US005841958A

United States Patent 119] 11] Patent Number: 5,841,958
Buss et al. 451 Date of Patent: Nov. 24, 1998
[54] BIPARTITE MATCHING [56] References Cited
U.S. PATENT DOCUMENTS
[75] Inventors: Samuel R. Buss, San Diego, Calit; 5.481,668 1/1996 MArCUS .oooceeoveveerserereeee. 395/155 X
Peter N. Yianilos, Princeton, N.J. C
Primary Examiner—Almis R. Jankus
Attorney, Agent, or Firm—Philip J. Feig; Arthur 1.
| 73] Assignees: NEC Research Institute, Inc., Torsiglieri
Princeton, N.J.; The Regents of the
University of California, Oakland, [57] ABSTRACT
Calit. A computer technique for bipartite matching of objects of
one subset with objects of a different subset where multiple
choices are permitted. A bipartite graph 1s formed 1n which
[21] Appl. No.: 377,319 the objects form nodes and the edges connecting pairs of
2] Filed: Jan. 19, 1995 noide:s represent costs of matching the noc}es connecteq. The
original tour or graph 1s decomposed mto a plurality of
51] Inmt. CLO e, GO6T 11/00 quasi-convex subtours or subgraphs and the minimum cost
52] US. Cl o, 395/140 match ot each subtour 1s found and the union of all such
58] Field of Searchooooooooooccooonon 395/140, 147, matches of the subtours is used as the desired match.

395/155-161, 326, 335, 348, 349, 352,
353, 355-357

4 Claims, 9 Drawing Sheets

U.S. Patent Nov. 24, 1998 Sheet 1 of 9 5,841,958

100
Reduce tour of N nodes
to M alternating-color
subtours
102
m =1
No

Is m less than or equal to M?
105

m=m-++1
- Yes 106

C m :=Main(subtour m)

Figure 1

U.S. Patent Nov. 24, 1998 Sheet 2 of 9 5,841,958

Is n less than or equal to N7

e (o 3

203

Blue

Color of node n?

207
Add node n to end
of subtour d d=d+1

205

208
Add node n to end
209
206
Tt Cmax S0 min

Figure 2

U.S. Patent Nov. 24, 1998 Sheet 3 of 9 5,841,958

301

M, L7, L' deques empty
Yi=-1

302
No
More nodes?
Yes 3

30

X := (next node)
304

I :=I[MR] +¥* C (MR, X)
Push-right (X,I) onto M

305

306

Do “First Scan”

307

Do “Second Scan”

308
No 309

Match Pair()

Figure 3

U.S. Patent Nov. 24, 1998 Sheet 4 of 9 5,841,958

U.S. Patent Nov. 24, 1998 Sheet 5 of 9 5,841,958

401

No

b g : \J
L empty or M It}lﬁerent from LL ?

Yes

402

X :=pop-left M

403

405
Process Node(X)
¥ o=y

404

YV

push-right MRonto L

U.S. Patent Nov. 24, 1998 Sheet 6 of 9 5,841,958

| Yes

and 1! both empty?

N
X =pop-lei M

03

Are

<
[
-G

Is X the sameasllf ? Yes

Process Node { X)

504

pop-left L\P

Figure 6

U.S. Patent Nov. 24, 1998 Sheet 7 of 9 5,841,958

601

I :=I[Ml£ +We ¢ (MR,X)
Push-right (X,I) onto M

602

a7 -y - :
c(LR.1 MR)-¢ (LR, Mp)<(LR J-TLZ) * ¥? No
pop-right L
604
=\ Y No
C(MR,LR) < W *(IMg]-I[I:R ?
Yes 605
607 606
. -\ No
Match_Pair() M different from Ly, ?
R 608

I:=IM,,] +sc (Mp,X)

Push-right (X,I) onto M

609

Y V¥ False
pop-right LLP True

Figure 7 @

U.S. Patent Nov. 24, 1998 Sheet 8 of 9 5,841,958

701

Output M R-1 G MR

as a matched pair

702

pop-right M

703

N7 No

ISMR thesameasLR ?

pop-right LlP pop-right M

Figure 8

U.S. Patent Nov. 24, 1998 Sheet 9 of 9 5,841,958

H := Index of node in M deque such that M { ,1s the same as LlP

R-1
1 :=Index of lefimost node in M deque (M

=Ly JHLED * W
€ =Ly 1-1MR D) * ¥

L)

No
Yes 803
k:=1+2*floor((h-1)/4)
804

Past Xover A:=(c (L{-l’ Mk)-¢ (Lg, My))<

Past Xover B :=(¢ (LlP, M;) - c(MR, Mk))< €

Yes
Past Xover A? o

206 808

Past Xover B? Yes Past Xover B? No

807 Yes

h=k Return FALSE
309

Figure 9

5,841,958

1
BIPARTITE MATCHING

FIELD OF THE INVENTION

This invention relates to a computer technique potentially
applicable to any problem that 1s amenable to being repre-
sented 1n a graph that has properties such that bipartite
matching of nodes of the graph provides a solution to the
problem and to a computer for carrying out the technique.
Typical of such problems are bipartite matching 1n which
objects of one subset of a set are to be paired with objects
of a different subset of the set 1n situations where there are
multiple choices.

BACKGROUND OF THE INVENTION

A tool for matching objects that has become of increasing
importance as computers have become more available and
powerful 1s graph theory. In graph theory: the objects
become nodes, nodes of one color representing objects of
one subset, and nodes of another color representing objects
of the other subset; the total collection of nodes to be
matched becomes a bipartite graph; and a pairing of two
nodes of different colors representing objects between which
some matching relationship is to be established becomes an
edge of the graph. Generally, there 1s a well-defined cost
function associated with every possible pairing of the nodes
to be paired and the problem to be solved 1s that of efficiently
finding the bipartite matching desired that has a minimum or
near minimum total cost where the total cost 1s the sum of
the 1ndividual edge costs of the bipartite matching.

Among possible applications of bipartite graphs for
matching has been matching a particular spelling of a given
word 1ncluded 1n a given set of words for testing the
correctness of the particular spelling. String comparisons,
such as 1s volved 1n word matching, can be reduced to a
quasi-convex matching problem by considering each alpha-
betic symbol in turn (replacing all other symbols with
blanks) and then embedding each such subproblem in a
linear graph. The symbols of one word or string can be
represented as red nodes of one subset and the symbols of
the other word or string as blue nodes of the other subset and
one takes as the cost function a concave-down function | of
the displacement ¢ along the line, for example where ()
varies as the square root of ¥, which meets the weak
analyticity condition to be described later. Other matching
problems including matching a particular image with the
images 1n a given set of images to ascertain any relationships
between the particular 1mage and one of the given set of
images. A problem that 1s currently of growing interest 1s
that of finding a match between a given fragment of an
unidentified DNA molecule and the DNA molecule of which
it 1s most likely a part from a list of known DNA molecules.
Other applications include database field searches (e.g.
looking up a name or address) and the analysis of multi-field
records, such as mailing addresses, to eliminate near dupli-
cates.

Other applications will be to locate and extract records
that are very similar to a supplied query, even when the
query 1s 1nexact.

Simple probability theory indicates that the total cost of
evaluating every possible bipartite matching, when mea-
sured 1n terms of the run-time on a computer, 1s proportional
to N factorial where N 1s the number of nodes. In fact, it can
be shown that the problem can generally be solved more
ciiiciently with a run-time no greater than one proportional
to N° by an appropriate algorithm.

Moreover, algorithms that are more efficient than one with
run-time proportional to N” have been developed for various

10

15

20

25

30

35

40

45

50

55

60

65

2

special cases. These typically focus on planar geometrical
settings, such as matching red points with blue points, all
located either on a straight line or on the perimeter of a
circle, with the cost function defined to be equal to the
Euclidean distance, or the minimum arclength, between the
two points.

In a paper entitled “Fast matching algorithms for points
on a polygon” SIAM J. Comput., 20 (1991) pp. 495422,
Marcotte et al have shown that for the case of equal numbers
of red and black points forming the vertices of a convex
polygon, where the cost function 1s equal to the Euclidean
distance, the bipartite matching problem runs in the order of
N(log N) time.

The present invention offers a process that i1s considerably
more general than these planar geometrical settings and that
In appropriate cases may be considerably more eflicient,
involving run times no greater than times of the order of
N(log N) and in some instances as small as of the order of
N, or linear time with respect to N. This difference can be
very significant where N 1s large, as 1 the hundreds of
thousands.

The mvention 1s expected to be useful, for example, 1n
improving the speed of the string comparator system and
method described 1n our earlier U.S. Pat. No. 4,490,811 that
issued on Dec. 25, 1984, and its teaching i1s incorporated
herein by reference.

SUMMARY OF THE INVENTION

In one aspect, the invention i1nvolves a process that
utilizes a matching algorithm that i1s applicable 1n special
cases. In another aspect, the invention 1s a computer that has
been adapted to run the matching algorithm. The requisite
conditions for its use are basically as follows:

1. The nodes of the graph must be given as a quasi-convex
tour, where a quasi-convex tour 1s one in which an
ordering of N nodes X,, X, . .., X, 1s one which wraps
around so that node X,; 1s followed by node X, and
where the following mnequality holds for any four nodes
X, X, X and X; that are 1n tour order though not
necessarily consecutive, C(X,, X)+C(X,, X)=C(X,,
XH+C(X;, X;) where C(X,Y) denotes the cost of pair-
ing nodes X and Y.

2. The graph must be either balanced (equal numbers of
red and blue nodes, the nodes being matched) or
line-like, and for any node the cost to pair 1t with a node
of different color always increases with increasing
separation along the tour in either direction.

When these two conditions are met, the algorithm finds a
minimum-cost matching in at most the order of N(log N)
time. Moreover, 1f the cost function meets an additional
condition of “weak analyticity”, the time may be reduced to
as little as the order of N time. Weak analyticity 1s typically
satisfied when the cost function can be defined as a definite
analytical expression.

The algorithm 1n 1ts abstract form includes a series of
basic steps. Given a quasi-conveXx tour or graph of nodes to
be matched, the first step 1s the reduction of that original tour
fo a set of quasi-convex subtours in which the nodes
alternate 1n color and every node 1s matched with a node at
the same level. It can be proved that a minimum-cost
matching for the whole tour can be obtained as a union of the
minimum cost matchings for these alternating color sub-
tours. In the case of a balanced main tour, the nodes divide
evenly into alternating color subtours. In the case of an
unbalanced tour, there will be at least one unbalanced
subtour. In this case, a temporary new node of appropriate

5,841,958

3

color 1s added to any such subtour for balance and the cost
to match with this new node is defined to be zero for all
nodes in the subtour. At the end of the algorithm, the node
that matched with the new node 1s declared an unmatched
node.

Additionally, a novel feature of the invention 1s the
algorithm then used for determining the minimum cost of
the bipartite matching of different color nodes of each

subtour. This algorithm 1s to be defined as the main algo-
rithm.

The theory of this algorithm 1s fully developed i an
article by S. R. Buss and P. N. Yianilos entitled “Linear and
O(n log n) Time Minimum-Cost Matching Algorithms for
Quasi-convex Tours” 1n the Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, Jan. 23,
1994, pp. 6576, which 1s incorporated herein by reference,
but a condensed version will be described below. But before
such description, 1t will be helpful to define a few terms that

will be used therein.

A greedy matching 1s a matching of every node to an
adjacent node; 1n all other matchings, there are jumpers
which are edges connecting two non-adjacent nodes 1n the
tour. If X and Y are nodes, let [X,Y] be the sequence of
nodes starting at X and ending at Y. A jumper from X to Y
1s called a candidate if 1t 1s preferable for a matching to have
a jumper from X to Y with no other jumpers in [X,Y] than
for it to have no jumpers at all in [X, Y |. A candidate 1s called
minimal if there 1s no other candidate in [X,Y].

These relationships lead to the basic strategy behind the
main algorithm which 1s as follows. Iteratively find a mini-
mal candidate 1n a subtour, assign the edges that correspond
to the greedy matching of nodes in the interior of the
minimal candidate, discarding the nodes in the interior and
recursively apply the same procedure to the remaining
subtour. When no candidate remains, then greedy matching
between neighboring nodes 1s used on the remaining
unmatched nodes.

To implement the recursive step, which normally does not
run 1n linear time or even near linear time, 1n near linear
time, the main algorithm scans each subtour in circular order
and maintains a list of nodes 1n a storage memory called the
M deque, and the M deque contains all the nodes that have
been scanned already but have not yet been matched. Also,
the nodes 1n the M deque include the nodes which may be
used as the left endpoint of minimal candidates. As each
node X 1s scanned, it 1s scanned against the rightmost
clement Y of the M deque that 1s a possible left endpoint of
a candidate. If a candidate 1s found the appropriate edges
interior to the found candidate are greedily matched and
removed from further consideration. Then while still scan-
ning the same node X, a crossover condition 1s checked to
determine 1f the nodes X and Y can be discarded from
consideration as left endpoints of candidates in the future. It
so, the X and/or Y nodes can be discarded from
consideration, as appropriate, and in the latter case, the next
richtmost potential candidate endpoint on the M deque 1s
also so checked, recursively as necessary.

The 1invention will be better understood from the follow-
ing more detailed description taken in conjunction with the
accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 may be viewed either as a flow chart of the basic
steps of the process practiced by the invention or a block
diagram of the means that form a special purpose computer
in accordance with the mvention.

FIGS. 2 and 3 are flow charts showing more detail 1n steps
of the flow chart of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 1s a typical graph 1llustrating the resolution of a
bipartite matching tour into a plurality of bipartite quasi-
convex tours that forms one feature of the process practiced
by the 1nvention.

FIGS. 5 and 6 are flow charts showing more detail 1n steps
of the flow chart of FIG. 3.

FIG. 7 1s a flow chart showing more detail of a step that
1s 1ncluded 1n the flow charts of each of FIGS. 5 and 6, and

FIG. 8 15 a flow chart showing more detail of a step of the
flow charts of FIGS. 3 and 7.

FIG. 9 1s a flow chart of the €2 predicate that 1s included
in the flow chart of FIG. 7.

DETAILED DESCRIPTION OF THE
INVENTION

There will first be described apparatus for the practice of
the 1nvention with limited explanation of the theoretical
bases and software that underlie it. These are set forth in an
article by S. R. Buss and P. N. Yianilos entitled “Linear and
O (n log n) Time Minimum-Cost Matching Algorithms for
Quasi-convex Tours” 1n the Proceeding of the Fifth Annual

ACM-SIAM Symposium on Discrete Algorithms, Jan. 23,
1994, pp. 6576 and 1n the software 1n the appendix hereto.

Typically, the mvention will be practiced by a general
purpose computer that has been suitably programmed by
disks or other memory devices on which the appropriate
application program has been stored to effect the desired
bipartite matching. Alternatively, a special purpose com-
puter may be designed to carry out the bipartite matching
once supplied with the appropriate inputs.

In either case, usually 1t 1s first important to prepare the
one or more graphs that suitably describe the problem to be
solved. Generally the graphs may be either closed to form a
circle or linear.

It 1s convenient generally to prepare the graph so that the
nodes of one of the subsets to be matched are depicted as
dots of one type and the nodes of the other subset as dots of
a different color 12. In the completed graph 10 of FIG. 4, the
different colors of the nodes are depicted either by hollow
circles 11 or by solid circles, 12. The position of the various
nodes should reflect the cost function in the manner char-
acteristic of such graphs. Generally, the cost of a particular
match between two nodes of different colors 1s related to the
separation of the two nodes, typically either the length of the
arc or the length of the chord between the two nodes, and the
cost function advantageously should be related to some
function f(X) where X is the relevant separation of the nodes
in the graph.

After the graph information has been appropriately stored
as 1inputs in the appropriate memory of the computer 1n the
manner usual for such storage, the computer processes the
information stored in the manner depicted 1n FIG. 1, which
1s a flow chart 100 of the basic steps of the algorithm.

The practice of the typical embodiment of the invention
begins, as represented by block 101, by decomposing or
reducing the original bipartite tour or graph of N nodes into
a set of interleaved quasi-convex subtours in which the
successive nodes alternate in color as shown 1n FIG. 4.

This 1s possible since there must be an optimal matching
with no crossing edges, and, 1n such matching, every node
1s matched with a node at the same level. The level of the
nodes can be computed by a simple counting process,
analogous to the problem of finding matching parentheses 1n
a well-formed mathematical expression. The particular
decomposition method used 1s one designed to ensure that a

5,841,958

S

union of the minimum-cost matchings for these alternating
color subtours will be a minimum-cost matchings for these
alternating color subtours will be a minimum-cost matching
for the whole tour. See Lemma 3 1n the Buss et al article
supra which reads that if one lets G be either a linear
quasi-convex tour or a balanced quasi-convex tour, then G
has a mimimum-cost matching in which every edge ¥, <y,
satisfics y,~y;. In other words, some minimum-cost match-
ing for G can be obtaimned as a union of minimum-cost
matchings on the~—equivalence classes of G. The decom-
position typically will result in M alternating color subtours.
The flow chart for this 1nitial decomposition step 1s shown
in FIG. 2 and will be discussed more fully later with
reference to such flow chart.

Then as indicated by block 102, there 1s 1nitialized subtour
counter m to 1, and as idicated by block 103, the program
inquires whether m 1s less than or equal to M to ascertain
whether there are additional subtours to process. Then as
indicated by block 104, the main algorithm 1s run for the tour
m. The flow chart of the main algorithm 1s depicted in FIG.
3 and will be described below. Basically, this step provides
a cost ¢ for each subtour plus a set of matched pairs of nodes.

Then as indicated by block 105, after each subtour has

been so processed, m 1s incremented and steps 103 and 104
are repeated until the last subtour has been processed.

Then as indicated by block 106, when there are no more
subtours to process, all the ¢ °s are added together to
provide the total cost for the tour of the N nodes, since the
union of the set of matched pairs by the main algorithm for
the M subtours 1s the matching for the whole tour.

With reference to FIG. 2, we will now expand on the
process of block 101. We accumulate the subtours in linked
lists indexed by the value of an integer variable “d” which
will assume values 1n some continuous range between —N
and +N inclusive where N 1s the length of the tour. It 1s thus
sufficient to allocate an array of dimensions (2N+1) for the
heads of the linked lists. Nodes 1n the list are specified by
their ordinal position in the tour.

As 1ndicated 1n block 201, we first initialize integer
variable d to 0 and counter n to 1; and 1nitialize the linked
lists to be empty. As indicated by block 202, the program run
begins by asking whether n 1s less than or equal to N. So
long as 1t 1s we continue to the step of block 203. Here we
branch on the color (subset) to which the node n belongs. If
n 1s a blue node, we add the blue node to the end of the
linked list d as indicated by block 204 and then as indicated
by block 205, d 1s compared to the maximum and minimum
values for d achieved up to this point, and update these
values if required. Then we can decrement d as shown in
block 206. Alternatively, 1f the color of node n was red, we
increment d per block 207 and then add the red node to the
end of linked list d. We then compare d with the maximum
and minimum values of d derived so far per block 208, and
update these values if called for, as per block 209. Now we
can increment n per block 210 and return to step 202 for
further processing if n 1s still less than N.

In FIG. 4, there 1s shown for purposes of illustration a
limited graph of 16 nodes, eight red, indicated by empty
circles 11, and eight blue, indicated by cross-hatched circles
12, and the three sub-tours corresponding to d values of +1,
0 and -1, that are formed by the algorithm 101, where the
various subtours are formed by inter-connecting the various
nodes as 1ndicated by the values shown for each node.

We will now proceed to a more detailed description of the
main algorithm 104 detailed in FIG. 3 which 1s responsible
for determining for each of the subtours the minimum-cost

10

15

20

25

30

35

40

45

50

55

60

65

6

routing between the nodes that are included in each 1ndi-
vidual subtour.

For the main algorithm the central data structures for the
routing of individual subtours are three deques (double-
ended queues) called M, the main deque, L' and L™ (the two
left deques). A deque is a list of elements which may be
added to or subtracted from at each end. If viewed as 1n a
horizontal orientation, each deque has a left and a right end.
The following operations are 1mplemented for updating
deques: push-right, which adds a node to the right end of a
deque; pop-right, which pops the rightmost node off the right
end of a deque; and pop-left, which pops the leftmost node

oif the left end of a deque.

Deque operations are efficiently implemented by using,
contiguous memory locations to store the deque elements
and maintaining pointers to the left and right endpoints; each
deque operations can then be operated in unit time. For our
algerlthm it will suffice to reserve enough space for 2N
elements (with no possibility that a deque will grow
leftword) since push-lefts are unnecessary in this preferred
implementation.

Subscripts R, L and R-1 are used to select the rightmost
clement, leftmost element, and the element preceding the
rightmost, respectively Accordingly, L, ™" refer to the left-
most element of L™"; M,,_, refers to the clement just before
the rightmost member of M, etc.

In general, we will use the value of the integer program
variable 1 (or its negative —}y) to select an L deque. 1 can
assume the values =1. So,

if P=—1, LYL ™" and L™V &L

if Y=+1, LYSL' and L V& -L".

Each deque element is actually a pair, for example M(R)=
(X,I); the first entry X of the pair is a node and the second
entry 1s a numerical value associated with node X. To
simplify the notation, we shall use the same notation for a
deque element as for the node which 1s the first component.
Thus M(L) also denotes the node which is its first compo-
nent. We then use If| M| L]] to denote the second component,
its numerical value. Similar conventions apply to L' and L™
deques.

With reference now to FIG. 3, we begin by 1nitializing all
deques to be empty and 1 to be equal to —1, as indicated by

block 301.

Next, as indicated by blocks 302 and 303, we read 1n the
next node, 1f any, of the selected alternating color subtour
being matched, the various subtours to be selected 1n turn,
into variable X. If there are no more nodes to read 1n, we go

to step 306, the first scan, to be described 1n more detail 1n
connection with FIG. 4.

If there was a node X to read 1n, we calculate the “I value”
for node X based on the current rightmost node of the M
deque and then push node X onto the right end of the M
deque, as indicated in block 304, I:=I(M+)C(M .X).

The value of 1 1s inverted, as indicated 1n block 305, and
we return to step 302 to repeat the process for the next node
of the alternating subtour so long as there 1s another node.

When there are no longer any nodes we proceed 1n turn to
the previously mentioned “First Scan” step (306) and the
“Second Scan” step (307) which in detailed in FIG. 5.

At the end of the second scan, we check to see if the M
deque 1s empty (308). If it 1s not, we execute the procedure
“Match Pair” (309) to pop off a matched pair of nodes from
the M deque and then return to step 308 until the M deque
1s empty.

During the scans mentioned above, nodes are popped off
the left end of the M deque and then pushed onto its right

5,841,958

7

end. In addition, while processing a node, some nodes may
be popped off the right end of M to be matched.

It will generally be the case that the M deque contains a
sequence of contiguous nodes of the subtour being matched
in tour order and that the node currently being scanned
immediately follows the formerly rightmost element of the
M deque. The sign of 1 1s maintained to be appropriate for
the color of this current node.

The procedure 306 for First Scan 1s illustrated 1n the flow
chart of FIG. 5. As indicated by block 401, we begin by
checking whether the LY deque is either (A) empty or (B) its
leftmost node does not correspond to the leftmost node of
the M deque. If this condition 1s fault, we exit. If either of
these conditions 1s met, we continue to step 402 and pop the
leftmost node off of the M deque 1nto the variable X and then
execute the procedure Process Node 403 on node X. The
flow chart of Process Node 1s set forth 1n FIG. 6, and we then
push a copy of the rightmost node of the M deque onto the
richt end of the LY deque as indicated by block 404.
Thereafter as indicated by block 405, the sign of 1 1is
inverted and we return to step 401.

The flow chart of the procedure Second Scan 307 1s
shown in FIG. 6. It begins by checking whether deques LY
and L™ are both empty as shown by block 501. If the
answer 1s yes, we exit. If the answer 1s no, we pop the
leftmost node off the M deque into the variable X, as
indicated by block 502 and then as step 503 check to see
whether X corresponds to the leftmost node of the LY deque.
If 1t does, we proceed to step 504 which involves popping
the leftmost node off the LY deque and thereafter continue
to step 505 which mvolves the procedure Process Node 5085.
If 1t does not, we proceed directly to procedure Process Node
505 on node X. Thereafter as step 506 we mvert the sign of
1 and return to step 501 to repeat the scan until both LY and
L= deques are empty.

FIG. 7 1s a flow diagram of the Process Node procedure
shown as steps 403 and 505 1n the First Scan and Second
Scan subroutines.

This procedure begins as step 601 with the calculations of
the I value for node X based on the current rightmost node
of the M deque and we then push node X onto the right end
of the M deque. Then as step 602, we check to see if the
following inequality 1s true:

C(Lr_,%, Mp)-C(L™M,y,) is less than (I[L;,™"]-

[Le_:"¥Dy.

If the inequality 1s true, we continue to step 603, and pop
rightmost node off the deque L™ and return to step 602.

If the nequality 1s false we proceed to step 604, which
involves testing the inequality C(M,L,™") is less than
P I(Mg)-I(L,"")]. If this inequality is satisfied, we proceed
to step 605 and pop the rightmost node off of the M deque
into variable X. If unsatisfied, we proceed to step 609. When
the mequality of step 604 is true, we have identified (LxMy)
as a minimal candidate.

After step 605, we proceed to step 606 and check to see
if the rightmost node of the M deque corresponds to right-
most node of the L™ deque. If it does, we proceed to step
607. If 1t does not, we continue to step 608.

Step 607 1s the procedure Match Pair to pop off a matched
pair from the M deque and return to step 606.

Step 608 1nvolves the calculation of the I value for node
X based on the current rightmost node of the M deque and
the pushing of node X onto the right end of the M deque. We
then proceed to step 609.

Step 609 1nvolves the evaluation of the omega predicate
with node arguments L,,_.", L% and M,,. If the predicate is
true, we continue to step 610. Otherwise we exit. Omega

10

15

20

25

30

35

40

45

50

55

60

65

3

(€2), discussed more fully in connection with FIG. 9, 1s a
predicate involved 1n the crossover test 609 that determines
which of the two potential left endpoints of a candidate can
be discarded from further consideration as left endpoints of
candidates. It largely determines the run time of the run time
analysis of the main algorithm. Its run time 1s never greater
than the logarithm of the number of nodes, so the main
algorithm’s run time 1s never worse than n log n, but 1n some
instances 1ts run time can be computed 1n constant time, in
which case the run time of the main algorithm 1s linear to the
number of nodes 1n the graph.

The crossover condition 1s essentially the following.
Suppose the M deque contains nodes X and Y which are two
potential left endpoints of candidates. It 1s shown in Appen-
dix A that there 1s a crossover point V such that for nodes
after node Y and before node V, for selecting between nodes
X and Y 1t 1s better to check whether the edge from node Y
to node V 1s a candidate and that for nodes from node V to
node Y 1t 1s better to check whether the edge from node Y
to node V is a candidate. In step 609, L¥*~" and L% play
the roles of X and Y and we check whether M, 1s past the
crossover point V.

As step 610, we pop the rightmost node off the M deque
and return to step 609.

FIG. 8 1s a flow chart of the procedure Match Pair that
forms step 309 1n the main algorithm and step 607 1n the
Process Node procedure. The procedure Match_ Pair
assigns a jumper M,_,<M,_, as a matched pair, as step
701. Then as step 702, the rightmost node 1s popped oft the
M deque. Then as step 703 it determines whether the
richtmost node of the M deque corresponds to the rightmost
node of the LY deque and if it does, we pop right the LY
deque per step 704 and 1if 1t does not, we pop right the M
deque.

FIG. 9 1s the flow chart for the procedure for deriving the
ogeneric £2 that 1s ivolved 1n step 609. This procedure 1s a
Boolean predicate that returns either a value of True or
False. As indicated i block 801, 1t begins by initializing h
to the index of the node in the M deque, such that the node
before it, M, _, is L. It further initializes 1 to the index of
the leftmost node 1n the M deque so that M,=M, . It further
initializes variable & to the expression I[L,%]-I[M,] multi-
plied by the current value of 1. It also 1nitializes variable €
to the expression I[L,Y]-I[My] multiplied by the current
value of 1.

Then as step 802, there 1s determined whether h 1s greater
than I+1 and if so we continue to step 803. If not, we exit
returning an output of TRUE. If so, per step 803, we set a
value to k which is defined as 1+2 floor (h-1) divided by 4
where “floor” 1s the floor or greatest integer function, which
returns the greatest integer less than or equal to its argument.
As step 804, we set the Boolean variable Past_ X over__Ato
the truth value of the expression

(C[LR—llp: MA:D_ C(LRIP: Mk) <0

and set the Boolean variable Past X over B to the truth
value of the expression

C(|Lp*} M,)-c(M,, M,)<e.

Then as step 805, if Past_ X over A 1s true, we continue
to step 806. If 1t 1s false, we continue to step 808.

Then as step 806, 1f Past__X over B is true, we continue
to step 807; 1f 1t 1s false, we exit returning TRUE.

Then as step 807, we set h equal to k and return to step

802.

5,841,958

9

Then as step 808, if Past_ X over B 1s true, we exit,
outputting FALSE. If it 1s true, we continue to step 809.

As step 809, we set 1 equal to k+2 and return to step 802.

It 1s to be understood that the invention may be viewed
cither as a process for providing bipartite matching in the
manner discussed or as apparatus that when provided with
appropriate controls will function to provide the desired
bipartite matching. Such apparatus may be either a general
purpose computer appropriately programmed by means of
its memories or a special purpose computer appropriately
designed with circuitry to operate as described.

What 1s claimed 1s:

1. A process for performing bipartite matching of an
object of a first subset with an object of a second subset
comprising the steps of:

preparing a graph as a tour in which the objects of the first
and second subsets form the nodes and the distance
between an object of the first subset and an object of the
second subset 1s the cost of the bipartite matching of
such two objects,

decomposing the tour to form an interleaved set of
quasi-convex subtours 1n each of which the nodes
alternate between the first and second subsets, whereby
the decomposition 1s such that a union of the mimimum

10

15

20

10

cost match for this set of subtours will be a minimum
cost-match of the tour,

finding the minimum cost-match of each subtour, and

combining all the minimum cost-matches to form the

desired bipartite match of the objects to be matched.

2. A computer that includes a storage medium 1n which
there 1s included a program for operating the computer in
accordance with the process of claim 1 when the computer
1s supplied with the two subsets between which the desired
bipartite matching 1s to be made.

3. A process 1n accordance with claiam 1 in which the
objects of the first subset and second subsets are strings of
characters and the bipartite match will be a pair of matching
strings of characters.

4. The process of claim 1 1n which the step of finding the
minimum cost match of each subtour comprises the steps of
scarching 1teratively for jumpers that qualify as minimal
candidates, matching nearest neighbor pairs included within
minimal candidate pairs, and recursively applying the last-
mentioned searching and matching steps to the remainder of
the subtour until all the nodes are paired.

	Front Page
	Drawings
	Specification
	Claims

