of 1ssuance of the
SYNC 1nstruction, can be distributed.

FIG. 34 shows the internal arrangement of the computing,
node as a portion of this embodiment. FIG. 34 shows the
arrangement of the computing node 1 as an example, and the
computer nodes 2 and 3 also have the same arrangement as
that of the computer node 1.

Referring to FIG. 34, the processor 10 can 1ssue multiple
memory accesses, and has a special instruction (SYNC
instruction) for completing the multiple-issued memory
accesses under the coherence guarantee of the relaxed
memory coherence model.

J,860,110

31

In FIG. 34, reference numeral 11 denotes a cache unit; 12,
a main memory unit; 15, a local bus; and 13, an internode
interface. The main memory unit 12 includes a main
memory control sequencer 121, a memory 123, and a
directory unit 122. Reference numeral 141 denotes a pro-
cessor address bus for connecting the processor 10 and the
cache umit 11; 142, a processor data bus for connecting the
processor 10 and the cache unit 11; and 143, a processor
control bus for connecting the processor 10 and the cache
unit 11.

The processor control bus 143 includes a memory access
request signal line for transferring a memory access request
1ssued by the processor 10, and a memory access type signal
line group indicating the type of memory access request
signal line.

Reference numeral 151 denotes a local address bus for
connecting the cache unit 11, the internode interface 13, and
the main memory unit 12; 152, a local data bus for con-
necting the cache umit 11, the internode interface 13, and the
main memory unit 12; and 153, a local control bus for
connecting the cache unit 11, the internode interface 13, and
the main memory unit 12.

The local control bus 153 includes a transaction request
signal line for transferring a transaction request 1ssued by the
cache umit 11, and a transaction type signal line group
indicating the type of coherence maintenance operation.

Reference numeral 43 denotes a global control bus for
connecting the iternode interfaces 13, 23, and 33; 41, a
oglobal address bus for connecting the internode interfaces
13, 23, and 33; and 42, a global data bus for connecting the
internode 1nterfaces 13, 23, and 33.

The global control bus 43 includes a transaction request
signal line for transferring transaction requests 1ssued by the
internode interfaces 13, 23, and 33, and a transaction type
signal line group indicating the type of transaction request
signal line.

The global bus arbiter § receives transaction request
signals 1ssued by the mternode interfaces, and arbitrates the
bus grant of the global bus 4.

Since each cache unit has the same arrangement as that in
the fifth embodiment, a detailed description thereof will be
omitted.

FIG. 35 shows the arrangement of the main memory unit
12 as a portion of this embodiment.

Referring to FIG. 35, reference numeral 121 denotes a
main memory control sequencer for controlling the respec-
five modules 1n the main memory unit. Reference numeral
124 denotes a directory flag for holding shared mmformation
of data held 1 the cache units 11, 21, and 31. A directory unit
122 1s a module for holding the directory flag therein.
Reference numeral 123 denotes a memory for holding a data
block.

Reference numeral 157 denotes a local address bus inter-
face for connecting the local address bus 151; 158, a local
data bus interface for connecting the local data bus 152; and
159, a local control bus interface for connecting the local
control bus 153.
<Processing Sequence of LOAD Instruction>

FIG. 36 shows the control sequence upon execution of a
LOAD 1nstruction 1n each node 1n the multiprocessor system
with the above arrangement. In the following description,
assume that the processor 10 1ssues a LOAD i1nstruction.

Referring to FIG. 36, if the address tag stores an address
to be loaded, 1.e., if a cache read hit has occurred with
respect to the LOAD 1instruction 1ssued by the processor 10
(YES in step S3601), the cache unit 11 supplies a data block
to the processor 10 (step S3616).

10

15

20

25

30

35

40

45

50

55

60

65

32

On the other hand, when a cache read miss has occurred
with respect to the LOAD instruction 1ssued by the proces-
sor 10, the cache unit 11 1ssues a read request onto the local
bus 15 (step S3602). In this case, the cache unit 11 does not
supply any data block to the processor 10 until it receives the
data block that caused the cache read miss.

The cache unit 11 transfers read request source 1nforma-
tion onto the local control bus 153 and the address of this
read access onto the local address bus 151, and 1ssues a read
request onto the local control bus 153. Then, the cache unit
11 waits until the data block 1s supplied onto the local data
bus 152. The flow branches into the following two cases
depending on whether or not the address to be loaded 1is
present 1n the node.

(1) When a cache read miss has occurred, and the address
of the read access (the address to be loaded) indicates a read
access to the main memory unit 12 1n the computing node 1
(YES in step S3603), the cache unit requests data to the main
memory unit (S3611). In response to this request, the main
memory unit 12 receives the read request and the address of
the read access, and supplies a data block onto the local data
bus 152. At the same time, the main memory unit 12
registers a directory flag corresponding to the cache unit 11
as the read request source 1n the directory unit 122 therein
(steps S3612 and S3613).

Upon reception of data from the main memory unit 12, the
cache unit 11 allocates an entry that can be used 1n the cache
by executing replace processing (step S3614), and
thereafter, writes the data block supplied onto the local data
bus 152 in the entry of the corresponding data block therein
(step S3615).

(2) When a cache read miss has occurred and the address
of the read access indicates a read access to the main
memory unit (e.g., the main memory unit 22) outside the
computer node 1 (NO in step S3603), the cache unit issues
a data request onto the global bus (step S3604). Upon
reception of this request, the internode interface 13 accepts
a read request and the address of the read access, and
transfers read request source information onto the global
control bus 43. Also, the interface 13 transfers the address of
the read access onto the global address bus 41. Furthermore,
the 1nterface 13 1ssues a read request to the internode
interface 23 1n a remote node, and waits until a data block
1s supplied onto the global data bus 42.

The internode interface 23 receives the read request and
the address of the read access, and outputs read request
source mformation onto a local control bus 253. Also, the
interface 23 outputs the address of the read access onto a
local address bus 251. Furthermore, the interface 23 issues
a read request onto the local control bus 253, and waits until
a data block 1s supplied onto a local data bus 252. In this
manner, the data request 1s supplied to the main memory unit
in the remote node (step S3605).

The main memory unit 22 receives the read request and
the address of the read access, and supplies a data block onto
the local data bus 252. At the same time, the main memory
unit 22 registers a directory flag corresponding to the cache
unit 11 as the request source in a directory unit 222 therein
(step S3606).

The internode interface 23 transfers the data block sup-
plied onto the local data bus 152 to the global data bus 42
(step S3607).

The internode interface 13 transfers the data block sup-
plied onto the global data bus 42 to the local data bus 152
(step S3608).

Steps S3606 to S2608 are not processed by the cache unit
but are processed by the request receiving side.

J,860,110

33

The cache unit 11 assures an area that can be used 1n the
cache by executing replace processing (step S3609), and
thereafter, loads the data block supplied onto the local data
bus 152 1n the entry of the corresponding data block therein.

The cache unit 11 supplies the data block to the processor
10 (step S3610).

In this manner, a desired data block 1s loaded from the
main memory unit of each node.

Since the control sequence upon execution of a STORE
istruction 1s the same as that in the fifth embodiment, a
detailed description thereof will be omitted. Also, since the
control sequence upon execution of a SYNC 1nstruction 1s
the same as that in the fifth embodiment, a detailed descrip-
tion thereof will be omitted.
<Sequence of Write-back Processing>

FIG. 37 shows the control sequence upon execution of the
write-back processing to the main memory. In the following,
description, assume that the cache unit 11 issues a request of
write-back processing to the main memory.

Referring to FIG. 37, the cache unit 11 transfers write-
back request source mmformation onto the local control bus
153, and transfers the address of the write-back access onto
the local address bus 151. Also, the cache unit 11 1ssues a
write-back request onto the local control bus 153 (step
S3701), and supplies a data block to be written back onto the
local data bus 152. Thereafter, the cache unit 11 waits until
the written-back data block 1s supplied to the entry of the
corresponding main memory unit, the required coherence
maintenance operation 1s completed, and the write-back
processing to the main memory 1s completed.

(1) When the address of the write-back processing to the
main memory indicates a write-back access to the main
memory unit 12 in the computer node 1 (YES in step
S3702), the cache unit issues a write-back request to the
main memory unit in a local node (step S3710).

The main memory unit 12 receives a read request, the
address of the write-back access, and the data block supplied
onto the local data bus 152, and searches the directory unit
122 1n the main memory unit 12 to check if a directory flag
for a cache other than the cache unit 11 as the write-back
request source is registered (step S3711). When a cache unit
other than the cache unit 11 holds a copy of the data 1n a
valid state, a coherence maintenance operation 1s executed
for the cache unit that holds the copy. In this case, as the
coherence maintenance operation, processing for mnvalidat-
ing the copy of the data block held in the cache unit is
executed (step S3713).

In this embodiment, the coherence maintenance operation
1s an 1nvalidating type transaction, but the present invention
1s not limited to this speciific transaction of this embodiment.

Upon completion of the coherence maintenance
operation, the main memory unit writes the write-back data
in the entry of the corresponding data block (step S3714).
Finally, the main memory unit supplies a completion mes-
sage of the write-back processing to the main memory to the
cache unit 11 (step S3715).

(2) When the address of the write-back processing to the
main memory indicates a write-back access to the main
memory unit (e.g., the main memory unit 22) outside the
computer node 1 (NO in step S3702), the cache unit 11
1ssues a write-back request to the internode interface 13.

The 1nternode interface 13 receives the write-back
request, the address of the write-back access, and a data
block supplied onto the local data bus 152. Then, the
interface 13 transfers write-back request source information
onto the global control bus 43, the address of the write-back
access onto the global address bus 41, and the data block to

10

15

20

25

30

35

40

45

50

55

60

65

34

be written back onto the global data bus 42, and 1ssues a
write-back request to the internode interface 23 (step
S3703).

The 1nternode 1nterface 23 receives the write-back request
and the address of the write-back access, and transfers the
write-back request source information onto the local control
bus 253, the address of the write-back access onto the local
address bus 251, and the data block to be written back onto
the local data bus 252. Furthermore, the interface 23 issues
a write-back request onto the local control bus 253. In this
manner, the write-back request 1s 1ssued to the main memory
unit in the remote node (step S3704).

The main memory unit 22 searches the directory unit 222
thereimn to check 1f a directory flag for a cache other than the
cache unit 11 as the write-back request source 1s registered
(step S3705). When a cache unit other than the cache unit 11
holds a copy of the data in a valid state, a coherence
maintenance operation 1s executed for the data block 1n the
cache unit held 1n the valid state. In this case, the copy in the
valid state 1s invalidated to maintain the coherence.

Upon completion of the coherence maintenance
operation, the main memory unit 22 receives the read
request, the address of the write-back access, and the data
block supplied onto the local data bus 252, and writes the
received data block in the entry of the corresponding data
block (step S3708).

The 1nternode interface 23 supplies a completion message
of the write-back processing to the main memory to the
internode interface 13.

The mternode mterface 13 supplies a completion message
of the write-back processing to the main memory to the
cache unit 11 (step S3709).

Of the above-mentioned sequence, steps S3701, S3702,
and S3710 are processed by the cache unit, steps S3703 and
S3704 are processed by the internode interface, and other
steps are processed by the main memory unit in the node that
received the write-back request. In the above-mentioned
sequence, data 1s invalidated with reference to the directory,
and the write-back operation 1s executed.

Since the control sequence upon execution of the replace
processing 1s the same as that in the fifth embodiment, a
detailed description thereof will be omitted.

Also, since the status transition of the status flag upon
execution of memory transactions 1s the same as that 1n the
fifth embodiment, a detailled description thereof will be
omitted.

To help understand the coherence maintenance operation
according to the present invention, a case wherein the
coherence maintenance operation 1s postponed until the
issue timing of a SYNC instruction as the characteristic
feature of this system, and a case wherein the coherence
maintenance operation 1s postponed until the number of
DIRTY blocks becomes equal to or larger than a prescribed
value, will be explained 1n turn below.

More specifically, for example, the processors 10, 20, and
30 1ssue LOAD instructions with respect to address
18000000, and upon completion of the processing of these
LOAD i1nstructions, the processor 10 1ssues a STORE
instruction with respect to address £8000000. In this case, at
the time of 1ssuance of the STORE 1nstruction, no request of
the coherence maintenance operation 1s 1ssued with respect
to the cache units 21 and 31. When the processor 10 1ssues
a SYNC 1struction, a request of the coherence maintenance
operation 1s 1ssued. How to realize this operation will be
described below with reference to FIG. 38. Similarly, when
the processors 10, 20, and 30 1ssue LOAD instructions with
respect to address 18000000, and the processor 10 issues a

J,860,110

35

STORE 1nstruction with respect to address 18000000, the
internode 1nterface 13 does not 1ssue a request of the
coherence maintenance operation to the cache units 21 and
31 at the time of 1ssuance of the STORE instruction. When
the number of DIRTY blocks becomes equal to or larger than
a prescribed value (2 in this embodiment), a request of the
coherence maintenance operation 1s 1ssued. How to realize
this operation by the mechanisms of the internode interfaces
13, 23, and 33 will be explained below with reference to
FIG. 38.

FIG. 38 1s a timing chart showing an example of the
coherence maintenance operation of this embodiment.
Assume that address 8000000 1s assigned to the main
memory unit 12.

At time 1, the processors 10, 20, and 30 1ssue LOAD
instructions to address 8000000, and complete loading of
data from the main memory unit 12. At this time, the
directory flag corresponding to address 18000000 registers
the cache units 11, 21, and 31 as the nodes that hold copies
of the data.

At time 2, the processor 10 1ssues a STORE 1instruction to
address £8000000, and completes processing of the STORE
instruction. At this time, no coherence maintenance opera-
tion 1s generated. The status flag 113 1n the cache unit 11 1s
changed to DIRTY as a result of the STORE instruction
1ssued by the processor 10. Also, the value of the status flag
counter 117 1s incremented.

At time 3, the processor 10 1ssues a SYNC instruction.

At time 4, write-back processing of the data block of
address 18000000 held m the DIRTY state 1n the cache unit
11 1s executed 1n response to the SYNC 1nstruction 1ssued by
the processor 10 at time 3.

At time §, a coherence maintenance operation 1s executed
due to the write-back processing of the data block of address
8000000 to the main memory executed at time 4.

At time 6, the copies 1n the cache units 21 and 31 are
invalidated by the coherence maintenance operation
executed at time 5.

At time 7, the cache unit 11 which has received the
completion message of the coherence maintenance
operation, and has completed the write-back processing to
the main memory supplies a completion message of the
SYNC 1nstruction to the processor 10, thus completing the
processing of the SYNC mstruction 1ssued at time 3.

As described above, since the number of data blocks in
the DIRTY state in each cache unit does not exceed the
predetermined threshold value (2 in this case) before the
predetermined synchronization timing (the timing of issu-
ance of the SYNC instruction), the write-back processing
and the coherence maintenance operation (invalidating
processing) are initially performed in response to the SYNC
instruction.

FIG. 39 1s a timing chart showing an example of starting,
the coherence maintenance operation using the number of
data blocks 1n the DIRTY state as a trigger.

Assume that addresses 18000000 and {8000001 are
assigned to the main memory unit 12 in the computer node
1.

At time 1, the processors 10 and 20 1ssue a LOAD
instruction with respect to address 18000000, and complete
loading of data from the main memory unit 12. At this time,
the directory flag corresponding to address £8000000 regis-
ters the cache units 11 and 21.

At time 2, the processor 10 issues a STORE instruction
with respect to address 8000000, and completes processing,
of the STORE 1nstruction. At this time, no coherence main-
tenance operation 1s executed. The status flag 113 in the

10

15

20

25

30

35

40

45

50

55

60

65

36

cache unit 11 1s changed to DIRTY as a result of the STORE
instruction 1ssued by the processor 10. Also, the value of the
status flag counter 117 1s incremented. As a result, the value
of the counter 117 becomes 1.

At time 3, the processor 30 1ssues a LOAD 1nstruction
with respect to address 18000000, and completes processing
of the LOAD 1nstruction. At this time as well, the cache unit
31 merely loads a data block from the main memory unit 12,
and no coherence maintenance operation 1s generated. As a
result of the LOAD instruction, the directory flag corre-
sponding to address £8000000 registers the cache units 11,
21, and 31.

At time 4, the processor 10 1ssues a STORE instruction
with respect to address t8000001, and completes processing
of the STORE 1nstruction. When the value of the status flag
counter 117 1s incremented, the value of the counter
becomes 2. Since the number of DIRTY blocks becomes
equal to or larger than the prescribed value (2), write-back
processing to the main memory 1s executed.

At time 5, the coherence maintenance operation 1s started
due to the write-back processing of the data block of address
18000000 to the main memory executed at time 4.

At time 6, the copies in the cache units 21 and 31 are
invalidated by the coherence maintenance operation
executed at time 5.

At time 7, the write-back processing of the data block of
address 18000001 to the main memory 1s executed.

At time 8, the write-back processing of the data block of
address 18000001 to the main memory 1s completed.

As described above, when the number of data blocks 1n
the DIRTY state becomes equal to or larger than the prede-
termined value, write-back processing (and the coherence
maintenance operation) of DIRTY blocks in the cache is
performed. In this manner, the number of blocks to be
subjected to the write-back processing and the coherence
maintenance processing at the next synchronization timing
can be suppressed to be smaller than a predetermined upper
limit value. For example, in this embodiment, if the write-
back processing 1s performed when b or more DIRTY blocks
are generated per node m a system including N nodes, the
number of data blocks to be simultaneously subjected to the
write-back processing and the coherence maintenance pro-
cessing 1n response to a SYNC 1nstruction does not exceed
Nxb.

In this manner, since the cache memory and the coherence
maintenance mechanism for the cache memory are
provided, and the traffic on the interconnection network
concentrated at the synchronization point can be distributed,
the use efliciency of the interconnection network can be
prevented from being decreased, and the processing over-
head upon execution of the synchronization operation can be
reduced.

The present invention can be applied to a case wherein the
invention 1s achieved by supplying a program to a system or
apparatus. In this case, when a program expressed by
software for achieving the present invention 1s read out from
a storage medium that stores the program to a system or
apparatus, the system or apparatus can enjoy the effect of the
present 1nvention.

As many apparently widely different embodiments of the
present invention can be made without departing from the
spirit and scope thereof, 1t 1s to be understood that the
invention 1s not limited to the specific embodiments thereof
except as defined in the appended claims.

What 1s claimed 1s:

1. An mformation processing system adopting a relaxed
memory coherence model, the system includes a plurality of

J,860,110

37

connection network use subjects each including a plurality
of processor units, cache memory units connected to said
plurality of processor units, and a main memory unit, and a
connection network for interconnecting said plurality of
connection network use subjects, and executes coherence
maintenance processing for maintaining coherence of con-
tents of a data block stored in each cache memory unit
connected to each processor unit when processing of each of
said plurality of processor units has reached a predetermined
synchronization point,

wherein even before the processing of the processor unit
reaches the synchronization point, when a state of said
information processing system satisfles a predeter-
mined condition, and a copy of data stored 1n at least
one of said cache memory units 1s updated, the cache
memory unit that stores the updated copy executes the
coherence maintenance processing for maintaining the
coherence of the contents of the data block stored 1n
said cache memory unit.

2. The system according to claim 1, wherein the prede-
termined condition satisfied by said information processing
system 1s that a coherence maintenance operation of the
cache memory unit, which 1s to be executed when the
condition 1s satisiied does not disturb operations of other
connection network use subjects on said connection net-
work.

3. The system according to claim 2, wherein the condition
that the operations of said other connection network use
subjects are not disturbed means that said other connection
network use subjects do not use said connection network.

4. The system according to claim 2, wherein an arbitration
unit for arbitrating a right of use of the connection network
by said connection network use subjects 1s further connected
to said connection network, each of said connection network
use subjects 1ssues a use request of said connection network
with first priority lower than priorities in other cases so as to
perform the coherence maintenance operation of the cache
memory unit before the processing of the processor unit
reaches the synchronization point, and said arbitration unit
which received the use request determines that the condition
that the operations of said other connection network use

10

15

20

25

30

35

40

33

subjects are not disturbed 1s satisfied when said arbitration
unit does not receive any use requests other than the received
use request, and gives a grant for use of said connection
network to one of said connection network use subjects,
which 1ssued the use request of said connection network
with the first priority.

5. The system according to claim 3, wherein the coher-
ence maintenance processing 1s processing for writing back
the updated data block stored in the cache memory unit to
sald main memory unit.

6. The system according to claim 3, wherein the coher-
ence maintenance processing 1s processing for invalidating
copies of a data block, which 1s reflected from one cache
memory unit 1n said main memory, held in the cache
memory units other than said one cache memory.

7. The system according to claim 1, wherein the prede-
termined condition satisfied by said information processing
system 1s discriminated by comparing the number of data
blocks, contents of which are not reflected 1n said main
memory, 1n the cache memory unit with a value designated
in advance.

8. The system according to claim 1, wherein the prede-
termined condition satisfied by said information processing
system 1s discriminated by comparing the number of write
accesses made by the processor unit connected to the cache
memory unit with a value designated 1n advance.

9. The system according to claim 1, wherein said con-
nection network comprises a bus type connection network.

10. The system according to claim 1, wherein information
indicating a presence of other cache units that store copies
of data stored in said main memory unit, which copies are
to be subjected to the coherence maintenance processing, 1s
stored 1n said main memory unit.

11. The system according to claim 1, wherein the cache
memory units that store copies of data stored 1n said main
memory unit, which copies are to be subjected to the
coherence maintenance processing, detect necessity of the
coherence maintenance processing independently by snoop-
ing bus tratfic, and execute the coherence maintenance
processing.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,860,110
DATED . January 12, 1999

INVENTOR(S) : TOSHIYUKI FUKUI ET AL Page 1 of 2

It 15 certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

e

[54] TITLE

"CONFERENCE" should read - -COHERENCE - - _

COLUMN 1

Line 1, "CONFERENCE" should read --COHERENCE- - .

Line 66, "applicant” should read --1nvention--.
COLUMN 14
Line 61, "the" (second occurrence) should

be deleted.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,860.110
DATED . January 12, 1999
INVENTOR(S) : TOSHIYUKI FUKUI ET AL.

Page 2 of 2 '

[t 13 certified that error appears in the above-identified patent and that said Letters Patent is hereby

corrected as shown below:

COLUMN 38

Line 14, 'memory." should read --Mmemory unit. - -

Atreser:

Q. TODD DICKINSON ‘
Artesting Officer

Acting Commissione r of Patents and Trademart

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

