US005845117A
United States Patent (19] 11] Patent Number: 5,845,117
Fujita 45] Date of Patent: Dec. 1, 1998
[(54] DEADLOCK DETECTING DEVICE 5,442,763 8/1995 Bartfai et al.oovveeeevvinnnnnnnnnnn, 395/375
|75] Inventor: Kazuhiko Fujita, Kawasaki, Japan FOREIGN PATENT DOCUMENTS
62-208139 9/1987 Japan .
| 73] Assignee: Fujitsu Limited, Kawasaki, Japan 63-52263 3/1988 Japan .
2-77668 3/1990 Japan .
[21] Appl. No.: 719,919 2-77960 3/1990 Japan .
(22] Filed: Sep. 25, 1996 OTHER PUBLICATIONS
Computer, vol. 11, No. 11, Nov. 1989, Long Beach US, pp.
Related U.S. Application Data 37-38, M. Singhal, “Deadlock detection 1n distributed sys-
tems.”.
[63] Continuation of Ser. No. 204,506, Mar. 2, 1994, abandoned. IBM Technical Disclosure Bulletin, vol. 16, No. 10, Mar.
“Communication protocol for deadlock detection 1n com-
Mar. 19, 1993 [JP] Japano.cocoeeeimvemneenn 5-096928 huter networks.”.
51 Int. (:l.6 .. GO6K 9/46 Pr_imary Examiner—Emanuel Todd Voeltiz
52] US.CL ... 395/677; 364/281.5; 364/230.3; Assistant Examiner—Michael T. Richey
395/6'74 Attorney, Agent, or Firm—Staas & Halsey
[58] Field of Search 375/670; 395/674,
395/6777; 364/281.5, 230.3, 281.3 [>7] ABSTRACT
_ Start, commit and abort of transactions 1n a computer system
[56] References Cited are managed by a task manager. When a certain transaction
US PATENT DOCUMENTS locks a certain resource, this information iS. registered 1n a
lock manager. Accordingly, when a transaction requests for
451895771 2/1980 R('Jever‘ 364/300 gaining a resource, the lock manager can determine that the
4?403?285 9/}983 K]kUChl 364/200 resource iS already locked? 1f any} by another transactlon‘ In
4?494%23 1/:h985 Bl:ahm et all. 364/200 such a case, the transaction should wait for the termination
4:,791:, 4 12/988 Hirota et al. .ooovveeveerereeeniinnen, 364/200 Of the Other traI]SElCtiOIl, SO that thlS iI]fOfII]atiOIl iS regiStered
5,016,167 5/1991 Nguyen et al. 364/200 . : :
5161227 11/1992 Dias et al. oooveeovoeeooeeoooeroo 305/650 10 @ wait-Tor-graph table. A deadlock detector determines
5.274.809 12/1993 Iwasaki et al. ..o.ooooorvrvveoeennnnn 395/650 Whether the deadlock 1s caused according to the registered
5285.528 2/1994 HATt weoveveeeeeeeeeeeeeeeeerereersereron. 395/725 1nformation 1n the wait-for-graph table.
5,377,351 12/1994 Kotera et al. ..ccouevevivvnennnnnn.n. 395/650
5,440,743 8/1995 Yokota et al. ..cccceevvevnveveennnnns 395/650 15 Claims, 10 Drawing Sheets
SYSTEM | .
TRANSACTION T (ix)
START
R T = | | ABORT NOTIFICATION .
TRANSACTION 0
O™ WAWGR PO AR D%
As:?%%?gRRCEEQUEST i RETRY NOTIFICATION KBORT. ST
N RESPONSE
R G GRAPH REGISTRATION
PEQJEST GRAPH DELETION
OTCRAPH RECISTRATION < 1 &
GRAPH DETECTION ¥ D
RESOURCE RESOURCE
TABLE 11 5 —;"““Gm +RM .
RESPONSE Y or 15
e el
_— MANAGER LM GRAPH 10
12 + DEADLOCK REGISTRATION .-@ OF
(OCK WANAGING TABLE AR A
Y:B 1Z fRAPH REGISTRATION
GRAPH DELETION
13% WATCHDOG TIMER - DEADLOCK DETECTION
WT_JRETRY | MANAGING
f NOTIFICATION| TABLE
WAITING TIME T6,1)-T(.1)
OVER MONITORING 13
NW DATABASE DB
30 @— RESOURCE | [RESOURCE | ... 120
SYSTEM | 0
OF SYSTEM |
2l D
—{(7) OF SYSTEM |

U.S. Patent Dec. 1, 1998 Sheet 1 of 10 5,845,117

SYSTEM 101
TASK URCE
(TRANSACTION) RESO AB

. X.Y |

102
l TASK MANAGER DEADLOCK NOTIFICATION
| ™ 104
|
DEADLOCK |
103 DETECTOR
DD
LOCK MANAGER 105
M
WAIT
MANAGING TABLE

LT

FIG. |

U.S. Patent Dec. 1, 1998 Sheet 2 of 10
i or |
Y A
SYSTEM 200 201
TASK
(TRANSACTION) RESOURCE AR
X,Y '
_ I:__: 202 |
L/ |
TASK MANAGER | DEADLOCK NOTIFICATION
. EE———
™ RETRY 204
REQUEST L
203 DEADLOCK
DETECTOR
LOCK MANAGER RETRY 205
LM REQUEST
WAIT
WATCHDOG TIMER MANAGING 1ABLE |
T
WT

206

FIG. 2

5,845,117

U.S. Patent

ABORT

REQUEST
@ GRAPH REGISTRATION

GRAPH DETECTIO

COMMIT

RESOURCE
GAINING REQUEST

Dec. 1, 1998 Sheet 3 of 10

T SSIEM]
T (ix)

TRANSACTION

START
RESOURCE REQUEST
ABORT COMMIT

TRANSACTION
MANAGER

ABORT NOTIFICATION

10
™ | <DEADLOCK NOTIFICA
-

RETRY NOTIFICATION

RESOURCE RESPONSE

RELEASING

GRAPH REGISTRATION
GRAPH DELETION

SYSTEM |

"RESOURCE
MANAGING

TABLE T

LOCK GAINING
LOCK RELEASING| | ooy

_—7 |

RESOURCE l

MANAGER
DEADLOCK

- RESPONSE
DETECTOR

DD

14

| QR

MANAGER LM

12
LOCK MANAGING TABLE
X:A
Y:B

WATCHDOG TIMER

WT_JRETRY | \ANAGING
NOTIFICATION]| TABLE

T(i,1)-1(;,1)

13

WAIT

WAITING TIME
OVER MONITORING

DATABASE DB

.l RESOURCE | [RESOURCE | ... — 20

TO
_® OF SYSTEM |
T0

OF SYSTEM i

5,845,117

T0
.. OF
ON O
COMMIT SYSTEM
ABORT
|
19
GRAPH N 10
REGISTRATION |) OF
GRAPH
DELETION SYSTEM
GRAPH REGISTRATION
GRAPH DELETION

DEADLOCK DETECTION

13

FIG. 3

U.S. Patent

Dec. 1, 1998 Sheet 4 of 10

GLOBAL WFG

SYSTEM 1
LOCAL WFG

T(1,1)-»=T(2,1)

SYSTEM 5
LOCAL WFG

‘ T(3,1)-=T(2,1)

]

FIG. 4

5,845,117

U.S. Patent Dec. 1, 1998 Sheet 5 of 10 5,845,117
START
P
| YES
RECEIVE REQUEST j—5102
CE REQUEST DEADLOCK RETRY
| START ABORT | COMMIT [RESOUR Q OHRERTON T CATION
| [
|
REGISTER SELECT REQUEST FOR
| T(E x) 2108 | FgF%QéJEISNTmG TRANSACTION GAINING RESOURCE
' S105 | pesoURce | LTO_BE ABORTED T0 RM
5103 T0 RM $120 5130
REQUEST S110
FOR NOTIFY T OF DONSE
RELEASING RECEIVE ABORTING RECEIVE RES
__TO RM S111
S106 SEND RESPONSE
SEND BACK TO T
RECEIVE RESPONSE | S112
| RESPONSE BACK TO T S132
| 107
| REQUEST FOR
| DELETING
| GRAPH TO DD NOTIFY OTHER
SYSTEM OF COMMITTING
| S108 - OR ABORTING |
| REQUEST IN S109
OWN SYSTEM?
I

FIG. 3

U.S. Patent Dec. 1, 1998 Sheet 6 of 10 5,845,117

START

YES

RECEIVE REQUEST A]»szoz

5203

REGISTER RELATION BETWEEN TRANSACTION AND RESOURCE

GAIN RESOURCE RELEASE RESOURCE
S204
S205 906
LOCK: GAINING REQUEST TO LM LOCK RELFASING REQUEST TO LM

RECEIVE RESPONSE FROM LM 5207

SEND RESPONSE BACK TO LM 208

FIG. ©

U.S. Patent Dec. 1, 1998 Sheet 7 of 10 5,845,117

RECEIVE REQUEST 5302

53035
LOCK GAINING @ LOCK RELEASE
|

8304
LOCK DELETION

S307

LOCK GAINING

POSSIBLE? 309

NO LOCK REGISTRATION

I

CREATE GRAPH OF
REQUESTING AND
WAITED ONES
& 5306

| REGISTER GRAPH RESPONSE TO RM (OK)
IN DD t

5308

|

| RESPONSE | $309
NO

U.S. Patent Dec. 1, 1998 Sheet 8 of 10 5,845,117

START
’RECENE REQUEST?
YES
‘ PICK UP REQUEST S402
REGISTER DELETE
RAH _ ——HICH REQUEST? > i
S403
- SEARCH
>404 S410 GRAPH IN
REGISTER GRAPH IN - QUESTION
(T;sR;A;:ST FOR IDENTICAL <10 | DELETE GRAPH OF
0 TRANSACTION TO BE DELETE GRAPH
RETRIED IN QUESTION
FOLLOW REGISTERED
GRAPH TO END OF N ——
GRAPH NOTIFY TM OF R
5409 NOTIFY T™M OF
RETRY TO
5421
S412 OPERATE
S406 BLE
TRANSACTION

YES
| LOOPED?

|
S407
N 5408
YES W NOTIFY TM OF DEADLOCK
’
S409
NO

TRANSMIT TO END SYSTEM
INDICATING REGISTERING
OF GRAPH

FIG. 8

U.S. Patent Dec. 1, 1998 Sheet 9 of 10 5,845,117

l START

5901

| SEARCH T(i,x) SUCCESSIVELY
FROM WAIT MANAGING TABLE

NO S502
TRANSACTION IN WAITING SITUATION?
| S503
NO

YES
5504
- NOTIFY DD OF RETRY

FIG. 9

U.S. Patent

-

TASK

Dec. 1, 1998

~

~

~

.

N

Sheet 10 of 10

RESOURCE

A

RESOURCE

B
SYSTEM |

FIG. 10

PRIOR ART

SYSTEM |

5,845,117

5,845,117

1
DEADLOCK DETECTING DEVICE

This application 1s a continuation, of application Ser. No.
08/204,5006, filed Mar. 2, 1994, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a device for detecting deadlock
in a multitasking system.

2. Description of the Related Art

In recent years, multitasking systems have been devel-
oped 1n which a plurality of tasks or transactions are
executed at the same time as a mode of operation of an
information processing system using computers. A task 1s
one or more sequence of instructions treated as a unit of
work to be accomplished by a central processing unit (CPU).
A transaction 1s a set of operations to carry out one complete
data operation. The multitasking 1s a state 1n which two or
more programs (tasks, transactions) are executed simulta-
neously 1n parallel on a single computer system or on a
plurality of computer systems connected 1n an interleaved
manner allowing exchange of mnformation therebetween.

In the operating systems that support this multitasking,
two or more tasks may commonly use one computer
resource. In such a case, each task may exclusively use
portions of the resources that are necessary for the execution
of the other task(s). As a result, the tasks are simultaneously
waiting resources assigned to the other(s), with each one
unable to carry out further processing. Such a situation 1s
called deadlock. A term “lock™ 1s commonly used as a
technical term representing “use exclusively,” so that a word
“lock™ 1s used hereinafter also as a verb 1n place of “use
exclusively.”

An example of a deadlock situation 1s shown 1 FIG. 10.
FIG. 10 illustrates an example 1n a distribution system
consisting of two computer systems 1 and 3. One computer
system 1 executes a task x and the other computer j executes
a task y. In addition, it 1s assumed that two resources A and
B can be accessed by the individual computer systems 1 and
1. A resource 1ncludes software such as programs, files and
data allocated to the tasks. The resource used herein is the
contents (pages or records) of a database located somewhere
other than the computer systems 1 and j.

In FIG. 10, the task x locks the resource A while the task
y locks the resource B. At the same time, the task y asks for
the resource A and awaits to lock the resource A. Likewise,
the task x asks for the resource B and awaits to lock the
resource B. In such a case, the task y cannot lock the
resource A until the task x releases the lock on the resource
A. Likewise, the task x cannot lock the resource B until the
task y release the lock on the resource B. As a result, the
tasks x and y are each awaiting the resources locked by the
other. When both tasks x and y are suspended, 1t becomes
impossible to release the resources A and B that are locked
by them. Accordingly, this situation lasts endlessly and each
task 1s thus unable to carry out further processing.

Such deadlock 1s a problem that could be caused 1n the
multitasking systems regardless of whether the computer
system 1s a multi-processing system or a single processing
system and whether the computer system performs stand-
alone processing or serves as a distribution system.

A way of recovering from deadlock, should be provided.
To this end, the deadlocks should be detected.

To detect the deadlocks, the following specifications are
required to be satisfied by the considerations of 1improving
the practicability.

10

15

20

25

30

35

40

45

50

55

60

65

2

First, 1t 1s necessary to avoid detection of a phantom
deadlock, 1.e. an 1ncorrect recognition, of a situation that 1s
not the deadlock. (First requirement)

Second, all deadlocks should be detected. In other words,
the deadlocks, if actually caused, should be detected as a
deadlock and 1t 1s not permitted to detect the deadlock or not
as a case may be. (Second requirement)

Third, any effects on the system due to detection of the
deadlocks should be reduced as much as possible. More
specifically, stopping the task for detection of the deadlock
should be avoided, if possible. (Third requirement)

If the multitasking system 1s achieved on a distribution
system, a following specification 1s required along with the
above mentioned requirements. While systems are required
to intercommunicate with each other to detect the deadlocks,
an overhead time that the systems spend for the communi-
cation should be reduced as much as possible. (Fourth
requirement)

Conventional deadlock detecting devices are based on
detection of the deadlocks with satisfaction of the above
mentioned first through third requirements by means of
satisfying the following conditions. The conditions are:

(a) free from asynchronous abort of one of the two
contending transactions; (b) free from delay and loss of
communication messages between the systems when the
multitasking system 1s achieved on the distribution system;
(¢) free from modification of a transaction waiting relation
during detection of the deadlocks; and (d) free from an
asynchronous down of the system when the multitasking
system 1s achieved on the distribution system.

Described 1s a relation between the first through third
requirements and conditions (a) through (d).

For condition (a), the asynchronous abort of the transac-
tions makes 1t impossible to avoid detection of the phantom
deadlock 1n the above mentioned first requirement. For
example, it 1s assumed that task (transaction) x locks
resource A while task (transaction) y locks resource B and
that task y 1s asynchronously aborted when task y asks for
resource A and task x asks for the resource B. In such a case,
resource B locked by task y 1s released as a result of the
asynchronous aborting of task y and thus task x 1s allowed
to lock on resource B. Accordingly, the deadlock 1s avoided.
It 1s, however, impossible to detect immediately this release
of resource B due to the asynchronous aborting of the task.
This makes the situation be considered as the deadlock
though no deadlock 1s caused actually.

For condition (b), asynchronous down of the system
sometimes allows detection of the deadlock and sometimes
not. Accordingly, 1t 1s 1mpossible to detect all deadlocks as
required 1n the above mentioned second requirement. This 1s
because even the occurrence of the deadlock becomes
uncertain when transmission of a communication message 1s
delayed or the message 1s lost due to abnormal
communication, since 1n the distribution system each com-
puter system 1s allowed to access a common resource
through the mtercommunication of the systems.

Likewise, for condition (d), delay or loss of a communi-
cation message between systems sometimes allows detec-
tion of deadlock and sometimes not. Accordingly, it 1s
impossible to detect all deadlocks as required in the above
mentioned second requirement. This 1s because management
information on the tasks in the system 1s lost and 1t becomes
impossible to determine the deadlock when one system 1s
downed during operation of the other system.

For condition (c), the first or the second requirement
cannot be satisfied when the transaction waiting relation 1s

5,845,117

3

changed during detection of the deadlocks because imfor-
mation regarding which task locks which resource 1s lost.

However, to satisfy condition (c) means to forbid causing
of any fresh transactions (tasks) or causing of waiting
relation during detection of the deadlocks. In other words,
acceptance of any request 1n the system should be suspended
temporarily to detect the deadlocks. Accordingly, if a task
issues a request for a resource (z) that has no relation with
the deadlock, the request should be suspended. As a result,
pursuit of the condition (c) inhibits a smooth and effective

operation of the system and the third requirement will not be
satisfied.

It 1s 1mpossible 1n practice to avoid detection of the
phantom deadlocks concerning with the condition (a). In
other words, 1t 1s 1impossible to predict and avoid abnormal
states that could be caused 1n individual systems and thus the
asynchronous abort of the task cannot be avoided.

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention 1s to
reduce effects on a system due to detection of deadlocks by
means of continuing detection of the deadlock even when a
fransaction waiting relation 1s changed during detection of
the deadlock. In a distribution system, an object 1s to detect
all deadlocks without detecting a phantom deadlock, reduce
an overhead time 1n communication as much as possible,
and reduce effects on the system due to detection of the
deadlocks. Detection continues even when delay or loss of
communication message between systems are caused, when
a transaction waiting relation i1s changed during detection of
the deadlock and when an asynchronous down of the system
1s caused.

To achieve these objects, the present invention 1s provided
with a deadlock detecting device for detecting, in a multi-
tasking system where a plurality of tasks use a common
resource, deadlocks 1n which tasks are each awaiting
resources locked by the other(s) and unable to carry out
further processing. The deadlock detecting device comprises
a task manager for managing execution of the tasks to ensure
parallel execution of two or more tasks; a lock manager for
managing which resource 1s locked by the task; a waiting
relation registering unit for registering, when one task asks
for a resource locked by the other task, a “waiting relation”
indicating that one task i1s awaiting for the other task; and a
deadlock detector for detecting the deadlocks based on this
“waiting relation” registered 1n the waiting relation regis-
tering unit. The deadlock detector 1s operated 1n asynchro-
nism with the lock manager.

BRIEF DESCRIPTION OF THE DRAWING

The present invention will become more fully understood
from the detailed description given hereinbelow and the
accompanying drawings which are given by way of 1llus-
fration only, and thus are not limitative of the present
imvention, and wherein:

FIG. 1 1s a block diagram 1illustrating a first embodiment
of the present invention;

FIG. 2 1s a block diagram illustrating a second embodi-
ment of the present mnvention;

FIG. 3 1s a block diagram 1llustrating a third embodiment
of the present invention;

FIG. 4 1s a view for use 1n describing a relation between
a local wait-for-graph and a global wait-for-graph;

FIG. § 1s a flow chart illustrating operation of a transac-
tion manager in FIG. 3;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 1s a flow chart 1llustrating operation of a resource
manager in FIG. 3;

FIG. 7 1s a flow chart illustrating operation of a lock
manager in FIG. 3;

FIG. 8 15 a flow chart illustrating operation of a deadlock
detector 1n FIG. 3;

FIG. 9 1s a flow chart illustrating operation of a watchdog,
timer 1n FIG. 3; and

FIG. 10 1s a view for use in describing a deadlock
situation.

DESCRIPTION OF THE PREFERRED
EMBODIMENT
First Embodiment

A first embodiment of the present invention 1s shown 1n
FIG. 1. A deadlock detecting device according to the first
embodiment detects deadlocks caused in a multitasking
system 1n which a plurality of tasks 100 use a common
resource 101.

A typical multitasking system comprises a task manager
(TM) and a lock manager (LM) 102. The task manager (TM)
102 manages execution status of the tasks (x, y) 100 to
execute a plurality of tasks (x, y) 100 in parallel. The lock
manager (LM) 103 detects and manages information regard-
ing which task 100 is locking which resource 101 or waiting
to lock which task 100.

In this embodiment, such a multitasking system 1s pro-
vided with a wait managing table (LT) 105 and a deadlock
detector (DD) 104. The wait managing table (LT) 105
registers a “waiting relation” concerning the task. The
deadlock detector (DD) 104 detects the deadlocks based on

the “waiting relations” registered in this managing table (LT)
105.

A “task” usually means one or more sequence of instruc-
fions treated as a unit of work to be accomplished by a
central processing unit (CPU). In this invention, the word
“task” can also be referred to as a “transaction.” The
“transaction” means a set of operations for a complete data
operation and 1s a concept involved 1n the “task,” which 1s
executed by programs. The present invention 1s directed to
detect the lock situation in which each program commonly
uses the resource when a plurality of programs are executed
in parallel at the same time. Thus, a difference 1n words has
no significant meaning 1n the present invention even it any
one of the terms “task,” “transaction,” and an execution unit
to be accomplished by the programs 1s used. The “task™ 1s
used heremnafter as an equivalence to the “transaction,”
which makes no matter 1n executing the present invention.
In the present invention, the resource 101 commonly used by
the tasks 100 maybe files (a collection of data), records
stored 1n the files, and so on. The lock used 1n this invention
means that a task or a transaction exclusively use the entire
file or exclusively uses a record 1n the file.

In the present embodiment, the deadlocks are detected 1n
the following manner. A lock relation between the task
(transaction) 100 and the resource 101, i.e., a “waiting
relation” 1s registered 1n the above mentioned wait managing
table (LT) 105. The deadlock detector (DD) 104 looks up the
wait managing table (LT) 105 to detect the deadlock. This
detection 1s made independently of the task management
made by the above mentioned lock manager (LM) 103.
Preferably, the deadlock detector (DD) 104 is required to

register the “waiting relation” 1n the wait managing table
(LT) 105 when the above mentioned lock manager (LM) 103

detects that “a certain task is in the “waiting relation™ for a
certain resource.” The presence or absence of the deadlock
1s determined by means of looking up the registered contents
therein.

5,845,117

S

A following method may be advantageously used as a
method of registering the waiting relation of the transaction
in the wait managing table (L'T) 105 and for detecting the
deadlock. That 1s, the waiting relation of the transaction is
expressed by a graph. This graph 1s referred herein to as a
wait-for-graph (WFG). This graph is registered in the above
mentioned wait managing table (LT) 108.

In this graph, the transaction x caused in the system 1 1s
defined as T(i, x) while the transaction y caused in the
system j is defined as T(j, y). In addition, waiting of T(i, X)
for T(j, y), 1.e., waiting of T(1, x) for release of the resource
101 locked by T(j, y) 1s represented herein by:

T3, x)—=T(, v).

In this event, T(i, x) is unable to proceed with further
operation until T(j, y) is terminated.

When

T, x)=T(, y)
and
I(. y)—=T(, x)
are held at the same time, a loop of
T(@, x)—=T(, v)—=T(, x)

1s formed. This case corresponds to the deadlock situation,
so that detection of this loop allows detection of the dead-
lock.

The above description 1s for the detection of the deadlock
between two systems. The deadlock in the own system 1s
represented by:

T(@, x)—=T(1, v)—=T(, x).

A feature of this embodiment lies in a point that the
deadlock detector (DD) 104 is provided in the systems (1,)
independently of a block such as the task manager (TM) 102
or the lock manager (LM) 103 required for executing the
tasks to be operated 1n asynchronism with the task manager
(TM) 102 and the lock manager (LM) 103.

In a conventional deadlock detecting method, execution
of the individual tasks 101 1s temporarily stopped to detect
the deadlock, during which the presence or absence of the
deadlock 1s determined according to lock information 1n the
lock manager (LM) 103. It is, however, impossible to ensure
a smooth operation of the tasks 100.

On the contrary, in the present embodiment the wait
managing table (L'I)) 105 is provided independently of the
task manager (TM) 102 and the lock manager (LM) 103, and
the lock information, 1.e. a “lock relation” or “waiting
relation” produced by the above mentioned lock manager
(LM) 103 is registered in the wait managing table (LT) 10S5.
In addition, the deadlock detector (DD) 104 which operates
independently of the execution of the tasks 100 1s provided.
The deadlock detector (DD) 104 determines the presence or
absence of the deadlock according to the registered contents
in the above mentioned wait managing table (LT) 105 in
consideration of the waiting relation of the task when the
lock manager (LM) 103 receives information indicating that
the task 100 comes to a situation for waiting the resource
101.

As mentioned above, 1 the present embodiment, the
deadlock detector (DD) 104 is provided independently of the
system such as the task manager (TM) 102 and the lock
manager (LM) 103 (required for executing the task 100).
The deadlock detector (DD) 104 is operated independently,

10

15

20

25

30

35

40

45

50

55

60

65

6

so that 1t 1s not necessary to suspend the execution of the task
100 for the deadlock detection.

Detection of the deadlocks by the deadlock detector (DD)
104 1s preferably made when the waiting relation of the task
100 1s detected by the above mentioned lock manager (LM)
103. More specifically, the deadlock detector (DD) 104
registers the waiting relation in the managing table (L'T) 105
when the lock manager (LM) 103 detects the waiting
relation of the task 100. This registration 1s used as a starting
trigger for the deadlock detection. The deadlock detector
(DD) 104 detects the presence or absence of the deadlock by
means of looking up the wait managing table (L'T) 105 in
response to reception of the registration notification.

To register the above mentioned “waiting relation™ 1n the
above mentioned wait managing table (LT) 1085, it is enough
to register the “waiting relation of each task 100 1n the wait
managing table (LT) 105 provided in a system when two or
more tasks (x, y) 100 are present in the same system.

On the other hand, 1f the task 100 1n one system 1s 1n the
“waiting” state for the task in the other system, this “waiting
relation” 1s notified from one system to the wait managing
table (LT) 1085 of the other system. The wait managing table
(LT) 105 registers this “waiting relation” in response to this
notification. At the same time as this registration, the dead-
lock detector (DD) 104 of the other system looks up the wait
managing table (LT) 105 to determine the presence or
absence of the deadlock. It 1s also possible to notify the wait
managing table (LT) 105 of one system from the other
system of this “waiting relation” to determine the presence
or absence of the deadlock by means of looking up this wait
managing table (LT) 105.

The above mentioned description 1s for a case where the
“waiting relation” of the task 100 1n the own system and the
“waiting relation” of the task 100 1n the waited system are
both registered in the wait managing table (L'T) 105 of the
own system. On the contrary, only the “waiting relation” of
the own system may be registered 1n the own managing table
(LT) 105. In such a case, the wait managing table (LT) 105
of the waited system 1s accessed through communication to
detect the deadlock. The “waiting relation” of the task 100
in the own system 1s compared with the “waiting relation”
of the task 100 1n the waited system. If the above mentioned
loop 1s formed, this 1s detected as the deadlock.

According to this embodiment, communication of the
information among two or more systems for detecting the
deadlock 1s not made to detect the deadlock m the own
system. The communication of the information 1s made only
when the deadlock 1s caused among two or more systems. In
most cases, the deadlock 1s caused between two systems, so
that the deadlock can be detected through one communica-
fion.

In this embodiment, the deadlock detector (DD) 104 is

independent of and separated from the task manager (TM)
102 and lock manager (LM) 103, and thus the detection of

the deadlocks will never affect the execution of the tasks
100.

When the deadlock 1s detected, 1t 1s necessary for restor-
ing from the deadlock to forcibly abort either task 100. The
systems are used to determine which task 1s forcedly
aborted. For example, the task 100 starting time of which 1s
later than the others i1s considered to have less amount of
work and this task 100 1s aborted. Alternatively, the amount
of work may be calculated actually to abort the task 100
having the less amount of work.

Second Embodiment

A second embodiment of the present 1nvention 1s shown

in FIG. 2. A deadlock detecting device according to the

5,845,117

7

second embodiment detects the deadlocks caused in the
multitasking system 1n which a plurality of tasks 200 use a
common resource 201. This second embodiment 1s charac-
terized by comprising a watchdog timer (WT) 206 along
with the components described 1n the first embodiment. The
watchdog timer (WT) 206 is a block for issuing a resource
201 gaining request again for the task (transaction) 200 in
the “waiting relation” for a given period of time. The
watchdog timer (WT) 206 is provided for following reasons.

It 1s 1impossible to restore from the deadlock when the
deadlock, even if caused, 1s not detected. The reason why the
deadlock that 1s actually caused cannot be detected may be
L
t

nat information of the “waiting relation™ 1s not registered 1n
e managing table (L'T) 205 due to loss of communication.
With this respect, the watchdog timer (WT) 206 issues the
resource gaining request again when the “waiting relation”
1s continued for a certain period of time for the task 200. As
a result, there 1s a chance of transmitting again the infor-
mation of the “waiting relation” to the wait managing table
(LT) 208 in the waited system, and thus the deadlock can be
detected positively.

Third Embodiment

FIG. 3 shows a third embodiment of the present invention.

In this embodiment, the word “transaction” 1s used rather
than the “task” that 1s used above. This third embodiment 1s
a specific example of a case where the present 1nvention 1s
carried out 1n a distribution system.
<General Structure of the System>

FIG. 3 shows structure of a distribution system. In this
distribution system, two computer systems (system 1 and
system j) are provided in a distributed manner and are
connected to each other through a network (NW) 30. In
addition, a database (DB) 20 is connected to the computer
systems 1, j through the network (NW) 30. The computer
systems are allowed access to the database (DB) 20. Such a
system 1s applicable to, for example, an account system of
a bank.

As apparent from FIG. 3, each computer system (system
i, J) comprises a transaction manager (ITM) 10, a resource
manager (RM) 11, the lock manager (LM) 12, the deadlock
detector (DD) 15, a wait-for-graph table T3, and the watch-
dog timer (WT) 13. The system j is equal in structure to the
system 1. Accordingly, FIG. 3 shows details for only the
system 1 and 1illustration of the detailed structure of the
system] 1s omitted.

The database (DB) 20 stores a plurality of files or records
as the resource. In FIG. 3, the resources A and B are
provided as the resource.

Each component block 1s described 1n detail.
<'Transaction Manager (TM)>

The transaction manager (TM) 10 manages execution of
two or more transactions. The transaction manager (TM) 10
can be referred to as the task manager (TM).

The transaction manager (TM) 10 is a block that receives
communication indicative of start, commit, abort of the
fransaction from an application program to manage the
fransactions 1n the system. More specifically, when the
fransaction X 1s started 1n the system 1, the data 1n the form
of T(1, X) 1s registered while this data in the form of T(1, x)
1s deleted when the transaction x 1s terminated or aborted.

The transaction manager (TM) 10 passes, in response to
acceptance of a request for the resource from the transaction,
the request to the resource manager (RM) 11 and receives a
response (OK/NO) thereof. The transaction manager (TM)
10 also accepts a deadlock nofification transmitted from the
deadlock detector (DD) 15 to abort the transaction. In
addition, the transaction manager (TM) 10 accepts a retry

10

15

20

25

30

35

40

45

50

55

60

65

3

notification transmitted from the deadlock detector (DD) 15
to re1ssue a resource gaining request to the resource manager
(RM) 11. The transaction manager (TM) 10 receives com-
munication indicative of the commit or the abort of the
transaction in the other computer system (system j). In
response to this, the transaction manager (TM) 10 requests
the deadlock detector (DD) 15 to register or delete the
wait-for-graph.

In FIG. 3, “start” means to start execution of the trans-
action while “abort” means to abort the transaction. “Com-
mit” means to commit the transaction.

The resource gaining request and a resource releasing,
request 1n the transaction manager (TM) 10 is executed in a
two-phase lock (2PL) system. This system 1s effective by the
consideration of avoiding detection of the phantom dead-
locks.

The phantom deadlock 1s typically caused when the
registration and the deletion of the graph are competed with
cach other. For example, when a graph of

T, x)—=T(, y)
1s already registered, it 1s assumed that a request for deleting

T, x)—=T(, y)

and a request for registering

TG, y)—=TG, x)

are generated at the same time to the deadlock detector (DD)
15. In such a case, no deadlock 1s caused when the request
for deletion 1s accepted first. On the contrary, the phantom
deadlock 1s caused when the request for registration 1is
accepted first. The request for deleting

T, x)—=T(, y)

1s generated when the waiting relation expressed by this
graph is given up (i.e., when T(j, y) releases the lock on the
resource). Release of the lock is made either when the
transaction 1itself releases the lock on the own resource or
when the transaction 1s aborted asynchronously.

Two-phase locking protocol 1s a locking protocol consist-
ing of two phases; when data once locked by the transaction
ogoes on being locked and that once unlocked goes on being
unlocked. According to this protocol, the same result can be
obtained as a plurality of tasks or transactions that are
serially executed. Also according to this system, the same
result 1s provided as 1f the tasks or transactions are executed
sequentially.

If the transaction 1s assumed not to be aborted
asynchronously, this system ensures that no additional
request for lock gaining will be generated once the lock 1s
released. In other words, the graph

T, x)=T(, y)

once generated is not deleted until T(j, y) is terminated.
Accordingly, when the request for deletion of

T, x)=T(, y)

is generated, T(j, y) has already been terminated and thus no
additional request for gaining the resource is made by T(j,
y). Thus, it is possible to ensure that a request for registering

TG, y)—=TG, x)

1s not generated.

5,845,117

9

For the above mentioned reasons, it 1s possible to restrict
the cause of the phantom deadlock to the asynchronous abort
of the transaction by means of applying this system.
<Resource Manager (RM)>

The resource manager (RM) 11 i1s connected to the
transaction manager (ITM) 10 in a two-way manner. The
resource manager (RM) 11 comprises a resource managing
table T1. The resource manager (RM) 11 maps and manages
on the resource managing table T1 a corresponding relation
between the transaction and the resource requested by the
transaction according to the contents of the resource gaining
request and the resource releasing request supplied from the
transaction manager (TM) 10.

The resource manager (RM) 11 issues a lock request to the
lock manager (LM) 12 in response to the resource gaining
request supplied from the transaction manager (TM) 10. The
resource manager (RM) 11 issues a lock releasing request to
the lock manager (LM) 12 in response to the resource
releasing request supplied from the transaction manager
(TM) 10.
<Lock Manager (LM)>

The lock manager (LM) 12 is connected to the resource
manager (RM) 11 in a two-way manner. The lock manager
(LM) 12 comprises a lock managing table T2. The lock
manager (LM) 12 is a control unit for controlling the lock
conditions using the lock managing table T2.

In a case where the transactions X, y and the resources A,
B are provided and when the transaction x locks the resource
A while the transaction y locks the resource B, the lock
manager (LM) 12 registers this relation in the lock managing
table T2. More specifically, as shown 1n FIG. 3, a situation
where x locks A is defined as, for example, (x:A) while a
situation where y locks B is defined as (y:B). The lock
manager (LM) 12 registers this information in the lock
managing table T2. The lock managing table 1s used for
managing lock mformation for the transactions in the other
computer system (j or 1) as well as for managing the lock
information for the transactions 1n the own computer system
(iorj). The lock information for the transactions in any other
systems can be obtained through communication between
the computer systems. Alternatively, necessity for the com-
munication between the computer systems can be eliminated
by means of creating a single lock managing table T2 on a
common memory that 1s commonly used by the computer
system (i, J) and managing generally the lock information for
all transactions.

In the above mentioned situation, 1t 1s further assumed
that the resource manager (RM) 11 issues a lock request for
the resource A by the transaction y and a lock request for the
resource B by the transaction x. Then, the lock manager
(LM) 12 looks up the information in the lock managing table
12 to confirm that 1t 1s impossible to make such lock. In this
case, the transaction y waits for the release of the lock on the
resource A by the transaction x while the transaction x waits
for the release of the lock on the resource B by the
fransaction y. These situations are defined as (x—=B) and
(y—=A). When these definitions are generated, the lock
manager (LM) 12 determines that “waiting” is caused. In
this embodiment, such “waiting relation” 1s registered in and
managed on a wait-for-graph table T3 independent of the
lock manager (LM) 12. When the “waiting relation” 1is
caused, the lock manager (LM) 12 request the deadlock
detector (DD) 185 to register the graph according to the above
mentioned definitions. Upon requesting this, the deadlock
detector (DD) 18 is also supplied with information regarding
the transaction (x, y) in the above definition, and the
resources (A, B) in the above definitions are locked
currently, by transaction, in the computer system.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The lock manager (LM) 12 immediately returns a
response (OK) to the resource manager (RM) 11 when the
lock request from the resource manager (RM) 11 is expected
to be locked, that 1s, the request 1s not expected to be
“waiting” for another transaction. A registration requesting
queue 1s executed for registering the wait-for-graph 1ndica-
tive of the waiting relation 1n the wait-for-graph table T3
only when the “waiting” situation 1s caused, according to the
determination by the lock manager (LM) 12. The execution
processing of the transaction which requires gain of the
resource 1s not stopped or suspended regardless of the
detection or not of the deadlocks when the request 1s not
expected to be “waiting” for another transaction.
<Deadlock Detector (DD)>

The deadlock detector (DD) 15 is a portion to determine
the presence or absence of the deadlock according to the
contents registered in the wait-for-graph table (T3).

The deadlock detector (DD) 15 comprises a request queue
receiving unit (QR) 14. The request queue receiving unit
(QR) 14 receives a wait-for-graph registration request queue
and a wait-for-graph deletion request queue from the lock
manager (LM) 12 in the own computer system i. In addition,
the request queue receiving unit (QR) 14 receives the
wait-for-graph registration request queue and the wait-for-
oraph deletion request queues from other computer systems
1. Further, when the transaction 1n other system 1 1s aborted
or committed, the request queue receiving unit (QR) 14
receives a wait-for-graph deletion request queue from the
transaction manager (TM) 10. The deadlock detector (DD)
15 registers or deletes the wait-for-graph first in or from the
wait-for-graph table T3 according to these request queues.
The format of this wait-for-graph 1s as follows. For example,

the transaction x caused in the system i=T(i, x) and

the transaction y caused in the system j=T(j, y), then
waiting of T(1, x) for T(j, y) is represented by

T(@, x)—=T(, v).

To register the wait-for-graph, the deadlock detector (DD)
15 previously creates the wait-for-graph according to the
information notified from the lock manager (LM) 12.

When the wait-for-graph 1s registered, the deadlock detec-
tor (DD) 18§ starts detection of the deadlock. When the
deadlock is detected, the deadlock detector (DD) 15 notifies
the transaction manager (TM) 10 of the deadlock.

When a request for deleting the graph 1s received, the
graph in question is deleted and the deadlock detector (DD)
notifies the enable transaction of retry.
<Wait-for-Graph Table (T3)>

The wait-for-graph table T3 1s provided with a wait-for-
oraph that 1s registered therein. As mentioned above, 1t 1s
assumed that the transaction x caused in the system 1=T(i, x)
and the transaction y caused in the system j=T(j, y), then
waiting of T(1, x) for T(j, y) is represented by

T(@, x)—=T(, v).

In such a case, the transaction x 1s not allowed to use the
resource B, to be locked, until the transaction y updates the
locking resource B to terminate T(j, y). This situation is

referred to as the “waiting relation” in which “T(i, x) waits
for T(j, y).” The deadlock detector (DD) 15 registers this

oraph of
T, x)—T(, y)

in the wait-for-graph table T3 as the “waiting relation.”
On the other hand, this graph of

T, x)—=T(, y)

5,845,117

11

may be held at the same time when

I, y)—=TG, x)

1s held. In such a case, the transaction y 1s not allowed to use
the resource A to be locked until the transaction x updates
the resource A to terminate T(1, x). A loop of

T, x)=T(, y)=TGQ, y)=TG, x)

1s formed with these two waiting relations. Accordingly,
detection of this loop corresponds to the situation where the
deadlock 1s caused.

The waiting relation 1s caused between the transactions x
of the systems 1 and the transaction y of the system j,
respectively. The graph of T(i, x)—T(j, y) is registered in the
wait-for-graph table T3 of the system 1 while the graph of

TG, y)=TG, x)

1s registered 1n the wait-for-graph table T3 of the system j.
Accordingly, either one of them should be transmitted to the
other to compare them with each other. In this embodiment,
when the “waiting relation” 1s registered, this “waiting,
relation” 1s transmitted to the waited system. That 1s, when

T(Q, x)=T(, y)

1s registered 1n the wait-for-graph table T3 of the system 1,
the deadlock detector (DD) 15 of the system 1 transmits and
registers the same contents to and 1n the wait-for-graph table
13 of system j.

As a result, 1t becomes possible to detect the deadlock 1n
the waited system (i.c., the system j) by means of looking up
the wait-for-graph table T3. When the “waiting relation™ of
the transaction 1s given up, the information regarding the
“waiting relation” on the transaction x should be recovered
(deleted) from the waited system (i.e., the system j), other-
wise the deadlock 1s detected continuously. Accordingly, 1t
1s necessary to delete or recover the graph indicating the
“waiting relation” from the wait-for-graph table T3 of the
waited system (i.e., the system j) when the “waiting relation”
is eliminated. The deadlock detector (DD) 15 also has a
function of deleting and recovering the graph.

Detection of no graph of the wait-for-graph indicates that
there 1s a possibility of the deadlock 1n the other system it
the top end of the wait-for-graph 1s the transaction in the
other system. Thus, the other system 1n question 1s required
to register the graph. To accept a request of registering the
graph issued by other systems, the deadlock detector (DD)
15 registers a necessary graph to detect the loop.

This waiting relation may be caused 1n the own system.
For example, when a transaction x1=T(1, xI) caused in the
system 1 waits for a transaction y1=T(i, yl) caused only in the
own system (i.c., the system 1),

T(@, x)—=T(, yl)

1s registered 1n the wait-for-graph table T3 of the own
system (i.e., the system 1). In this event, if

T(@, y)—=T(, xI)

1s registered 1n the wait-for-graph table T3 of the own
system (i.e., the system 1), a loop of

T(@, x)—=T(@, yD—=T(q, y)—=T(, x1)

1s formed, according to which the deadlock can be detected.
In the distribution system, the registered contents such as
the wait-for-graph related to the transaction caused in a

10

15

20

25

30

35

40

45

50

55

60

65

12

orven system 1s referred to as a local wait-for-graph of that
system. In addition, a graph representing the waiting relation
in the enfire distribution system, 1.€., a set of all local
wait-for-graphs 1n that distribution system 1s referred to as a
oglobal wait-for-graph. FIG. 4 1s a view 1llustrating an
exemplified relation between the local wait-for-graph and
the global wait-for-graph.

In each computer system, only the local wait-for-graph 1s
managed on the wait-for-graph table T3. In this
embodiment, as mentioned above, the deadlock detector
(DD) 15 does not transmit to other computer systems the
registered contents such as the graph indicating the waiting
relation between the transactions 1 the own computer
system. On the other hand, the deadlock detector (DD) 15
transmits the graph indicating the waiting relation between
the transaction 1n the other computer system and the trans-
action 1n the own computer system only to the associated
system. Considering that statistically 90% or more of the
deadlocks are caused between two tasks, the deadlock
involved 1n the transaction in the other system could be
detected with one communication. In addition, the deadlock
caused only 1 the own computer system can be detected
without communication. Accordingly, it becomes possible to
reduce the overhead time required for the communication to
detect the deadlocks.
<Watchdog Timer>

The watchdog timer (WT) 13 is a timer for use in
monitoring the wait-for-graph table T3. This timer 13 moni-
tors the “waiting relation” registered in the wait-for-graph
table T3. If the “waiting relation” 1s continued when a
predetermined time has elapsed since the “waiting relation”
had been registered, the watchdog timer (WT) 13 issues a
retry notification to make the waiting transaction in the
“waiting relation” reissue the resource gaining request. The
retry nofification 1s supplied to the request queue receiving
unit (QR) 14. When the retry notification is supplied to the
request queue receiving unit (QR) 14, the deadlock detector
(DD) 15 sends the retry notification to the transaction
manager (IM) 10. In response to this retry signal, the
transaction manager (TM) 10 reissues the resource gaining
request to the transaction 1n the waiting relation.

The deadlock that 1s actually caused may not be detected
as a result of delay or loss of a communication message
between the systems or the asynchronous down of the
computer system. The watchdog timer (WT) 13 is for
avolding such trouble. More specifically, the computer 1, j
systems perform communication with each other in the
distribution system, the graph indicative of the deadlock
situation may be lost due to loss of communication message
between the systems. This makes the detection of the
deadlock 1mpossible. To avoid this, the watchdog timer
(WT) 13 1s provided as a mechanism for monitoring the
transactions 1n the waiting relation.

This timer 13 urges, as mentioned above, the transaction
in the waiting relation of the wait-for-graph registered 1n the
table T3 for a predetermined time or longer to reissue the
resource gaining request through the deadlock detector (DD)
15. In response to this, the transaction manager (TM) 10
reissues the resource gaining request. If the “waiting” has
orven up already at that time, then the resource gaining
request 1s accepted. On the other hand, if the waiting has not
climinated, the graph i1s again transmitted to the other
computer system. This makes up for the loss of the graph
and thus the deadlock can be detected.
<Exemplified Operation 1n each Component>

Operation 1n the above mentioned components 1is
described 1n conjunction with the flow charts.

5,845,117

13

| Operation of the Transaction Manager (TM)]

As shown 1n the flow chart of FIG. 5, the transaction
manager (TM) 11 waits for a request such as the start, the
abort, the commit, the resource gaining request, the dead-
lock notification and the retry notification (Step 101). The
abort and the commit used herein includes those notified
from other computer systems. When any one of the request
is received (Step 102), the transaction manager (TM) 10
allocates the processing according to the type of the request.

When the request received at the step 102 1s start, this
transaction (referred to as T(i, x) for convenience) is regis-
tered in the transaction manager (TM) 10 itself (Step 103)
and the transaction manager 10 waits for a subsequent
request.

When the request received at the step 102 1s abort or
commit, the transaction to be aborted or committed (referred
to as T(1, x) for convenience) is deleted (Step 104). Next, the
transaction manager (TM) 10 issues the resource releasing
request to the resource manager (RM) 11 (Step 105). When
a response to the resource releasing request 1s received from
the resource manager (RM) 11(Step 106), the transaction
manager (ITM) 10 requests the deadlock detector (DD) 15
delete the graph (Step 107). Subsequently, the transaction
manager (IM) 10 determines whether the request in ques-
tion 1s from the own computer system (Step 108). When the
request 1s transmitted from the other computer system, no
operation 1s made for the time. On the contrary, if the request
1s from the own computer system, commit or abort 1s
notified to the other computer system (Step 109). The
computer system receiving the notification carries out pro-
cessing at the steps 104 through 107.

When the request received at the step 102 1s the resource
gaining request, the transaction manager (TM) 10 supplies
the resource gaining request to the resource manager (RM)
11 (Step 110). When a response to the request is received
from the resource manager (RM) 11 (Step 111), the trans-
action manager (TM) 10 sends a response to the transaction
(Step 112).

When the request received at the step 102 1s the deadlock
notification, the transaction manager (ITM) 10 first selects
the transaction to be aborted from the transactions in the
deadlock situation (Step 120). More specifically, all trans-
actions in the deadlock relation (referred herein to as T(i, x),
T(, y) for convenience) are specified in the deadlock noti-
fication. The transaction manager (TM) 10 thus selects the
fransaction to be aborted based on the names of the trans-
actions included in the deadlock notification. Accordingly,
the transaction manager (TM) 10 is allowed to specify the
fransaction 1n the other computer system as the transaction
to be aborted. Subsequently, the transaction manager (TM)
10 notifies the selected transaction that the transaction 1s
aborted (Step 121). If the selected transaction is in the other
computer system, the transaction manager (IM) 10 notifies
the selected transaction that the transaction 1s aborted
through the transaction manager (ITM) 10 of the other
computer system.

When the request received at the step S102 1s the retry
notification, the transaction manager (TM) 10 first supplies
the resource gaining request to the resource manager (RM)
11 (Step 130). When a response to this request is received
from the resource manager (RM) 11 (Step 131), the trans-
action manager (TM) 10 sends a response back to the
transaction (Step 131).

' Operation of the Resource Manager (RM)]

As apparent from the flow chart shown 1n FIG. 6, the
resource manager (RM) 11 first waits for the resource
gaining request and the resource releasing request (Step

10

15

20

25

30

35

40

45

50

55

60

65

14

201). When either one of the requests is made and received
(step 202), the resource manager (RM) 11 attempts to lock
the resource shown on the resource gaining table T1 and
registers the relation in the resource gaining table T1 (Step
203). In other words, the resource manager (RM) 11 regis-
ters which transaction 1s trying to lock which resource.

Subsequently, the resource manager (RM) 11 determines
whether the request 1s the resource gaining request or the
resource releasing request (Step 204). When the request is
the resource gaining request, the resource manager (RM) 11
supplies the lock gaining request to the lock manager (LM)
12 (Step 205). On the contrary, when the request is the
resource releasing request, the resource manager (RM) 11
supplies the lock releasing request to the lock manager (LM)
12 (Step 206).

After receiving a response (OK/NO) to the lock gaining
request or the lock releasing request from the lock manager
(LM) 12 (Step 207), the resource manager (RM) 11 sends a
response (OK/NO) back to the transaction manager (TM) 10
(Step 208).
| Operation of the Lock Manager (LM)]

As apparent from the flow chart shown in FIG. 7, in
response to the request at the step 2035 or step 206 from the
resource manager (RM) 11 (Step 301), the lock manager
(LM) 12 receives the request (Step 302). Subsequently, the
lock manager (LM) 12 determines whether the request is the
lock gaining request or the lock releasing request (Step 303).
When the request i1s the lock gaining request, the lock
manager (LM) 12 determines whether it is possible to gain
the lock (Step 304). If the lock on the resource is available,
the lock manager (LM) 12 registers the lock situation in the
lock managing table T2 (Step 305). On the contrary, if it is
impossible to gain the lock on the resource indicating that
there is the “waiting relation,” the lock manager (LM) 12
requests the deadlock detector (DD) 15 to register the
relation between the requesting transaction and the waiting
transaction as a WFG graph 1n the wait-for-graph table T3
(Step 306). Subsequently, the lock manager (LM) 12 notifies
the resource manager (RM) 11 that it fails to lock the
resource (that 1s, “NO”) (Step 309). If the request is deter-
mined as the resource releasing request at the step 303, then
the lock manager (LM) 12 deletes the registration of the lock
from the lock managing table T2 (Step 307). Then the lock
manager (LM) 12 sends a response (that is, “OK”) indicating,
completion of the registration or the deletion to the resource
manager (RM) 11 (Step 308).
| Operation of the Deadlock Detector (DD)]

As apparent from the flow chart illustrated in FIG. 8§, the
deadlock detector (DD) 185 receives the graph registering
request, the graph deleting request and the retry notification
at the request queue receiving unit (QR) 14. Accordingly, in
response to the request (step 401), the deadlock detector
(DD) 15 picks up the request from the request queue
receiving unit (QR) 14 (Step 402) to determine the type of
the request (Step 403).

When the request 1s directed to the graph registration, the
deadlock detector (DD) 15 first registers the wait-for-graph
in the wait-for-graph table T3 (Step 404). If it is found, as a
result of searching through the wait-for-graph table T3, that
the same graph has already been registered therein, the
deadlock detector (DD) 15 does not register the graph at that
time. Next, the deadlock detector (DD) 1S5 follows the
registered graph up to the top end thereof (Step 405).
According to the result of the follow-up, the deadlock
detector (DD) 15 determines whether a loop 1s formed (Step
406). If the loop 1s formed, the deadlock detector (DD) 15
notifies the transaction manager (TM) 10 of the deadlock

5,845,117

15

(Step 407). If no loop is formed, the deadlock detector (DD)
15 determines whether the top end of the graph is a trans-
action in the own computer system (step 408). If the end is
a transaction 1n the own computer system, then the control
returns to the step 401. On the other hand, 1f the top end of
the graph 1s a transaction in other computer system, the
deadlock detector (DD) 15 sends the graph in question to the
deadlock detector (DD) 15 of the other computer system to
make it register the graph 1n the wait-for-graph table T3 of
the other computer system (Step 409).

Next, when the request at the step 403 1s directed to delete
the graph, the deadlock detector (DD) 15 searches through
the wait-for-graph table T3 to find the graph in question
(Step 410). When the graph in question is found, the
deadlock detector (DD) 15 deletes this graph (Step 411).
Subsequently, the deadlock detector (DD) 15 supplies the
retry notification to the transaction manager (TM) 10 to
operate the transaction for which the waiting relation 1s
eliminated (Step 412). When the request at the step 403 is
the retry request, the deadlock detector (DD) 15 deletes the
graph of the transaction to be retried (Step 420). Then, the
deadlock detector (DD) 18§ supplies the retry notification to
the transaction manager (TM) 10 (Step 421).

' Operation of the Watchdog Timer (WT)]

As apparent from the flow chart illustrated 1n FIG. 9, the
watchdog timer (WT) 13 successively searches the transac-
tions (such as T(1, X)) registered in the wait-for-graph table
T3 (Step 501). Subsequently, the watchdog timer (WT) 13
determines whether the transaction x 1s 1 the “waiting
relation” (Step 502). If the searched transaction is not in the
“waiting relation,” the step 501 1s again executed. On the
other hand, if the searched transaction i1s in the “waiting
relation,” the watchdog timer (WT) 13 starts to count the
time. When a predetermined time 1s elapsed (Step 503), the
watchdog timer (WT) 13 supplies the retry notification to the
deadlock detector (DD) 15 (Step 504). When the “waiting
relation” 1s eliminated at the step 503 before the predeter-
mined time 1s elapsed, the step 501 is again executed (Step
502).
<Specific Examples of the Deadlock Detection>

Next, examples of the deadlock detection carried out by
the above mentioned components are described for a three
different cases.
| Example 1 Detection of the Deadlock Between the Trans-
actions Both of Which are in the Own Computer System]

An example 1 1s an example of deadlock detection
between transactions which are both 1n the own computer
system. More specifically, the following operation 1s carried
out. This example reveals that the communication 1s not
established with the other computer system.

(1) First, 1t 1s assumed that transaction T(l, 1) notifies the
transaction manager (TM) 10 of initiation of the transaction.
(2) The transaction manager (TM) 10 registers transaction
T(, 1).

(3) On the other hand, it 1s assumed that transaction T(1, 2)
notifies the transaction manager (TM) 10 of initiation of the
transaction.

(4) The transaction manager (TM) 10 registers transaction
T(, 2).

(5) It is assumed that transaction T(1, 1) asks for the resource
A to the transaction manager (TM) 10.

(6) The transaction manager (TM) 10 then requests for
gaining the resource A to the resource manager (RM) 11.
(7) The resource manager (RM) 11 requests for gaining the
lock on the resource A to the lock manager (LM) 12.

(8) The lock manager (LM) 12 sends OK back to the

resource manager (RM) 11 if the resource A is not locked.

10

15

20

25

30

35

40

45

50

55

60

65

16

(9) The resource manager (RM) 11 sends a response OK to
the transaction manager (TM) 10.

(10) On the other hand, it is assumed that transaction T(1, 2)
asks for the resource B to the transaction manager (TM) 10.
(11) The transaction manager (TM) 10 then requests for
gaining the resource B to the resource manager (RM) 11.
(12) The resource manager (RM) 11 requests for gaining the
lock on the resource B to the lock manager (LM) 12.

(13) The lock manager (LM) 12 sends OK back to the
resource manager (RM) 11 if the resource B is not locked.
(14) The resource manager (RM) 11 sends a response OK to
the transaction manager (TM) 10.

(15) At that time, it is assumed that transaction T(1, 1) asks
for the resource B to the transaction manager (TM) 10.
(16) The transaction manager (ITM) 10 then requests for
gaining the resource B to the resource manager (RM) 11.
(17) The resource manager (RM) 11 requests for gaining the
lock on the resource B to the lock manager (LM) 12.

(18) However, the resource B has already been locked by
transaction T(1, 2), so that transaction T(1, 1) waits for
transaction T(l, 2). Accordingly, the lock manager (LM) 12
requests the deadlock detector (DD) 15 for registering the
oraph

T(1, 1)—T(1, 2).

The deadlock detector (DD) 18 receive the request and
registers the graph 1n the wait-for-graph table T3.

(19) On the other hand, it is assumed that transaction T(1, 2)
asks for the resource A to the transaction manager (TM) 10.
(20) The transaction manager (TM) 10 then requests for
gaining the resource A to the resource manager (RM) 11.
(21) The resource manager (RM) 11 requests for gaining the
lock on the resource A to the lock manager (LM) 12.

(22) However, the resource A has already been locked by
transaction T(1, 1), so that transaction T(1, 2) waits for
transaction T(1, 1). Accordingly, the lock manager (LM) 12
requests the deadlock detector (DD) 15 for registering the
oraph

T(1, 2)—T(1, 1).

The deadlock detector (DD) 15 receives the request and
registers the graph in the wait-for-graph table T3.

(23) The deadlock detector (DD) 15 detects the loop and
notifies the transaction manager (TM) 10 of the presence of
the deadlock.

| Example 2 Detection of the Deadlock Between Two Trans-
actions each of which 1s in either of Two Computer Systems
Respectively]

An example 2 mvolves 1n a case where the deadlock 1s
caused between two computer systems (system 1 and system
2). This example reveals that the communication for the
deadlock detection 1s made only at once.

(1) First, it 1s assumed that transaction T(1, 1) of the system
1 notifies the transaction manager (M) 10 of the system 1
of mitiation of the transaction.

(2) The transaction manager (IM) 10 of the system 1
registers transaction T(1, 1).

(3) It is assumed that transaction T(1, 1) asks for the resource
A to the transaction manager (TM) 10 of the system 1.

(4) The transaction manager (TM) 10 of the system 1 then
requests for gaining the resource A to the resource manager
(RM) 11.

(5) The resource manager (RM) 11 of the system 1 requests
for gaining the lock on the resource A to the lock manager
(LM) 12.

(6) The lock manager (LM) 12 of the system 1 sends OK
back to the resource manager (RM) 11 if the resource A is
not locked.

5,845,117

17

(7) The resource manager (RM) 11 of the system 1 sends a
response OK to the transaction manager (TM) 10.

(1)' On the other hand, it 1s assumed that transaction T(2, 1)
of the system 2 notifies the transaction manager (TM) 10 of
the system 2 of initiation of the transaction.

(2)' The transaction manager (ITM) 10 of the system 2
registers transaction T(2, 1).

(3)' It is assumed that transaction T(2, 1) asks for the
resource B to the transaction manager (TM) 10 of the system
2.

(4)' The transaction manager (TM) 10 of the system 2 then
requests for gaining the resource B to the resource manager
(RM) 11.

(5)' The resource manager (RM) 11 of the system 2 requests
for gaining the lock on the resource B to the lock manager
(LM) 12.

(6)' The lock manager (LM) 12 of the system 2 sends OK
back to the resource manager (RM) 11 if the resource B is
not locked.

(7)' The resource manager (RM) 11 of the system 2 sends a
response OK to the transaction manager (TM) 10.

(8) At that time, it is assumed that transaction T(1, 1) asks
for the resource B to the transaction manager (TM) 10 of the
system 1.

(9) The transaction manager (ITM) 10 of the system 1 then
requests for gaining the resource B to the resource manager
(RM) 11.

(10) The resource manager (RM) 11 of the system 1 requests
for gaining the lock on the resource B to the lock manager
(LM) 12.

(11) However, the resource B has already been locked by
transaction T(2, 1) of the system 2, so that transaction T(1,
1) waits for transaction T(2, 1). Accordingly, the lock
manager (LM) 12 of the system 1 requests the deadlock
detector (DD) 15 for registering the graph

T(1, -T2, 1).

(12) In response to this request, the deadlock detector (DD)
15 of the system 1 sends the graph

T(1, 1)—T(2, 1)

to the system 2. At the same time, the deadlock detector
(DD) 15 of the system 1 registers the graph in the wait-for-
ograph table T3 of the system 1.

(13) The deadlock detector (DD) 15 of the system 2 receives
the graph

T(1, 1)—=T(2, 1)

and registers 1t 1n the wait-for-graph table T3 of the system
2.

(14) Subsequently, it 1s assumed that transaction T (2, 1) asks
for the resource A to the transaction manager (TM) 10 of the
system 2.

(15) The transaction manager (TM) 10 of the system 2 then
requests for gaining the resource A to the resource manager
(RM) 11.

(16) The resource manager (RM) 11 of the system 2 requests
for gaining the lock on the resource A to the lock manager
(LM) 12.

(17) However, the resource A has already been locked by
transaction T(1, 1) of the system 1, so that transaction T(2,
1) waits for transaction T(1, 1). Accordingly, the lock
manager (LM) 12 of the system 2 requests the deadlock
detector (DD) 15 for registering the graph

T2, 1)—T(, 1).

10

15

20

25

30

35

40

45

50

55

60

65

138

(18) The deadlock detector (DD) 18 of the system 2 detects
the loop and notifies the transaction manager (TM) 10 of the
system 2 of the presence of the deadlock.
|Example 3 Message is Lost During Detection of the Dead-
lock Between Two Transactions Each of Which 1s 1 Either
of Two Computer Systems Respectively]

An example 3 involves 1n a case where a massage 1s lost
due to a communication error caused between two computer
systems (system 1 and system 2).

(1) First, it 1s assumed that transaction T(1, 1) of the system
1 notifies the transaction manager (M) 10 of the system 1
of mitiation of the transaction.

(2) The transaction manager (IM) 10 of the system 1
registers transaction T (1, 1).

(3) It is assumed that transaction T(1, 1) asks for the resource
A to the transaction manager (TM) 10 of the system 1.

(4) The transaction manager (TM) 10 of the system 1 then
requests for gaining the resource A to the resource manager
(RM) 11.

(5) The resource manager (RM) 11 of the system 1 requests
for gaining the lock on the resource A to the lock manager
(LM) 12.

(6) The lock manager (LM) 12 of the system 1 sends OK
back to the resource manager (RM) 11 if the resource A is
not locked.

(7) The resource manager (RM) 11 of the system 1 sends a
response OK to the transaction manager (TM) 10.

(1) On the other hand, it 1s assumed that transaction T(2, 1)
of the system 2 notifies the transaction manager (TM) 10 of
the system 2 of inmitiation of the transaction.

(2)' The transaction manager (TM) 10 of the system 2
registers transaction T (2, 1).

(3)' It is assumed that transaction T(2, 1) asks for the
resource B to the transaction manager (TM) 10 of the system
2.

(4)' The transaction manager (TM) 10 of the system 2 then
requests for gaining the resource B to the resource manager
(RM) 11.

(5)' The resource manager (RM) 11 of the system 2 requests
for gaining the lock on the resource B to the lock manager
(LM) 12.

(6)' The lock manager (LM) 12 of the system 2 sends OK
back to the resource manager (RM) 11 if the resource B is
not locked.

(7)' The resource manager (RM) 11 of the system 2 sends a
response OK to the transaction manager (TM) 10.

(8) At that time, it is assumed that transaction T(1, 1) asks
for the resource B to the transaction manager (TM) 10 of the
system 1.

(9) The transaction manager (TM) 10 of the system 1 then
requests for gaining the resource B to the resource manager
(RM) 11.

(10) The resource manager (RM) 11 of the system 1 requests
for gaining the lock on the resource B to the lock manager
(LM) 12.

(11) However, the resource B has already been locked by
transaction T(2, 1) of the system 2, so that transaction T(1,
1) waits for transaction T(2, 1). Accordingly, the lock
manager (LM) 12 of the system 1 requests the deadlock
detector (DD) 15 for registering the graph

T(1, 1)—=T(2, 1).

(12) In response to this request, the deadlock detector (DD)
15 of the system 1 registers the graph 1n the wait-for-graph
table T3 of the system 1. At the same time, the deadlock
detector (DD) 15 of the system 1 sends the graph

T(, 1)—T(2, 1)

5,845,117

19

to the system 2.

(13) However, the transmitted content does not arrive to the
system 2 because it 1s lost as a result of an communication
€ITOT.

(14) Subsequently, it is assumed that transaction T(2, 1) asks
for the resource A to the transaction manager (TM) 10 of the
system 2.

(15) The transaction manager (TM) 10 of the system 2 then
requests for gaining the resource A to the resource manager
(RM) 11.

(16) The resource manager (RM) 11 of the system 2 requests
for gaining the lock on the resource A to the lock manager
(LM) 12.

(17) However, the resource A has already been locked by
transaction T(1, 1) of the system 1, so that transaction T(2,
1) waits for transaction T(1, 1). Accordingly, the lock
manager (LM) 12 of the system 2 requests the deadlock
detector (DD) 15 for registering the graph

T2, 1)—T(, 1).

At that time, the deadlock situation i1s caused actually.
However, the deadlock cannot be detected due to the loss of
the message. Accordingly, the deadlock 1s continued.

(18) After a predetermined time, the watchdog timer (WT)
13 of the system 1 1s operated to make a retry nofification to
the deadlock timer (DD) 15 of the system 1.

(19) The deadlock timer (DD) 15 of the system 1 then
notifies the transaction manager (TM) 10 of the retry of
transaction T(1,1).

(20) According to the retry notification, the transaction
manager (ITM) 10 of the system 1 requests the resource
manager (RM) 11 for gaining the resource B.

(21) The resource manager (RM) 11 of the system 1 again
requests for gaining the lock on the resource B to the lock
manager (LM) 12.

(22) However, the resource B has already been locked by
transaction T(2, 1) of the system 2, so that transaction T(1,
1) waits for transaction T(2, 1). Accordingly, the lock
manager (LM) 12 of the system 1 again requests the dead-
lock detector (DD) 15 for registering the graph

T(1, 1)—T(2, 1).

(23) In response to this request, the deadlock detector (DD)
15 of the system 1 registers the graph 1in the wait-for-graph
table T3 of the system 1. At the same time, the deadlock
detector (DD) 15 of the system 1 again sends the graph

T(1, 1)—T(2, 1)

to the system 2.
(24) The deadlock detector (DD) 15 of the system 2 receives
the graph

T(1, 1)—T(2, 1)

and registers 1t 1n the wait-for-graph table T3 of the system
2. As a result, the loss of the graph can be made up.

(25) The deadlock detector (DD) 15 of the system 2 detects
the loop and notifies the transaction manager (TM) 10 of the
system 2 of the presence of the deadlock.

As mentioned above, according to this embodiment, the
lock manager (LM) 12 for managing the lock situation on
the resource by the task (transaction) is separated from the
deadlock detector (DD) 15 and they are operated in an
asynchronous manner with each other. Accordingly, when
the task (transaction) is generated additionally and requests
the resource, 1t 1s allowed to be operated without passing

10

15

20

25

30

35

40

45

50

55

60

65

20

through the deadlock detector (DD) if the lock can be
obtained without waiting. This contributes to a smooth and
clfective operation of the system, increasing the processing
speed. In addition, even when the lock cannot be obtained,
the effect thereof 1s less significant because the registration
of the lock situation (graph) and the detection of the dead-
lock are made 1n asynchronism with the request for the lock.

In particular, the effect of the deadlock detection on the
system designed for reducing the deadlock becomes
extremely 1nsignificant.

When the present invention 1s applied to the distribution
system, the system establishes communication for the dead-
lock only when 1t comes under the waiting relation with the
other system. Accordingly, the communication 1s not estab-
lished for the deadlock detection 1n the own system. Even
when the other system 1s involved 1n the deadlock with the
own system, the deadlock could be detected one communi-
cation because 90% or more of the deadlocks 1s caused
between two systems. Accordingly, it becomes possible to
reduce the overhead time required for the communication to
detect the deadlocks, allowing an effective operation of the
system.

In addition, if a waiting time monitoring unit (WT) 13 is
provided with the present invention, the watchdog timer
(WT) 13 give another chance to detect the deadlock even if
the message 1s delayed or lost during communication of the
message 1n the distribution system. Thus, all deadlocks can
be detected positively.

The mvention being thus described, 1t will be obvious that
the same may be varied in many ways. Such variations are
not to be regarded as a departure from the spirit and scope
of the invention, and all such modifications as would be
obvious to one skilled 1n the art are intended to be 1ncluded
within the scope of the following claims.

We claim:

1. A deadlock detecting device of a multitasking system,
said device detecting deadlock between plurality of tasks
executed 1n the multitasking system, comprising;

task managing means for managing parallel execution of
plurality of the tasks;

lock managing means for detecting that one task locks a
common resource , and for detecting that another task
1s waiting for the common resource locked by the
former task and outputting waiting relation information
indicating that the latter task 1s waiting for the former
task;

a wait management table for storing a plural pieces of
wailting relation information;

registering means for registering said waiting relation
information 1n said wait management table, every time
said lock managing means outputs said waiting relation
information; and

deadlock detecting means for detecting the deadlock
between plurality of the tasks, of plural pieces of
waiting relation involving the tasks which are respec-
tively indicated by any one of the waiting relation
information stored 1n the wait management table forms
a loop relation, said deadlock detecting means func-
tioning independently and asynchronously from said
lock managing means and said task managing means;

whereby execution of said first task and said second task

1s not suspended during deadlock detection.

2. The deadlock detecting device as claimed in claim 1,
wherein said registering means has a table in which said
waiting relations are registered.

3. The deadlock detecting device as claimed in claim 2,
wherein said deadlock detecting means registers the waiting

5,845,117

21

relations 1n the table of said registering means and detects
the presence or absence of deadlock by searching said table.

4. The deadlock detecting device as claimed 1n claim 2,
wherein said deadlock detecting means comprises a request
queue receiving unit for receiving a “waiting relation reg-
istering request” indicative of an instruction to detect the
deadlock loop.

5. The deadlock detecting device as claimed 1n claim 2,
wherein the deadlock detecting device 1s realized on a
distribution system having a first and second system,
wherein each system comprises said task managing means,
said lock managing means, said wait management table and
said deadlock detecting means.

6. The deadlock detecting device as claimed 1n claim 3§,
wherein said second waiting relation from said first system
1s communicated and registered 1n said wait management
table of said second system, and the presence or absence of
the deadlock loop 1s determined by looking up said wait
management table 1 said second system.

7. The deadlock detecting device as claimed 1n claim 5,
wherein a task x generated in a system 1 is defined as T(i, x),
a task y generated in a system j is defined as I(j, y) and
waiting of T(i, x) for T(j, y) 1s represented by T(i, x)—=T(j,
y), which is registered in said table as information of the
third waiting relation to detect a loop of T(1, x)—T(,
y)—T(i, Xx) when both T(1, x)—=T(, y) and T(j, y)—=T(, x)
hold, thereby detecting the deadlock loop.

8. The deadlock detecting device as claimed in claim 1,
wherein the dead lock detecting device 1s realized on a
distribution system having a plurality of systems and com-
prises a waiting time monitoring unit for use in reissuing a
resource gaining request to the task of which waiting rela-
fion 1s continued for a predetermined time.

9. A deadlock detecting device as claimed 1n claim 1,
wherein said task managing means manages the tasks
through a two-phase lock system 1n which a lock i1s con-
tinuously made when the task starts to lock a data while the
lock 1s continuously released when the task starts to release
the lock.

10. The deadlock detecting device as claimed in claim 2,
wherein said lock managing means registers the first waiting,
relation 1n said wait management table and 1ssues a deadlock
detecting 1nstruction to the deadlock detecting means only
when the first waiting relation 1s caused to be a resource
cgaining request, and wherein said lock managing means
does not suspend the execution operation on the transaction
for the resource gaining request accompanying an absence
of a waiting relation.

11. A deadlock detecting device of a multitasking system,
said device detecting deadlock between plurality of tasks
executed 1n the multitasking system, comprising:

a task manager which manages parallel execution of
plurality of the tasks;

a lock manager which makes one task a common
resource, and which detects that another task 1s waiting
for the common resource locked by the former task and
consequently output waiting relation information indi-
cating that the latter task 1s waiting for the former task;

a wait management table for storing the waiting relation
imnformation; and

deadlock detector which detects the deadlock between
plurality of the tasks if plural pieces of the waiting

10

15

20

25

30

35

40

45

50

55

60

22

relation 1nvolving the tasks which are respectively
indicated by any one of the waiting relation information
stored 1n the wait management table forms a loop
relation, said deadlock detector functioning indepen-
dently and asynchronously from said lock manager and
said task manager;

whereby execution of said first task and said second task

1s not suspended during the deadlock detection.

12. The deadlock detecting device as claimed 1n claim 11,
wherein said task manager starts, commits and aborts the
first and second tasks.

13. The deadlock detecting device as claimed 1n claim 11,
wherein said lock manager mcludes a lock table for locking
a corresponding relation between said first task and said first
resource and between said second task and said second
resource.

14. A deadlock detecting device of a distribution system
having a plurality of systems, said device detecting deadlock
between plurality of tasks each of which 1s executed 1n one
of the systems and 1s usable common resources, each system
comprising:

a task manager which manages parallel execution of

plurality of the task executed 1n own system;

a lock manager which makes one task lock a common
resource and which detects that another task 1s waiting
for the common resource locked by the former task and

consequently output waiting relation mnformation indi-
cating that the latter task 1s waiting for the former task;

means for sending only waiting relation information indi-
cating that one task 1s waiting for any task executed in
other system to this other system, said sending means
further sending waiting relation information indicating
that one task 1s waiting for another task involved 1n the
sent waiting relation information;

a wait management table for storing the waiting relation
information outputted by the lock manager of own
system and the waiting relation information sent from
the sending means of other system;

a deadlock detector which detects the deadlock between
plurality of the tasks, 1f plural pieces of the waiting
relation involving the tasks which are respectively
indicated by any waiting relation information stored in
the wait management table forms a loop relation, said
deadlock detector functioning independently and asyn-
chronously from said lock manager and said task
manager;

whereby execution of said first task and said second task
1s not suspended during the deadlock detection.
15. A deadlock detecting device according to claim 14,
further comprising:

a watchdog timer watch which monitors, for every wait-
ing relation information, elapsed time since the waiting
relation information stored i1n the wait management
table and, when the elapsed time exceeds a predeter-
mined time period, makes the deadlock detector erase
the waiting relation information from the wait manage-
ment table to make the waiting transaction mnvolved 1n
the waiting relation information run again.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : °:845,117
DATED
INVENTOR(S) :

December 1, 1998

Kazuhiko FUJITA

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Cover page, [30] Foreign Application Priority Data, "March 19,
1993" should be --March 30, 1993--.

Signed and Sealed this
Thirteenth Day of July, 1999

Q. TODD DICKINSON
Attesting QOfficer

Acthing Commissioner of Patenrs und Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

