US00584144°7A
United States Patent (19] 11] Patent Number: 5,841,447
Drews 451 Date of Patent: Nov. 24, 1998
[54] SYSTEM AND METHOD FOR IMPROVING Primary Examiner—Raymond J. Bayerl
PIXEL UPDATE PERFORMANCE Assistant Examiner—Cao H. Nguyen
(75] Inventor: Michael D. Drews, Sandy, Utah Attorney, Agent, or Firm—Thorpe, North & Western, LLP
| 73] Assignee: Kvans & Sutherland Computer [57] ABSTRACT
Corporation, Salt Lake City, Utah
A system and method 1improves pixel update performance in
21] Appl. No.: 510,508 computer graphics systems. Pixel sample coverage masks
22] Filed: Aug. 2, 1995 and data record memory locations are assigned to each pixel.
- The data record memory locations store pixel sample data
51] Int. CLO o, GO6F 13/00 for one or more vixel samples. A coveraoe mask is 4880c]
52] US. Cl oo, 345/523; 345/525 - dp g P > e
58] Field of Searchoooovvcoe. 395/507, 508, 2ted Wilh cach dala record and contains mask bils whic
395/509, 523; 345/113, 115, 119, 525, 501, identify the pixel samples that are assigned the data con-
507, 508, 509, 523, 116, 118 tained 1n the data record memory location. In another
(56) References Cited embodiment? the pixels are :;11?0 assigned versions which j’:ll‘e
compared with a current version. In response to the version
U.S. PATENT DOCUMENTS comparison, predefined alternate pixel data or pixel data
4,954,819 9/1990 Watkins ...ccceeevveveevevrvvnveveeennn 345/119 stored 1n a frame bufler 1s blended with new pixel data. The
5,061,919 10/1991 Watkinscceeevvvvneevvineereennnne. 345/119 - - - " _ -
5123,085 6/1992 Wells et al. ooovororvrvrvvvvrrvvroneen 305121 Plended pixel datais written to the frame buffer from which
5.488.687 1/1996 RiCh wovovvveeeeeerereeeeerereeeerron. 395/508 1t 1s retrieved and displayed by a display device. In another
5?590?254 12/996 LlpplIlCOtt et Ell. 345/1 15 embodiment? plxel data memory iS dynamieally alloca‘:eé_ to

OTHER PUBLICAITTONS

Akeley, Kurt, “RealityEngine Graphics”, Computer Graph-

1CS

Proceedings,

Annual Conference Series, 1993

ACM-0-89791-601-&/93/008/0109.

reduce the dedicated memory requirements while still pro-

viding high quality 1images.

24 Claims, 8 Drawing Sheets

44 20
| |
OBJECT RENDERING
MEMORY PROCESSOR
20
PIXEL PROCESSOR a5
32 f |
MEMORY T COLOR UPDATE

30 \| CURRENT | ALTERNATE
VERSIONS |

PIXEL DATA

38 ‘”\ COVERAGE MASK
CONTROL UNIT

- e s e shes bk oshiel bl b LS S A S

43 - | UNIQUE SAMPLE
DATA SELECTOR

L

24 DEPTH
VERSION DATA & UPDATE
\ COMPARE SELECTOR
36

40
22—
fﬂ
FRAME BUFFER (26
____________________ DISPLAY
DYNAMICﬁéﬂS:‘?L}:".OCATED o
- ————— e ——————————— 27
COVERAGE, DATA | PIXEL
MASKS (RECORDSIVERSION

28

U.S. Patent Nov. 24, 1998 Sheet 1 of 8 5,841,447

44 20

OBJECT RENDERING
MEMORY PROCESSOR

22

PIXEL PROCESSOR 42

32

MEMORY COLOR UPDATE

ag | |41 | COVERAGE MASK

30~ | CURRENT |ALTERNATE CONTROL UNIT

VERSIONS | PIXEL DATA

43 - | UNIQUE SAMPLE
DATA SELECTOR

| uppan
UPDATE

34 VERSION DATA
COMPARE SELECTOR

24
FRAME BUFFER 26
DISPLAY
DYNAMICALLY ALLOCATED

27

COVERAGE|, DATA | PIXEL
MASKS | RECORDS |VERSION

Fig. 1

U.S. Patent Nov. 24, 1998 Sheet 2 of 8 5,841,447

26

5,841,447

Sheet 3 of 8

Nov. 24, 1998

U.S. Patent

gart

55 JHYINOD

NOISHIAN

HOLVHY "I
NOBATOd =~
Vivad

V.ivd

TOHLNOOD

ASVIN
FOVHIAOQO

cr

g0¢ Ve
LY ge¢
J1Lvadn
HO10D (N) 13XId

VLVd HLdIG
JYNHALTY 4012313S
V.iva
vee Jivadn
e Hld3da

NOISHIA

40100 JHVdNOOD NOWIWOO
ANIHHNO NOISH3IA /HLd3dd

ANIFHHNO

NOISHIA

VOt

SHSVIN
L4 OVHING Vviva HO'100

c9 4]

8¢

NOISY3A
z%%mw_ vivd Hid3d |Nowwos| (¥ 13xid
/HLd3d

9s v8c

5,841,447

Sheet 4 of 8

Nov. 24, 1998

U.S. Patent

(N) 13Xid

() 13xid

(1) 13XId

Wv|a|®)o|®)Y|E)XSYW () a4003H
suainiod | © V] @8] © 0] u] wsn] @ auoozu
vwonau [@v] @ a o] | sl @ uoose

SILAELO0 SILAGLOO
_ E Qmﬂtoomtto.:uo _ Nm QEOONI IBQNQ

&S
04 29

HIGWNINN

NOISHIAN NOISHIA

HOT0D NOWWOO
/H1id3d

SALAGLOO0 JLIAGLO0

g8c
JIVINI vez TOHLNOO

99 79

U.S. Patent Nov. 24, 1998 Sheet 5 of 8 5,841,447

100

102
SELECT PIXEL
116 COMPARE WITH
104 CURRENT DEPTH
READ CONTROL
OCTBYTE

106
ﬁiBﬁﬂﬁ?iﬁﬁ 122 — |CALCULATE NEW
DEPTH VALUE

I 108
NO 110

GET DEPTH
VERSION Y
112

GET DEPTH
DATA AND
COVERAGE

READ COLORNNO

126

YES

READ
ALTERNATE

MASK COLOR DATA

CHECK
1414 COVERAGE

MASK
GET NEW 128
PIXEL DEPTH

130

NO

GET NEW
PIXEL COLOR
134

U.S. Patent Nov. 24, 1998 Sheet 6 of 8 5,841,447

142

CALCULATE NEW
COLOR VALUE

143

CALCULATE NEW
COVERAGE MASK.

144

WRITE DEPTH
VERSION

146

DEPTH

FUNCTION =

"KEEP"
?

NO

SELECT DEPTH 148
RECORDS

150

WRITE DEPTH
RECORDS AND
COVERAGE MASKS

152

COLOR
FUNCTION =

"KEEP"

NO
154

WRITE COLOR
RECORDS

156 ~ [wRImE RESOLVED

PIXEL AND

COLOR VERSION

158

YES o

NO

(_LEND Fig. 5B

160

U.S. Patent Nov. 24, 1998 Sheet 7 of 8 5,841,447

180

DEPTH/ YES

182
READ DEPTH

DATA OCTBYTES

SAVE DEPTH 154

DATA

188
READ

ALTERNATE 186

SAVE COVERAGE
MASK

DEPTH DATA

Fig. 6

U.S. Patent Nov. 24, 1998 Sheet 8 of 8

200

202 GET COLOR
VERSION

READ IMAGE
OCTBYTE

204

DEPTH

VERSION

VALID
?

YES

206
NO

READ ALTERNAT,
214 "Z" DATA

216

COLOR
VERSION

VALID
?

YES

READ DEPTH
NO RECORD OCTBYTES

218

212

Fig. 7

5,841,447

RECORD OCTBYTES

SAVE DEPTH
RECORDS

SAVE COVERAGE
MASK

5,341,447

1

SYSTEM AND METHOD FOR IMPROVING
PIXEL UPDATE PERFORMANCE

FIELD OF THE INVENTION

The present mvention relates to computer graphics sys-
tems and more specifically to pixel data flow enhancement
using coverage masks, pixel data versions and dynamic
memory allocation.

BACKGROUND OF THE INVENTION

Conventional computer graphics systems display images
on a display screen having an array of picture elements
(pixels). The displayed image typically represents a collec-
tion of graphic objects or a predefined visual scene. The
displayed 1mage 1s created by subdividing the graphic
objects or visual scene into smaller elements such as points,
lines or polygons that can be numerically represented in
terms of size, color, location and other characteristics. Using
the polygon elements as an example, when a given visual
scene or collection of graphic objects 1s to be displayed, the
polygon representations corresponding to that scene or col-
lection of objects are processed to generate data that defines
the visual characteristics for the pixels in the display screen.
This data 1s used to generate electrical signals that sequen-
fially illuminate the pixels on the display screen.

The polygon processing referred to above 1s commonly
referred to 1n the field of computer graphics as polygon
rendering. Polygon rendering involves processing each
polygon to determine the imnifluence each polygon has on the
pixels 1n the display. This involves determining which pixels
are influenced by a given polygon and determining the effect
of the polygon 1n terms of characteristics such as color and
fransparency on those pixels. During conventional polygon
rendering, a polygon 1s effectively sampled at intervals
across the face of the polygon with each sample location
corresponding to one of the pixels on the display screen.
This “sample” consists of data, called pixel data, that
represents the characteristics of the polygon at that location.
The details of the polygon rendering process are well known
in the art of computer graphics systems. For example,
detailed operations and structures of polygon manipulation
and display may be found in the book Principles of Inter-

active Computer Graphics, 2nd Edition, Newman and
Sproull, McGraw-Hill Book Company, 1979.

The pixel data generated by the polygon rendering pro-
cess 1s stored 1n a memory called a frame buflfer. The frame
buffer memory 1s organized so that each pixel in the display
screen 1s assigned a specific memory location 1n the frame
buifer. Thus, the pixel data for a given pixel 1s always written
to the same location in the frame buffer. When the pixel
associated with the pixel data in the frame buffer i1s to be
displayed, the pixel data 1s read out of the frame buifer and
sent to a display device that displays the converted pixel data
on a display screen. The use of frame builers to drive
displays 1s also well known 1n the art. Various formats for
organizing and scanning frame buifers to drive displays
pixel-by-pixel are discussed 1n the textbook Computer
Graphics: Principles and Practice, 2nd Edition, Foley, van
Dam, Feiner & Hughes, (Reprinted in 1991) (1990), by

Addison-Wesley Publishing Company, at chapters 4 and 18.

As the visual scene or the collection of graphic objects
being displayed changes, new polygons are processed by the
polygon rendering process. As a result, new pixel data 1s
continually being generated which needs to be stored in the
frame buffer. However, in many situations, the new pixel
data 1s not stmply written to the frame butfer. Instead, before

10

15

20

25

30

35

40

45

50

55

60

65

2

the new pixel data 1s written to the frame buffer, the new
pixel data 1s blended with pixel data that represents the
image currently being displayed.

The pixel data would be blended, for example, when the
new pixel data 1s generated from a semi-transparent polygon
or from a polygon that contributes to only part of the pixel.
In either case, it the pixel i1s currently displaying part of a
scene background or part of another polygon, the new pixel
data should be blended with the current pixel data to
cliectively represent the effects of all the contributions to the
pixel.

In conventional computer graphics systems, the pixel data
stored 1n the frame buifer memory represents the pixels that
are currently being displayed on the display screen.
Consequently, conventional pixel blending processes blend
the newly generated pixel data with pixel data read from the
frame buflfer. This blended pixel data 1s then written back to
the frame buffer. As the above description illustrates, a
typical pixel data update process involves both reading pixel
data from and writing pixel data to the frame buffer.

The 1images displayed by the computer graphics systems
discussed above are subject to a display problem known as
aliasing. Aliasing occurs, 1n part, because the displayed
images are represented by a finite number of pixels of a fixed
size. This display problem typically occurs when displaying
polygons that have details that are physically smaller than
the distance between the sample locations on the polygons.
The effect of this aliasing problem typically 1s evidenced by
undesirable visual effects such as the appearance of jageed
lines 1n the displayed image.

In the computer graphics system art, methods used to
reduce aliasing are commonly referred to as anti-aliasing.
One conventional anti-aliasing technique involves taking
multiple samples from a polygon for each pixel. By using
more than one sample per pixel, the characteristics of the
polygon represented by the smaller details will be retrieved
from the polygon by the additional samples. These samples
are then blended together to form a single sample value for
the pixel. Since the blended pixel data 1s influenced by the
smaller details, the aliasing effects will tend to be smoothed

out in the displayed image.

Although the multi-sample method reduces aliasing in the
displayed image and thereby yields a higher quality image,
more operations must be performed to generate the pixel
data for each pixel. For example, when the multi-sampling
method involves simply reading every sample and blending
the samples together, the number of operations increases
linearly with the number of samples. In other words, as
discussed above, a read of and a write to the frame bufler
will be performed for every sample. In addition, the sample
data storage requirements also increase linearly with the
number of samples used. This 1s because the frame buifer
typically contains all the sample values for every pixel in
addition to the single composite pixel value.

The number of operations required to update the pixel
data directly affects the speed with which the computer
ographics system can display images. Thus, when rapidly
changing scenes are being displayed, the processing speed
of the computer graphics system must be proportionally
increased to avoid undesirable slow screen updates.
However, the use of faster processing components typically
increases the cost of the computer graphics system. In
addition, any additional memory requirements will increase
the cost of the system. Consequently, a need exists for a
computer graphics system that does not use excessive
memory and that generates pixel data more efficiently,
particularly when the system uses the multi-sampling tech-
nique.

5,341,447

3
SUMMARY OF THE INVENTION

The present invention reduces the processing required to
update pixel data by reducing the amount of data that needs
to be transferred when pixel data memory 1s updated. This
1s accomplished using pixel sample coverage masks to
reduce the amount of data that is transferred when pixel
sample data 1s written to and read from memory. Additional
improvements 1n system performance are obtained with the
use of pixel data versions and alternate pixel data during the
pixel data update process. In addition, dynamic allocation of
additional storage to certain pixels allows for greater picture
quality without requiring large amounts of additional pixel
MmemOory.

The coverage masks of the present mnvention are used in
computer graphics systems that use the multi-sampling
technique. As discussed above, some computer graphics
systems assign a storage location to each pixel sample. Thus,

cach location holds the data for one pixel sample. In
contrast, the present invention defines data record memory
locations and coverage masks for each pixel. Each data
record memory location can hold the data that corresponds
to one or more of the pixel samples. Each coverage mask, in
turn, 1s associated with one of the data records. These
coverage masks contain a number of mask bits each of
which corresponds to one of the samples for the pixel.

Sample data, such as color and depth information, 1s
assigned to one of the pixel’s samples by writing the color
and depth data to one of the pixel’s data record memory
locations and setting the mask bit that corresponds to that
sample. Using the coverage mask, a given color value can be
assigned to more than one sample 1n a pixel by simply
setting the appropriate mask bits for those samples.
Consequently, the color value does not have to be written for
cach of the samples that are assigned that color.

The use of coverage masks also 1improves the efficiency of
the system when sample data 1s read from the frame buffer.
When the sample data 1s read from the frame buffer to be
blended with newly generated sample data, a given color
only has to be read once for each pixel. The process simply
uses the mask bits to determine which samples 1n the pixel
are assigned that color. In a given computer graphics scene,
the same color 1s often assigned to a large number of pixels.
Consequently, several samples 1n a given pixel will often be
assigned the same color value. Thus, the use of coverage
masks can significantly reduce the amount of data that must
be transferred to and from the pixel data memory during the
sample update process.

In another embodiment, the efficiency of the pixel update
process 1s increased further through the use of pixel data
versions and alternate pixel data. In this embodiment, a
numbered version 1s defined for the pixel data associated
with a given pixel 1n the display and a numbered current
version 1s defined for one or more sets of pixels. The current
version and each pixel version can be set to any one of a
predefined range of version numbers. Moreover, the current
version and each pixel version can be set independently of
cach other.

The alternate pixel data consists of a single set of pixel
data. In other words, the alternate pixel data typically would
contain a predefined color value and a predefined depth
value. In one embodiment, the alternate pixel data 1s set to
represent the background in the displayed image. This
embodiment 1s particularly advantageous when used with
computer graphics drawing processes that always clear an
arca to a background color before adding new objects to the
displayed image. In this case, fewer operations will need to
be performed when adding the new objects.

™

10

15

20

25

30

35

40

45

50

55

60

65

4

The version numbers and alternate pixel data are used
when the pixel data 1s being updated. As discussed above,
updated pixel data 1s typically generated by blending newly
cgenerated pixel data with current pixel data that corresponds
to the 1mage that 1s currently being displayed. In the present
invention, before the pixel data 1s updated, the version
number associated with the current pixel data 1s compared to
the current version number. If the version numbers do not
match, the current pixel data 1s not read. Instead, the
alternate pixel data 1s blended with the newly generated

pixel data.

The above procedure provides more efficient processing,
in a number of ways. For example, multiple pixels can be
changed to a different color 1n a single operation by merely
changing the current version number. In addition, individual
samples will not be read from the pixel data memory when
the version numbers do not match. Consequently, fewer data
transfers from the pixel data memory will be performed.
Furthermore, 1f the alternate pixel data 1s stored 1n a pro-
cessor register, the data can be accessed more efficiently than
when the data 1s stored 1n an external memory such as a
frame bufler

The depth information referred to above 1s typically
stored 1n one of two ways. In one embodiment, the actual
depth value of each sample 1s stored for each sample. In the
other embodiment, a reference value and associated geo-
metric information 1s stored for each pixel and this data is
used to calculate the actual depth value for each sample.
Moreover, since color data and depth data are associated
with each polygon, the same coverage mask that 1s used for
the color data can be used for the depth data.

In another embodiment, some of the pixel data 1s stored
in a dynamically allocated memory. In this embodiment,
memory 1s allocated to a given pixel depending on the
storage needed for that pixel. For example, a pixel that has
a large number different sample values would be allocated
more memory than a pixel in which every sample has the
same value. Consequently, high quality 1mages can be
ogenerated without dedicating excessive memory where 1t 1s
not needed.

As the above discussion illustrates, significant improve-
ment 1n system performance can be achieved using a com-
puter graphics system constructed according to the present
invention. For example, the drawing operation can skip
reading the samples when the version numbers do not match.
If, however, the versions do match, since each i1ndividual
color and depth record only needs to be read once, a value
might not have to be read for every pixel sample location.
Furthermore, after the samples are blended, since a given
color and depth record 1s only written once to each pixel, a
value might not have to be written at every pixel sample
location. In sum, a computer graphics system constructed 1n
accordance with the present invention can provide improved
pixel update performance while efficiently using pixel data
memory.

BRIEF DESCRIPITION OF THE DRAWINGS

In the drawings which constitute a part of this
specification, an exemplary embodiment exhibiting various
objectives and features hercof 1s set forth, specifically:

FIG. 1 1s a block diagram illustrating one embodiment of
a system constructed 1n accordance with the present inven-
tion;

FIG. 2 1s an magnified view of a computer screen showing
a displayed polygon and pixel samples;

FIG. 3 1s a block diagram showing selected components
depicted 1n FIG. 1;

™

5,341,447

S

FIG. 4 1s an exemplary embodiment of the frame builer
depicted 1in FIGS. 1 and 3;

FIGS. 5A and 5B are a flow diagram illustrating an
operating process for the system of FIG. 1;

FIG. 6 1s a flow diagram illustrating a portion of the
operating process of FIGS. 5A and 5B; and

FIG. 7 1s a flow diagram 1llustrating an alternative process
for the process of FIG. 6.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

As required, a detailed illustrative embodiment of the
present mvention 1s disclosed herein. However, computer
graphics systems, component operating structures, polygon
rendering techniques, pixel processing techniques, pixel
data memories, sampling techniques and blending tech-
niques as well as other elements utilized in accordance with
the present invention may be embodied 1n a wide variety of
forms, some of which may be quite different from those of
the disclosed embodiment. Consequently, the speciiic struc-
tural and functional details disclosed herein are merely
representative; yet in that regard, they are deemed to atford
the best embodiment for purposes of disclosure and to
provide a basis for the claims herein which define the scope
of the present invention.

Referring mnitially to FIG. 1, one embodiment of a com-
puter graphics system constructed in accordance with the
present mvention 1s shown. As discussed in detail below, a
rendering processor 20 (top center) generates pixel data and
coverage masks that are blended with other pixel data by a
pixel processor 22. The pixel processor 22 writes the
blended data to a frame buffer 24 after which the updated
pixel data 1s read out of the frame buffer 24 and sent to a
display device 26.

According to the present invention, at least one data
record and coverage mask 1s defined for each of the display
device’s pixels (not shown). As FIG. 1 shows, the data
record memory locations 25 and coverage masks 62 are
located in the frame builer 24 1n the disclosed embodiment.
The data records 25 are used to store the pixel sample data
for the associated pixel. Each of the data records, in turn, has
an assoclated coverage mask 62. The coverage masks 62
contain a number of mask bits (not shown) each of which
corresponds to one of the pixel’s samples.

The pixel processor 22 updates the pixel data for a given
pixel by writing the pixel sample data to the data records 25
and setting the appropriate coverage mask bits. In the
embodiment of FIG. 1, a unique sample selector 43 selects
unique sample data values from the pixel sample data so that
only one data record 25 for a given pixel will contain each
unique value. If the pixel sample data consists of more than
one unique value, the pixel processor writes each unique
value to a separate data record 25. For each data record, a
coverage mask control unit 41 sets the mask bits 1n the
corresponding coverage mask 62. Thus, if a given sample
value corresponds to more than one pixel sample 1in a given
pixel, all of the mask bits associated with those pixel
samples are set 1n the corresponding coverage mask.
Consequently, since a given pixel will often have several
samples assigned the same value, fewer frame buifer write
operations will be performed when updating the pixel data.

In alternative embodiment, the unique sample data selec-
tor 43 is replaced with a polygon comparator 55 (FIG. 3,
bottom right). The polygon comparator 43 compares the
polygons that are associated with the pixel data generated by
the rendering processor 20. When the polygon comparator

10

15

20

25

30

35

40

45

50

55

60

65

6

55 receives pixel data that 1s associated with a different
polygon than the previously received pixel data, the polygon
comparator 55 assigns the newly generated pixel data to
different data records 25 1 the frame buffer. This operation
improves the efficiency of the system since different poly-
oons will typically define different colors 1n the displayed
image. Consequently, the pixel data associated with those
polygons will contain different color values. Thus, this
embodiment provides an efficient method of assigning the
pixel samples to the data records.

In either embodiment, when the pixel processor retrieves
pixel data from the frame bufler 24, the pixel processor only
reads a data record 25 if the coverage mask 62 associated
with that data record has mask bits that are set. Thus, fewer
frame buffer read operations will be performed when read-
ing out the pixel data.

In addition, to further reduce the quantity of data that must
be read from the frame buftfer 24 when the pixel data 1s
updated, a series of version numbers are used to select one
of two sources of pixel data that will be blended with the
pixel data generated by the rendering processor 20. The
pixel processor 22 retrieves a pixel version 28 from the
frame buffer 24 and a current version 30 stored 1n a memory
32. A version compare component 34 then compares the two
version numbers and sends the results to a data selector
component 36. I the version numbers do not match, the data
selector 36 selects alternate pixel data 38 which 1s read from
the memory 32. If the version numbers match, the data
selector 36 sclects current pixel data that 1s stored in the

frame bufter 24.

After the selected data 1s read, 1t 1s blended with the newly
ogenerated pixel data and written to the frame buffer 24. In
the disclosed embodiment, a depth update component 40
blends the depth data of the selected pixel data with the
depth data of the pixel data generated by the rendering
processor 20. Stmilarly, a color update component 42 blends
the color data of the selected pixel data with the color data
of the pixel data generated by the rendering processor 20. In
addition, the coverage mask control unit 41 calculates
updated coverage masks for the blended pixel data and
writes the coverage masks to the frame bufifer 24 along with
the pixel data.

As FIG. 1 shows, 1n the disclosed embodiment the frame
buffer contains dynamically allocated memory 27. This
allows memory to be allocated to the frame buifer as needed
which reduces the amount of statically allocated memory
that must be dedicated to the frame buffer. In sum, the
disclosed embodiment provides a more efficient computer
oraphics system because less data needs to be transferred
between the pixel processor 22 and the frame buffer 24 and
because less frame bufler storage 1s used.

In order to more fully appreciate the structure and opera-
tion of the present invention, the disclosed embodiment will
be discussed 1n more detail. As shown 1n FIG. 1, the major
components of the disclosed embodiment 1include an object
memory 44, a polygon rendering processor 20, a pixel
processor 22, a frame buifer 24 and a display device 26.

The object memory 44 stores geometric polygon defini-
tions (in this case polygons) representative of an image that
will be displayed. As 1n conventional computer graphics
systems, an image to be displayed on a screen S (FIG. 2) is
initially defined by a series of polygons 46 1n a model space
(not shown). These polygons are, in turn, represented by a
number of polygon definitions that are stored in the object
memory 44 (FIG. 1) where they can be accessed by the
rendering processor 20.

5,341,447

7

The polygon rendering processor 20 processes the poly-
ogon definitions stored 1 object memory 44 and generates
pixel data that 1s sent to the pixel processor 22 for further
processing. In the disclosed embodiment, the pixel data 1s
generated using standard scan conversion techniques.
Accordingly, each polygon definition 1s processed to deter-
mine which pixels 48 (FIG. 2) in the screen S are influenced
by the polygon 46 and to determine the effect of the polygon
46 on those pixels 48.

By way of explanation, FIG. 2 shows a polygon 46 (a
triangle) defined in a three dimensional model space (not
shown) behind the screen S. The polygon 46 will be dis-
played on the display screen S by a portion of the pixels 48
(illustrated as squares) in the display screen S.
Consequently, for each of the pixels 48 that will display part
of the polygon 46, the scan conversion process generates
pixel data that represents the color, opacity, coverage and
depth of the section of the polygon 46 that corresponds to
that particular pixel.

In the disclosed embodiment, because multi-sampling,
anti-aliasing 1s used, the scan conversion process will gen-
erate pixel data for each pixel sample. For example, as
shown 1n FIG. 2, the pixel 48A 1s subdivided into four areas
(illustrated as equal sized squares) called subpixels or
samples 52. Thus, during the scan conversion process, four
depth values and four color values will be generated for each
pixel mstead of the one depth value and one color value that
would have been generated if multi-sample anti-aliasing
were not used.

Referring now to FIG. 3, the frame buifer 24 of FIG. 1

will be considered 1n more detail. The frame bufier 24 has
been expanded to show the basic data organization within
the frame buifer 24. The frame buffer 24 1 FIG. 3 1s shown
organized 1n rows and columns to 1llustrate the relationship
between each pixel and 1ts associated pixel data. In practice,
however, this format does not necessarily represent the
actual physical organization of data in frame buffer memory.
The row associated with the “PIXEL (1)” designation (upper
left) depicts the basic pixel data associated with a given
pixel. This pixel data format applies to every pixel in the
frame buifer 24 but has been omitted from the other pixel
rows 1n FIG. 3 to simplify the figure. The number of pixel
entries 1n the frame buffer 24 1s determined by the number
of pixels in the display screen. In the embodiment of FIG. 3,
the last pixel entry is designated by the “PIXEL (N)” row

where “N” represents the number of pixels in the display
screen.

The pixel data shown 1n FIG. 3 includes color data 54 and
depth data 56. The color and depth data blocks represent the
pixel color and pixel depth information that was written to
the frame butfer 24 by the pixel processor 22 during the last
pixel update operation. As discussed above, the color and
depth data represent the color and depth of the portion of the
polygon 46 (FIG. 2) that corresponds to each pixel.

In practice, the color and depth data shown i FIG. 3
contain several data record locations (not shown). This
construction 1s more clearly depicted in FIG. 4 which
illustrates a representative embodiment of a frame buflfer 24
in a system that uses four data records for each pixel. As
FIG. 4 shows, each set of pixel data can contain up to four
depth records 38 and four color records 60.

In this embodiment, the memory for the data records
would typically be both statically and dynamically allocated.
For example, the data storage for the four records would
typically be statically allocated. As storage for more records
1s needed, 1t can be allocated from a pool of shared memory.

10

15

20

25

30

35

40

45

50

55

60

65

3

This allows for an arbitrary large number of data records to
be stored for each pixel. The standard set of pixel data would
also contain a memory pointer 61 to this additional storage.

Referring again to FIG. 3, the data for each pixel has a
depth/common version 28 A associated with 1ts depth data 56
and a color version 28B associated with 1ts color data 54.
Version numbers are assigned by the pixel processor 22
(FIG. 1) to the depth and color versions when the pixel data
1s written to the frame buffer 24. The number of version
numbers that can be assigned to a color or depth version is
limited by the size of the memory location that 1s assigned
to the color and depth versions.

The versions are used during the pixel processor’s 22
blending operation to determine whether the color and depth
data needs to be read from the frame buffer 24. In one
embodiment of the present invention, one number 1s desig-
nated a “never valid” version number. When a depth/
common version 28A or a color version 28B 1s assigned a
“never valid” version number, the pixel processor 22 will not
read the associated data from the frame buifer 24.

In another embodiment, only one version 1s used for a
orven pixel. In this embodiment, only one version—
typically the depth/common version 28 A—is stored with the
pixel data and this version number 1s used for both the depth
data and the color data. Thus, the pixel processor 22 uses the
same version to determine whether the depth or color data
needs to be read from the frame buffer 24.

The pixel data in the frame buifer 24 1n FIG. 3 includes
coverage masks 62 that are associated with the pixel’s data
records. As shown 1n FIG. 4, an embodiment that uses four
data records per pixel will have four coverage masks 62. The
coverage masks 62 contain a number of mask bits each of
which corresponds to one of the samples for the pixel. Thus,

each mask will contain four mask bits—one for each of the
samples defined for the pixel (FIG. 2).

In one embodiment, separate coverage masks are assocl-
ated 25 with the depth records 58. Each depth record has an
assoclated coverage mask and each coverage mask has a
number of mask bits each of which corresponds to one of the
depth samples. In practice, it may be preferred to store the
actual depth value at each sample rather than storing one
depth value, the depth value geometry and a coverage mask
and recalculating the depth value at each sample whenever
it 1s needed.

For the purposes of illustration, FIG. 4 shows one
embodiment that can be used to implement a frame buifer 24
in a four sample per pixel multi-sampling architecture. In the
embodiment of FIG. 4, the frame butfer 24 1s implemented
using a dynamic RAM that 1s optimized to read and write
bursts of eight 9-bits “chunks” of data located 1n sequential
locations 1n memory. These groups of eight sequential
memory locations are called “octbytes.” Thus, the data in the
frame buffer 24 1s organized along “octbyte” boundaries.

The first of these octbytes—the control octbyte
64—typically contains the depth/common version 28A dis-
cussed above along with a pixel attribute index, clip planes
and other pixel data (not shown). As discussed above, one
depth/common version 28A 1s assoclated with each pixel.

The 1image octbytes 66, contain the color version 28B
discussed above and resolved pixel data. Again, one color
version 28B 1s associated with each pixel. The resolved pixel
data 1s designated “A,” “R,” “G,” and “B” which represents
the alpha (opacity), red, green and blue color components of
the pixel, respectively. The resolved pixel data 1s formed by
blending each of the respective color components of the
pixel’s color samples to form one value for each color

5,341,447

9

component. These blended color values are stored here
before they are sent to the display device 26.

The depth record octbytes 68 contain the depth record
data locations 38 and the coverage masks 62. As discussed
above, up to four depth records 58 and four coverage masks
62 can be written for each pixel.

The color record octbytes 70 contain the color record data
locations 60 and memory pointers 61 to additional storage.
Up to four color records can be written for each pixel and,
as discussed above, each color record contains a red, green,
blue and alpha color component. Additional storage (not
shown) could be allocated in each pixel location of frame
buffer memory, or additional storage could be allocated for
those pixels that needed 1t from a pool of shared memory
(not shown).

The actual organization and physical implementation of a
frame buffer 24 constructed 1n accordance with the present
invention will depend on the a variety of factors. For
example, depending on the selected architecture, different
components of the pixel data discussed above might be
stored 1n the frame bufler 24 or the pixel data may be stored
in a different order from one implementation to another.

Referring again to FIG. 3, the pixel processor 22 of FIG.
1 will be considered 1n more detail. Specifically, several of
the pixel data blending components of the pixel processor 22
have been 1solated to more effectively illustrate their inter-
action with each other.

The current versions 30 that are depicted in the memory
32 of FIG. 1 are shown separated 1nto their respective color
and depth components 1n FIG. 3. The current color version
30B and current depth/common version 30A contain the
predefined current version for the color and depth compo-
nents of the pixel data, respectively. The version 1s selected
based on the current operation being performed by the pixel
processor 22 and can be changed at any time during the
operation of the system. However, the number of version
numbers that may be defined in a given system 1s limited by
size of the memory location designated to hold the numbers.
Several different current version numbers could be used for
different areas of the screen. The correct current version
number for the area of the screen being updated would need
to be stored 1n the current version memory 30.

The alternate pixel data 38 that 1s depicted in the memory
32 of FIG. 1 1s shown separated into 1ts respective color and
depth components in FIG. 3. The alternate color data 38B
and the alternate depth data 38A contain the predefined
alternate data for the color and depth components of the
pixel data, respectively.

The format of the alternate data depends on the format of
the pixel data that 1s generated by the rendering processor
20. For example, 1f the depth samples are 32 bits and the
color samples are 16 bits for each color component, the
alternate data would contain 32 bits of depth data 56 (FIG.
3) and 64 bits (16 bits each for Red, Green, Blue and Alpha)
of color data 54.

The actual data that i1s written to the alternate data 1s
selected according to the needs of the application and can be
changed as needed. In a typical embodiment, the alternate
data 1s written to a value that represents the color of the
background 1n the displayed scene.

The versions and alternate data depicted in FIG. 3 are
used during the pixel processor’s pixel update operation. As
new pixel data 1s generated for a given pixel by the rendering
processor 20 (FIG. 1), the pixel processor 22 reads the
depth/common version 28A that corresponds to that pixel
from the frame buffer 24. As represented by a version

10

15

20

25

30

35

40

45

50

55

60

65

10

compare component 34A, the depth/common version 28A 1s
compared with the current depth/common version 30A.
Then, the version compare component 34A sends a signal to
a data selector 36A based on the results of the compare
operation.

In response to the signal from the version compare
component 34A, the data selector 36A selects either the
alternate depth data 38A or the depth data 56 that corre-
sponds to that pixel from the frame buffer 24. If the
compared version numbers were equal, the depth data 56
from the frame buffer 24 1s selected. Otherwise, the alternate

depth data 38A 1s selected. In addition, if the depth/common
version 28A 1s set to “never valid,” the alternate depth data
38A would be selected. The pixel processor 22 then reads the
selected data which 1s later blended with the pixel data
generated by the rendering processor 20 (FIG. 1).

Similar version compare and data selector components
and operations as discussed above are used with the color
components 1n FIG. 3 as well. Thus, as represented by a
version compare component 34B, the color version 28B 1s
compared with the current color version 30B. The version
compare component 34B then sends a signal to a data
selector 36B that selects either the color data 54 from the
frame buffer 24 or the alternate color data 38B.

Referring again to the depth data process, using known
techniques, a depth update component 40 “blends” the depth
data that was selected by the data selector 36 A with the
depth data from the newly generated pixel data (not shown).
This 1nvolves calculating the new depth for each depth
sample 1n the newly generated pixel data using base depth
and depth geometric information. The new depth 1s then
compared with the depth of the selected depth data and an
updated depth value 1s calculated from the new and selected
depth data. For example, if the selected data and the newly
cenerated data represent interpenetrating polygons, the
updated depth value may consist of depth values from both
the selected and the newly generated data. As a result, only
those depth samples from the newly generated data that will
actually affect the pixel will be updated. In general, the depth
blend consists of choosing either the data previously
selected above or the newly generated depth data. These two
blends are referred to as “Keep” and “Replace,” respec-
fively. This and other methods of blending depth values are
well known 1n the art of computer graphics systems.

In a similar fashion, again using known techniques, a
color update data component 42 “blends” the color samples
of the selected pixel data with the color samples of the newly
cgenerated pixel data. Depending on the architecture of the
computer graphics system being used and the particular
pixel data involved 1n the blending operation, the blending
operation may involve simply keeping some of the selected
color samples or replacing some of the selected color
samples with some of the newly generated color samples.
Alternatively, the blending operation could involve blending
the samples together to form a combined color value. In any
event, the result 1s a single set of color sample values. Again,
the blending of pixel data color samples 1s well known 1n the
art of computer graphics systems.

Once the updated color samples have been generated, the
coverage mask control unit 41 updates the coverage mask
for each of the data records. This involves setting the bits in
the coverage mask that correspond to the pixel samples 52
(FIG. 2) that contain this particular color and depth data. For
example, referring to FIG. 2, 1f the same color and depth data
1s to be written to the top two samples 52 1n the pixel, the
two bits that correspond to those two samples 1n that data
record’s coverage mask would be set.

5,341,447

11

If a new color value 1s created by mixing two existing,
color values together at one or more samples, a new data
record would be created for that color value, the mask bits
in the new data record corresponding to the samples would
be set, and those same bits would be cleared 1n the old color
records that were mixed together.

Next, the color component values for the resolved pixel
data are calculated. This involves blending the color com-
ponents 1n the color samples. As an example, referring to
FIG. 4, the red component for the resolved pixel could be
calculated by blending the data designated “R(1),” “R(2),”
“R(3)” and “R(4).” When each of the color components has
been blended, the resolved pixel data contains a single value
for each of 1ts red, green, blue and alpha color components.

After the samples and resolved pixel data are calculated,
the pixel processor 22 writes all the data to the frame buifer
24. Thus, using FIG. 4 as an example, the new color records
are written to the color record octbytes 70, the new depth
records are written to the depth record octbytes 68, the new
coverage masks are written to the masks in the depth record
octbytes 68 and the resolved pixel data 1s written to the
image octbytes 66. In addition, if the pixel’s version num-
bers need to be updated, this information would be written
to the appropriate location in the frame bufier 24 as well.

The color samples are written to the frame buffer 24 by
writing one 1nstance of the color sample to one of the pixel’s
color data record locations 60 and by writing the coverage
mask that corresponds to that color sample. Since each color
1s only written once for a given pixel, fewer write operations
are required to update the pixel.

In addition, by clearing the mask bits of the color records
that do not contribute to the pixel and by making these
masks the last of the data record locations, the records can
be read back 1n an efficient manner as well. In this case, the
mask bits would be read before the color records were read

and only those color records that have bits set 1n their masks
would be read.

After the resolved pixel data has been written to the frame
buffer 24, the pixel data is sent to a display device 26 (FIG.
1). The resolved pixel data is used to generate an image on
a display screen using conventional computer graphics tech-
niques. Accordingly, the resolved pixel data 1s read out of the
frame buffer 24 and sent to the display device 26. The
display device 26 then converts the pixel data into electrical
signals that are used to 1lluminate the pixels on the display
screen. The combined effect of the 1lluminated pixels then
forms the desired 1image on the screen.

In view of the above description of the disclosed
embodiment, it 1s apparent that a computer graphics system
constructed according to the present invention will effec-
fively provide improved pixel update performance. The use
of coverage masks 62 reduces the amount of data that must
be written to and read from the frame bufler 24.
Consequently, fewer operations will need to be performed
during the pixel update process which will improve the
overall performance of the computer graphics system.

In addition, the use of pixel data versions provides an
ciiicient way to change the pixel data for a given pixel.
According to the present invention, the alternate pixel data
38 (FIG. 1) will be read instead of the current pixel data in
the frame buifer 24 whenever the current version 30 and the
pixel’s depth or color version do not match or whenever the
pixel’s depth or color version is set to “never valid.” Thus,
the alternate data can be selected by changing the current
version 30, by changing the pixel’s depth or color version or
by setting the pixel’s depth or color version to “never valid.”

10

15

20

25

30

35

40

45

50

55

60

65

12

In addition, by setting the alternate pixel data 38 to a value
that represents the color of the background of the displayed
image, improved performance can be achieved in computer
ographics drawing operations. Most drawing operations clear
an area to a background color before adding other objects to
that area 1n the displayed image. However, 1f the pixel
versions of the present invention are used, this process can
be done more efliciently since the current pixel data can be
effectively changed to a background color by appropriately
setting the versions.

Moreover, the present invention can be used to cause
multiple pixels to appear to contain a new value merely by
changing the current version 30. This feature 1s particularly
usetul for clear operations where the pixels are to be set to
the color of the background 1n the displayed scene. In this
case, the alternate pixel data 38 1s set to a number that
represents the backeground color and the current version 30
1s changed to a number that 1s different than the version of
the pixels being cleared.

The disclosed embodiment would generally be 1mple-
mented using standard computer graphics system compo-
nents. Thus, the object memory 44 and the memory associ-
ated with the processors would be 1implemented using a
conventional RAM data memory. However, these compo-
nents may be implemented using any suitable data storage
method.

The rendering and pixel processors would be 1mple-
mented using one or more conventional graphics processors.
The details of polygon rendering and pixel processing and
the corresponding structures used to 1mplement this pro-
cesses are well known 1n the computer graphics art. Several
of these techniques and structures are discussed at length in
the above referenced books Computer Graphics.Principles
and Practice, Foley, van Dam, Feiner & Hughes, and
Principles of Interactive Computer Graphics, Newman and
Sproull.

The version compare, data selector, coverage mask
generator, unique sample data selector and polygon com-
parator operations described above typically would be
implemented by the pixel processor 22. However, in some
embodiments, these functions may be implemented using
other functionally equivalent components including, but not
limited to, discrete comparators, data selectors and logic
devices.

As noted above, the memory 32 (FIG. 1) associated with
the pixel processor 22 1s implemented using RAM. Thus, the
current versions 30 would be stored in RAM. In contrast, in
the disclosed embodiment, the alternate pixel data 38 1is
stored 1n one or more of the pixel processor’s internal
registers. This implementation allows the background data
to be retrieved quicker than when 1t its stored in an external
memory. Nevertheless, the alternate pixel data 38 could be
stored 1n an external RAM or any compatible form of data
storage.

As discussed earlier, the frame buffer 24 can be imple-
mented using octbyte RAMs. However, the frame butfer 24
may also be implemented using a wide variety of data
storage devices including, but not limited to, conventional
RAM devices. In either case, the memory 1s typically
implemented using a some form of dynamic memory allo-
cation. Various dynamic memory allocation techniques are
also well known 1n the art.

Finally, the display device 26 can be implemented using,
any pixel-based display. As noted earlier, techniques for
scanning frame buffers to drive displays pixel-by-pixel are
well known 1n the art.

5,341,447

13

With the structure and function of the components of the
present invention in mind, the basic operation of the pixel
update process performed by the embodiment of FIG. 1 1s
treated 1 FIGS. 5A and 5B. The update process starts at a
block 100 (upper left). At this point in the overall pixel
generation and update process, the rendering processor 20
(FIG. 1) has already generated new pixel data, the current
versions 30 and alternate pixel data 38 have been initialized
and pixel data is in the frame buffer 24 (FIG. 4) from a prior
update process.

As represented by a block 102, the pixel processor 22
(FIG. 1) selects which pixel 1s to be updated. The selected
pixel will correspond to one set of pixel data that was
ogenerated by the rendering processor 20 and sent to the pixel
processor 22.

At a block 104 the pixel processor 22 reads the control
octbyte 64 (FIG. 4) in the frame buffer 24 that corresponds
to the pixel being updated. As discussed earlier, the control
octbyte 64 typically contains clipping information (not
shown) and the pixel’s depth/common version 28A.

At a block 106 the clipping information 1s retrieved from
the control octbyte 64. This information 1s used to determine
whether the pixel being processed should be written to the

frame buffer 24.

If the pixel should not be written to the frame buifer 24,
the process terminates at a block 108 and the update process
starts over with a different pixel at the block 102. If the pixel
should be written, the process proceeds to a block 110.

After the depth/common version 28A 1s retrieved from the
control octbyte 64 at block 110, the pixel processor 22 uses
the depth/common version 28A to determine whether the
depth records 58 (FIG. 4) and color records 60 in the frame
buifer 24 need to be read, as represented by a block 112. The
steps mvolved 1n this procedure depend, 1n part, on whether
the particular embodiment uses a separate depth version and
color version for each pixel or whether 1t uses a depth/
common version.

If the embodiment only uses the depth/common version
28A, the process represented by block 112 1s set forth in
FIG. 6. Referring to FIG. 6, at a block 180 the pixel
processor 22 (FIG. 1) determines whether the depth/
common version 28A 1s valid. As discussed 1n conjunction
with FIG. 3, this involves, first, determining whether the
pixel’s depth/common version 28A 1s set to “never valid”
and, second, comparing the pixel’s depth/common version
28A with the current depth/common version 30A. If the
pixel’s depth/common version 28A 1s not set to “never
valid” and if the pixel’s depth/common version 28A 1s equal
to the current depth/common version 30A, the depth/
common version 28A 1s valid. Otherwise the depth/common
version 28A 1s not valid.

If the depth/common version 28A 1s valid, the version
compare component 34A (FIG. 3) sends the appropriate

signals to the data selectors 36 which, as represented by a
block 182 (FIG. 6), select the depth record octbytes 68 and

color record octbytes 70 (FIG. 4) in the frame buffer 24 that
correspond to the pixel being updated. As represented by
blocks 184 and 186, the pixel processor retrieves the depth
records 58 (FIG. 4) and the coverage masks 62 from the
depth sample octbytes 68 and stores them for later use.

If the depth/common version 28 A was not valid at block
180, mstead of proceeding to block 182, the process would

proceed to a block 188. As represented by block 188, the
data selectors 36 (FIG. 3) select the alternate depth data 38A
whereupon the pixel processor retrieves the data and stores
it for later use.

10

15

20

25

30

35

40

45

50

55

60

65

14

At this point 1 the process of the embodiment that uses
the depth/common version 28A (FIG. 4), the depth data 56
that will be blended with the newly generated pixel data has
been retrieved by the pixel processor 22. In addition, the
coverage masks 62 for the data records have also been
retrieved.

If the embodiment pertaining to FIG. 6 1s not used and,
instead, the embodiment uses both depth versions and color
versions, the process represented by block 112 (FIG. 5A) 1s
set forth 1n FIG. 7. Referring to FIG. 7, as represented by a
block 200, the pixel processor reads the 1mage octbytes 66
(FIG. 4) in the frame buffer 24 that correspond to the pixel
being updated. Then, as represented by a block 202, the
color version 28B (FIG. 4) is retrieved from the image
octbytes 66.

At a block 204 the pixel processor determines whether the
depth version 28 A 1s valid. This involves the same procedure

performed 1n conjunction with FIG. 6, blocks 180, 182, 184
and 188. Thus, as represented by a block 206, if the depth
version 28A 1s valid, the pixel processor reads the depth
record octbytes 68 (FIG. 4) and, as represented by a block
208, the pixel processor 22 retrieves the depth records 58
from the depth record octbytes 68 and stores them for later
use.

This part of the process then proceeds to a block 212 and
the coverage masks 62 are retrieved from the depth record
octbytes 68 read at block 206. This part of the process then

terminates.

If the depth version 28 A was not valid at block 204, the
process would proceed to a block 214 and, as described 1n
FIG. 6, block 188, the pixel processor 22 retrieves the
alternate depth data 38 A and stores 1t for later use.

Then, at a block 216 the pixel processor 22 determines
whether the color version 28B 1s valid following the same
procedure described for block 210. It the color version 28B
1s not valid, this part of the process terminates. If the color
version 28B was valid at block 216, the pixel processor 22
reads the depth record octbytes 68 in the same manner as
described 1n block 206 and the process proceeds to block
212 where the color mask 1s saved 1 a similar manner as
discussed above. Thus, if either the depth version 28 A or the
color version 28B 1s valid, the coverage mask gets saved at

block 212.

At this point 1n the process of the embodiment that uses
the color version 28B (FIG. 4), the depth data 56 that will be
blended with the newly generated pixel data and the asso-
clated coverage masks have has been retrieved by the pixel
processor 22. In addition, if the color samples are valid, the
coverage masks 62 for the data records have also been
retrieved.

Referring again to FIGURE SA, the process proceeds to
a block 114 where the pixel processor 22 (FIG. 1) gets the
depth samples from the newly generated pixel data. As
represented by a block 116, these depth samples are com-
pared with the depth samples that were retrieved by the
process as described 1 conjunction with block 112.

Based on the results of the comparison, a new depth value
1s calculated for the samples at a block 122. The procedure
for updating the depth value was discussed earlier 1n con-
junction with the depth update component 40 in FIG. 3.

At block 124, the pixel processor 22 determines whether
the color records 60 1n the frame builer 24 should be read.
This determination 1s based, 1n part, on which embodiment
was used at block 112. If the embodiment that uses the
depth/common version 28A 1s used, the color records will
only be read if the depth/common version 28A (FIG. 3) was

5,341,447

15

not set to “never valid” and 1f the depth/common version
28A was equal to the current depth/common version 30A.

This procedure 1s the same as described in conjunction with
FIG. 6.

On the other hand, if the color version 28B 1s also used,
the color records will only be read 1if the color version 28B
(FIG. 3) was not set to “never valid” and if the color version
28B was equal to the current color version 30B. As dis-
cussed 1 conjunction with FIG. 3, the version compare
component 34B sends the appropriate signal to the data
selector 36B which then selects either the alternate color
data 38B or the color records 60 in the frame buifer 24.

As represented by a block 126, if data selector 36B (FIG.

3) selects the alternate color data 38B, the pixel processor 22
reads the alternate color data 38B. The process then pro-

ceeds to a block 134.

On the other hand, 1f the data selector 36B selects the
frame buffer data, the pixel processor 22 must read the pixel
data from the frame buffer 24. In the disclosed embodiment,

the coverage masks 62 retrieved at block 112 are sequen-
tially checked to see whether any of their mask bits are set.
By checking the mask baits first, the disclosed embodiment
provides an efficient method of retrieving data from the
frame buffer 24. For example, if no mask bits are set, the
corresponding color record does not have to be read since it
does not contribute to the displayed pixel. In addition, if the
records that contribute to the displayed pixel are always
placed in the top record locations (i.€., the record locations
with the lowest numbers in FIG. 4), the pixel processor 22
can stop reading the records once a mask with no bits set 1s
encountered.

Thus, at a block 128 the coverage masks 62 retrieved at
block 112 are checked to see if any mask bits are set. At a
block 130, 1f no mask bits are set, no more records contribute
to the displayed pixel and, as a result, no more color records
need to be read. Consequently, the process proceeds to block

134.

However, 1f any mask bits are set, the color records that
correspond to the set mask bits 1n the coverage mask do
contribute to the displayed pixel. Therefore, at a block 132,
the color record octbytes 70 1n the frame butfer 24 are read
and the color records with mask bits that are set are
retrieved.

The process then continues through the loop consisting of
blocks 128, 130 and 132. The process continues checking for
set mask bits and reading the corresponding color records
until a mask without any bits set 1s found or until the all of
the coverage masks 62 have been checked. After all the color
records that are to be read have been read, the process

proceeds to block 134.

At block 134, the pixel processor 22 (FIG. 1) gets the
color samples from the newly generated pixel data. A new
color value 1s calculated for the color samples and the
sample components are blended to form the resolved pixel
at a block 142. Then, at a block 143, the coverage masks 62
for each data record are calculated. The procedure for
updating these color components was discussed earlier in
conjunction with the color update component 42 1n FIG. 3.

At this point 1n the pixel update process, the updated color
records, the updated depth records, the coverage masks and
the resolved pixel are ready to be written to the frame buifer.
As represented by a block 144, 1f a new depth version 1s to
be assigned to the pixel, the depth/common version 28A 1s
written to the control octbyte 64 in the frame buffer 24 (FIG.
4).

As represented by blocks 146 and 148, the depth records
that have changed (or been replaced) need to be written to

10

15

20

25

30

35

40

45

50

55

60

65

16

the frame buifer 24. In contrast, the depth records that have
not changed (or have been kept) do not need to be written to
the frame bulfer 24. Thus, as represented by a block 150, the
depth records selected at block 148 and the coverage masks

calculated at block 143 are written to the depth record
octbytes 68 (FIG. 4).

As represented by blocks 152 and 154, the color records
that have changed (or been replaced) are written to the color

record octbytes 70 (FIG. 4). The color records that have not
changed (or have been kept) do not need to be written to the

frame bufter 24.

Next, the resolved pixel data generated at block 142 and
the color version 28B—if the color version 28B 1s used and

needs to be changed—are written to the 1mage octbytes 66
(Block 156).

The pixel processor 22 then checks whether any more
newly generated pixels need to be updated at a block 158. It
more pixels are to be updated the process returns to block
102 where the above process 1s repeated for the next pixel.

If no more pixels are to be updated, the process terminates

at a block 160.

As the above process description illustrates, the pixel
update process of the disclosed embodiment incorporates
several shortcuts that reduce the amount of time needed to
complete the update process. For example, if the clipping
test fails, the process 1s terminated. In addition, if the depth
records are not valid, the pixel processor 22 can skip ahead
to reading the color records. Furthermore, 1f the color
records are not valid, the pixel processor 22 can skip ahead
to writing the new depth records. If, however, some of the
color records are valid, 1f these color records apply to more
than one pixel sample location and all of the different color
records have been read, the pixel processor 22 can skip
ahead to writing the depth records. When writing the depth
records, 1f the depth records have not changed, the pixel
processor 22 does not have to write the depth records and
can skip ahead to writing the color records. If the color
records have not changed, the pixel processor 22 does not
have to write the color records and the update process
terminates. If the color records have changed but some of the
color records apply to more than one pixel sample 52 (FIG.
2), the pixel processor 22 does not have to write every pixel
sample location. Instead, each distinct color sample value 1s
written to one color record per pixel after which the pixel
processor 22 can skip ahead to writing the resolved pixel to
the 1mage octbytes 66.

From the above, 1t 1s apparent that the system disclosed
herein utilizing pixel versions, alternate pixel data and
coverage masks offers an improved system for updating
pixel data. Recognizing that the system can be implemented
with standard graphics components, it should be noted that
considerable variation may occur in the specific components
and operating format. The scope of the present invention
should be determined with a reference to the claims set forth
below.

What 1s claimed is:

1. A computer graphics system for displaying dynamic
images on a display device using multiple sample pixel data
representative of said dynamic images, comprising:

a processor to generate multiple samples of data per pixel;

a coverage mask control unit to manage coverage masks
assoclated with said multiple samples of data per pixel;

a data memory for storing said coverage masks and said
multiple samples of data per pixel;

a display device for displaying dynamic images repre-
sented by said multiple samples of data per pixel stored
in said memory.

5,341,447

17

2. A computer graphics system according to claim 1
wherein said coverage masks include a plurality of mask bits
and each of said mask bits 1s associated with a pixel data
sample.

3. A computer graphics system according to claim 1
wherein said data memory comprises a frame bufler.

4. A computer graphics system according to claim 3
wherein said frame buffer also contains dynamically allo-
cated memory.

5. A computer graphics system according to claim 1
further comprising a unique sample data selector to select
unique samples from said multiple sample pixel data.

6. A computer graphics system according to claim 5
wherein said unique samples are stored m distinct data
record locations 1n said data memory.

7. A computer graphics system according to claim 1
further comprising a polygon comparator to compare poly-
oons assoclated with said multiple sample pixel data to
assign locations 1n said data memory to multiple sample
pixel data.

8. A computer graphics system according to claim 3
wherein multiple sample pixel data associated with distinct
polygons are assigned to distinct data record locations in
said memory.

9. A computer graphics system according to claim 1
further comprising a data record reader to retrieve said
multiple sample pixel data from said data memory, said data
record reader 1ncluding a coverage mask tester to test for at
least one set mask bit.

10. A computer graphics system according to claim 1
wherein said coverage mask control unit further comprises
a coverage mask writer to write said coverage masks to said
data memory.

11. A computer graphics system according to claim 1
wherein said coverage mask control unit further comprises
a coverage mask reader to retrieve said coverage masks from
said data memory.

12. A computer graphics system according to claim 1
further comprising a sample data blender to blend multiple
sample pixel data with multiple sample pixel data stored 1n
sald data memory, said sample data blender including a
coverage mask tester to test for at least one set mask bit.

13. A computer graphics system according to claim 1
further comprising:

a data memory for storing alternate pixel data and at least
one current version;

a comparator to compare at least one pixel version asso-
cilated with said multiple sample pixel data with said at
least one current version; and

a data selector responsive to said comparator and con-
nected to select said alternate pixel data or said multiple
sample pixel data.

14. A computer graphics system for displaying dynamic
images on a display device having an array of pixels,
comprising:

a rendering processor to generate multiple samples of data

per pixel representative of said dynamic 1mages;

a p1xel processor to process said multiple samples of data
per pixel, said pixel processor including a coverage
mask control unit to manage coverage masks associated

with said multiple samples of data per pixel and a pixel

10

15

20

25

30

35

40

45

50

55

60

138

data blender to blend said multiple samples of data per
pixel to provide pixel data for display;

a frame buller for storing said multiple samples of data
per pixel, said coverage masks and said pixel data for
display; and

a display device for displaying said pixel data for display.

15. In a computer graphics system with a display device

having an array of pixels, a process for displaying a dynamic
image represented by multiple samples of data per pixel,
comprising the steps of:

generating multiple samples of data per pixel;

generating at least one coverage mask for said multiple
samples of data per pixel;

storing said multiple samples of data per pixel 1n a
MEMOry;

storing said at least one coverage mask 1in a memorys;

cgenerating pixel data for display using said multiple
samples of data per pixel;

ogenerating an electrical signal corresponding to said pixel
data for display to actuate a pixel associated with said
dynamic 1mage; and

displaying said dynamic image on said display device.

16. A process according to claim 15 wherein said storing
said multiple sample pixel data further includes the step of
allocating memory for said multiple sample pixel data.

17. A process according to claim 15 further including the
step of selecting unique samples from said multiple sample
pixel data.

18. A process according to claim 15 further including the
step of assigning distinct memory locations to multiple
sample pixel data associated with said distinct polygons.

19. A process according to claim 135 further including the
step of retrieving said multiple sample pixel data from a
memory.

20. A process according to claim 19 wherein said retriev-
ing further includes the step of testing for at least one set
mask bit 1n a coverage mask.

21. A process according to claim 15 further including the
step of retrieving said at least one coverage mask from a
memory.

22. A process according to claim 15 further including the
step of blending multiple sample pixel data with multiple
sample pixel data stored in a memory to generate updated
pixel data.

23. Aprocess according to claim 22 wherein said blending
further includes the step of testing for at least one set mask
bit 1n a coverage mask.

24. A process according to claim 15 further including the
steps of:

defining a pixel version for said multiple sample pixel
data;

defining alternate pixel data;

defining a current version,;

comparing said pixel version with said current version;
and

selecting said multiple sample pixel data or said alternate
pixel data 1n response to said comparing.

	Front Page
	Drawings
	Specification
	Claims

