United States Patent

Van Venrooy et al.

[19]

US005860020A
(11] Patent Number: 5,860,020
(45] Date of Patent: Jan. 12, 1999

[54] OPERATING SYSTEM FOR REAL-TIME

HYBRID ENVIRONMENT

|75] Inventors: Roland T. H. Van Venrooy; Petrus M.

A. VYan Tooren, both of Eindhoven,
Netherlands

Assignee: Mannesmann Vdo AG, Frankfurt,
Germany

Appl. No.: 622,545
Filed: Mar. 25, 1996

Related U.S. Application Data

|62] Division of Ser. No. 386,605, Feb. 10, 1995, Pat. No.

5,652,911, which 1s a continuation of Ser. No. 868,747, Apr.
14, 1992, abandoned.

[30]
May 22, 1991 [EP]

51] Int. CLO e GO6F 13/00
52] US.ClL ... 395/800.28; 395/680; 395/200.31

58] Field of Search 395/820, 200.31,
395/680, 800.28

FForeign Application Priority Data

Furopean Pat. Oft. 91201224

[56] References Cited

U.S. PATENT DOCUMENTS

4,694,306 9/1987 Weisshaar et al. 395/200.3
4,819,159 4/1989 Shipley et al.c.ceueeeeuenneneeee. 364/200
4,901,231 2/1990 Bishop et al.cccoeeuueeneeeee. 364/200
4,954,959 9/1990 Moroto et al. .coevvvvevrvvneeennnne. 364/443
4,962,458 10/1990 Verstraetecceeeevveveveevneeennnn. 364/443
5,073,693 12/1991 McMillan et al.evvnnenennnnn.n. 342/457
5,093,669 3/1992 Kajiyamacccccceeeeveeienninnennnss 342/457
5,109,344 4/1992 Kakihara et al. ... 364/449
5,128,874 7/1992 Bhana et al. ...cccovveervvvnnnnennnn.n. 364/461
5,157,614 10/1992 Kashiwazaki et al. 364/443
5,159,556 10/1992 Schorterccovoeeeevinevenvennnnn. 364/449
5,165,018 11/1992 SIMOT evvrvvrnreeiiiiiieeeeeeeevvennnnen 395/300
5,177,685 1/1993 Davis et al. .eeeevvvniirieennnee. 364/443
5,184,303 2/1993 LiInK .eeevevvnieiiiiiieeeeeeeeveenn 264/449
5,287,537 2/1994 Newmank et al. 395/800.29

OTHER PUBLICATTONS

Blake et al., Experimental Evaluation of a Real-Time
Scheduler for a Multiprocessor System, IEEE Transactions
of Software Engineering, vol. 17, No. 1, Jan. 1991, pp.
3444,

Emrath, Xylem: An Operating System for the Cedar Mul-
tiprocessor, IEEE Software, vol. 2, No. 4, Jul. 1985, pp.
30-37.

Rammaritham et al., Efficient Scheduling Algorithms for

Real-Time Multiprocessor Systems, IEEE Transactions of
Parallel and Distributed Systems, vol. 1, No. 2, Apr. 1990,

pp. 184-194.

Banahan et al., UNIX: the book, Sigma Technical Press, pp.
14-15, 8287, 92-93, 96-99, 144-149, 246-255.

Alegiam et al., An In—Vehicle Navigation and Information
System Utilizing Defined Software Services, Coni. Record

of the Vehicle Navigation & Information Systems, Sep.
1989, New York, NY pp. A3-AS.

Computer Design, Feb. 15, 1988, p. 51.
CD—-ROM, Optical Publishing, Microsoit Press, Redmond,
WYV, 1987.

Preston, Compact Disc—Interactive, A Designer s Overview,
Kluwer Publ. 1991.

Standard Microsystems Corporation of Hauppage, NY,
USA, Local Area Network Controller, COM 90c26, pub-
lished mm 1988 Components Catelog, pp. 207-222.
Rochkind, Advanced Unix Programming, pp. 263-264.

Primary Examiner—_arry D. Donaghue
Assistant Examiner—John Follansbee
Attorney, Agent, or Firm—Mayer, Brown & Platt

57] ABSTRACT

A distributed data processing system 1n a surface vehicle
comprises sensors, user 1/0, data processing and mass
storage of geographical data. By means of a restricted library
of system calls or primitives that can only be processed as
unitary enfities after deterministic transport control while
keeping the transfer stateless, the distributed real-time oper-
ating system allows coexistent running of a plurality of
processes that share localized processing power and/or a
device, a sensor, I/O and/or file data.

7 Claims, 6 Drawing Sheets

Zb

U.S. Patent Jan. 12, 1999 Sheet 1 of 6 5,860,020

U.S. Patent Jan. 12, 1999 Sheet 2 of 6 5,860,020

100
REQ
00!
m SEIVET
ariver . Mangr
_ queue @
ARCNET

queue
. I_IJ
-REQ i
o USEl
DrOCESS
- 1 L
driver - oot
—
84
oo
SEIVEr

I mangr user

86 78

FIG. 3

00t
server

CAN

U.S. Patent Jan. 12, 1999 Sheet 3 of 6 5,860,020

r iy RS A VR U ol S 7o T el T e rn AT, g A S = o

| Current server = gwner [-

N 10
y .

handl

o
Y N

' pid-nid of current server
put_reguest 118
116

Y N

120
COpY env handle found _ pid-nid found
Y N Mz

of handle N
handle_request

- put_request
122

128
Y N
130
124

handle current server empty server found
Y

Y 132 N

N _ 138
ork server
put_request put_request
134 140
fork server
put_request
13 142

put_request

b

FIG.4

U.S. Patent

record request

162 {

#frames [

Jan. 12, 1999

154

E t'-:‘ E'Ht;E
1y

C el TooF

196

156
l |

—count___ | ponter
—Counl__[poinfer
—

152

list free queu

list free blocks

—

reserved buffer for reply

Sheet 4 of 6 5,860,020

' header fra me— "

frame description] setstt (CPUTREQ, arcpath, frdscp 157

170
reply data
177
160 -7

header frame

164

187
_
request
N ex*en Sion . 188
T
extension
request request
(malloc
server)
_
request

FIG.6

U.S. Patent Jan. 12, 1999 Sheet 5 of 6 5,860,020
190 192 194
svid [destnid | pidficode
caras request chunk
next chunk
egidtbl 214 NIES
next chunk -

first (| initiatorpid -

6(. < N
| R sl
it T [T
storage §-I

- —fruet:(];t =

ot

N ates_ -

N\ (ueuedesc \
 (irst free rid
{ (R S NS |
LA — \
2129 [stTee g -
| EEIN
' request queue for
extension requests
220
) last freep
SEIVEr
—»-{ queudescp
— .
claim-chunk
210 - - extended area
=3 .
518 \218 N filled slot

| | free slot

FIG.8

U.S. Patent

network static
storage

locregidtblp

locsrvrtblr
Srenid

root.srvria

210A

Jan. 12, 1999

server {b!
queudescp

queudescp

216A

Sheet 6 of 6

5,860,020

caros extension request chunk

next chunk
chunk hdr

queuedesc

queue har
read slotp
write slotp
ast freep
queue hdr
read slotp
write slotp
|ast freer;
#iree slots
used slots
#siotsciaim
chunkattr

218A

FG. 9

\

_

224

228 tollow

extension

226

filled slot
claim-chunk [free slot

3,860,020

1

OPERATING SYSTEM FOR REAL-TIME
HYBRID ENVIRONMENT

This 1s a division of application Ser. No. 08/386,605,
filed on Feb. 10, 1995 now U.S. Pat. No. 5,652,411, which
1s a continuation of Ser. No. 07/868,747/, filed on Apr. 14,
1992 now abandoned.

FIELD OF THE INVENTION

The 1nvention relates to distributed data processing in a
surface vehicle such as an automobile. Present-day car
information systems manage various different data catego-
ries that are useful to the operation of the vehicle as a whole,
such as:

the 1nternal status of the vehicle independent of 1ts actual
position;

information relating to 1ts geographical position and
route;

information viz-a-viz the driver and passengers, as mani-

fested by 1nput actions and output representations.

A plethora of partial solutions have been and will be
realized for engine and environmental control 1n the vehicle,
storing of accessible geography data, route planning and
cuiding, road-status signalization, external data
communication, in-car entertainment control, telephony, and
various others. Several of these could translate in stand-
alone devices, but interaction therebetween would raise their
uselulness. Two examples would be, first, that a low fuel
level could guide the route to deviate along a fuel station not
on the prechosen route that would by itself be optimum.
Second, an incoming mobile telephone call could deactivate
any other audio reproduction. Many others would be fea-
sible for improving user functionality, for better physical
functionality of the vehicle, or for enhancing data processing
capability. A problem would be present in that various partial
solutions are realized by different manufacturers, are 1in
different state or realization, have widely different levels of
built-in intelligence, such as a binary safety-belt sensor
versus a sophisticated route planner computer, all of which
problems being aggravated by lengthening software devel-
opment time and the scarcity of skilled systems analists.

In consequence, amongst other things, the invention
envisages the provision of a distributed real-time computer
operating system allowing for some or all of the following
number of primary goals:

The systems software of the operating system should
allow for easy maintenance. It should be simple, and
built-up from only few, small, single-function unaits.

The software should be portable to different hardware,
that could be either more sophisticated or downgraded.
In particular the system would allow for two different
levels of communication. The first, lower level implies
transmitting one or more of a finite set of operators
(such as on, off, read status), upon which a target will
always react with one or more of a finite set of
reactions. On the higher level, the destination exhibits
a certain degree of non-deterministic behaviour such as
1s proper to a node or station that 1s controlled by a local
operating system. In this case, the set of reactions need
not be finite. Moreover, the answer could be non-
deterministically (as seen by the requesting node)
delayed by various tasks or processes to be executed by
the target node.

The software should have clearly-defined interfaces
between 1its various constituent software modules and
also with regard to present or future application soft-

10

15

20

25

30

35

40

45

50

55

60

65

2

ware. In this way any software module might be
improved without creating havoc 1n the remaining part.

A principal element should be an operating system for
controlling the respective local facilities, that has a
powerful nature and easily accessible structure, such as
CD-RTOS (Compact Disc Real Time Operating
System), derived by Microware, DES Moines, lowa,
from earlier OS-9, or another system of comparable
capabilities. In particular this operating system has
been designed in the CD-I-(CD-Interactive) subsystem
for containing and presenting optical-disk-stored infor-
mation pertaining to geography and the like.

The interconnection network should allow for determin-
1stic message traffic, that 1s under normal circumstances
the time lag between transmission and arrival of data
should have a prespecifiable worst case maximum,
which may of course depend on such global system
properties as the number of nodes. As explained
hereinafter, the ARCNET standard bus protocol allows
advantageous realization. This has been developed by

Standard Microsystems Corporation of Hauppage,
N.Y., USA, and implemented 1n Local Area Network

Controller COM90 C26, published 1n their 1988 Com-
ponents Catalog, pages 207-222.

The interface between the operating system and any
application software module should be standardized. In
this way, changing the number, nature and performance
of the application software modules would not entail
change of the control system. Moreover, change of the
system hardware would only necessitate changing the
system software, but not the application- or node-
specific software.

SUMMARY OF THE INVENTION

Accordingly, the mvention envisages to allow the soft-
ware pertaining to the local module being written 1n
C-language, and providing thereto, 1n addition to assembler
means for converting high-level language statements into
binary code that directly controls the local hardware and/or
database 1tems, a local library for thereby converting various
clements of a limited set of primitives to an appropriate
format as dictated by the bus protocol. This allows that any
change on the bus level (hardware or software) would only
necessitate modifying the library, and any change 1n a first
node would only necessitate modifying the accessing facili-
ties of the bus, but never software present in any second
nodes. As such limited set, the inventors have seen sufficient
(and often necessary) the following ninesome: open, close,
read, write, seek, getstat, setstat, signal, create (=create
process). These nine have been described as so-called Sys-
tem Calls 1n a UNIX-environment as a subset of 54 allow-
able System Calls in M. J. Rochkind, Advanced Unix
Programming, Prentice-Hall Inc., Englewood Cliifs, N.Y.,
USA, 1985. In particular, the getstat/setstat pair are special
derivatives from the octl system call which had already been
developed 1 OS-9. The index to the above book lists all
system calls as explained hereinafter. For an Arcnet
realization, the library need only translate the node-
ogenerated entities to the appropriate system call.

According to one of its aspects, the invention realizes its
object 1n that it provides a multinode distributed data pro-
cessing system 1n a surface vehicle comprising:

al. sensing means for sensing physical quantities relating
to said vehicle;

aZ. storage node means for storing physically partioned
and fixed geographical data elements;

3,860,020

3

a3. data processing node means for processing said physi-
cal properties and said geographical data to generate
user policy data;

a4. user I/O node means for receiving request data for
forwarding to any data processing node to control said
processing and for controlled forwarding to a user said
user policy data;

a5>. user input/output means mnterfacing said user I/0 node
means to user signals;

a6. and network means interconnecting said node means,
at least one node mnterfacing to said sensing means; and
at least one node executing application software; said
system having the following provisions:

bl. a library of messageable system calls or primitives,
comprising: open, close, read, write, seek, getstat,
setstat, signal, creat;

b2. a deterministic network control system for effecting

any network transport of a primitive within a prespeci-
fled maximum time interval;

b3. a message processing organization exclusively allow-
Ing processing of a message subject to completed
transfer thereof as a unitary entity;

b4. a state-maintaining control to keep any discourse
between respective nodes over the bus stateless;

b5. a distributed real-time operating system to allow
coexistent running of a plurality of respective processes
that share localized processing power and/or a device,
and/or a sensor, I/O and/or file data.
The physical quantities may, for example, relate to engine
temperature, door closure, direction of earth magnetic field,
presence of other vehicles, vehicle speed, and many others.
Main store may be on one or more nodes, as RAM, disc, tape
or other. Supplementing by non-fixed data such as conges-
fion or local thunderstorms may be advantageous, data
processing may be feasible on one or more nodes. User 1/0
may comprise push-buttons, voice I/O, visible display,
blocking of certain activators. The network may comprise
one or more buses, but point-to-point connections and other
organizations could feature as well. Certain nodes could
have more than one function among points a2, a3 The
library means that the system allows the generation,
reception, and answering of those primitives. The determin-
istic traffic control system according to the above may be
realized 1n a variety of ways. A very simple way 1s by
allotting to each prospective message source station one
fime slice 1n a uniformly revolving sequence. Somewhat
more elfective 1s by cyclic prioritizing, so that any source
that does not want to send a request 1s bypassed substantially
instantaneously. Also, arbitration among priority numbers 1s
an allowable solution, if there exists some feature to ensure
transport facilities for low priority sources, such as raising
their priority after a predetermined time. These control
systems appear standard knowledge 1n the art of computer
networks.

The unitary character implies that a message will be
processed only 1f 1ts transfer 1s complete. In the opposite
case, any processing operation could be mterrupted because
intervening collisions on the network or even removal of the
origin station of the message would render the input infor-
mation permanently and possibly, irreparably, incomplete.
In the present system, such removal or addition, would not
cause malfunctioning 1n another node.

Furthermore, the discourse between two stations 1s state-
less. This means that during a message-in-transfer the sta-
tions will not change their state 1 respect of that message.
The source node will suspend any operation pertaining to the

10

15

20

25

30

35

40

45

50

55

60

65

4

message, and the destination node can only operate 1n
reaction to the unitary message when it has been received
completely. The advantage thereof 1s conspicuous if the
message would not fit within a standard bus frame, which
could give non-negligeable delay between the transmitting
of the first frame and the receiving of the last one.

Through the multiprocessing character of the network,
signals received or device outputs constituted can be man-
aged 1ndependently and simultaneously. The data file 1n
question may reside 1n the storage means, or locally 1n one
of the respective processors. Conventionally, the physical
properties may relate to temperature, 1gnition, fuel level,
external conditions. The geographical data 1s record-
organized and oriented to a parcel-wise organization of the
map. There may be one or more data processors. The storage
may be a separate node, or directly attached to a processor.
User I/O may be acoustical, LED, CRT on various levels of
complexity.

Advantageously, said system allows furthermore 1nterpro-
cess communication on the basis of signals. Also on the level
of the processing, this enhances the level of cooperation.

Advantageously, said storage node allows reversible cou-
pling with a mass storage medium. Optical and other mass
storage media, preferably in disk form, represent attractive
solutions for massive storage requirements.

Advantageously said data processing system 1s organized
as a plural-bus system 1n that at least one node interfaces to
at least two buses of respective different protocols. This
allows easy mterfacing to present m-car management Sys-
tems. Generally, any server process has at most one queue.

Advantageously, said data processing system has queue
management with respect to any server process allowing
prespecilying of maximum access depth in that server
process’ queue. This allows flexible queue management.

Advantageously, said data processing system has a server
allocation mechanism for automatically detecting a need for
creating a new server process. This smoothly solves any
competition between respective uUser processes.

Advantageously, said data processing system has a first
memory node and mapping means for locally mapping at a
second node that 1s different from said first memory node at
least a fraction the memory at said first memory node. This
allows for easy storage access.

The invention also relates to a data processing system for
use as a multinode distributed data processing system
according to the foregoing. The system may consist of the
data processing proper, 1.€. hardware and software, but
without specific sensing means and user I/O means that are
dictated by the vehicle functionality, but not by the data
Processing proper.

Further advantageous aspects of the invention are recited
in dependent Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will heremafter be described along a pre-
ferred embodiment which 1s further shown 1n the following
Figures:

FIG. 1 shows by diagram a distributed data processing,
system and object oriented application interfaces;

FIG. 2 shows cooperation among modules 1n a vehicle
navigation system;

FIG. 3 exemplifies cooperation between various user
PrOCESSES;

FIG. 4 shows the allocation of server processes;

FIG. 5 shows the passing of Arcnet packets;
FIG. 6 exemplifies the structure of a local queue;

3,860,020

S
FIG. 7 shows process/path 1dentifier;

FIG. 8 1llustrates mnstantaneous memory allocation;
FIG. 9 parallels FIG. 8 for an extension request queue.

DESCRIPTION OF A PREFERRED
EMBODIMENT

Hereinafter, a preferred embodiment 1s disclosed, first
with respect to general hardware subsystems, and next with
respect to 1ts general software subsystems. Thereafter vari-
ous advantageous features of the invention are highlighted in
detail. Now, FIG. 1 shows by diagram a distributed data
processing system and the object-oriented application inter-
face according to the invention. For explanation, first the
seven layers of the OSI-communication model are briefly
reviewed, to wit, the physical, link, network, transport,
session, presentation, and application layers, respectively, as
follows:

the Physical Layer, which transfers bit streams over the
media;

the Data Link Layer, which transfers data between
directly connected systems;

the Network Layer, which provides routing and relaying
through mtermediate systems;

the Transport Layer, which provides transparent, error-
free transmission of data between end systems;

the Session Layer, which organizes and synchronizes the
dialogue between communicating processes;

the Presentation Layer, which provides for the represen-
tation of information in a standardized way; and

the Applications Layer, which consists of the interfaces
and services closest to the user or an application
program and provides the user with actual network
SETVICES.

All of these layers represent a description of the phenom-
ena actually occurring on the bus or network, but seen from
or appropriate organizational level (cf. Computer Design,
Feb. 15, 1988, page 511).

Now, according to the present mvention, the distributed
computer system 1s not aware of the physical location of the
hardware, but accesses all peripherals 1n the same way.
Whether such peripheral be located on the user interface
node(s) or on the CD-player makes no difference to those
other peripherals on the navigation board.

In FIG. 1, each circle represents user application software
that 1s executed 1n an associated process. In the Figure two
such application software procedures or modules 24, 26
have been shown. Functionally, they may intercommunicate
via application interface 20 shown as an interrupted line pair.
Horizontal interrupted line pair 22 represents the system
interface which interfaces any application process to any
system process. Physically, of course, user software modules
24, 26 communicate via the system, 1n casu, the network or
bus facilities. Further rectangles represent system software
modules. First, block 28 represents the handling of all
requests by and towards the application software modules.
Each physically localized station or node that 1s interfaced to
the network has a local operating system 30, 32, 34. Each
localized device or module which communicates directly
(i.e. not via the network) to one of the local stations has been
depicted by respective blocks 36, 38, 40, 42, 44, represent-
ing the associated software.

FIG. 2, as a hardware counterpart to FIG. 1, shows the
cooperation amongst physical modules 1n a vehicle data
processing system. There are three principal stations, to wit:
block 50 represents a CD-I or CD-ROM player together with

10

15

20

25

30

35

40

45

50

55

60

65

6

its optical record. CD-ROM and similar systems have been
widely marketed. CD-I on an optomechanical level 1s 1den-
tical thereto; for storing pictures various standards have been
defined, such as described 1n S. Ropiequet et al., CD-ROM,
Opftical publishing, Microsoft Press, Redmond, Wash., 1987,
pages 162/3. Such record may contain geographical and
topological map data, program data, entertainment data, data
base information, voice data, and other. Block 52 1s the
so-called navigation computer. It receives, directly or via the
network or bus, sensing signals from sensor set 54. This
could relate to an absolute or differential compass, odom-
cters coupled to the vehicle wheels, sensors for in-road
signal code generators, temperature, fuel level, malfunction
signalization, or other. Element 56 1s a human-machine
interface module. It outputs user policy data on wvisual
display elements 58 and/or audio reproduction element 60.
Such policy data may have various character. They may
indicate a single policy, and as such may represent advisory,
exhortative, directing, warning, or invective information.
Alternatively they may represent a choice such as a menu
format. Still further, they may represent an invitation to
making an open choice, such as by displaying a map with a
variety of parking spaces which are open to a vehicle, among
which a car driver may make a choice. Furthermore, inter-
face module 56 receives user request mputs from input
clement 62. Latter may physically be a key, a keyboard,
mouse, soft key display, or other appropriate. The user
person may 1nput request signals. This could represent a
request for accessing a certain map position, an information
request, a selector signal, an acknowledge, or other. In
certain cases, not shown, the system could have physical
driver output for directly controlling the vehicle, such as
ignition or lighting control. Under control of the user input
signalization, the human-machine interface module may
selectively control the representation by elements 58, 60.
Also, 1t may selectively control forwarding of user request
signals to navigation computer 52, for example in checking
of allowability or feasibility of such request signal. Navi-
gation computer 52 receives user request signals or other
signals on line 64, map data on line 66, and sensor data on
line 68. It may, under control of actual position of the vehicle
and user-inputted destination position or destination
indication, plan an optimum route for the vehicle. Optimi-
zation may be for minimum travel time, minimum travel
distance, or any other criterion. Navigation computer 52
may also control a particular display 1n various different
ways, such as by scaling, rotating of the present image,
highlighting map details such as street names or fuel sta-
tions. It may insert other information by blanking, window-
ing or cursoring. It may calculate actions to be followed or
present a menu {from which a user may select one or more
items. Now, the representation in FIG. 2 1s largely
schematic, in that only the main data streams, such as 64, 635,
66, 67, 68 are shown. As explained infra, these streams may
cither be point-to-point, or mapped onto one or more buses.
Furthermore, certain functions could be mapped on one or
more nodes, such as the human interface and the sensors.
Alternatively, parts of different functional blocks could be
mapped together on a single node. The choice would be open
to the developers, 1n line with available hardware and/or
required functionality level.

Now, one of the results of implementing the present
invention is, that a standard way for adding (or removing)
hardware 1s offered, in that all hardware devices may be
accessed by the application software in a substantially
uniform way. For example, if a standard synchronous link
were changed into a much faster connection, only the

3,860,020

7

operation speed would improve, but no job would run any
differently. Such changing of the system may even be
effected during operation (run) of the system, without the
operation of any other station than the one or ones directly
affected being endangered. Of course, if a first station needs
the hardware or software belonging to another station, the
taking away of the second station would cause the job 1n
question to be imexecutable, but given the possibility for
execution 1n principle, this execution will be realized. The
feature of so accessing facilities across the network 1s called
-resource sharing-. All interprocess communication mecha-
nisms from every process on every node to any other
process, whether on the same node or another node, may be
used, provided that the communication operations are sup-
ported by the local operating systems of the two nodes
involved. If yes, the transport mechanisms effectively pro-
duce a distributed operating system that 1s advantageously of
a real-time capability. In practice, a user process
(representation of a user program) may be forked (or
mapped) on a predetermined node, but by means of sending
identification information, may access any other process or
device. The solution given here 1s insensitive to the proces-
sor type. The local operating systems 30, 32, 34 may be
realized by the OS-9/CD-RTOS system cited earlier.
FUNCTIONALITY

The system layer provides a number of general facilities,
such as

process creation, wherein each process so created may
inherit paths and/or environment of the creating pro-
CESS;

inter-process communication by means of signals,
semaphores, pipes, streams and packets;

file operations;
a standard CD-I graphics interface;

and, preferably, a shared memory (not shown) in FIG. 2,
but known by 1itself.

In particular, the latter allows to locally map memory that
physically 1s located at another node or allocated to another
node. According to the preferred embodiment, the memory
1s mapped to space that 1s non-existent. Accessing thereto
will generate a bus-error procedure 1s only supported on
such process that allow complete recovery from a bus error
state. This solution, although straightforward, 1s preferably
only used 1n case a local operating system would not allow
an alternative solution to the problem for reasons of speed
and/or system 1integrity.

Taken separately, various ones of these facilities may be
found on other, known, operating systems, but the combi-
nation makes the present system extremely suitable to be
used as an operating system gateway.

By way of example, the description heremafter has been
specified for the CD-RTOS operating system. Translation to
other operating systems 1s straightforward. The present
invention does not need uniform user interface, which may
be defined by the manufacturers of the wvarious user-
accessible stations. The invention proposes a control system
for 1inter-station communication, which has its effects on the
level of the overall system, but does not influence the
particular user interface.

Now, accessing remote resources 1s done via the same
system 1nterface as accessing local resources. The name of
the device and the subsequent file specification are the sole
means to determine whether an access 1s a remote access or
a local access. Under CD-RTOS the name following the first
slash of an 1dentifier expression names the descriptor deter-
mining the chosen manager. The scanning of the remainder

10

15

20

25

30

35

40

45

50

55

60

65

3

of the i1dentifier 1s done by the latter manager. As an
example, if the name of any remote service has /c0/
nodeid / in front of 1t, -nodeid- 1s the number of the node
where the resource 1s located. The indication -c0- 1s unique
to the network the node 1s connected to. Now, every appli-
cation program must know the location of every facility 1t
needs. Although some resources are generally available on
every node terminal lines, ram__ disk etcetera), other facili-
fies are restricted to a particular node. Normally, devices are
identified by a logical name which 1s translated into the real

name at the appropriate time. In the case of remote process
creation the interface remains also i1dentical to the standard

function, but then a separator (slash) must be used and the
node identifier (-nodeid-) must be specified. Communication
1s effected by using the entities -signals-, -files-, -pipes-, and
-packages-, as follows. Signals carry elementary event infor-
mation between processes. The general information charac-
ter 1s a two-byte-word. Every process that needs to receive
an 1nformation signal sets up a signal handler. Files may be
opened and accessed on every node by every node. Identi-
fication of a file system comprises the residence node
identification. Pipes are channels between two or more
processes for communicating untyped messages. Packets are
used for sharing variables among processes. Every process
can link to the packet.
VARIOUS COOPERATIONAL FEATURES

FIG. 3 diagrammatically exemplifies cooperation among,
various processes. For brevity, only the flow of requests and
replies has been shown, not the read/write data flows. In this

clementary, but representative system, there are two
networks, an ARC-net 70 and a Car Area Network 72, both

represented as blocks. The Car Area Network (CAN) is
principally dedicated to non-navigational information trans-
mitted through the system. The system has three nodes, each
node being symbolized by i1ts manager 74, 76, 78 of the
processor on the node 1n question. Each node needs a
separate network driver (80, 82, 84, 86) for each network,
whereas the middle node 1s connected to both networks.
Furthermore, the system comprises user processes 88, 90
and servers 89, 92, 94, 96, 98. For each network each node
has a root server. A user process accesses 1its local root
server. A root server may create and thereafter access
sub-servers as necessary. After creation of sub-servers, the
user process may subsequently access such sub-server
directly via the network. Such sub-server has the data
environment of its creator. User process 88 may transmit
requests (REQ) to and receive replies (REP) from its local
manager 76. The message(s) formatted in so-called CAROS
(a mnemonic for CAR-Operating-System) frames are com-
municated with the appropriate driver (82, 84), which adapts
them to the network protocol. When a message 1s received
by a driver (80, 86) at the other end, the latter will know
from the content which server queue (91, 100, 102, 106) the
information should be sent to. Each server reads from its
own queue and executes every command stored therein,
cach message being restricted to one single command. This
means that no further copying from a queue 1s necessary,
inasmuch as 1t directly precedes the server. If the execution
leads to a failure, this 1s signalled to the originator process.
The server signals its result directly to the manager 102 of
its node. Request and reply message contain reference
information for linking a reply to the request that was its
cause originally. The replying manager provides the answer
and sends 1t to the appropriate driver. The driver sends the
reply back to the requesting node where the forwarding of
data to the user process 1s handled. The manager 1s informed
by the driver when the transaction 1s finished and knows
when to enable the user process again.

3,860,020

9

With respect to the above, hereinafter various aspects of
a server are described. First, a process may be created on a
specified node. The provided system library takes care of
locating the specified node, determines if this 1s local or
remote and executes the appropriate system-calls.

If a process 1s forked on a remote node, enough 1nforma-
tion 1s provided to that process to behave as a real child, 1.e.
having the right paths and environment, being able to
determine the process-id(pid) of its parent and returning a
pid to the parent that may be used by the parent to send
signals to the child.

The process of forking will be explained by the following,
the different states of the execution of the remote fork

system request to the manager.

1: The user process sends a request to the manager to fork
a process 1n a remote node. In the library 1t has been
determined that the process to be forked 1s indeed
requested to run on a remote node, so the manager 1s
called. First action of the library-call i1s to fork off a

local -stand-alone- server which automatically inherits

all the paths of the user process, and which will serve

to copy the data to and from 1its paths.

2: The request 1s sent via ARCNET to the remote node,
and serviced. The message sent to the remote node
contains all the information necessary to perform an
os9exec operation corresponding to a process creation
call in that node. The receiving root server first changes
it’s 1/O to reflect that of the original parent process
before forking the child. From this moment on, the
child runs with mherited I/O and environment.

3: The child exits. When the child process stops running,
the local parent 1s informed by a signal. This speciifies
when the child was forked. The server reacts by send-
ing a signal to the stand-alone server 1n the node of the
remote parent process, informing 1t of the termination
of the child. The stand-alone server in 1t’s turn, informs
the parent and exits. The signal seen by the original
parent reflects nodeid and pid of the child. This means
that in case of a remote fork only the extended process-
1d of the child 1s seen by the requesting process. None
of the supporting processes interfere with the original
mechanism.

For the implementation of mterprocess communication in
the server process, for every type ol communication a
separate message 1s available.

Signals are handled 1n a straightforward manner. The
message contains the following information: destination
process 1d, signal value and the process 1d of the sending,
process. This last information 1s not strictly necessary, but
very convenient as 1t allows future enhancements and easy
debuggeing. The message may fit in one or more frames that
cach are subject to a maximum length requirement. If the
message does not {it m a single frame, the first frame
indicates the length of the message. Otherwise, only the
necessary information 1s sent. The message 1s sent to the
manager, which sends it to the destination node’s root server.
The server sends 1t to the specified process.

File I/O forms the basis of most communication mechanisms
available. It 1s divided 1nto three parts:

open a path
read, write, and seek operations, wherein -seek- 1mplies
setting the file pointer to a specified record

close the path.
The -open- call has a message of i1ts own. The message first
has to be distributed by the receiving server. A special
function called forward_request does this, which 1s
described with respect to FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

10

After the request arrives at the allocated server, the -open-
function 1s executed. The server process 1s linked with the
standard I/O library, thus the returned value 1s defined. This
returned path 1s combined with the serverid and the nodeid
and sent back to the requesting process.

READ AND WRITE

Read, write and seek operations are directed towards a
path, that reflects to which node and server the request
should be 1ssued. The managers on both the sending and
receiving node take care of this. No rerouting of the request
1s therefore necessary. The request 1s handled immediately
and the bytes are sent back, or written to the file (or device,
in which case a new seek address is used).

-Close- 1s done as follows. If the path exists, the path
thereupon 1s closed. The local path number 1s deleted from
the array 1n the server, thus creating space for a new path.
The array accommodates a standard maximum number of
allowed open files. The path number used 1n the network
traffic 1s an index 1n this array. Normally only one process at
the time can use a particular server.

Pipes, streams and packets are handled 1n the same way
as file 1/0. Since servers are claimed by processes, dead-
locks on different pipes handled by one single server used by
many requesting processes are avolded. These facilities
belong to the interprocess communication, but are dealt with
here because of their interface.

FIG. 4 diagrammatically shows the allocation of server
processes to a request for example a file access request. The
first part of such access 1s open__a_ path. This call has a
message of 1ts own. It 1s first distributed by the receiving
server. After allocation, the function 1s executed, then read
and/or write are directed to a path which indicates to which
node and server the request must be issued. The manager(s)
on both transmitting and receiving sides are active here.
Finally, the -close- action closes the path 1 existing.
Otherwise, an error signal 1s returned. Whether or not the
action 1s successiul, 1s effectively determined by the run time
library of the local system. Anyway, at closing the path
number 1s deleted 1n the server. Now, 1n FIG. 4, the function
first checks (110) whether the requesting process is the
owner of the server, by checking a special identifier con-
taining the node identifier (nid) and process identifier (pid)
of the requesting process and also a server handle, which 1s
a particular environment-determined label, indicating, e.g., a
currently selected data directory. The handle also indicates
which process 1s the original owner of a particular data
environment. Inter alia, it indicates an external or domestic
channel operation (chx/chd) and is used for accessing the
server. The information value so acquired is stored in the
server description record. If the value 1s correct, the request
can be accommodated (112). If the value 1s incorrect,
various ascending degrees of mismatch may exist. First
(114) it 1s checked in the server list whether there 1s an owner
process to this server. If yes, a request for the server 1s put
into 1ts queue and so kept pending until the server reaches
the item in question of the queue (116). If no, it is checked
(118) whether the actual process identifier and node identi-
fier refer to the current server. If yes, 1t 1s detected whether
a handle (120) can be found. If yes, the environment (certain
process parameters) are copied and the request is handled
(122). If no, the request 1s handled (124). If, in block 118, the
result was negative, it 1s checked (126) whether process
identifier and node 1dentifier correspond to the sender of the
request on the server list. If yes, they relate to a different
server, and 1n consequence, the request 1s allocated: put__

request (128). If no, it is checked whether (130) a handle is
found. If yes, it is checked, (132) whether the handle relates

3,860,020

11

to the current server. If yes, a new server 1s created (forked),
the child mheriting 1t’s parent environment, and the request
is accommodated (134). If no, the request is allocated to the

server intended (136). If no handle could be found in block
130, it is checked (138) whether an empty server can be
found. If yes, the request 1s allocated to the server in
question (140). If no, the present server is forked (142) and
the request 1s assigned thereto.

If the node 1dentifier and process 1dentifier are correct, but
not the handle, this means that a new process has taken over
an old slot 1n which a process ran with an allocated remote
server. Then, the server 1s reallocated to the new process, the
server list 1s scanned for a server with the same handle as the
requesting process. If this server 1s found, its default paths
are copied to the current server. The disadvantage is, that a
possible child of the previous owner still has a handle of that
type, and may try to claim remote access on those default
paths, of which the original environment parameters are no
longer correct. This risk however, 1s small. The reverse case
(handle correct, but not the identifiers) resembles the first
one: first, the server list 1s scanned for a server with the right
process 1d and node 1d. If found, control 1s transferred, as
before. If not found, a new server 1s forked, inheriting the
same paths from 1ts parent server. If both the handle and the
identifiers are incorrect, this clearly reflects an error
condition, since a new-born process will always use handle
0 which 1s 1dentical to the root server. The handle should
therefore always be found. In this case an empty server 1s
allocated 1f available, otherwise a new server 1s forked.
Generally, client server and requesting user process are on
different nodes.

SYSTEM ARBITRAGE FACILITIES

The distributed operating system comprises a library that
partly supersedes particular standard C library-calls and
comprises several server processes. This library determines
from the call whether the service-request should be executed
on a remote node 1n the local area network. If not, the
standard C-library call 1s executed. In case of remote opera-
tion the manager builds the necessary packet(s) and passes
the pointers to this information to the Arcnet driver that in
its turn will send these packet(s) to the remote host.

The Arcnet packets are passed to the manager/driver
through a pointer to a table as shown in FIG. §. The write
action 1s put to sleep until the complete message has been
sent; this means that the message 1s unitary as defined
carlier.

Arrow 150 1ndicates the frame description record request
to Arcnet manager 151, while specitying the status setting
for handling the request, the path sought, and the frame
descriptor pointer. The record comprises a frame number
indication 154, a reply count indication 156 that indicates
the expected number of reply bytes, a reply pointer 158
pointing to a current address in reply buifer 160, and similar
pairs of count and pointer regarding one header frame space
164, zero or more follow frame spaces 166 and, as the case
may be, still further spaces accessed symbolically by arrow
or arrows 168. Reply data are offered by Arcnet according to
arrow 170. The composition of the header frame 1s shown at
172: first a multi-byte fixed part 174 intended for manager,
driver or server, followed by a sequence of individually
variable bytes that are exclusively intended for the server.
Three kinds of server processes exist:

1. path dedicated server processes (name=descrname+
prc), wherein every process has a dedicated server
process allocated. These processes are created by a root
server and each consist of a sub-server process with 1ts
assoclated user process’ environment.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. system call dedicated process. The calls 1involved are
remote forks and remote signals. These processes also
are created by root servers. Root servers themselves
also are of this type.

3. Stand-alone server processes. These work as represent-
ing a remote child process. When on the same node as
their parent process they inherit the latter’s complete
environment. In contradistinction thereto, a root server
does not have an associated user process’ environment,
but only a default environment.

The receiving processes (path/system call dedicated) and
stand-alone server processes handle queues that are filled by
the network. The assignment of one or more frames to a
particular message has been described supra: the first frame
always signals the length of the message 1n frames. After the
first frame has been sent, further transmitting 1s not done
before the sender receives a xon. In this way signals xon
(go-transmitting) and xoff (stop transmitting) straightfor-
wardly control the transfer.

FIG. 6 exemplifies the structure of a local queue. The

queues consist of a memory pool that holds memory blocks
of fixed length (36 bytes). A free list array 180 points to the
free blocks 1n memory 182. Furthermore, a register 184
points to the beginning of the queue, while a second register
186 points to the beginning of the free part of the queue.
Each element of the queue contains an indication to its
successor (nxt) or a -0- if there is none. For 10-requests

longer than the standard frame size of 36 bytes the server
process executes a memory allocation to extension space
188. Now, queue management 1s done on two successive
levels. First, for small messages (most) a fixed slot size is
allocated. If necessary for a particular message, the associ-
ated fixed-size slot i1s linked to one extension slot. The
former one 1s dynamically implicit xoff protocol 1mple-
mented. Fetching of requests or request units 1s done on the
basis of complete received requests up to a maximum depth
in the chain that 1s expressed 1n a number of fixed-length
slots. In particular, this maintains the deterministic behav-
lour of the response time for fetching requests out of the
queue, and so allows for deterministic message transier.
Second, this allows for accessing various program modules
as data files on a distributed level.

The above has been explained for short messages. For any
message longer than 36 bytes the sender will wait for a xon
from the server process signalling that its malloc (memory
allocation) was successful. Then automatically the sender
will transfer the extension information. The process/path
identifier returned upon a successtul creat/open call consists
of a long word with 3 distinct fields as shown 1n FIG. 7: the
process identifier of the server process (190), the node
identifier of the destination process (192), and the local
path/process 1identifiers (194). The request identifier is
dimensioned as a short word. It 1s only known to the Arcnet
driver and passed transparently by the server process. In
particular, bit 1 indicates whether the present frame 1s the
last or whether one or more frames are following. Bit 2
indicates whether this 1s the first frame or whether 1t 1s a later
frame of a multiframe message. Bits 3, 4 indicate whether 1t
1s a request frame, a reply frame, or a control frame. The last
12 bits (of 16) identify a specific request, for example, a link
identifier.

QUEUE FUNCTIONS
Heremafter the elementary queue functions are listed.
First the function name 1s listed. Next it 1s specified with

3,860,020

13

identifier, operation(s) and parameters, while finally a brief
explanation 1s following:

Creat__queue(nslots)

SRVRQUEP creat__queue(nslots) int nslots;

DESCRIPTION: creates queue with 1nitially “nslots”
allocated.

Del queue(ghdrp)
int del _queue(ghdrp) *ghdrp;
SRVRQUEP ghdrp;

DESCRIPTION: Deletes the queue specified by the

pointer passed. Intended for use by server processes
when exiting.

Put_queue(srvrid, reghdrp)
int put__queue(srvrid,reqghdrp)
uchar srvrid;
REQ_HEADER *reghdrp;

DESCRIPTION: Inserts a record of type REQ__

HEADER into the queue, checks 1f extension 1is
necessary, if so prepares the extension queue to receive
it.

Get__queue(frmtp,reqhdrp,depth)
int get queue(frmtp,reghdrp,depth)
SRVQUEP frmtp;

REQHDRP *reqhdrp;

int depth;

DESCRIPTION: retrieves request header from queue.
Scans only first “depth” queue elements for complete
received requests. If get_ queue detects a request 1n the
queue of which the request header 1s received that needs
extension space, this will be allocated and a xon will be sent
to the source of the request.

Put_ subframe(frmtp,reqid,framep,cnt,interleave)
int put_ subframe(frmtp,reqid,framep,cnt,interleave)
SRVRQUEP frmtp;

short reqid;

unsigned char *framep;

int cnt;

int interleave:

DESCRIPTION: Fills extension space belonging to
request 1dentified by “reqid” from given data specified
by “framep”, “cnt” and “interleave”, using a static
sequential pointer. This pointer 1s a part of the global
static data of the driver. Interleave describes gap space

between 2 consecutive bytes in the butfer holding given
data.

FORMAT

Opcodes. Every request has an opcode, referring to a
specific operation. Calls. The calls provided by the queue-
communication library are listed as follows: put__queue;
put__subframe; creat__queue; del _queue; get_queue;
creat_ reqidtbl; creat_ reqid; del reqid; get reqid; del
reqidtbl.

Standard header. All requests are accompanied by this
information, that 1s listed as follows: reqid, comprising
srcnid, destnid; srvrid; and for the first frame: reqsize.
Request 1d structure sender. The request__1d 1s used ditfer-
ently for sender with respect to receiver, for example—
reqid;—reply bufler pointer,—prcid waiting process;—
reply count, attributes. Generally, three different kinds of
messages exist: request

10

15

20

25

30

35

40

45

50

55

60

65

14

reqid | srvrid | size ipd type | opcode | application
32 8 24 8 8 16 data
reply:

reqid | type | size ipd | application

32 5 27 data
control:

reqid | crtl

header 32 type

FIG. 8 depicts an 1nstantancous situation 1In memory
allocation for explaining queue management. The leftmost
column 210 gives global static storage on systems level.

This static character implies that any process 1s able to locate
the information 1t needs. In static storage, at item 212 there
are stored: locreqidtblp, the address where the request 1den-
tifier and the table byte length pointer are stored.
Furthermore, at 212 locsrvrtblp indicates the address where
the server table byte length pointer 1s stored. Finally, scrnid
o1ves the source node identifier, and rootsrvid the root server
identifier. From 1tem 212, respective pointers indicate fur-
ther regions as shown. In area 214, the request identifier
table, reqidtbl, lists the first free chunk, and next, further free
chunks that are chained as indicated. Thereafter, the first
request slot contains the 1nitiator process identifier, the reply
buffer pointer, the count of remaining free locations, and
attributes. As shown, this structure proceeds until a last
request slot 1s reached. The attribute field may contain an
xon/xoff indicator and a lock/unlock indicator. Furthermore,
a table containing a list of free request 1dentifiers, from a first
free 1dentifier to a last free 1dentifier 1s shown. As to the
memory usage, lightly hatched means are an extended area,
heavily hatched 1s a filled slot, unhatched 1s a free slot.
Furthermore element 216 1s a server table, that indexes on
server 1dentifiers 1n that 1t stores queue descendent pointers.
Element 216 has a pointer to storage area 218 devoted to a
queue descendent. Therein, sequentially are stored: the
queue header, the read slot pointer, the write slot pointer, the
last free pointer, the same repeated for a request queue for
extension requests 220 (see FIG. 9), the number of free slots,
the number of used slots, the number of slots claimed, and
the chunk attribute that may be used to point at claimed
chunks. For example, item 222 shows the format of a Caros
request chunk. It contains chunk header, a set of linked filled
slots indicated by the arrows at right hand, and a set of linked
empty slots also linked. Also the pomters to the read slot
(start of first filled slot) and write slot (start of first empty
slot) and the double pointer to the last free slot are shown.

FIG. 9 strongly resembles FIG. 8, but 1n that it relates to
a queue for extension requests. Elements 210, 216, 218, 222
of FIG. 8 have their counterpart 210A, 216A, 218A. Block
224 respectively 1s the caros extension request chunk. It
largely resembles block 222, but for extension block 226,
that is partly filled (upper) and empty for the remaining part.
It 1s pointed at by pointer 28.

We claim:

1. A distributed data processing system comprising,

a plurality of nodes comprising first and second nodes of
distinct types having respective first and second oper-
ating systems, respectively,

the plurality of nodes being adapted to maintain a dis-

tributed operating system, which operating system 1s
adapted to

3,860,020

15

superimpose a logical computational structure on the
nodes, which logical structure 1s independent of the
presence or absence of particular nodes, so that an
application program running within the logical struc-
ture can confinue to run while at least one of the
nodes 1s being fundamentally altered;

maintain a messaging protocol for communication
between the nodes, which messaging protocol
requires communication between nodes to be state-
less.

2. The system of claim 1 wherein the fundamental alter-
ation comprises adding or removing a node.

3. The system of claim 1 wherein the fundamental alter-
ation comprises changing the respective operating system on
a node.

4. The system of claim 1 wherein

the first node 1s a navigation processor for a vehicle;

10

16

the second node 1s a memory interface unit adapted to

interface with a memory storing geographical map
data;

the application program 1s a vehicle navigation program.
5. The system of claim 1 wherein the logical structure 1s
adapted to separate sequential code 1nto processes which are
executable on different nodes and while sharing resources.
6. The system of claim § wherein the operating system 1s

adapted to shift processes from node to node during execu-
tion.

7. The system of claim 1 wherein the distributed operating,
system comprises a deterministic network control system for
cifecting any network transport of a primitive within a

15 prespecified maximum time 1nterval.

	Front Page
	Drawings
	Specification
	Claims

