US005828383A
United States Patent .9 111] Patent Number: 5,828,883
Hall 451 Date of Patent: Oct. 27, 1998
[54] CALL PATH REFINEMENT PROFILES “Predicting Program Behavior Using Real or Estimated

|75] Inventor: Robert J. Hall, Berkeley Heights, N.J.
| 73] Assignee: Lucent Technologies, Inc., Murray
Hill, N.J.
21] Appl. No.: 535,433
22| Filed: Sep. 27, 1995
Related U.S. Application Data
[63] Continuation-in-part of Ser. No. 221,228, Mar. 31, 1994,
abandoned.
51] Int. CLO oo, GO6F 9/44
52] US.CL ... cerreennneenneees 395/704; 395/709
58] Field of Search ... 395/704, 709,
395/783.14
[56] References Cited
U.S. PATENT DOCUMENTS
5,355,487 10/1994 Keller et al. ....ccovveeivinnninnnnnn.n. 395/650
5,408,650  4/1995 Arsenault .......cccoovvrvinieeervennnnn. 395/575
5,530,964  6/1996 Alpert et al. ....ouveveeeereeeinnnenn. 395/700

OTHER PUBLICAITONS

“Using Profile Information to Assist Classic Code Optimi-
zations”, Chang et al., Soft. Prac. and Experience, vol.

21(12), Dec. 1991, pp. 1301-1321.

TYPICAL CPRACF USE METHODGLOGY

RUN TARGET
PROGRAM WITH

SAMPLING

CPPROF
DATA FILE

l

LOOK AT
INITIAL CALL
PATH PROFILE

Profiles”, David W. Wall, Proc. of the ACM SIGPLAN 1991,
pp. 59-70.

“An Execution Profiler for Modular Programs”, Graham et
al., Soft. Practice & Experience, vol. 13, 1983, pp. 671-685.

“Call Path Profiling”, Robert J. Hall, Proc. 14 Int’l Conf.
Soft. Engineering, ACM, 1992, pp. 296-306.

Primary Fxaminer—Emanuel Todd Voeltz
Assistant Examiner—Kakali Chaki

57 ABSTRACT

A method and system for measuring the usage of a focus
resource by a target program which has a plurality of call
paths and at least one procedure, which allows a user to
select a focus call path from a call path profile and compute
a refinement call path profile which shows the usage of the
focus resource by refinement call paths of the focus call
path. Methods and systems are disclosed for deriving the call
path profile, pruning and unpruning the call path profile,
defining function groups, optimizing and contextualizing.
Computation of the refinement call path profile can be
performed by immediate upward or downward and extended
upward or downward refinement of the call path profile.

40 Claims, 15 Drawing Sheets

301

305

110

@ 415

4%5 {f""“‘“"‘;"‘“

""j} 1}9

PRUNE OR
DEFINE
UNPRUNE

SELECT® CALL
FATH T0
REFINE

COMPUTE COST
OF SELECTED CALL
PATH AND DISPLAY

SET VIEW
THRESHOLD

Bt ook ar || cook A LOOK AT LOOK AT | 460
EXTENDED EXTENDED IMEDIATE | { IMMEDIATE
DOMNWARD UPWARD OOWNWARD UPHARD
AEFINEMENT | | REFINEMENT | | REFINEMENT | | REFINEMENT
OF SELECTED | | OF SELECTED | | OF SELECTED | | OF SELECTF
CALLPATH CALLPATH CALLPATH CALLPATH

" SELECTION TYPICALLY BASED ON RELATIVE COSTS OF CALL PATHS IN CURRENT PROFILE



5,828,883

Sheet 1 of 15

Oct. 27, 1998

U.S. Patent

(H0J34 Qv3IH 40

11NGTHLLY 139 80

NOT1VWHOANI SS3H0QY

=
Ezé
<>

vi 914

0F0T N WHOA 0F0T SN W40

G 13A31

b 13Ad ]

t 13Ad1

¢ 13Ad1

b 1dAd1



5,828,883

Sheet 2 of 15

Oct. 27, 1998

U.S. Patent

48] (48] 68 (4]
0H0) M 0403 0H0J3M 04093
GETR 0¥34 40 GETR 0¥34 8

48] 12) (48] 12) 68 [12] (48]

IUNGTHLLY  QWOJ3W  JINGIWLLY QWO ANAIHLLY  QHOJ  3ungTulLy
139760 CETR 139760 0¥34 80 139760 0Y3H 80 139760

8] [1¢] [¥8 ] [1¢] [GB ] el (48] [1¢]
0NI JINYIHLLY OINI JINBIHILY OINI JINAIHLLY 04INI 11NGIHLLY
553600V 133 40 SSHAAV 13 40 S$340Qv 133 60 SS3u00Y 133 80

507 | 507 ] 907 ) 507 )
00T SN 00T TN 3d0 T3N3 ddV/-NY0T
[609]

NIVH
[609]

[HV1S
NYHOOHd INISSID0A-SHHOd 404 341 NOVIS

gf 914



U.S. Patent Oct. 27, 1998 Sheet 3 of 15 5,828,883

FIG. 2

Function Profile for resource: Real Time
bl4 samples, sampled every 20 gticks
format: usage_fraction function_name #raw_samples

HEE&HE?E PROCEDURE NAME 8 OF
FRACTION SAMPLES

0.1726 ||||iHHﬁlﬂﬁlﬂﬁ!@lllllllllllllll 105

0.1726 credit card application

0.1726 loan_application
0.1710 form_NJ_1040

0. 1368 db_update record R



U.S. Patent Oct. 27, 1998 Sheet 4 of 15 5,828,883

FIG. 3

—

Upward Call Path Profile for Hesoufce: Real Time
bl4 samples. sampled every 20 gticks

format: usage_fraction call_path #raw_samples
RESOURCE NUMBER
USAGE PROCEDURE NAME OF

FRACTION SAMPLES
1.0000 db_read_record
0.863¢ db_get_attribute db_read:;;cord
0.66/3 address_information db_get_attribute db_read_record
6T1384 envelope address_information db_get_attribute db_read_record iN

0.1384 | invoice address.information db_get atiribute db._read.recond



U.S. Patent Oct. 27, 1998 Sheet 5 of 15 5,828,883

FIG. 4

Downward Call Path Profile for resource: Real Time
2b/b samples, sampled every 50 gticks

HﬁﬁgﬂggE O
FRACTION SAHPLES

0.11323 | main print_salary_list 303

PROCEDURE NAME

FIG. 5

Downward Call Path Profile for resource: Page Faults
3330 samples. sampled every 10 gticks

Rﬁﬁg&EFE . OF
FRACTION SAMPLES

0.71317 | main uniquify_db 7036
0.363935 | main uniquify_db qsort ab/1

PROCEDURE  NAME

0.13467 | main print_salary_list 1340
0.13457 | main print_salary_list extract_salary_fields 1333
0.00000 | main print_salary_list gsort



U.S. Patent Oct. 27, 1998 Sheet 6 of 15 5,828,883

FIG. b

Upward Call Path Profile for Resource: Real Time

B

ReSOURCE NUMBER
USAGE PROCEDURE NAME OF
FRACTION SAMPLES

0.260000 sort sort copy 7800

FIG. 7A FIG. 78
STiHT srimr
MAIN MAlIN
solm /solm

COPY COPY SORT_¢

l

COPY_?



U.S. Patent

Oct. 27, 1998

FIG. 8

FIG. S

300

DATA
COLLECTION
PHASE

ANALYSIS
PHASE

400

Sheet 7 of 15

DATA

COLLECTION
CODE

USER 'S
PROGRAM

STACK TREE
CONSTRUCTION
PROGRAM

PROFILE
COMPUTATION
PROGRAM

AUXILIARY
STORAGE
AREA

5,828,883

801

d0¢

803

804

806

805



U.S. Patent Oct. 27, 1998 Sheet 8 of 15 5,828,883

FIG. 10

TYPICAL CPROF USE METH AN TARGET 301
(PROF USE METHODOLOGY | AW HARSET

SAMPLING
<41l >
CPPROF 303
DATA FILE
LOOK AT 410

INITIAL CALL
PATH PROFILE

415

419

COMPUTE COST
OF SELECTED CALL
PATH AND DISPLAY

DEFINE
GROUP

PRUNE OR SELECT™ CALL
UNPRUNE PATH T0 fﬁaggﬂg?g
TREE REFINE
17 420 418
<1|H!Eii5lﬁib-425

430 LOOK AT LOOK AT LOOK AT 100K AT 160
EXTENDED EXTENDED IMMEDIATE IMMEDIATE
DOWNWARD UPWARD DOWNWARD UPARD
REFINEMENT | | REFINEMENT | | REFINEMENT | | REFINEMENT
OF SELECTED | | OF SELECTED | | oF SELECTED | | OF SELECTED
CALLPATH CALLPATH CALLPATH CALLPATH

* SELECTION TYPICALLY BASED ON RELATIVE COSTS OF CALL PATHS IN CURRENT PROFILE



U.S. Patent Oct. 27, 1998 Sheet 9 of 15 5,828,883

FIG. 13
F(80)
A[70] B[ 10}
H[ 10]
H[ 70]
W 20] F[50] Wl 10]
body[ 20} B[ 50] body| 10}
H[ 50]
W[ 50}

body[ 50]



U.S. Patent Oct. 27, 1998 Sheet 10 of 15 5,828,883

LOAD-MODEL

FIG. 12 L 000

CLEAR- ISAT-
DECLARATIONS
0.66/

INSTALL-BUILTIN-
KNOWLEDGE
0.667

- PROCESS-
luncal INSTATTATE

‘ﬁ-
N
‘h
L
‘H
LY

PROCESS- PROCESS- COMPILE-
DEFMODEL -FORM DEFSIMPLIFIER RULE

\ 0.714 0.5619 0.143

'f
'f
“ o7
*

"'\‘“ COMPILE INSTANTIATE -
. HODEL
. 0.905 ) 143

-
b Y
-
o
-
-
-
-
-
-
o T
-

MAPHASH
0.143



U.S. Patent Oct. 27, 1998 Sheet 11 of 15 5,828,883
FIG. 14

.;;Immediate, Downward Refinement Profile of

.+ ; (PROCESS-INSTANTIATE) . which costs 0.571

. 0.429 (PROCESS-INSTANTIATE LOAD-MODEL)

. 0.143 (PROCESS-INSTANTIATE INSTANTIATE-MODEL}

(this 15 all non-zero entries)

FIG. 15

..;Immediate. Downward Refinement Profile of
.+ (PAOCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT
DECLARATIONS) , which costs 0.381

4 & 4 6 N B 2 A B B S i sy BN SN S B O me pe mr EE B B By B B B s =

. 0.381 (PROCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT-
. DECLARATIONS INSTALL-BUILTIN-KNOWLEDGE)

----------------------------

(this i1s all non-zero entries)

FIG. 16

. :Extended, Downward Refinement Profile of
: (PROCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT-

DECLARATIONS INSTALL-BUILTIN-KNOWLEDGE) ,
which costs 0.381

0.3 (PROCESS-INSTANTIATE LOAD-ODEL CLEAR-ISAT-

DECLARATIONS INSTALL-BUILTIN-KNOWLEDGE. ..
COMPILE)

'0.381  (PROCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT-
L DECLARATIONS INSTALL-BUILTIN-KNOWLEDGE.
PROCESS-DESIMPLIFIER)

'0.381  (PROCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT-

EEE{?RATIONS INSTALL-BUILTIN-KNOWLEDGE. . .

. 0.333  (PROCESS-INSTANTIATE LOAD-MODEL CLEAR-ISAT-
. DECLARATIONS INSTALL-BUILTIN-KNOWLEDGE . ..

<compiler internal function>)



U.S. Patent

Oct. 27, 1998 Sheet 12 of 15

FIG. 17

.. ;Extended Downward Refinement Profile
.. (), which costs 1.000

1.000 (funcall)
1.000 (aeplr)
1.000 (EVAL
1.000 (LOAD-MODEL)

. 0.905 (COMPILE)

. 0.714 (PROGN)

. 0.714 (PROCESS-DEFMODEL -FORM)

* & & El EE EE A DN EE BN SN BN A AN Ak S mr TE Wy B B By B an EF BN EE aE e

.. ;suppressed 133 entries, each using <

FIG. 18

. ;:txtended Upward Refinement Profile of
.+ (COMPILE) , which costs 0.905
. 0.305(LOAD-MODEL

. 0.305(EVAL
: O.HOS(BDDIY

. 0.905(funcall

; 0.6b67(CLEAR-ISAT-DECLARATIONS
; 0.667 (INSTALL-BUILTIN-KNOWLEDGE
. 0.619(PROGN

;  0.619(PROCESS-DESIMPLIFIER

. 0.476(PROCESS-INSTANTIATE

—————————————————————————————

of

0.7

.. .COMPILE)
.. .COMPILE)
...COMPILE)
.. .COMPILE)
...COMPILE)
...COMPILE)
...COMPILE)
.. .COMPILE)

.. .COMPILE)

..:suppressed 16 entries, each using < 0.2

FIG. 18

Eward Hefinement Profile

.;;Immediate, U
.+ (LOAD-MOD

of

L CLEAR ISAT-DECLARATIONS

INSTALL-BUILTIN-KNOWLEDGE. . . COMPILE) ,

which costs 0.667

* ¥ ¥ | OEE A E &k B S I B S S B B B S e e W B O B N B

. 0.3812  (PROCESS-INSTANTIATE LOAD MODEL

CLEAR-ISAT-DECLARATIONS

INSTALL-BUILTIN-KNOWLEDGE . . .COMPILE)

kE & # A B aE A A sk W I W B B BN B B D D aE O we m Ee B ey

.:: (this 1s all non-zero entries)

5,828,883



U.S. Patent Oct. 27, 1998 Sheet 13 of 15 5,828,883

FIG. 20

Procedure ADD-TRACE (STACK-TRACE, COST. NODE]
(Add the cost for (nonemgty) STACK-TRACE to stack tree NODE}
It nonempty(rest(STACK-TRACE) )
Then ADD-THACE(rE'gSt}STACK—THACEI .
FIND-OR-MAKE - CHILD (NODE, first{STACK-TRACE)))
Else Add COST to weight(NODE)

FIG. 21

Procedure MAP-CP (T, P, MAP-FN)
{?pgly T?P-FN to each maximal node of stack-tree T in the denotation of call path P.)
£
then It fabel(T) = first{P)
Then If restiP) = {)
Then Let EXPECTED-CALLEE be second(P)
[t EXPECTED-CALLEE = ELLIPSIS
Then For each child CH of T
MAP-CP (CH,rest{rest(P)) ,MAP-FN)
Else For each child CH of T
[f /abel(CH) = EXPECTED-CALLEE
Then MAP-CP(CH, res?(P) , MAP-FN)

Else MAP-CP(CH,P, MAP-FN)
Else Call MAP-FN(T)

Else For each child CH of T
MAP-CP(CH,P, MAP-FN)
Eise Call MAP-FN(T)



U.S. Patent Oct. 27, 1998 Sheet 14 of 15 5,828,883

FIG. 22

Global Variable SUM

Procedure COST (P.T)
(Returns total cost of call path P in stack tree T
Set SUM to (

MAP-CP (T, P, ACCUMULATE-WEIGHTS)
Heturn SUM

Procedure ACCUMULATE-WEIGHTS (NODE)
Add weight(NODE) to SUM

FIG. 23

Global Variable REQUIRED-PARENT-LABEL

Procedure REF (T.P,EXTENDED?)
(Builds refinement profile for call path P in tree T)
init-tunction-records (]
It either EXTENDED? or P-()
Then MAP-CP (T, P, EXTENDED-MAP-FUNCTION!
Else MAP-CP (T, P, IMMEDIATE-MAP-FUNCTION)
Heturn function-records-to-profile (P, EXTENDED?)

Procedure EXTENDED-MAP-FUNCTION (NODE)
For each child CH of NODE:
FUNCTION-COSTS (CH-NIL)

Procedure IMMEDIATE-MAP-FUNCTION (NODE)
Set REQUIRED-PARENT-LABEL to /abe!(NODE)
For each child CH of NODE:
FUNCTION-COSTS (CH-NODE)



U.S. Patent Oct. 27, 1998 Sheet 15 of 15 5,828,883

FIG. 24

Procedure FUNCTION-COSTS (NODE, PARENT)
(Compute function costs for each node with desired parent)

It either PABENT=NIL or /abel/{PARENT) =REQUIRED-PARENT-LABEL
Then Let LABEL be /abel(NODE}

Let UNLOCKED? be un/ocked” | ABEL)
[f UNLOCKED?

Then increment score of LABEL by weight(NODE)
set-unlocked-statel LABEL, FALSE)
For each child CH of NODE

FUNCTION-COSTS(CH,if PARENT = NIL then

NODE else NIL)
set-unlocked-statelLABEL, UNLOCKED?)
tlse For each child CH of NODE
FUNCTION-COSTS(CH, NODE)



J,328,883

1
CALL PATH REFINEMENT PROFILES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of application
Ser. No. 08/221,228, filed, Mar. 31, 1994, now abandoned.

TECHNICAL FIELD

This invention relates to software programs, and more
particularly to a method and a system for measuring per-
formance of and optimizing software programs.

BACKGROUND OF THE INVENTION

Complex software programs or applications are typically
designed 1n a layered fashion, mmvolving many levels of
functions or procedure calls. In these programs, the number
of ancestor (parent) procedures calling a sequence of
descendant (children and their progeny) procedures can be
quite large. In order to manage the resources devoted to the
design and development of these complex programs, various
techniques have been devised to increase the reliability and
speed of development of such programs. Some of the
best-known techniques include software reuse, layering
(mentioned above) and recursion (e.g., breaking a problem
into smaller instances of itself).

General software components are reused 1n as many
specific contexts as possible, 1n order to 1ncrease reliability
and to speed development. Recursion may be used when a
problem can be solved by reducing it to smaller instances of
the same problem. Layering, reuse, and recursion
techniques, however, can lead to inefficiency when the
specific context 1n which a component 1s used does not
require the full generality of the component.

More speciiically, one of the drawbacks of these tech-
niques 1s that designers and coders who devise programs that
reuse existing general software components are bound by
critical design and coding decisions made by the developer
(s) of the general software components being reused. Those
design and coding decisions, which are typically predicated
on ease of reuse, may cause significant inefliciency in
resource use for specific applications. This inefficiency takes
particular significance for certain applications 1n which
resources, such as cycle time and/or memory utilization, are
critical. Yet, the benefits of software reuse are too significant
to forego even for these resource critical applications.

For example, reusing a module implementing the fully
ogeneral Set data type 1n a situation where only a few Set
properties are required 1s likely to be suboptimal, because
many restrictions of Set have specialized optimal represen-
tations: disjoint-set representations for union-find tasks, bit
vectors for small-universe sets, and hash tables for add/
delete-intensive tasks operating on large sets. Moreover,
distinct uses of such a component within a program may
depend on distinct subsets of the component’s full general-
ity.

Many optimization techniques speed up a program by
specializing the implementation of a component using prop-
erties peculiar to 1ts use-context. That 1s, one creates a
specialized version of the component and ensures that it 1s
only called within the context enabling the optimization,
possibly by specializing the call ancestors of the component
as well. (Other uses of the component still call the original
version.) While this technique is effective, it also makes
programs hard to understand and maintain. Consequently,
such optimization should be limited only to those contex-

10

15

20

25

30

35

40

45

50

55

60

65

2

tualized component uses that are critical to the program’s
performance. Discovering these “bottlenecks” through code
inspection alone 1s difficult and error-prone, so programmers
need tools to aid in this discovery task.

Techniques have been devised for directly measuring
programs’ resource usage (also called “costs™) of certain
functions or procedures used 1n a program to aid in discov-
ering program bottlenecks.

One such prior art technique 1s the profiling solution that
1s embodied 1n the “Prof” command of the UNIX® operat-
ing system. Prof only reports the amount of resources
consumed within the internal structure of a particular pro-
cedure. Hence, Prof does not provide programmers with
adequate information to localize performance bottlenecks 1n
their program.

Another prior art technique displays, for each procedure,
the fraction of the total time spent executing that procedure
and 1ts called descendants. Such a technique, unfortunately,
provides limited guidance for optimization of complex pro-
ograms because different call contexts enable different opti-
mizations. Furthermore, no mechanism 1s provided in this
technique to gauge the amount of time spent 1n a procedure
on behalf of particular callers.

Another type of profile, that 1s partly implemented, for
example, 1n the UNIX® gprof command, remedies some of
the limitations of the aforementioned techniques by provid-
ing the cost incurred by a procedure on behalf of each of its
immediate callers. The gprof-style profile, however, pro-
vides information only for a calling procedure and its
immediate called procedure. This offers only limited
cguidance, at best, to designers of complex layered programs
who need more than parent/child cost information for pro-
cedures when 1nvestigating the performance of those pro-
grams.

Consideration has also been given to a technique which
traces classes of resource utilization specified by a user. The
technique of tracing generates a large amount of data that 1s
not organized nor summarized 1n a systematic fashion to
enable programmers to pinpoint specific 1neflicient
procedures, calls or subroutines, to aid them 1n optimizing
code.

Other techniques, such as stack-tree profilers, have also
been considered. Unfortunately, those techniques also pro-
vide inadequate information to pinpoint performance bottle-
necks 1n software programs.

Thus, one problem encountered 1n prior art optimization
techniques 1s the mnadequacy of the information provided
about resource utilization of contextualized procedures or
subroutines which are critical to a program’s performance.
Not enough information 1s provided pinpointing where 1n
the code a program 1s 1neificient, nor 1s information oifered
as to the cause of the methiciencies.

SUMMARY OF THE INVENTION

Disadvantages of the prior art resource usage measure-
ment and optimization techniques, such as inadequacy of
information regarding resource utilization, are overcome by
the present invention.

The present invention teaches methods and systems for
measuring usage of at least one focus resource by a target
program which has a plurality of call paths and at least one
procedure. One disclosed method and system comprises
providing a call path profile containing a data list, in some
predetermined order, of some subset, including a null set, of
the plurality of call paths together with associated usage cost



J,328,883

3

of said focus resource, selecting a focus call path from the
call path profile or from the plurality of call paths, and
computing a refinement call path profile showing the usage
of the focus resource by refinement call paths of the focus
call path. The focus resource can be selected from a plurality
of monotonic computer resources.

In a preferred embodiment, features of the present inven-
tion 1nclude: definition of a function group from the call
paths 1n the call path profile which allows grouping of the
call paths from the data list as the focus call path and
computing the refinement call path profile on the focus call
path; deriving the call path profile by running the target
program using a processor 1n a data collection phase during,
which information regarding usage of the focus resource 1s
collected, by sampling or instrumentation, and the call path
proiile 1s containing the data list 1s computed; pruning to
exclude some of data from the call path profile, or unpruning
to restore some or all of excluded data and computing the
refinement call path profile on the pruned or unpruned call
path profile; an 1nitial call path profile can be a function
proflle, where the function profile can be derived from
refinement of an empty call path wherein all the procedures
in said target program are identified along with their pro-
portion of usage of the focus resource; the call path profile
can be derived by selecting the focus resource from a
plurality of monotonic computer resources, running the
target program and collecting data regarding usage of the
focus resource, then generating a stack tree and generating
the call path profile from the stack tree; the computed
refinement call path profile can be merged into a previously
computed refinement call path profile so the resulting com-
puted refinement call path profile contains both newly
computed and previously computed information of usage
costs; the usage costs data can be sorted; the refinement call
path profiles, or some subset thereof, can also be displayed.

In another aspect, features of the present invention
include: the extended refinement profile, invoked by a user
via a unique switch with the user specifying the focus call
path to be analyzed, which shows for each refinement call
path, the focus resource usage along a summary of all call
paths starting with the focus call path and ending with a
procedure or function group; and the immediate refinement
proiile, invoked by a user via a unique switch with the call
path to be analyzed indicated by the focus call path, which
computes the focus resource usage one procedure or func-
tion group call level immediately upward or downward from
the focus call path. The immediate and extended refinement
profiles can be upward or downward relative to the focus call
path. The immediate or extended upward refinement profiiles
allow that an 1nitial call path profile can be a function profile,
where the function profile can be derived by selecting the
focus resource from a plurality of monotonic computer
resources, running the target program and collecting data
regarding usage of the focus resource, generating a stack tree
and generating the function profile from the stack tree. The
refinement call path profile 1s then computed by constructing
a dual of the stack tree and computing the immediate or
extended upward refinement call path profile from the dual
stack tree.

In a preferred embodiment, software optimization 1s
taught which provides for improving the performance of a
target program having a plurality of call paths and at least
one procedure. This improvement comprises providing a
call path profile containing a data list, in some predeter-
mined order, of some subset of the plurality of call paths
together with associated usage costs of a focus resource. A
focus call path 1s then selected from the call path profile or

10

15

20

25

30

35

40

45

50

55

60

65

4

from the plurality of call paths. A refinement call path profile
showing the usage of the focus resource by refinement call
paths of said focus call path 1s computed Bottleneck call
paths are determined from usage shown 1n the refinement
call path profile and the bottleneck call path 1s optimized by
changing the code of the target program. This can be
iteratively repeated to further 1mpr0ve S 1c1ency of the
target program until either (1) desired efficiency is reached,
or (2) no further improvements in efficiency can be
achieved. In optimizing, the target program 1s first modified
wherein the procedures of the focus call path are rewritten
into new procedure versions so that new procedure versions
are only called within a context specified 1n the focus call
path, and then, the new procedure versions are refined by
further iteration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s an illustrative representation of a non-recursive
program;

FIG. 1B 1s a stack tree of the non-recursive program of
FIG. 1A;

FIG. 2 1s a function profiile of the non-recursive program
of FIG. 1A;

FIG. 3 1s an upward call path profile of the non-recursive
program of FIG. 1A that i1s derived in accordance with the
principles of the invention;

FIGS. 4 and § show downward call path profiles of a
non-recursive program for run time and page fault resources,
respectively;

FIG. 6 1s an upward call path profile of a recursive
program that 1s derived m accordance with the principles of
the 1mvention;

FIGS. 7A and 7B show call graphs of the original and the
optimized recursive program of FIG. 6;

FIG. 8 shows a workstation in which, illustratively, the
principles of an embodiment of the present invention may be
implemented, and which includes a Direct Access Storage

Device which contains file space, main memory, and mstruc-
tions to derive the stack tree of FIG. 1B and the call path
proiiles illustrated 1n FIGS. 3, 4, §, and 6.

FIG. 9 1llustrates a typical usage method of operation of
CPPROF profiling of the present invention;

FIG. 10 illustrates the methodology of FIG. 9 1n greater
detail;

FIG. 11 1s an abstracted call graph of the example
program,;

FIG. 12 1s an abstracted call graph of the ISAT example
program;

FIG. 13 1s a stack tree profile of the program of FIG. 11;

FIG. 14 1s an immediate, downward call path refinement
proiile of the length-1 call path of the ISAT example
program of FIG. 12 derived according to the present imnven-
tion;

FIG. 15 1s a repeated immediate, downward refinement

proille of the program of FIG. 12 derived according to the
present 1nvention;

FIG. 16 1s an extended, downward refinement profiile of a
call path of the program of FIG. 12 derived according to the
present 1nvention;

FIG. 17 1s an extended downward refinement profile of an
empty call path (or function profile) for the program of FIG.
12 derived according to the present invention;

FIG. 18 1s an extended, upward refinement profiile of the
length 1 call path (COMPILE) for the program of FIG. 12
derived according to the present mmvention;



J,328,883

S

FIG. 19 1s an immediate, upward refinement profile of a
particular call path of the program of FIG. 12 derived
according to the present 1nvention;

FIG. 20 presents one embodiment of the pseudo code
definition for the ADD-TRACE routine according to the
present invention;

FIG. 21 presents one embodiment of the pseudo code
definition for the MAP-CP routine according to the present
mvention;

FIG. 22 presents one embodiment of the procedure COST
for computing costs of a call path according to the present
mvention;

FIG. 23 presents one embodiment of the REF procedure
for computing call path refinement profiles according to the
present mvention;

FIG. 24 presents one embodiment of the pseudo code
definition for the FUNCTION-COSTS routine used by REF
according to the present 1nvention;

DETAILED DESCRIPTION

Call path refinement profiles according to the present
invention, provide a novel technique to directly pinpoint
performance bottlenecks 1n software programs. Call path
refinement profiles according to the present invention, are
implemented within the CPPROF profiling environment
which 1s disclosed in co-pending application Ser. No.

08/221,228, filed Mar. 31, 1994 and which application 1is
incorporated herein by reference.

Several definitions which will be helptul 1n facilitating an
understanding of call path refinement profiles according to
the present 1nvention are provided. In this specification, the
term “function” 1s used synonymously with “procedure” and
“subroutine”.

A stack trace of a program at any instant of time is the
sequence of functions that are active at that time. This
sequence always starts with the highest level (or “root™)
function, followed by the function called by the root, fol-
lowed by the callee of that function, etc., ending with the
function actually executing at that time. If the program 1is
recursive, a function may appear more than once 1n a stack
frace. As examples, the program of FIG. 11 has root
functionf, and can have stack traces <f, a, h>, <f>, and <f,
a, h, £, b, h, w> at different times, but not <w>.

A simple call path 1s a list of functions denoting a set of
stack traces. The empty call path () denotes all stack traces;
(f) denotes all stack traces containing one or more appear-
ances of f{; (f) . f,), k>0, denotes all stack
traces <g, . . . ,2,> for which there exists a function m: [0,
k-1] = [0, I-1] such that for all 0=i<Kk, g, y=t;, Spiye1=Tis1
and m(i+1)>m(1).

A simple call path represents all stack traces that could be
present when each of the calls from f; to f; , 1s present (in
order). The denotation of the call path (a h w) in FIG. 1
includes the traces <f, a, h, w> and <f, a, h, f, b, h, w>, but
not <f, b, h, w >, because there 1s no call from a to h. For a
simple call path p, D(p) can be defined to be the denotation
of p as described above. A simple call path need not begin
with the root function.

A call path is either a simple call pathorp, @ (...) @
P,, where p, and p, are (not necessarily simple) call paths,
“. .. 7 15 a special ellipsis symbol, and (@ denotes list
concatenation. The ellipsis symbol is three dots on the line,
while the ellipsis meta-notation (used, €.g., in the definition
of simple call path above) is three dots above the line. The
denotation of the call path p; @ (... ) @ p, provides a

10

15

20

25

30

35

40

45

50

55

60

65

6

summary of call paths from p, to p, and 1s defined to be the
union of the denotations of all call paths of the form p, @
s (@ p, where s 1s a simple call path. In the example of FIG.
1, (f ... h) denotes the union of the denotations of (f a h),

(b h), (fa h fbh), etc. There may be any number of ellipsis
symbols 1n a call path.

The cost of a call path p during a particular run of the
program 1s defined simply as the fraction of the program’s
run time that passed when some member of D(p) was the
current stack trace. This definition 1s stmply connected to the
process of program optimization. For example, where the
cost of call path (f b h) is 0.75 of the total time, an equivalent
version of h, h', can be created that 1s called only from b',
which in turn 1s called only from f (a still calls h). It can then
be concluded that h' 1s executing 75% of the time of the run.
Thus, barring interactions, the time of the run of the program
can be reduced (i.e, the program can be made more efficient)
by this amount through specializing h'. Costs of all simple
call paths can similarly be interpreted in terms of corre-
sponding specialized versions of the program. This scheme
can be extended to call paths containing ellipses.

FIG. 1A shows the most significant procedures of a forms
program that fills out forms for users by looking up infor-
mation 1n an on-line database. The program calls a special-
1zed processing function for each type of form. The proce-
dures 1n the program are arranged 1n an hierarchical order
ranging from level 1 to level 5. The procedures at the second
level call the utility procedure address_ information at the
third level that returns the coordinates of an individual 1n a
database. Those coordinates include full name, address,
telephone number, zip code etc. The “db__get  attribute”
utility at the fourth level extracts an attribute, such as an
address from a database entry. The “db_ read_ record” pro-
cedure at the fifth level performs a disk read to find the
record for a given individual.

FIG. 1B 1s a stack tree of the non-recursive program FIG.
1A. The stack tree of FIG. 1B 1s dertved by implementing a
monitor process that can be implemented for any language
and 1n any operating system. The monitor process allows a
user to a) specify a particular resource of interest, such as run
time, page faults, traps, tloating point exceptions and system
calls, and b) receive a report on the number of resource units
consumed by each procedure (or sequences of procedures, as
described in further detail below) during the execution of the
program. In particular, the monitor process occasionally
halts the execution of the program to write to a file the
program counter and the addresses of all procedures cur-
rently being executed each time a predetermined number of
units of the user-designated resource 1s consumed.
Thereafter, the return addresses are mapped to the respective
names of the procedures. As an alternative to the aforemen-
tioned interrupt handler, data collection instructions can be
inserted (either manually or automatically) in the source
code of the program of FIG. 1A to record resource con-
sumption for each nested sequence of procedures.

In this example, resources of interest are primarily
resources whose total consumption for the execution of the
program 1s equal to the sum of resource consumption 1n each
individual procedure. Those resources called “monotonic
resources’ are deflned as being of the type for which there
1s a measurement primitive, such as a clock, which returns
a number proportional to the amount of the given resource
that has been used since an arbitrary zero point. The amount
of the resource used by a given program (or procedure) is
then the difference between the clock value immediately
after the program execution and the clock value immediately
before the program execution, minus any overhead clock
ticks caused by the calls to the clock 1itsellf.




J,328,883

7

In this example, resources are measured by a polymorphic
unit, called a generalized tick, hereinafter called “gtick”. A
otick may measure, for example, a hundredth of a second for
run time resources, one page fault for text and data page
faults, one byte for space allocation, to name a few.

From the mapped list of procedure names, the stack tree
of FIG. 1B 1s built. The stack tree 1s an hierarchical
arrangement of nodes, labelled by the names of the proce-
dures. Assoclated with each node 1s a numerical field that
stores the cost incurred by the procedure, when called by the
sequence of ancestor procedures labelling the path from root
to the node.

When the stack tree 1s built from sample data, individual
samples are recorded 1n the tree by tracing an hierarchical
path mm the tree from a calling procedure to descendant
procedures via intermediate levels 1 the hierarchy, if any. If
no such path yet exists i the tree, new nodes are added 1n
the tree to create that path. Once all samples are recorded 1n
the tree, a resource consumption or cost figure 1s then
attributed to each path, based on the number of times a given
procedure and its descendant procedures appear in the
samples. Those numbers are shown under each procedure
name 1n the tree of FIG. 1B.

FIG. 2 1s a function profile of the non-recursive program
of FIG. 1A. In FIG. 2, the header information shows that the
information associated with the function profile was col-
lected by sampling Real Time once every twenty (20)
generalized ticks (gtick). In other words, the monitor process
halted the execution of the program every time two hundred
(200) milliseconds of run time resources were consumed to
report the addresses of the procedures that were being
executed at the time of the interruption. Thereafter, the
program counter and the return addresses of each procedure
are analyzed to determine the sequence of calling and called
procedures for each sample.

Shown 1n the leftmost column of FIG. 2 1s a fraction of
resources consumed during all mvocations of each proce-
dure 1n the program. The middle column represents the
procedure name, while the rightmost column indicates the
number of times a procedure address was recorded at the
time of the mterruption.

The function profile of FIG. 2 shows us that the most
significant procedures 1n terms of resource consumption are
“db__read_ record”, “db__get_ attribute”, and “address__
information”. Hence, the most significant efficiency gains (if
there are any) are to be obtained in optimizable contexts
within these procedures. In other words, a crude answer 1s
provided to the question as to where the program may be
inefficient.

FIG. 3 1s an upward call path profile of the non-recursive
program of FIG. 1A. The call path profile of FIG. 3 provides
a direct connection between the nested sequences of proce-
dures 1n the program and resource consumption, as mea-
sured by the reported number of sample hits. The call path
proiile of FIG. 3 1s derived using data collected by the same
monitoring process described above. Unlike the function
profile of FIG. 2 in which only the address of each procedure
was used to derive the profile, additional mformation 1s

extracted from the sampling data to derive the call path
profile of FIG. 3.

The stack tree of FIG. 1B 1s used to derive the call path
proiile of FIG. 3. In particular, the sum of each node’s
sample hits and those of all 1ts called descendants 1s com-
puted to derive the “weight” of each node that 1s used to
derive the numbers shown on the rightmost column of FIG.
3. Each 1nstance of a sequence of calling and called proce-

10

15

20

25

30

35

40

45

50

55

60

65

3

dures 1s considered a sample hit. By tallying the number of
sample hits for each call path, the numbers shown on the
richtmost column of FIG. 3 are derived. As indicated above,
those numbers represent the amount of units of resources
needed for the execution of the sequences of procedures in
the call path. As to the numbers shown 1n the leftmost
column of FIG. 3, they represent fractions of the total
amount of resources consumed during the run of the pro-
oram. Call paths which consume less than 13% of the run
fime resources are not shown 1 FIG. 3. This 1s due to the
fact that in this example, any proiile entry whose usage
fraction falls below a user-specifiable threshold 1s sup-
pressed or filtered from the output of the sampling process.
In this example, the filtering 1s based on a user-specifiable
significance threshold of 13%. As a result, no call path 1s
shown 1n FIG. 3 for form_ US_ 1040 and form _ NJ__1040.
It 1s also possible for a call path to consume resources so
insignificant that a zero can be shown in the rightmost
column of FIG. 3. This can occur, for example, when the
amount of resources needed for the sequences of procedures
in the call path 1s less than one gtick. Additional information
on an 1illustrative system and method that may be used to
derive a call path profile 1s provided below.

In FIG. 3, the header information indicates that the profile
1s an upward call path profile. The latter 1s defined 1n terms
of a particular procedure called the “focus” procedure. In
FIG. 3, the focus procedure 1s the “db_read_ record”
procedure, but i1t can be any procedure 1n the program. Given
such a user-selected focus procedure, an upward call path
prodile 1s a sorted, filtered list of the resource usages of all
call paths whose last procedure name 1s the focus procedure.
An upward call path profile provides a breakdown of which
call ancestors of the focus procedure are consuming the most
resources due to their execution. By contrast, a downward
call path profile 1s stmply a sorted, filtered list of the resource
usages of all call paths whose first procedure name 1s the
focus procedure. Although not shown 1n FIG. 3, downward
proiiles provide a hierarchical breakdown of resource con-
sumed during the execution of the focus procedure.

Advantageously, when one knows that a program 1is
spending most of its time 1n, say, memory allocation, an
upward call path profile provides 1nsights into the particular
calls within the program that consume the most resources.
For example, the first three call paths in FIG. 3 represent
optimizable contexts because of the great amount of
resources consumed 1n these call paths. Additionally, 1t can
be observed that each one of these call paths end with a call
to “db__read_record”. Examination of the source code
reveals that the procedure “address information™ calls the
procedure “db__get_ attribute” four times to retrieve four
fields of the same database entry. This results 1n four
successive disk reads of the same record. By specializing the
procedure “db__get attribute” for use only within address
information (to cache the record after the first read), 75% of
the 0.6873 total run time fraction, can be saved, thereby
reducing the overall run time by about 51%. It 1s worth
noting that “db__get attribute” procedure itself could not
simply be optimized because other calls to that procedure
(from outside of address information) require its full gen-
crality.

It 1s not always possible to readily identify performance
bottlenecks 1n a program based on the call path profile
derived by sampling just one resource.

FIGS. 4 and § show call path profiles of a different

non-recursive program for run time and page fault resources,
respectively. FIG. 4 and § are included in this example to
show how call path profiling of a program (for different




J,328,883

9

resources) provides a unique combination of highly detailed
“where” descriptions (of performance bottleneck) with a

rich variety of “why” explanations of those performance
bottlenecks. The call path profile of FIGS. 4 and § are

derived using the same techniques described above for
deriving the call graph profile of FIG. 3. The program whose
call paths are profiled in FIGS. 4 and 5 can be written as
follows 1n the C programming language:

main ( )

{ DB db = read_ db( );
print_salary_ state(uniquify_ db(db));}

DB__RECORD **uniquify__db(DB db)

{ DB__RECORD **dbptrs = build _db_ ptrs(db);
gsort{dbptrs, name__field__It);
merge_adjacent records( );
return(dbptrs); |

print__salary_ state(DB__ RECORD **dbptrs)

{ int *salaries = extract_slaries( );
gsort(salaries, integer__It);
stat__summary(salaries); |

Essentially, the program reads a database of employee
records, sorts them in alphabetical order (for the name field)
climinating duplicate records, and then extracts and sorts the
salaries. Finally, it prints various statistics about them, such
as range, median, etc. Of particular 1mportance 1n the
program 1s the fact that the database 1s not sorted directly
because this would force gsort to swap all the bytes of the
records. Accordingly, the “uniquify_ db” procedure creates,
manipulates, and returns an array of pointers to database
records. The call path profiles of FIGS. 4 and 5 are predi-
cated on the assumption that the program 1s executed on a
database too large to fit 1in the physical memory of the
computer.

An analysis of the call path profile of FIG. 4 reveals that
when the “main” procedure calls the “uniquity_ db”
procedure, which 1n turn calls the “gsort” procedure, 68% of
the run-time resources are consumed. By contrast, in the
other call to the “gsort” procedure from the “print_ salary__
l1st” procedure, msignificant run time resource 1s consumed
(less resource than 1 gtick). Because the difference in
resource consumption for the same gsort procedure 1is
directly related to an optimizable context, one skilled in the
art can ecasily change the program to call a specialized
“gsort” procedure within a specialized “uniquity__db” pro-
cedure within the “main” procedure.

While the call path profile information i FIG. 4 1s
informative, it does not address the question as to how to
specialize the “gsort” procedure 1n this case. This question
1s further complicated by the fact that the arrays sorted by
the two “gsort” calls have approximately the same number
of elements (assuming few duplications in the database).

The call path profile of FIG. 5 sheds some light as to why
the measurements for the two sort calls are so anomalous. In
particular, the third row of FIG. 5 shows that during the
execution of the first “gsort” procedure, the array to be
sorted resides on so many different pages that they could not
be held 1n memory at once, causing a superlinear number of
data page faults (due to the superlinear number of key
comparisons required by sorting, where each key compari-
son must actually touch the page to get the name field).

Armed with this information, one skilled 1n the art can
immediately focus on optimizing the critical performance
bottleneck. Since the sort key fields are small, the program
could localize the keys first (incurring only linearly many
page faults) and then sort without causing further page
faults. By optimizing the “umiquify_ db” procedure 1n this

10

15

20

25

30

35

40

45

50

55

60

65

10

fashion, the total run time for the program can be signifi-
cantly reduced. It 1s worth noting that this optimization
process 1s unnecessary for the call to the gsort procedure
within the “print__salary_ list” procedure, because the sala-
ries are localized when they are extracted into a separate
array.

FIG. 6 shows an 1llustrative example of an upward call
path profile of the recursive program shown below.

/=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=*$$$$$$$$$$$$$$$$$$*/
/,’=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=$$$$$$$$$$$$$$$$$$$$/

/=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=$$$$$$$$$$$$$$$$$$$$$$/

/* Sort and Subroutines */

/* Destructively breaks the input list after n elements, and returns a

pointer
to the start of the second part */

LIST split (x, n)

LIST x;
int n;
1
if (n==0){
return (x);
b oelse

LIST trail = x;
for (;((n>1)&&(trail)); n--) {

trail = (trail->next);
;

if (trail) {
LIST result = (trail->next);
(trail->next) = NIL;
return(result);

b oelse {

return{NIL);

h
h
struct cell header;
/* Destructively merges the two input sorted lists into one big sorted list
*f
LIST merge (a, b, less__than)
LIST a;
LIST b;
int (*less__than){ );
1

LIST tail = (&header);
header.next = NIL;

while(1) {

if(1a){
(tail->next) = b;
break;

}

if (!b){
(tail->next) = a;
break;

}

if ((*less__than)(a, b)) {
(tail->next) = a;
tail = a;
a = (a->next);

b oelse {
(tail->next) = b;
tail = b;
b = (b->next);

h

h

return(header.next);

h

/* Recursively merge sort the input list according to the order predicate */
LIST sort (a, less__than)
LIST a;
int (*less__than)( );
1
LIST left = copy(a);
int Inth = length(left);
if (Inth < 2) {
return(left);
b else |
LIST right = split (left, Inth/2);
left = sort (left, less__than);



J,328,883

11

-continued

right = sort (right, less__than);
return(merge(left, right, less__than));

/=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=$$$$$$$$$$$$$$$$$$$$$$/

/=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=$$$$$$$$$$$$$$$$$$$$$$/

/=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=*$$$$$$$$$$$$$$$$$$/

/* A main routine */
int

main{argc, argv)

int argc;

char **argv;

1
LIST 1nput;
LIST result;
int print__p = 0;
if ((argec ! = 2)&&(arge = 3)){
(void) printf(*Usage: sort-ex <numbers> | <print?>[\n");
return(1);

h

input = build__random__list{atoi{argv|[1]));
if (argc == 3) {

print_p = atoi(argv|[2]);
t

if (print_p) {
(void) printf(“Sorting length %d list:\n”, length(input));
print__list(input);

telsed

(void) printf(*Done making input, sorting . . . \n”);
h

result = sort(input, data__It);

if (print_p) {
(void) printf(“\nResult is length %d list:\n”, length(result));
print__list(result);

h

return(0);

Essentially, the program a) splits a linked list into two
sections b) sorts recursively and non-destructively each
section, and c¢) merges the two sorted linked lists into a
single list that 1s thereafter sorted. The call path profile of

FIG. 6 1s derived from a stack tree built according to the
principles described above. From the call path profile of
FIG. 6, 1t can be noticed that while the second call path
consumes 27.3% of the total amount of user designated
resource, the fifth call path consumes 26% of the total
amount of the user-designated resource. It can be logically
inferred that the copying done within the recursive calls to
the sort procedure 1s at the root cause of the excessive
amount of resources consumed 1n the fifth call path. This
conclusion 1s based on the fact that other calls to the copy
procedure from the sort procedure consume an insignificant
amount of the user-designated resource (1.3%).

FIG. 7A shows a call graph of the sort program shown
above, while FIG. 7B shows a call graph of the same sort
program after 1t has been optimized. Since copies made as
a result of the recursive calls to the sort procedure have been
identified as a performance bottleneck, optimization of the
copy procedure (copy-2) within the context of the recursive
calls of the sort procedure, lead to the call graph shown 1n
FIG. 7B. It 1s worth noting that the recursive calls to sort are
identified 1n the optimized call graph of FIG. 7B as sort-2.
This 1s done to insure the procedure copy-2 1s called for
recursive 1nstances, instead of the procedure copy. Of par-
ticular significance 1s the fact that the original procedure
copy 1s not changed when that procedure 1s caller by sort,
instead of sort-2. It would be appreciated that copy-2 per-
forms no copying and simply returns it input. Alternatively,
the call to copy-2 can be removed altogether.

FIG. 8 shows a workstation comprised of a Direct Access
Storage Device which contains file space, main memory, and

10

15

20

25

30

35

40

45

50

55

60

65

12

instructions to derive the stack tree of FIG. 1 and the call
path profiles illustrated 1n FIGS. 3, 4, § and 6.

Workstation 800, which may be implemented using, for
example, a SUN® workstation includes a SUN® display
monitor and a keyboard that can be used to display pre-
stored data or to specily parameters for program execution.
Memory space 1s allocated by workstation 800 immediately
before the execution of instructions associated with data
code 801, user’s program 802, stack tree construction pro-
oram 803, profile computation program 804. Memory space
for Scratch-pad-type of use 1s also allocated to auxiliary
storage arca 806. Accordingly, the aflorementioned elements
are represented as memory maps 1n FIG. 8, while data {ile
805 1s represented as disk space.

Data collection code 801 comprises instructions that are
included 1n, or linked to, the source code of use’s program
802 to periodically mterrupt execution of the user’s program
802 to write the number of gtick used to data file 805. User’s
program 802 which contains the code whose performance
bottlenecks are being idenfified, 1s arranged to call data
collection code 801 to set up the interrupts.

Stack tree construction program 803 stores a set of
Instructions whose execution 1n a processor causes a stack
sample to be built. In this example, when more gticks pass
than a single sample boundary, the instructions cause a
corresponding number of hits to be credited to the sample.
This process of imterrupting the program execution and
recording sample hits continue until all the sampling records
have been processed. Then, a stack sample 1s formed from
the list of a) the number of sample hits, b) the current
program counter, c) the return address of the current stack
frame, and d) the return address of the caller and of the
caller’s caller, etc., until the root procedure 1s reached. A
nested sequence of calling and called procedures 1s derived
by analyzing the program counter and return addresses and
mapping them to their corresponding procedure names.
Therefore, instructions in the stack tree construction pro-
gram 803 a) trace for each procedure hierarchial path of
calling and called procedures up to the root of the program,
and b) assigns cost consumption to each path based on the
number of times a sequence of calling and called procedures
within a path appear in the samples.

Profile computation program 804 stores the instructions
needed to derive a call path profile. An exemplary set of such
instructions that may be used to dertve a downward call path
profile 1s shown in the Appendix. The appendix presents
pseudo-code for instructions to dertve downward call path
proflles from a previously constructed sample tree. Those
instructions work for arbitrarily recursive programs and for
arbitrary choice of focus procedure by the user. Included 1n
proille computation program 804 1s a separate output routine
that takes the output of those instructions and formats the
output for readability. In particular, the routine divides the
number of sample hits in each call path’s profile entry by the
total number of sample hits incurred during the run in order
to report a resource usage fraction. The instructions are
designed to recursively descend the sample tree and asso-
clate each node with a canonical call path that represents that
node. Then, the weight of the node 1s added to the gticks
field of that call path’s record, unless the record 1s locked.

Even though the instructions shown 1n the Appendix are
designed to derive a downward call path profile, minor
changes can be made to the stack tree construction program
803 to build an inverted stack tree, thereby allowing an
upward call path profile to be dertved, as shown, for example

in FIG. 3.



J,328,883

13

Included 1n the profile computation program 804 are
instructions that avoid attributing multiple times the same
oticks to a given call path. Also, the program excludes from
a downward call path profile all call paths in which a
particular procedure name appears more than once 1 a
sequence ol procedures and other procedures follow the
second appearance of that particular procedure within that
sequence. Similarly, the program excludes from an upward
call path profile all call paths 1n which any procedure name
appears more than once and whose {first appearance i1s
preceded by one or more procedures.

The profile computation program 804 also includes user
interface management instructions that allow the user to a)
specily via the keyboard of processor 800, for example, the
type of profile desired b) identify the desired focus proce-
dure and c) set the threshold of resource consumption for the
call paths to be included 1n the profile. Instructions for the
display of the derived call path profile on the monitor of
workstation 800 are also included 1n the profile computation
program 804. Derived stack trees and call path profiles can
be stored 1n auxiliary storage arca 806.

It would be appreciated that the process of analyzing a call
path profile can be divorced from the process of collecting,
data during the run of the user’s program. These two
processes can be carried out 1n separate computers as long,
as the data file 805 1s transferred from one computer to the
other.

Call path refinement profiles of the present invention
provide an alternative method for optimizing usage of
computer resources through software program optimization.
Call path refinement profiles are effective tools for analyzing
complex programs, and are equally effective for simpler
programs. Call path refinement profiles yield detailed and
accurate performance information about arbitrarily nested
function call sequences, allowing one to tease apart the costs
of a component 1n different call contexts, permitting more
precise optimization of the bottlenecks or inefliciencies.

The need for looking at deeper call contexts than just
single functions arises naturally 1n complex programs. A
typical example 1s where a utility function, such as a
memory allocator, 1s called by a library routine, such as
MAKE-INSTANCE, which 1n turn 1s called at several points
in the user’s code. The utility routine will itself be called
from many different sites as well. If, for example, it 1s
determined that significant time 1s spent allocating memory
for instances created at a certain call site (such as when
instantiating a particular class C), it may be possible to use
a faster, specialized memory allocator for this purpose in this
context.

Call path refinement proifiles focus the user’s attention
more elfectively by limiting the total amount of information
presented at one time, and by providing abstraction tech-
niques for ignoring uninteresting program structure details.
Repeated refinement allows the user to selectively pursue
optimization opportunities 1n a significance-ordered fashion.
By contrast, many prior art profilers present data on all
functions or all calls, most of which are insignificant and
should be presented only on request.

Extended call path refinements of the present mnvention
provide abstraction because they allow the user to see the
aggregated resource costs of sets of contextualized calls,
suppressing the full details of how, for example, a function
A 1s eventually called from some ancestor function B.

Another abstraction technique available in the CPPROF
profiling tool 1mplemented according to the present
invention, provides the ability of function grouping which

10

15

20

25

30

35

40

45

50

55

60

65

14

allows the user to explicitly define a named group of
functions and to treat that group 1n the same fashion as any
single function, allowing, for example, the ability to directly
determine the entire cost of a datastructure 1mplementation
choice by grouping the functions which implement the
operations. The entire cost 1s not always simply the sum of
the costs of the individual functions 1n the group because
their costs may overlap, for example, due to co-recursion.

In one embodiment of the present invention as will be
seen, nested sequences of a downward call path profile are
excluded from the profile when a) a procedure name appears
more than once in the sequence, and b) other procedures
follow the second appearance of the procedure name 1n that
sequence. In another embodiment of the mvention, nested
sequences of procedures of an upward call path profile are
excluded from that profile whenever a) a procedure name
appears more than once in the sequence, and b) other
procedures precede the first appearance of that procedure
name 1n that sequence.

Once all call paths 1n the program have been 1dentified,
the call paths that consume the higher amount of the
user-designated resource are targeted for further analysis
and/or for a new call path profiling using a different
resource. Particular procedures within resource-intensive
call paths can be optimized within the context of those call
paths to eliminate performance bottlenecks in the program.
When new call path profiles for different resources are
derived, those profiles allow a user to identify the root
causes of particular performance bottlenecks. Hence, the
different profiles point out to the user which procedures (in
which context) should be optimized and with respect to
which resources.

There are four types of call path refinement profiles
according to this embodiment of the present invention:

An immediate, downward refinement profile for call path

p reports the costs of all call paths of the form p @ (x),
where X 1s a function.

An 1mmediate, upward refinement proiile for call path p
reports the costs of all call paths of the form (x) @ p,
where X 1s a function.

An extended, downward refinement profile for call path p
reports the costs of all call paths of the form p @ ( . .
. X), where x 1s a function.

An extended, upward refinement profile for call path p
reports the costs of all call paths of the form (x...) @
p, where X 1s a function.

In the CPPROF profiling tool, all refinement profiles are
sorted 1nto decreasing order of cost and thresholded by a
user-controlled parameter, which threshold may also be set
at zero.

While there are many ways to approach a program using
the four refinement profile types of the present invention,
onc methodology according to this embodiment of the
present invention which 1s effective at focusing the search
includes first examining the function profile and proceeding
in order down the sorted list, then using first extended and,
if necessary, immediate upward and downward refinement
o 1nvestigate optimization opportunitics. An abstracted call
graph (such as shown in FIG. 12 below) 1s also useful in
understanding performance, because 1t shows when two
fimes may overlap.

All four types of refinement profile of this embodiment of
the present invention have been implemented within the
CPPROF profiling tool. With reference to FIG. 9, profiling
a program to be optimized (the “target program™) under the
present invention 1s divided into a two-step process 1nclud-




J,328,883

15

ing a data collection phase 300 and an analysis phase 400,
with the two phases 1n communication with each other via
a CPPROFDATA file. In an interactive language, such as
Lisp, there 1s no need to write the data file unless the user
wishes to save the data for later inspection. For non-
interactive languages such as C, C++, or Fortran, the data file
1S necessary.

The following description 1s with reference to FIG. 10
which further details the CPPROF data collection and analy-
sis phases according to this embodiment of the present
invention.

For the data collection phase, there are two approaches to
data collection: 1nstrumentation and sampling. The instru-
mentation approach modifies the target program by adding
data collection code to record cost data associated with each
call site. Many prior art profilers are implemented 1n this
fashion (e.g. the Plan 9 profiler, and Quantify).

In the data collection phase, 1n this embodiment, the target
program 1s run under the control of a sampling process in
301 that periodically interrupts the program during run-time.

The sampling approach has a significant advantage over
the 1nstrumentation approach in that its relatively low over-
head allows for minimal perturbation of the target program’s
normal behavior. CPPROEF, under the sampling approach,
periodically interrupts a run of the target program, each time
recording the current stack trace and the allowing the
program to proceed. The overhead (behavior perturbation)
due to sampling can be made arbitrarily small by decreasing
the frequency of sampling. Assuming enough samples are
collected, the run-time cost of a stack trace 1s approximately
proportional to the number of samples that occur when the
frace or one of 1ts extensions 1s executing.

The CPPROFDATA file 1s created 1n step 305. The output
of the data collection phase, whether implemented by instru-
mentation or by sampling, 1s a collection of (stack trace,
cost) pairs which are written to the CPPROFDATA file. In
CPPROFE, this information 1s written 1n an encoded form to
save disk space.

The intermediate data file 1s semantically self-contained
so the analyzer can operate on data collected from programs
in any language for which the data collection phase 1is
implemented. Versions of CPPROF’s data collection rou-
tines have been built for several different programming
environments.

An 1nitial refinement 1s performed on the empty stack
frace generating a function profile 1n 410.

Once the function profile 1s generated, the user enters the
analysis phase. The user then invokes the CPPROF analysis
component which, 1n this embodiment, 1s a programmable
and interactive interpreter or command shell allowing the
user to explore the program’s performance by requesting the
various types of refinement profiles of the present invention.
This allows the user to compute costs and profiles of call
paths, as well as to render abstracted call graphs decorated
with profile information. In addition to refinement profiles,
the user can request upward and downward profiles of an
arbitrary call path.

In step 415 the user decides the first step of the analysis.
Steps 416, 417, 418 and 419 are optional pre-refinement
proiiling steps, carried out to further refine the function
proiile prior to applying the call path refinement profiles of
the present invention. In step 416 the user defines a function
ogroup for refinement. In 417 the user selects to prune or
unprune a tree. In 418 the user will set a view threshold. In
419 the user can have the cost of a selected call path
computed and displayed. The current profile is refined by the

method chosen either in 416, 417, 418 or 419 and the

10

15

20

25

30

35

40

45

50

55

60

65

16

process returns to step 415 for the user to decide whether to
apply the call path refinement profiles or whether to under-
take additional pre-profiling refinement.

After having performed the desired, if any, pre-profiling
refinements, the user will select to continue with application
of the call path refinement profiles of the present invention.
In step 420 the user determines which call path 1s to be
refined. In 4235 the user will select which of the four call path
refinement profiles of the present mvention i1s to be run,
cither an extended downward 430, extended upward 440,
immediate downward 450, or immediate upward 460 refine-
ment profile. The entire refinement process is repeated (i.e.,
after 430, 440, 450 or 460, the program flow returns to 415)
until optimization 1s complete.

The analysis phase according to the present embodiment
will now be explained 1n greater detail.

The first step 1n the analysis phase 1s to build a more
compact representation of the data collected 1n the data
collection phase. This 1s done by building a stack (or sample)
tree, which encodes how much time was spent in each stack
trace. Essentially, each node of this tree 1s labeled by a
function and has a numerical weight (see FIG. 13). This
welght 1s proportional to the amount of time spent while the
stack tree corresponding to the list of functions labeling the
path from the root to the node was a prefix of the program’s
run-time stack. This data representation has the advantage of
being more compact than a list of stack trace costs and 1t can
be constructed from (stack trace, cost) pairs by calling
ADD-TRACE on each pair in succession, starting from a
one-node tree labeled by the root function. Pseudo-code
according to the present embodiment for the ADD-TRACE
routine 1s 1llustrated m FIG. 20.

The utility find-or-make-child takes a stack tree node and
a function label and returns any unique existing child of the
node labeled by the given label, or else allocates a new child,
labels 1t, enters 1t into the stack tree, and returns 1it.

For sampled data, according to one embodiment of the
invention, ADD-TRACE 1s called on each sample paired
with the sampling interval. The weight of a leaf 1s simply the
sum of the costs of all pairs with stack trace equal to the path
from root to that leaf. The weight of an internal node 1s just
the sum of the weights of its children. FIG. 13 shows a stack
tree for the program of FIG. 11. It is notationally convenient
to postpend each sample with the (fictitious) body routine
before adding it to the stack tree. Thus, all leaves of this tree
are labeled by body.

The “first key primitive” or crucial building block used as

a foundation for computing a refinement profile 1s the
routine MAP-CP. It takes a stack tree T, a call path P, and a

function MAP-FN of one (stack tree node) input and no
outputs. It applies MAP-FN to all maximal nodes in T that
lie in D(P). A node lies in D(P) if the stack trace from root
to the node is in D(P). Such a node is maximal if none of its
ancestors lie 1 D(P). One embodiment of a pseudo-code
definition of MAP-CP 1s given 1in FIG. 21.

The MAP-CP routine searches the tree T for maximal
nodes by successively matching function 1 and 1+1 of the
arcument call path P to a node label and the label of its child.
As soon as 1t has searched deeply enough to match all calls
in the call path, it invokes the MAP-FN. If the call path 1s
of formp, @(...) @ p,, then as soon as a node is reached
that lies in D(p,), MAP-CP recurs on each of its children
using p,. The ellipsis suspends the constraint that the last
function of p, call the first function of p, directly.

The time cost of MAP-CP (excluding time in MAP-FN)
is proportional to the number of stack tree nodes not in D(P),
plus the number of maximal nodes in D(P).




J,328,883

17

The procedure COST 1s a simple application of MAP-CP
that computes the cost of a call path, and its pseudo code
according to one embodiment of the present mvention 1s
shown 1n FIG. 22.

MAP-CP will not invoke the map function on a descen-
dant of some other node on which it has invoked it because
no descendant of a maximal node can be maximal. Thus, no
cost will be counted twice. Moreover, as every stack trace
incurring cost and lying in D(P) must lie under some
maximal node in D(P), no cost due to call path P will be
missed.

Procedure REF (another MAP-CP application) computes
call path refinement profiles. Pseudo code for procedure
REF according to one embodiment of the present invention
1s shown 1 FIG. 23.

init-function-records 1nitializes symbol table fields in
which costs are to be collected, and function-records-to-
proiile constructs the profile from this information. Since
cach refinement profile computes at most one entry corre-
sponding to each function in the program, the costs can be
stored 1n records associated with the function name. As a last
step, function-records-to-profile can add each function
name, cither with or without ellipsis, depending upon
EXTENDED?, to the refined call path before constructing
the profile.

If the EXTENDED? flag 1s true, indicating the caller
wants an extended refinement, then FUNCTION-COSTS
computes for each function 1n the subtree 1ts cost and adds
it to the score field of the function’s record. This 1s essen-
fially equivalent to individually computing the cost of each
call path of form p @ ( . . . X) except it requires only one tree
walk 1nstead of one for each x 1n the program. If
EXTENDED? 1s false, then 1t must only count cost incurred
when that function 1s immediately called by the
REQUIRED-PARENT-LABEL, which 1s set to the last
function 1n the call path P.

Pseudo-code for the function FUNCTION-COSTS used
by REF 1s shown 1 FIG. 24.

If PARENT 1s NIL, corresponding to the case when REF’s
EXTENDED? flag 1s true, the FUNCTION-COSTS sepa-
rately adds up the weights of all nodes labeled by each given
function, except that when 1t first reaches a node for a given
function, 1t locks the record while searching below that
node, prohibiting adding cost for that function. This avoids
counting overlapping costs twice. If PARENT is non-NIL,
then FUNCTION-COSTS only adds to a function’s score 1f
the immediate parent of the current node 1s the last function
on the call path to be refined (the “required parent label™).
Again, locking 1s performed to avoid multiply attributing,
fime.

Since all datastructure operations can be implemented in
constant time, FUNCTION-COSTS requires time propor-
tional to the number of nodes 1n its mnput tree. The time cost
of REF 1tself 1s the time to 1nitialize the function records plus
the time to build the profile from the function records plus
the time to map FUNCTION-COSTS over all the maximal
nodes denoted by the call path. Initializing records and
proflle construction are linear in the number of distinct
functions appearing in the stack tree, hence dominated by
linear 1n the size of the stack tree. Moreover, no two distinct
invocations of FUNCTION-COSTS touch the same tree
node, because 1t 1s invoked once on each maximal node for
the call path, and no node touched by MAP-CP 1s touched
by FUNCTION-COSTS. Thus, the mapping time 1s domi-
nated by the number of nodes 1n the stack tree. This shows
that the entire run-time for REF 1s proportional to the size of
the stack tree.

10

15

20

25

30

35

40

45

50

55

60

65

138

REF takes a stack tree argument and computes downward
refinement profiles. Upward refinements can be computed
by constructing a dual (“inverted™) stack tree whose nodes
represent the total cost incurred when the path from node to
root 1s a suflix of the program’s call stack. This can be
constructed from the original stack samples by simply
reversing each list before calling ADD-TRACE. The body
subroutine becomes the root and each leaf 1s labeled by the
former root function. One can then implement upward
refinement by simply calling REF on the dual stack tree with
the reversal of the call path, reversing the call paths in the
resulting profile.

In practice, the stack tree 1s such a compact representation
that even maintaining both the primary and the dual uses less
space than simply storing all the samples.

FIG. 12 shows the abstracted call graph of a sample
complex program taken directly from source code for the
Interactive Specification Acquisition Tools (ISAT) system.
ISAT 1s a rule-based design and programming environment
for reactive systems. The LOAD-MODEL subroutine of the
code builds an executable rule-based system model in
memory by reading a definition from one or more source
files. In particular, such definitions may include “instantiate”
statements which involve first recursively loading another
model and then renaming and recompiling its rules into the
overall model being built. Instantiations may nest arbitrarily.

In this example, the ISAT function PROCESS-
INSTANTIATE handles 1nstantiation. An immediate, down-
ward refinement of the length-1 call path (PROCESS-
INSTANTIATE) reveals the usage of time by the program as
illustrated in FIG. 14.

Three times as much time 1s consumed loading the
submodels as 1n actually instantiating them. Therefore 1t

would be more productive to look first at the efficiency of
this recursive call to LOAD-MODEL 1n the context of being

called by PROCESS-INSTANTIATE. By repeatedly refin-
ing the most costly entry, the following results shown 1in
FIG. 15 are obtained.

Continuing refinement through application of extended
refinement according to the present invention exposes a
significant performance problem 1n that there 1s no need to
compile the builtin knowledge when it 1s loaded into the
submodels because the top-level model will compile 1t as
well. These results are shown in FIG. 16. Because the
program 1S recursive, the cost fractions may sum to more
than 1, as the different entries may represent overlapping
fimes.

From these results 1t 1s determined that run time may be
reduced 38.1% by inhibiting compilation during submodel
loading. As will be appreciated by one skilled in the art, the
level of detail of information provided, as 1llustrated in this
example, 1s more detailled and useful information than
merely that “the program spent a lot of time 1n COMPILE”
as prior art profiling would 1ndicate.

Call path refinement has teased apart time spent there due
to the recursive LOAD-MODEL calls from that due to the
top-level call. While some time must be spent compiling, 1t
1s only compilation done while recursively loading the
submodels (prior to their inclusion in the top-level model)
that 1s redundant. Such detailed information 1s not readily
obtained from other types of prior art profilers.

Other illustrative types of refinement according to the
present invention include optimization of the program with-
out knowing its history. For example, in the above sample
program where there 1s no indication to begin with
PROCESS-INSTANTIATE, optimization will begin with a

refinement of empty call path ( ). Refinement of () is called




J,328,883

19

a Tunction profile and 1s 1dentical for all four types of
refinement as leading and trailing ellipses do not change the
denotation of a call path. Refinement 1n this example yields
the result in FIG. 17.

This 1nitial refinement simply shows the total cost of each
function 1n the program. As can be seen 1n the example,
more than 90% of the time 1s spent compiling. Focus 1s then
directed toward compilation time to determine which func-
tion or functions spend the most time compiling, with the
results of such refinement illustrated in FIG. 18.

The function INSTALL-BUILTIN-KNOWLEDGE can
be seen as spending a large amount of time compiling. This
function, as shown 1n FIG. 19, can then be refined imme-
diately upward to determine how it is called (two interme-
diate steps are suppressed).

This refinement yields sutficient information to conclude
that a significant cost 1s the unnecessary compilation of the
builtin knowledge during instantiation.

The CPPROF profiler implemented according to the
present invention provides for stack tree editing operations,
including the ability to add virtual program structure to the
stack tree, and the ability to prune out time spent either 1n or
not-in given call paths. Virtual structure allows one to
aggregate time due to several different functions. Thus, one
can profile the cost of data structure implementation deci-
sions (e.g., to determine how much time is spent 1n table
operations where a table 1s implemented as an association
list). One can also aggregate time spent in all methods on a
generic function, or all operators on a class. This allows even
better connection of profile mnformation with design deci-
sions. The data collection phase of CPPROF can be imple-
mented to mclude 1 the CPPROFDATA file a list of group
definition commands corresponding to certain linguistic
constructs appearing 1n the source code that naturally cor-
respond to groups, such as a group for all member functions
of a C++class. This has, mn fact, been implemented of
C++data collection in CPPROF.

Pruning operations allow one to 1gnore portions of the test
run that are deemed either unrepresentative or uninteresting.
For example, one may be mterested only 1n the steady-state
behavior of the code, so pruning may be used to exclude
fime spent 1n 1nitialization and finalization.

The refinement types of the present invention have been
implemented 1 the CPPROF system. While the embodi-
ment of refinement profiling of present invention described
above focuses on real-time profiles for illustrative purposes,
there 1s nothing about time measurement inherent to call
path profiling. Any monotonically increasing program
resource can be proiiled, assuming a resource clock 1is
available.

CPPROF, utilizing refinement profiles according to the
present 1nvention, can be used to profile various program
resources including space allocation, page faults, system
calls, traps, and cache misses 1n Lisp, C, Fortran, and
C++programs. These other resources may be profiled 1n
1solation, or the data from distinct resources may be com-
bined into a single, scamlessly integrated data set.

FIG. 8, as indicated above, shows a workstation. The
hardware depicted i FIG. 8 1s used to illustrate implemen-
tation of this embodiment. The FIG. 8 workstation 1s com-
prised of a Direct Access Storage Device which contains {ile

space, main memory, and instructions to derive the stack tree
of FIG. 13 and the call path profiles illustrated 1 FIGS.

14-19.

Workstation 800, which may be implemented using, for
example, a SUN® workstation includes a SUN® display
monitor and a keyboard that can be used to display pre-

10

15

20

25

30

35

40

45

50

55

60

65

20

stored data or to specily parameters for program execution.
Memory space 1s allocated by workstation 800 immediately
before the execution of instructions associated with data
code 801, user’s program 802, stack tree construction pro-
oram 803, profile computation program 804. Memory space
for Scratch-pad-type of use 1s also allocated to auxiliary
storage arca 806. Accordingly, the aflorementioned elements
are represented as memory maps 1n FIG. 8, while CPPROF
data file 805 1s represented as disk space.

Data collection code 801 comprises instructions that are
included 1n, or linked to, the source code of user’s program
802 to periodically mterrupt execution of the user’s program
802 to write a stack sample to data file 805. User’s program
802 which contains the code whose performance bottlenecks
are being 1dentified, 1s arranged to call data collection code
801 to set up the interrupts. In this example, when more
resource units (such as milliseconds) pass than a single
sample boundary, the instructions cause a corresponding
number of hits to be credited to the sample. This process of
interrupting the program execution and recording sample
hits continues until the user’s program 802 terminates.

Stack tree construction program 803 stores a set of
instructions whose execution 1n a processor causes a stack
tree to be built. The stack sample comprises a list of a) the
number of sample hits, b) the current program counter, ¢) the
return address of the current stack frame, and d) the return
address of the caller and of the caller’s caller, etc., until the
root procedure 1s reached. A nested sequence of calling and
called procedures 1s derived by analyzing the program
counter and return addresses and mapping them to their
corresponding procedure names. Therefore, 1nstructions in
the stack tree construction program 803 a) trace for each
procedure the hierarchial path of calling and called proce-
dures up to the root of the program, and b) assigns cost
consumption to each path based on the number of times a
sequence ol calling and called procedures within a path
appear 1n the samples, using code for ADD-TRACE shown
in FIG. 20.

Profile computation program 804 stores the instructions
needed to derive a call path profile. An exemplary set of such
instructions that may be used to derive call path refinement
proiiles according to the present invention i1s shown i FIG.
23. Those 1nstructions work for arbitrarily recursive pro-
orams and for arbitrary choice of call path to be refined by
the user. Included 1n profile computation program 804 1s a
separate output routine that takes the output of those mnstruc-
tions and formats the output for readability.

The profile computation program 804 also includes user
interface management instructions that allow the user to a)
specily via the keyboard of processor 800, for example, the
type of profile desired b) identify the desired focus proce-
dure and call path to be refined and c) set the threshold of
resource consumption for the call paths to be included 1n the
proiile. Also facilities are provided for pruning, unpruning
and for defining virtual function groups. Instructions for the
display of the derived call path profile on the monitor of
workstation 800 are also included 1 the profile computation
program 804. Derived stack trees and call path profiles can
be stored 1n auxiliary storage arca 806.

It would be appreciated that the process of analyzing a call
path profile can be divorced from the process of collecting
data during the run of the user’s program. These two
processes can be carried out 1n separate computers as long
as the data file 8035 1s transferred from one computer to the
other.

The foregoing 1s an 1llustrative embodiment of this inven-
tion. Persons skilled in the art can easily conceive of



J,328,883

21

alternative arrangements providing functionality similar to
this embodiment without deviating from the fundamental
principles or the scope of this mvention.

I claim:

1. A method for measuring usage of at least one focus
resource by a target program having a plurality of call paths,
said target program having at least one procedure, compris-
ing the steps of:

providing a call path profile containing a data list, 1n some

predetermined order, of some subset, mncluding a null
set, of said plurality of call paths together with asso-
clated usage cost of said focus resource;

selecting a focus call path from said call path profile or

from said plurality of call paths; and

computing a refinement call path profile showing said

usage of said focus resource by refinement call paths of
said focus call path wherein said refinement call path
proflle 1s invoked by a user via a unique switch with
said call path to be analyzed indicated by said focus call
path.

2. The method of claim 1 wherein said computing said
refinement call path profile shows said usage of said focus
resource of a subset of said refinement call paths of said

focus call path.
3. The method of claim 2 wherein said data collection

phase comprises running said target program on said pro-
cessor under control of a sampling process that periodically

interrupts said program and a stack sample 1s generated and
recorded.

4. The method of claim 2 wherein said data collection
phase comprises 1nstrumenting said target program by add-
ing a data collection code as part of an instrumentation
process, running said program on said processor, and record-
ing data on said usage costs associated with each of at least
one call site while said target program 1s running.

5. The method of claim 1 further comprising the step of
defining a function group from said call paths 1n said call
path profile which allows grouping of said call paths from
said data list as said focus call path and computing said
refinement call path profile on said focus call path.

6. The method of claim 5 wheremn an mitial call path
profile 1s a function profile.

7. The method of claim 6 wherein said function profile 1s
derived from refinement of an empty call path wherein all
said function groups 1n said target program are identified
along with their proportion of usage of said focus resource.

8. The method of claim 1 wherein said call path profile 1s
derived by running said target program using a processor in
a data collection phase during which information regarding
said usage of said focus resource 1s collected and computing
said call path profile containing said data list.

9. The method of claim 1 further comprising the step of
pruning to exclude some of said data from said call path
proiile, or unpruning to restore some or all of said excluded
data and computing said refinement call path profile on said
pruned or unpruned call path profile.

10. The method of claim 1 further comprising the step of
displaying said refinement call path profile.

11. The method of claim 1 further comprising the step of
displaying a subset of said refinement call path profile.

12. The method of claim 1 where said refinement call path
proiile 1s sorted 1n decreasing order of said usage cost.

13. The method of claim 1 wherein the steps of selecting
said focus call path and computing said refinement call path
proiile are iteratively repeated by a user until desired level
of refinement has been attained.

14. The method of claim 1 wherein an initial call path
proiile 1s a function profile.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

15. The method of claim 14 wherein said function profile
1s dertved from refinement of an empty call path wherein all
said procedures 1n said target program are 1dentified along
with their proportion of usage of said focus resource.

16. The method of claim 1 wherein said call path profile
1s derived by selecting said focus resource from a plurality
of monotonic computer resources, running said target pro-
oram and collecting data regarding usage of said focus
resource, generating a stack tree and generating said call
path profile from said stack tree.

17. The method of claim 1 wherein said computed refine-
ment call path profile 1s merged 1nto a previously computed
said refinement call path profile so resulting computed
refinement call path profile contains both newly computed
and said previously computed information of said usage
COSIS.

18. The method of claim 17 wherein said merged refine-
ment call path profile 1s sorted in decreasing order of said
usage costs of said focus call path.

19. The method of claim 1 wherein said refinement call
path profile 1s an extended refinement profile, said extended
refinement profile showing for each said refinement call path
said focus resource usage along a summary of all said call
paths starting with said focus call path and ending with a
procedure or function group.

20. The method of claim 19 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

21. The method of claim 20 wherein an initial call path
proiile 1s a function profiile, said function profile 1s dertved
by selecting said focus resource from a plurality of mono-
tonic computer resources, running said target program and
collecting data regarding usage of said focus resource,
generating a stack tree and generating said function profile
from said stack tree, said extended upward refinement call
path profile 1s computed by constructing a dual of said stack
tree and computing said extended upward refinement call
path profile from said dual stack tree.

22. The method of claim 1 wheremn said refinement call
path profile 1s an immediate refinement profile, said 1imme-
diate refinement profile computing said focus resource usage
onc procedure or function group call level immediately
upward or downward from said focus call path.

23. The method of claim 20 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

24. The method of claim 23 wherein an initial call path
proiile 1s a function profile, said function profile 1s derived
by selecting said focus resource from a plurality of mono-
tonic computer resources, running said target program and
collecting data regarding usage of said focus resource,
generating a stack tree and generating said function profile
from said stack tree, said immediate upward refinement call
path profile 1s computed by constructing a dual of said stack
tree and computing said immediate upward refinement call
path profile from said dual stack tree.

25. The method of claim 1 wherein said focus resource 1s
selected from a plurality of monotonic computer resources.

26. A method for measuring usage of a focus resource by
a target program having a plurality of call paths, said target

program having at least one procedure, comprising the steps
of:

providing a call path profile containing a data list, in some
predetermined order, of some subset of said plurality of
call paths together with associated usage cost of said
focus resource;

selecting a focus call path from said call path profile; and



J,328,883

23

computing a refinement call path profile showing said
usage of said focus resource by refinement call paths of
said focus call path by applying an extended refinement
prodile, said extended refinement proiile invoked by a
user via a unique switch with said user specitying said
focus call path to be analyzed, said extended refinement
proiile showing for each said refinement call path said
focus resource usage along a summary of all said call
paths starting with said focus call path and ending with
a procedure or function group.

27. The method of claim 26 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

28. A method for measuring usage of a focus resource by
a target program having a plurality of call paths, said target
program having at least one procedure, comprising the steps

of:

providing a call path profile containing a data list, 1n some
predetermined order, of some subset of said plurality of
call paths together with associated usage cost of said
focus resource;

selecting a focus call path from said call path proiile; and

computing a relinement call path profile showing said
usage of said focus resource by refinement call paths of
said focus call path by applying an immediate refine-
ment prodile, said immediate refinement profile invoked
by a user via a unique switch with said call path to be
analyzed indicated by said focus call path, said 1mme-
diate refinement profile computing said focus resource

usage one procedure or function group call level imme-
diately upward or downward from said focus call path.

29. The method of claim 28 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

30. A method for improving performance of a target
program having a plurality of call paths, said target program
having at least one procedure, said method comprising the
steps of:

providing a call path profile containing a data list, 1n some

predetermined order, of some subset of said plurality of

call paths together with associated usage costs of a

focus resource;

(a) selecting a focus call path from said call path profile
or from said plurality of call paths;

(b) computing a refinement call path profile showing
said usage of said focus resource by refinement call
paths of said focus call path wherein said refinement
call path profile 1s invoked by a user via a unique
switch with said call path to be analyzed indicated by
said focus call path;

(¢) determining a bottleneck call path from said usage
shown 1n said refinement call path profile; and

(d) optimizing said bottleneck call path by changing
code of said target program.

31. The method of claim 30 wherein steps (a)—(e) are
iteratively repeated to further improve efficiency of said
target program until either (1) desired efficiency is reached,
or (2) no further improvements in efficiency can be
achieved.

32. The method of claim 30 wherein said optimization
step (e) 1s implemented by first modifying said target pro-
oram wherein said procedures of said focus call path are
rewritten 1nto new procedure versions so that said new
procedure versions are only called within a context specified
in said focus call path, and then, said new procedure versions
are refined using said steps (a)—(e).

33. A method for measuring and presenting information as
to usage of a focus resource by a target program having a

10

15

20

25

30

35

40

45

50

55

60

65

24

plurality of call paths, said target program having at least one
procedure, comprising the steps of:

(a) running said target program using a processor in a data
collection phase during which mnformation regarding
said usage of said focus resource 1s collected;

(b) computing a call path profile containing a data list of
some subset of said plurality of call paths together with
their resource usage costs, 1n some predetermined
order;

(¢) displaying said profile to a user;

(d) allowing said user to define a new function group of
said call paths from said profiile;

(¢) allowing said user to exclude some of said data from

said data list, or to restore some or all of said excluded
data;

(f) allowing said user to specify one or more single call
paths of said call path profile, computing said usage
costs, and displaying said usage costs to said user;

(g) allowing said user to select a focus call path to be
refined from said call path profile;

(h) computing a refinement profile showing usage of said
focus resource via refinement call paths of said focus
call path;

(1) displaying said refinement profile; and

(j) allowing said user to return to said step (d), or

terminating said method.

34. A system for measuring usage of at least one focus
resource by a target program having a plurality of call paths,
said target program having at least one procedure, compris-
Ing:

means for providing a call path profile containing a data

list, 1n some predetermined order, of some subset,
including a null set, of said plurality of call paths

together with associated usage cost of said focus
resource;

means for selecting a focus call path from said call path
profile or from said plurality of call paths; and

means for computing a refinement call path profile show-
ing said usage of said focus resource by refinement call
paths of said focus call path wherein said refinement

call path profile 1s invoked by a user via a unique switch

with said call path to be analyzed indicated by said
focus call path.

35. A system for measuring usage of a focus resource by

a target program having a plurality of call paths, said target
program having at least one procedure, comprising the steps

of:

means for providing a call path profile containing a data
list, 1n some predetermined order, of some subset of
said plurality of call paths together with associated
usage cost of said focus resource;

means for selecting a focus call path from said call path
profile; and

means for computing a refinement call path profile show-
ing said usage of said focus resource by refinement call
paths of said focus call path by applying an extended
refinement profile, said extended refinement profile
invoked by a user via a unique switch with said user
specifying said focus call path to be analyzed, said
extended refinement profile showing for each said
refinement call path said focus resource usage along a
summary of all said call paths starting with said focus
call path and ending with a procedure or function

group.



J,328,883

25

36. The system of claim 35 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

J7. A system for measuring usage of a focus resource by
a target program having a plurality of call paths, said target

program having at least one procedure, comprising the steps
of:

means for providing a call path profile containing a data
list, 1n some predetermined order, of some subset of
said plurality of call paths together with associated
usage cost of said focus resource;

means for selecting a focus call path from said call path
proiile; and

means for computing a refinement call path profile show-
ing said usage of said focus resource by refinement call
paths of said focus call path by applying an immediate
refinement profile, said immediate refinement profile
invoked by a user via a unique switch with said call
path to be analyzed indicated by said focus call path,
said immediate refinement profile computing said focus
resource usage one procedure or function group call
level 1immediately upward or downward from said
focus call path.

38. The system of claim 37 wherein said refinement call
path profile 1s upward or downward relative to said focus
call path.

39. A system for improving performance of a target
program having a plurality of call paths, said target program
having at least one procedure, comprising the steps of:

(a) means for providing a call path profile containing a
data list, in some predetermined order, of some subset

of said plurality of call paths together with associated
usage costs of a focus resource;

(b) means for selecting a focus call path from said call
path profile or from said plurality of call paths;

(¢) means for computing a refinement call path profile
showing said usage of said focus resource by refine-
ment call paths of said focus call path wheremn said

10

15

20

25

30

35

26

refinement call path profile 1s invoked by a user via a
unique switch with said call path to be analyzed 1ndi-
cated by said focus call path;

(d) means for determining a bottleneck call path from said
usage shown 1n said refinement call path profile; and

(¢) means for optimizing said bottleneck call path by
changing code of said target program.
40. A system for measuring and presenting information as
to usage of a focus resource by a target program having a
plurality of call paths, said target program having at least one
procedure, comprising the steps of:

(a) means for running said target program using a pro-
cessor 1n a data collection phase during which infor-
mation regarding said usage of said focus resource 1s
collected;

(b) means for computing a call path profile containing a
data list of some subset of said plurality of call paths
together with their resource usage costs, 1n some pre-
determined order;

(c) means for displaying said profile to a user;

(d) means for defining a new function group of said call
paths from said profiile;

(¢) means for excluding some of said data from said data
list, or to restore some or all of said excluded data;

(f) means for specifying one or more single call paths of
said call path profile, computing said usage costs, and
displaying said usage costs to said user;

(g) means for selecting a focus call path to be refined from
said call path profile;

(h) means for computing a refinement profile showing
usage of said focus resource via refinement call paths of
said focus call path;

(1) means for displaying said refinement profile; and

() means for either returning to said step (d), or termi-
nating operation of said system.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

