United States Patent i
Leung

US005822580A
(11] Patent Number:

5,822,580

45] Date of Patent: Oct. 13, 1998

[54] OBJECT ORIENTED PROGRAMMING
BASED GLOBAL REGISTRY SYSTEM,
METHOD, AND ARTICLE OF
MANUFACTURE

[75] Inventor: Wyatt Leung, Santa Clara, Calif.

73] Assignee: Object Technology Licensing Corp.,
Cupertino, Calif.

21] Appl. No.: 590,344

22| Filed: Jan. 19, 1996
51] Int. CLO oo e, GO6F 17/30
52] US.Cl o, 395/614; 395/610; 395/683
58] Field of Search ... 395/610, 614,
395/683
[56] References Cited
U.S. PATENT DOCUMENTS
4,821,220 4/1989 Duisbergcceeeeeieriereereenennnns 364/578
4,860,204 8/1989 Gendroncceeeveevinnniiinvvnnnnn, 395/702
4,953,080 8/1990 Dysart et al. ...cceeveevevennvnneennne. 364/200
5,041,992 §/1991 Cunningham et al. 364/518
5,050,090 9/1991 Golub et al. .eevvveerevvnnennn. 364/478
5,060,276 10/1991 Morris et al. vvevvvvniieeiiiiiiieneenes 382/8
5,075,847 12/1991 Frommeooooevvvvvvnenvevvennnnnnn.. 395/700
5,075,848 12/1991 Laiet al. .cooovvvvvnevivvniniieeininnnen. 395/425
5,003,914 3/1992 Coplien et al. ...ccvevvverveeeennenen. 395/700
5,119.475 6/1992 Smith et al.ooeevvvinineennnnnn, 395/156
5,125,091 6/1992 Staas et al. ..cooeevvvvnvneereeinnnnnn.n. 395/650
5,133,075 771992 RiSCh ovvvvvineieiiieeeeeinn 395/800
5,151,987 9/1992 Abraham et al. ... 395/575
5,159,687 10/1992 Richburgccccccevveeeveveeveenennns 395/702
5,181,162 1/1993 Smith et al. .oeevvvnvvneeeinnnnnn. 364/419
5,297,284 3/1994 Jones et al. ..coeeevvirniniiriiininnnn 395/700
5,315,703 5/1994 Matheny et al.ccceevveunnnnnene. 395/164
5,317,741 5/1994 Schwankecocovvvvevevvennnnnnn. 395/700
5,325,533 6/1994 Mclnerney et al. 395/700
5,327,562 7/1994 AdcocKovoriiiiiiiieeeiiiinn 395/700

(List continued on next page.)

OTHER PUBLICAITONS

Dumas, Joseph and Paige Parsons. “Discovering the Way

Programmers Think: New Programming Environments.”
Communications of the ACM. Jun. 1995: pp. 45-56.

Pascoe, Geollrey A. “Encapsulators: A New Software Para-
digm 1n Smalltalk—80.” OOPSLA 86 Proceedings. Sep.

1986: pp. 341-346.

Purtilo, James M. and Joanne M. Atlee. “Module Reuse by
Interface Adaptation.” Software —Practice and Experience.

Jun. 1991: pp. 539-556.

Lam, Siman S. “Protocol Conversion.” IEEFE Transactions
on Software Engineering. Mar. 1988: pp. 353-362.

Thatte, Satish R. “Automated Synthesis of Interface Adapt-
ers for Reusable Classes.” POPL, '94. Jan. 1994: pp.
174-187.

Yellin, Daniel M. and Robert E. Strom. “Interfaces, Proto-
cols, and the Semi—Automatic Construction of Software

Adaptors.” OOPSLA "94. Oct. 1994: pp.176-190.

Jacobson, Ivar and Fredrik Lindstrom. “Re—engineering of
old systems to an object—oriented architecture.” OQOPSLA
01, pp. 340-350.

(List continued on next page.)

Primary Fxaminer—Thomas G. Black
Assistant Examiner—IDi1ane Mizrahi
Arttorney, Agent, or Firm—Kudirka & Jobse

57 ABSTRACT

A data-driven global registry method for use to extend a
framework in an object oriented programming (OOP) based
computer system 1s provided. The method includes provid-
ing a new class defined in a shared class library which has
data members and member functions related to a particular
task. In addition, a new class attributes file which specifies
attributes associated with the new class 1s generated. The
new class attributes file 1s placed in a global registry
conflguration directory 1n a computer system such that a
plurality of client applications can access the global registry
confliguration directory to determine if the new class has
been 1nstalled in the class library. In an alternative
embodiment, an object-based global registry method 1is
provided. In addition, a storage device readable by a com-
puter system for implementing either OOP-based global
registry method and OOP-based global registries themselves
are provided.

27 Claims, 5 Drawing Sheets

S ™
I"-«.. =TA<T _,,-J"-"_“ =Ap

PRCV.DE NEW CLASS - 202
¥ |
GEMERATE MEW CLAGS o4
ATTRIBJTES TIif
Pl ACC THE NEW CLASS —— ZUE
AITRIZUTES FILE “W GLOBAL
RECIZTRY COMF iGLAATION
- DIRECTORY
SCAN THE GLOBAL ~—— 28
RECISIRY TONMISURATION
ZIRLCTARY TO GEMERATE
LOO4US TARLT OF

AvAlLARLE CLASSES

. ¥
RETRIEVE LIST OF CLASSES
I THE LOCKUF TASLE
WHICH MAVCH C_TENT
| &7F ICATION'S ATTRIZUTC GUFRY

|
1

SELECT PARTICULAR CLASS |—— 512
FRCM RETRTEVED LIST

- #

SEMERATS INSTANCE OF 14
THE SELECTED CLASS AS A
NEW DRIECT

'

|7 TNITIALIZE IhT NEW D3JZCT 56
WITE CLICNT APFLICATION '
SPFCITIED 2a%aVE RS |

— 01

D }——5i8

5,822,580
Page 2

U.S. PATENT DOCUMENTS

5,339.430 8/1994 Tundin et al. ..coooeevvvnniiiinnnnn.n. 395/700
5,339,438 8/1994 Conner et al. ..ccovvvvveeerevennnnnn.n. 395/700
5,421,016 5/1995 Conner et al. .ooovvvvvvneevveennnnnn. 395/700
5,423,023 6/1995 Batch et al.cooevvvvvivivennnnnnn.n. 395/500
5,428,792 6/1995 Conner et al.covvvivvneinnnnnnn. 395/700
5,432,925 7/1995 Abraham et al.cocoeveeennnnn. 395/500
5,437,027 7/1995 Bannon et al.cooovveevnneennnnn.n. 395/614
5,473,777 1271995 Moeller ..oevvvvvieeeeieeenvennnn 395/682
5,566,302 10/1996 Khalidi ...ccooveevvvveneeeninneeeneennn 395/680
5,659,751 8/1997 Heningercccccceeeeeeeeeveevnnnnen 395/685

OTHER PUBLICAITONS

Filman, Robert E. “Retrofitting Objects.” OOPSLA "87. Oct.
1987: pp. 342-353.

Dietrich, Walter C., Lee R. Nackman and Franklin Gracer.
“Saving a Legacy with Objects.” OOPSLA °89. Oct. 1989:
77-83.

Dotts, Alan and Don Birkley. “Development of Reusable
Test Equipment Software Using Smalltalk and C.” OOPSILA

'92. Oct. 1992: pp. 31-35.

Duntemann, Jetf and Chris Marinacci. “New Objects for Old
Structures.” BYTE. Apr. 1990: pp. 261-2606.

Alabiso, Bruno. “Transformation of Data Flow Analysis
Models to Object—Oriented Design.” OOPSIA °88. Sep.

1988: pp. 335-353.

Madhavyi, Nazim H., Jules Desharnais, Luc Pinsonneault,
and Kamel Toubache. “Adapting Modules to an Integrated
Programming Environment.” IEEE International Confer-
ence on Programming Languages. 1988: pp. 364-371.

Dutt, Nikil D. “Legend: A Language for Generic Component

Library Description.” IEEE International Conference on
Computer Languages. 1990. 198-207.

U.S. Patent Oct. 13, 1998 Sheet 1 of 5 5,822,580
NETWORK
120 2
110 116 114 118 134
cPU ~OM AL COMMUNICATIONS
I | ADAPTER |
112;’ B l
USER
INTERFACE DISPLAY
ADAPTER \ ADAPTER
T — —
124 122 | 138
] | 136
i 4
132 126 128 FIG. 1
210
206 Y
202 200 / —
| _ B TMovie _‘
Flattened Creotor-1 |)
— ot el 1 — 212
__F\ctt_ened Creator 2 208 _/ o

— - - -
Fl_ottened Creator n—1

%i\ L muaioFFSequence
| {TAudioSequenceCreator 1//! - |

Flotte-ned Creotor_

N :

_—.J

—

204

FIG. 2

e L ———

5,822,580

Sheet 2 of 5

Oct. 13, 1998

U.S. Patent

4019

¢ Ol
| T |
YOS — Qo¥a | manoipny) | 4o _ MOIAL | = | 0ZLXO9L| 0L | maIp X0qjo0]
I _ - 1 _ |)
aboyony SSD|) 9boyoobd ssp|) ¢ oo 971G uoisiap Aiobaypy uipbwoQ
dw] dwr [dV [dV
, L |] -]] |
Z/SO | SIAONIAY] dJ 134014 ce OapUl | awl]%2InQ ¢l 19AD|d DIpaNaW! |
B) R S R | _
oboxon4 sspi) 8boyong ssD|N ¢ o 29p0) 1DWIO4 uoisuap Auobaipn uiowo(
dw] dw] [dv Idv

00¢

i

5,822,580

Sheet 3 of 5

Oct. 13, 1998

U.S. Patent

1401%

8CY
Ansibas ayy ul
AJjus oQquIossp 0}
Pasn sainglilly
90¢ vig Ol¢
s - N N 7 D
JOYH MIIAOIPNY | dd MIIA| "e 021 X091 01l MIIA X0Q|00]
sboxony SsD|) 8boyoog sso|n ‘o 371G co_wLm> Aiobsip)y ubwoq
Q,M: QCM: [V 1dV) N N N
SLe
o L Nmn owm 91¢ AL 80¢

U.S. Patent Oct. 13, 1998 Sheet 4 of 5 5,822,580

START

PROVIDE NEW CLASS 202

GENERATE NEW CLASS —— 204
ATTRIBUTES FILE

| PLACE THE NEW CLASS 506

ATTRIBUTES FILE IN GLOBAL

REGISTRY CONFIGURATION
DIRECTORY

o

SCAN THE GLOBAL 508
REGISTRY CONFIGURATION

DIRECTORY TO GENERATE
LOOKUP TABLE OF
AVAILABLE CLASSES

o

RETRIEVE LIST OF CLASSES ~—510

IN THE LOOKUP TABLE |
WHICH MATCH CLIENT

APPLICATION'S ATTRIBUTE QUERY

SELECT PARTICULAR CLASS ~——512

FROM RETRIEVED LIST

 GENERATE INSTANCE OF 514
THE SELECTED CLASS AS A

NEW OBJECT

INITIALIZE THE NEW OBJECT 516
WITH CLIENT APPLICATION
SPECIFIED PARAMETERS

FIG. § m 518

U.S. Patent

Oct. 13, 1998 Sheet 5 of 5

START 500

PROVIDE NEW CLASS

PROVIDE AN OBJECT
FACTORY CLASS FOR THE

5,822,580

602

I

~—— 604

NEW CLASS N

T

STORE THE OBJECT
FACTORY CLASS IN A
GLOBAL REGISTRY FILE

~—— 006

RETRIEVE LIST OF CLASSES —— 608

IN THE GLOBAL REGISTRY FILE

- APPLICATION'S ATTRIBUTE QUER

WHICH MATCH CLIENT |

4

FrROM RETRIEVED LIST

IR

GENERATE INSTANCE OF
THE SELECTED CLASS AS A

NEW OBJECT

e

| INITIALIZE THE NEW OBJECT

WITH CLIENT APPLICATION
SPECIFIED PARAMETERS

FIG. 6

SELECT PARTICULAR CLASS —— 610

612

614

3,822,580

1

OBJECT ORIENTED PROGRAMMING
BASED GLOBAL REGISTRY SYSTEM,
METHOD, AND ARTICLE OF
MANUFACTURE

FIELD OF THE INVENTION

The present mnvention relates generally to object oriented
programming based environments. More particularly, the
present 1nvention relates to a class installation scheme
operable during run time for an object oriented program-
ming based environment.

BACKGROUND OF THE INVENTION

Object oriented programming (OOP) has become increas-
ingly used to develop complex applications. As OOP moves
toward the mainstream of software design and development,
various software solutions will need to be adapted to make
use of the benelits of OOP. A need exists for these principles
of OOP to be applied to a messaging interface of an
clectronic messaging system such that a set of OOP classes
and objects for messaging interface can be provided. OOP 1s
a process of developing computer software using objects,
including the steps of analyzing the problem, designing the
system, and constructing the program. An object 1s a soft-
ware package that contains both data and a collection of
related structures and procedures. Since 1t contains both data
and a collection of structures and procedures, 1t can be
visualized as a self-suificient component that does not
require other additional structures, procedures or data to
perform 1ts specific task. OOP, therefore, views a computer
program as a collection of largely autonomous components,
called objects, each of which 1s responsible for a speciiic
task. This concept of packaging data, structures, and proce-
dures together 1n one component or module 1s called encap-
sulation.

In general, OOP components are reusable software mod-
ules which present an interface that conforms to an object
model and which are accessed at run-time through a com-
ponent 1ntegration architecture. A component integration
architecture 1s a set of architecture mechanisms which allow
software modules 1n different process spaces to utilize each
others capabilities or functions. This 1s generally done by
assuming a common component object model on which to
build the architecture.

It 1s worthwhile to differentiate between an object and a
class of objects at this point. An object 1s a single 1nstance
of the class of objects, which 1s often just called a class. A
class of objects can be viewed as a blueprint, from which
many objects can be formed.

OOP allows the programmer to create an object that 1s a
part of another object. For example, the object representing,
a piston engine 1s said to have a composition-relationship
with the object representing a piston. In reality, a piston
engine comprises a piston, valves and many other compo-
nents; the fact that a piston 1s an element of a piston engine
can be logically and semantically represented 1n OOP by two
objects.

OOP also allows creation of an object that “depends
from” another object. If there are two objects, one repre-
senting a piston engine and the other representing a piston
engine wherein the piston 1s made of ceramic, then the
relationship between the two objects 1s not that of compo-
sition. A ceramic piston engine does not make up a piston
engine. Rather it 1s merely one kind of piston engine that has
one more limitation than the piston engine; its piston 1s made
of ceramic. In this case, the object representing the ceramic

10

15

20

25

30

35

40

45

50

55

60

65

2

piston engine 1s called a derived object, and 1t inherits all of
the aspects of the object representing the piston engine and
adds further limitation or detail to 1t. The object representing
the ceramic piston engine “depends from” the object repre-
senting the piston engine. The relationship between these
objects 1s called iheritance.

When the object or class representing the ceramic piston
engine 1nherits all of the aspects of the objects representing
the piston engine, it 1inherits the thermal characteristics of a
standard piston defined 1n the piston engine class. However,
the ceramic piston engine object overrides these ceramic
specific thermal characteristics, which are typically different
from those associated with a metal piston. It skips over the
original and uses new functions related to ceramic pistons.
Different kinds of piston engines will have different
characteristics, but may have the same underlying functions
associates with it (e.g., how many pistons in the engine,
ignition sequences, lubrication, etc.). To access each of these
functions 1n any piston engine object, a programmer would
call the same functions with the same names, but each type
of piston engine may have different/overriding implemen-
tations of functions behind the same name. This ability to
hide different implementations of a function behind the same
name 1s called polymorphism and 1t greatly simplifies com-
munication among objects.

With the concepts of composition-relationship,
encapsulation, inheritance and polymorphism, an object can
represent just about anything in the real world. In fact, our
logical perception of the reality 1s the only limit on deter-
mining the kinds of things that can become objects in

object-oriented software. Some typical categories are as
follows:

Objects can represent physical objects, such as automo-
biles 1n a traffic-flow simulation, electrical components
1in a circuit-design program, countries in an €CONOMICS
model, or aircraft in an air-traffic-control system.

Objects can represent elements of the computer-user
environment such as windows, menus or graphics
objects.

An object can represent an inventory, such as a personnel
file or a table of the latitudes and longitudes of cities.

An object can represent user-define data types such as
time, angles, and complex numbers, or point on the
plane.

With this enormous capability of an object to represent
just about any logically separable matters, OOP allows the
software developer to design and implement a computer
program that 1s a model of some aspects of reality, whether
that reality 1s a physical enfity, a process, a system, or a
composition of matter. Since the object can represent
anything, the software developer can create an object which
can be used as a component 1n a larger software project in
the future.

If 90% of a new OOP software program consists of
proven, existing components made from preexisting reus-
able objects, then only the remaining 10% of the new
software project has to be written and tested from scratch.
Since 90% already came from an 1ventory of extensively
tested reusable objects, the potential domain from which an
error could originate 1s 10% of the program. As a resullt,
OOP enables software developers to build objects out of
other, previously built, objects.

This process closely resembles complex machinery being,
built out of assemblies and sub-assemblies. OOP
technology, therefore, makes software engineering more like
hardware engineering 1n that software 1s built from existing

3,822,580

3

components, which are available to the developer as objects.
All this adds up to an improved quality of the software as
well as an 1ncreased speed of 1ts development.

Programming languages are beginning to fully support the
OOP principles, such as encapsulation, inheritance,
polymorphism, and composition-relationship. With the
advent of the C++ language, many commercial software
developers have embraced OOP. C++ 1s an OOP language
that offers a fast, machine-executable code. Furthermore,
C++ 1s suitable for both commercial-application and
systems-programming projects. For now, C++ appears to be
the most popular choice among many OOP programmers,
but there 1s a host of other OOP languages, such as
Smalltalk, common lisp object system (CLOS), and Eiffel.
Additionally, OOP capabilities are being added to more
traditional popular computer programming languages such
as Pascal.

The benelits of object classes can be summarized, as
follows:

Objects and their corresponding classes break down com-
plex programming problems into many smaller, sim-
pler problems.

Encapsulation enforces data abstraction through the orga-
nization of data into small, independent objects that can
communicate with each other. Encapsulation protects
the data 1n an object from accidental damage, but
allows other objects to mteract with that data by calling,
the object’s member functions and structures.

Subclassing and inheritance make it possible to extend
and modily objects through deriving new Kkinds of
objects from the standard classes available 1n the sys-
tem. Thus, new capabilities are created without having
to start from scratch.

Polymorphism and multiple inheritance make it possible
for different programmers to mix and match character-
istics of many different classes and create specialized
objects that can still work with related objects 1n
predictable ways.

Class hierarchies and containment hierarchies provide a
flexible mechanism for modeling real-world objects
and the relationships among them.

Libraries of reusable classes are useful in many situations,

but they also have some limitations. For example:

Complexity. In a complex system, the class hierarchies for
related classes can become extremely confusing, with
many dozens or even hundreds of classes.

Flow of control. A program written with the aid of class
libraries is still responsible for the flow of control (i.e.,
it must control the interactions among all the objects
created from a particular library). The programmer has
to decide which functions to call at what times for
which kinds of objects.

Duplication of effort. Although class libraries allow pro-
grammers to use and reuse many small pieces of code,
cach programmer puts those pieces together 1n a dif-
ferent way. Two different programmers can use the
same set of class libraries to write two programs that do
exactly the same thing but whose internal structure
(i.e., design) may be quite different, depending on
hundreds of small decisions each programmer makes
along the way. Inevitably, similar pieces of code end up
doing similar things in slightly different ways and do
not work as well together as they should.

Class libraries provide lots of flexibility. As programs

orow more complex, more programmers are forced to rein-
vent basic solutions to basic problems over and over again.

10

15

20

25

30

35

40

45

50

55

60

65

4

A relatively new extension of the class library 1dea 1s to have
a framework of class libraries. This framework 1s more
complex and consists of significant collections of collabo-
rating classes that capture both the small scale patterns and
major mechanisms that implement the common require-
ments and design 1n a speciiic application domain. They
were first developed to free application programmers from
the chores involved 1n displaying menus, windows, dialog
boxes, and other standard user interface elements for per-
sonal computers.

Frameworks also represent a change 1n the way program-
mers think about the mteraction between the code they write
and code written by others. In the early days of procedural
programming, the programmer called libraries provided by
the operating system to perform certain tasks, but basically
the program executed down the page from start to finish, and
the programmer was solely responsible for the flow of
control. This was appropriate for printing out paychecks,
calculating a mathematical table, or solving other problems
with a program that executed 1n just one way.

The development of graphical user interfaces began to
turn this procedural programming arrangement inside out.
These 1nterfaces allow the user, rather than program logic, to
drive the program and decide when certain actions should be
performed. Today, most personal computer software accom-
plishes this by means of an event loop which monitors the
mouse, keyboard, and other sources of external events and
calls the appropriate parts of the programmer’s code accord-
ing to actions that the user performs. The programmer no
longer determines the order in which events occur. Instead,
a program 1s divided into separate pieces that are called at
unpredictable times and 1n an unpredictable order. By relin-
quishing control in this way to users, the developer creates
a program that 1s much easier to use. Nevertheless, 1ndi-
vidual pieces of the program written by the developer still
call libraries provided by the operating system to accomplish
certain tasks, and the programmer must still determine the
flow of control within each piece after 1t’s called by the
event loop. Application code still “sits on top of” the system.

Even event loop programs require programmers to write
a lot of code that should not need to be written separately for
every application. The concept of an application framework
carries the event loop concept further. Instead of dealing
with all the nuts and bolts of constructing basic menus,
windows, and dialog boxes and then making these things all
work together, programmers using application frameworks
start with working application code and basic user interface
clements 1n place. Subsequently, they build from there by
replacing some of the generic capabilities of the framework
with the specific capabilities of the mtended application.

Application frameworks reduce the total amount of code
that a programmer has to write from scratch. However,
because the framework 1s really a generic application that
displays windows, supports copy and paste, and so on, the
programmer can also relinquish control to a greater degree
than event loop programs permit. The framework code takes
care of almost all event handling and flow of control, and the
programmer’s code 1s called only when the framework
needs it (e.g., to create or manipulate a proprietary data
structure).

A programmer writing a framework program not only
relinquishes control to the user (as is also true for event loop
programs), but also relinquishes the detailed flow of control
within the program to the framework. This approach allows
the creation of more complex systems that work together in
interesting ways, as opposed to isolated programs, having
custom code, being created over and over again for similar
problems.

3,822,580

S

Thus, as 1s explained above, a framework basically 1s a
collection of cooperating classes that make up a reusable
design solution for a given problem domain. It typically
includes objects that provide default behavior (e.g., for
menus and windows), and programmers use it by inheriting
some of that default behavior and overriding other behavior
so that the framework calls application code at the appro-
priate times.

There are three main di

class libraries:

Behavior versus protocol. Class libraries are essentially
collections of behaviors that you can call when you
want those individual behaviors 1in your program. A
framework, on the other hand, provides not only behav-
1or but also the protocol or set of rules that govern the
ways 1n which behaviors can be combined, including,
rules for what a programmer 1s supposed to provide
versus what the framework provides.

Call versus override. With a class library, the code the
programmer writes instantiates objects and calls their
member functions. It’s possible to 1nstantiate and call
objects in the same way with a framework (i.e., to treat
the framework as a class library), but to take full
advantage of a framework’s reusable design, a pro-
cgrammer typically writes code that overrides and 1is
called by the framework. The framework manages the
flow of control among its objects. Writing a program
involves dividing responsibilities among the various
pieces of software that are called by the framework
rather than specifying how the different pieces should
work together.

Implementation versus design. With class libraries pro-
grammers reuse only implementations, whereas with
frameworks they reuse design. A framework embodies
the way a family of related programs or pieces of
software work. It represents a generic design solution
that can be adapted to a variety of specific problems 1n
a given domain. For example, a single framework can
embody the way a user mterface works, even though

two different user interfaces created with the same

framework might solve quite different interface prob-
lems.

Thus, through the development of frameworks for solu-
fions to various problems and programming tasks, signifi-
cant reductions in the design and development effort for
software can be achieved.

A more detailed description of OOP 1s given by Cotter, et
al, Inside 1aligent Technology, Addison-Wesley Publishing
(1995).

OOP-based system environments need easy ways lor
users and third party developers to configure the system by
dynamically installing new classes as they are developed. In
other words, developers need to make current systems or
frameworks aware of the existence of a new class, and end
users need to make use of that new class 1n the system. One
such way to meet these needs 1s to provide a registry service.
Each subsystem could provide 1ts own version of the
registry, but this approach would result in duplicate work. As
even more ecificient solution would be to have a global
registry that 1s general and flexible enough to accommodate
the conifiguration needs of all subsystems of an OOP-based
operating environment.

Such a global registry also should provide a useful,
reliable, general, and flexible way of installing new classes
into all frameworks in the system. In addition, it should be
casy for existing local registries of clients to transition to this
new global registry service. Also, 1t should 1solate potential

Terences between frameworks and

10

15

20

25

30

35

40

45

50

55

60

65

6

client bugs from other client applications using the global
registry (e.g., not rely on the streaming of client objects).
Further, it will be portable across targeted operating system
platforms, and support 1nternationalization.

The present invention provides a solution to these and

other problems, and offers other advantages over the prior
art.

SUMMARY OF THE INVENTION

The present mvention relates to a global registry for use
to extend a framework 1n an OOP-based computer system by
making new and/or revised classes available to client appli-
cations.

In accordance with one aspect of the invention, a data-
driven global registry method 1s provided. The method
includes providing a new class defined 1 a shared class
library on the server which has data members and member
functions related to a particular task. In addition, a new class
attributes file which specifies attributes associated with the
new class 1s generated. The new class attributes file 1s placed
in a global registry configuration directory such that a
plurality of client applications can access the global registry
conflguration directory to determine if the new class has
been installed 1n the class library.

In accordance with another aspect of the invention, an
object-based global registry method 1s provided. The
method includes providing a new class defined 1n a shared
class library which has data members and member functions
related to a particular task. In addition, an object factory
class for the new class 1s defined 1n the shared class library
which has data members and member functions related to
creating instances of the new class and related to attributes
associated with the new class. One or more client applica-
tions can determine 1f the new class has been 1nstalled 1n the
class library by querying the provided object factory class.

Each of these aspects of the invention also can be 1mple-
mented as a computer-readable program storage device
which tangibly embodies a program of instructions execut-
able by a computer system to perform either of the object
oriented programming (OOP) based global registry meth-
ods. In addition, each of these aspects of the invention also
can be implemented as a global registry 1tself for an OOP-
based computer system.

These and various other features as well as advantages
which characterize the present mvention will be apparent
upon reading of the following detailed description and
review of the associated drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a personal computer system
in accordance with a preferred embodiment of the present
invention.

FIG. 2 1s a block diagram of a registry store for an
object-based global registry.

FIG. 3 1s a block diagram of a logical table which forms
a data-driven global registry.

FIG. 4 1s a block diagram of an example entry in the
logical table for the data-driven global registry shown in

FIG. 3.

FIG. § 1s a flowchart of a preferred embodiment object
oriented programming based data-driven global registry
method for use to extend any object-oriented framework in
the computer system shown in FIG. 1.

FIG. 6 1s a flowchart of an alternative preferred embodi-
ment object-based global registry method for use to extend

3,822,580

7

any object oriented framework 1n the computer system
shown 1n FIG. 1.

DETAILED DESCRIPTION

The preferred embodiments of the present invention are
preferably practiced 1n the context of an operating system
resident on a personal computer such as the IBM PS/2 or
Apple Macintosh computer. A representative hardware envi-
ronment 1s depicted 1 FIG. 1, which 1llustrates a typical
hardware configuration of a workstation 1n accordance with
the preferred embodiments having a central processing unit
110, such as a microprocessor, and a number of other units
interconnected via a system bus 112. The workstation shown

in FIG. 1 includes a Random Access Memory (RAM) 114,
Read Only Memory (ROM) 116, an I/O adapter 118 for
connecting peripheral devices such as disk storage units 120
to the bus 112, a user interface adapter 122 for connecting
a keyboard 124, a mouse 126, a speaker 128, a microphone
132, and/or other user interface devices such as a touch
screen (not shown) to the bus 112, communication adapter
134 for connecting the workstation to a communication
network (e.g., a data processing network) and a display
adapter 136 for connecting the bus 112 to a display device
138. The workstation typically has resident thereon an
operating system such as the IBM OS/2 operating system or
the Apple System/7 operating system. Those skilled in the
art will appreciate that the present invention may also be
implemented on platforms and operating systems other than
those mentioned.

Many OOP-based operating environments for computer
systems currently do not provide a way for third-party
developers to configure the system by dynamically installing
new classes that have been developed. That 1s, prior to the
present invention a developer has no way to make frame-
works aware of the existence of a new class, and an end user
could not make use of that new class 1n the system.

One such OOP-based operating environment that may
benefit from having a global class registry service 1s the
CommonPoint environment developed by Taligent. Several
subsystems have an immediate need for this type of registry
service. Instead of each subsystem providing its own version
of the registry (which would result in duplicate work), it
would be more efficient to have a global class registry that
1s general and flexible enough to accommodate the configu-
ration needs of all subsystems of the CommonPoint envi-
ronment. The following discussion will focus on an example
implementation for the time/media area and its associated
specific needs for installing time/media components.

It will be appreciated by those skilled in the art that any
subsystem that wants to have this “registry” service could be
a client of the global class registry without departing from
the scope and spirit of the present invention. For example
other potential class registry service clients could be the
Microsoft Windows NT operating system, workspace
applications, telephony services, data translators, network
directory services, file systems, servers, and software pack-
age 1nstallations.

The present global class registry preferably achieves the
following goals:

Address the needs of the primary clients (e.g., time/media
or operating systems).

Provide a useful, reliable, general, and flexible way of
installing new subclasses 1nto all frameworks.

Be portable across targeted operating system platforms.
Support 1nternationalization.

10

15

20

25

30

35

40

45

50

55

60

65

3

Be easy for existing individual or service speciiic clients
to transition to this new global class registry service.

The present global class registry service can be 1mple-
mented 1n many different ways. One such way 1s a preferred
embodiment object-based approach. For an object-based
(code-based) approach, the services provided by a “frame-
work egistry” can be divided into the following functions:

Given a set of attributes, the registry returns back a list of
creators matching the attributes.

Given a set of preferences, the client selects the appro-
priate creator from the returned list.

An 1nstance of the class 1s then created by mvoking a
method (e.g., CreateObject) on the creator.

The object 1s then 1nitialized with the appropriate param-
cters specified by the client.

This approach 1s centered on an “object creator” mechanism
(also known as an object factory) that knows how to create
an 1nstance of the class the client application 1s interested 1n
ogenerating from those stored on the server. The preferred
architecture of the present object-based global registry has
the global registry itself provide the first function, while the
client application performs the last three steps.

For example, implementation may include a time/media
registry creating a media sequence from a file system entity.
Such a time/media registry can be implemented to perform
the following sequence of steps when a client uses the
registry to create a media sequence. For each media type, the
registry iterates through 1ts collection of sequence creators
and 1nvokes the particular sequence creator (e.g., a preferred
embodiment CreateSequence class or CreateObject class)
method on each creator. The file system entity and other
parameters are passed to the CreateSequence class, which
will be used to mitialize the default media sequence after 1t
has been created. If the returned value from CreateSequence
1s NIL, the next sequence creator will be tried; the first valid
media sequence (non-NIL value) returned will terminate the
loop.

If a global registry 1s used, then the create the media
sequence can be implemented such that the media registry
interacts with the global registry in the following way:

A set of attributes (e.g., the media type) 1s provided to the
global registry, and the global registry 1s asked to return
a list of sequence creators for that media type.

The media registry will use a set of user-defined prefer-
ences (set by the client before the request to get a
sequence of creators) in order to select an appropriate
sequence creator. At this point, the time/media registry
will invoke the CreateSequence method on the returned
media sequence creator with the appropriate param-
cters to 1nitialize the media sequence, which will then
be returned to the client application.

A preferred embodiment abstract base class 1s the TOb-
jectCreator class, which has a CreateObject() method. Its
concrete subclasses provide a set of methods for querying
attributes of the “object” to be created. An example shell for

this abstract class and a concrete subclass are shown below
1n Table 1.

TABLE 1

class TObjectCreator : public MCollectible {

public:
MCollectibleDeclarationsMacro(TObjectCreator);
~TObjectCreator ();

// copy and streaming operators are not shown here
void*CreateObject() = 0;

3,822,580

9

TABLE 1-continued

protected:
TObjectCreator ();
3

class TMediaSequenceCreator: public TObjectCreator {

public:
MCollectibleDeclarationsMacro(TMediaSequenceCreator);
TMediaSequenceCreator();
~TMediaSequenceCreator();
// copy and streaming operators are not shown here

void* CreateObject(); // it delegates to CreateSequence()

// attribute querying methods

TMediaType GetMediaType();
protected:

TMediaSequence* CreateSequence();
3

FIG. 2 details how only the creator classes 202, 204 are
flattened into and resurrected from a file 200 (i.e., registry
store). Several items are stored persistently on disk, includ-
ing: the registry store 200, shared libraries 206, 208 which
contain creator classes, and shared libraries 210, 212 which
contain the classes to be created.

It should be noted that this object-based global registry
mechanism 1s dependent on the streaming operations of each
creator class, which may be written by different software
developers. Any problems with flattening or resurrecting
these creator classes 202, 204 could result in a corrupt
registry store 200. The registry store 200 also needs to deal
with versioning issues (i.e., backward and forward data
compatibility has to be maintained). This object-based reg-
Istry scheme may be less efficient, because meta information
(i.c., attributes about the objects to be created) is contained
in the creators and 1n order to query or display these
attributes, the shared libraries 206, 208 containing the cre-
ator classes would first have to be loaded.

To dynamically add a new class mnto the CommonPoint
frameworks (i.e., without recompiling and rebuilding), the
following steps may be performed:

Instead of hard-coding the creation of the object, the
framework uses the registry mechanism to look up the
object.

The developer subclasses TObjectCreator (overriding
CreateObject to call 1ts own Create XYZ method and
providing methods for querying attributes of the
object).

The developer writes the new class (usually a subclass of
an existing class in the frameworks), and it provides an
Initialize() method.

Returning to the time/media example, a framework does
not hard-code the creation of a movie player (i.c., fplayer=
new TMovie). Instead, it asks the media registry, which in
turn gets a movie creator from the global registry, to return
an appropriate player for the movie media type. In this case,
to add a new preferred embodiment TWhizzyPlayer to the
framework, the developer has to provide two new classes:
TWhizzyPlayerCreator and TWhizzyPlayer. Finally, the
developer needs to 1nstall the new creator object by flatten-
ing it out to the registry store.

This object-based global registry scheme has the advan-
tage of being flexible (e.g., it can provide protocol to query
attributes). However, the disadvantages are that a perfor-
mance cost 1s mcurred for loading shared libraries just for
attribute lookup, 1t 1s vulnerable to streaming problems, and
it requires developers to write more code.

10

15

20

25

30

35

40

45

50

55

60

65

10

Another way that the global class registry service can be
implemented 1s an alternative preferred embodiment data-
driven approach. The data-driven approach has many advan-
tages over the object-based approach described above and
this will become clear from the following description. Some
of the advantages include: a more robust implementation
(i.e., no streaming of objects), easier to use (e.g., a user only
needs to edit a text file to change the installation), less
software code needs to be written (e.g., no creator classes
need to be written), and more efficient use of processing
resources (e.g., do not need to load shared libraries just to
query attributes). These advantages are gained at the
expense of flexibility (e.g., a record format much be defined
which each class attribute description follows). Even though
this approach may not be as flexible, 1t may be extendible so
that new features can be added (e.g., the record length may
not be fixed, but the first few fields may be set in the registry
store file) .

In a typical data-driven approach, the global class registry
300 includes a set of data files 302, 304 that describe new
extensions (1.e., classes) to be added dynamically during
runtime to the CommonPoint environment. Conceptually,
these entries form a logical table, where each row of the
table represents an entry 302, 304 in the registry 300 as
illustrated 1n FIG. 3. It should be noted that the size of each
entry may vary according to the number of attributes for
cach new class.

A client application looks up an entry by specitying a set
of attributes 1n a query. For example, the time/media frame-
work can look up a view for an audio document from the
oglobal registry 300 by specifying attributes 306 like
Domain=Toolbox, Category=View, Version=1.0, and Size=
160x120, etc. as shown 1n entry 304 of FIG. 4.

A data-driven mechanism for dynamically installing new
classes 1nto a framework may include two parts, including:
the interface for writing (1.e., adding, removing, and editing
entries) the global registry 300 and the interface for reading
the registry 300. On the “writer” side, the one 1ssue 1s to
provide a portable solution for installing entries in the
registry 300, which does not require the CommonPoint
operating environment to be running during installation
time. On the reader side, the global registry 300 will provide
an Application Programming Interface (API) that allows
client applications to retrieve entries from the registry 300.

An attribute 302 1s simply a string describing an interest-
ing characteristic of a new class. The value of an attribute
302 indicates what the attribute holds, and can be one of four
possible types: string, integer, array (€.g., a Tanything object
in the CommonPoint operating environment), or binary
object (e.g., wrapped by a TAnyExtension object in the
CommonPoint operating environment). The attribute name
and value character strings can be encoded as ASCII or
Unicode. The size limit for an attribute preferably 1s 1024
characters. ASCII preferably 1s used as the default with
Unicode strings being used, 1f necessary, to mput foreign
language characters. For example, the “domain™ 308 1n
which the class belongs 1s an attribute and “Toolbox™ 310 1s
a possible value for that attribute. The version number 312
of the class 1s another example of an attribute and its value
314 can be something like “1.07.

There are four groups of attributes that a developer needs
to provide for each new entry (i.e., subclass) to be added to
the registry. They are the required attributes (defined by the
global registry 300), optional attributes (domain owner),
internal attributes (developer of the new class), and headers
attributes (developer of the new class). The required and
optional attributes describe some interesting characteristics

3,822,580

11

of an entry (1.e., class) in the registry 300. They are both used
in specitying a query for looking up the entry. If more than
one enftry satisfies the query, then all of the entries will be
returned by the lookup. The required attributes preferably
include Domain 308, Category 312, Version 316, while the
optional attributes include ID (not shown), domain-specific
attributes, and other attributes. The global registry 300 does
not specily the policy for how the ID value should be
ogenerated. It 1s the responsibility of the domain owner to
specily such a policy for that particular domain. Domain-
specific attributes are specified by a particular domain
owner, and these attributes may be required for that domain.
A developer can add optional attributes to characterize the
new class. For example, format and size 318 could be
interesting attributes for a new time/media class component.
The mternal attributes are not used 1n the lookup process—
instead, they are used only by the registry 300 for 1ts internal
operations. The internal attributes may include APIClass
320, APIPackage 322, ImpClass 324, and ImpPackage 326.
These attributes must be provided by the developer. The
headers attributes include all header files needed to compile
the new classes (e.g., <Taligent/TimeMedia.h>).

The attributes for each entry 302, 304 1n the registry 300
are stored persistently in a file 1n a storage device. The
attributes preferably are written out 1n a generic file format
such as the TAnything file format. The Tanything file format

consists of slot-name-and-value pairs as shown below 1n
Table 2.

TABLE 2
1

/SlotNamel Valuel

/SlotNameN ValueN

h

The file itself can be either ASCII or Unicode as noted
above. The slot names (SlotNamel . . . SlotNameN) and
values (Valuel . . . ValueN) can be either (1) ASCII
characters with special %xxxx notation for Unicode
characters, or (2) Unicode characters. Moreover, the value
can be another TAnything (i.e., the structure can be
recursive). The client application needs to create an attribute
file in this format using whatever (ASCII or Unicode) text
cditor available on his or her platform.

As an example, for a time/media player, the attribute file
may look as shown in Table 3.

TABLE 3
1
/Domain "TimeMedia"
/Category "Player”
/Version "1.0"
/Optional {
/ID "83701349"
/Format "AVI"
h
/Internal {
/APIClass "TPlayer”
{APIPackage "CP"
/ImpClass "TAVIMovie"
/ImpPackage "OS/2"
h
/Headers {
/HO "<Taligent/TimeMedia.h>"
/H1 "<Taligent/AVIMovie.h>"
h
h

10

15

20

25

30

35

40

45

50

55

60

65

12

A “domain” simply corresponds to a particular Common-
Point subsystem. For example, time/media, a workspace, a
file system, or translators are possible domains. As men-
tioned above, the domain name 1s a required attribute.
Initially, the domain name space 1s not fully hierarchical; 1t
has only one level of hierarchy. Within each domain, the
structure 1s flat—there 1s no subdomain. By making this
design decision current clients of the global registry 300 do
not need hierarchical domain names. In addition, this flat
structure simplifies the global registry 300 API. Since the
API does not need to provide methods to traverse the domain
hierarchy, 1t 1s easier to port to other platforms. On other
platforms, such as the Microsoft Windows NT platform, a
hierarchy an be built on top of this flat structure (e.g., the
domain name attribute can contain a pathname value 1nstead
of a simple name) This flat structure can be easily extended
to a hierarchical structure in the future when client applica-
tions have such a need.

The attribute file format supports 1nternationalization by
supporting Unicode. The attribute file (which preferably is in
the TAnything format) can be either ASCII or Unicode. That
is, the registry (more specifically, TAnything) supports both
ASCII and Unicode encodings. Even in the ASCII case,
TAnything supports Unicode by allowing both the slot name
and 1ts value to be Unicode characters using the special
%0xxxx notation, where X represents a one byte hex number.
Also, 1t enables non-US developers to create these Unicode
attribute files. Since TAnything supports Unicode, a Uni-
code text editor can be used to edit these Unicode characters.
Further, 1t does not support any user-visible attributes
(labels, 1images, icons, etc.), which should be stored in a
higher-level user-data registry mechanism and localized
using an archive mechanism.

To dynamically add a new class to the frameworks, the
developer writes the new class and creates a shared library
for 1t. The developer then follows the following process to
register the new class into CommonPoint operating envi-
ronment:

Generate the attribute file(s) for the new class(es). The
developer needs to create an attribute file and enter the
necessary attribute information in the above file format.
This file preferably 1s portable across all platforms.

Perform any necessary platform-specific conversion for
the attribute file(s). For a particular platform, certain
platform-specific conversion needs to be performed on
the attribute file, and the result 1s a non-portable “thing™
that will be installed into the registry.

Installing the new class(es). To install the new class into
the system, the developer needs to provide both the
shared library 328 for the new class and the associated
attribute file 304 as described in the above steps. The
installation tools used 1n this step are platform specific.
For example, for AIX, istallation process 1s simply
moving the shared library 328 into the library directory
and the attribute file 304 1nto the configuration direc-
tory. For Microsoit Windows NT, mstallation 1involves
running Setup.exe (which invokes an installer program
that understands the format of the converted attribute
file); it will register the new class into the Windows NT
Registry.

In order for this registration mechanism (i.e., the ability to
dynamically plug in a new class or component) to work, the
relevant frameworks have to use the global class registry
300 to create an mstance of the class or component 1nstead
of hard-coding the creation of that class or component.

The global registry 300 interface consists of three client-
visible parts: global registry API, an attribute file, and shared

3,822,580

13

library 328 containing the new class. The developer provides
the shared library 328 and attribute file 304, while the global

registry 300 provides a set of API classes. The interactions
between the registry 300 and a calling client application can
be summarized into the following steps:

The calling client application (i.e., caller) generates a
query based on a set of attributes, and 1t calls the
registry lookup method, which returns back an iterator
for a list of object descriptors. The caller can access
attributes about the objects without having to load the
shared library 328 containing the new classes.

Given a set of preferences, the caller can further refine the
selection by first examining the attributes of the objects
(via the returned descriptors) before creating the
objects (e.g., via the GlobalRegistryCreateObject glo-
bal function).

The selected object 330 1s then 1nitialized with the appro-

priate parameters by the caller in the calling context.

The precise interface through which client applications
can retrieve objects from the class registry 1s described 1n the
following description. It contains detailed information about
the API classes—their roles, their primary protocols, and
some code samples. The preferred embodiment API consists
of three major classes: TGlobalRegistryQuery,
TGlobalRegistrylterator, and TGlobalRegistryObjectDe-
scriptor. For the convenience of clients, the class TGlobal-
RegistryQuery provides a set of tokens for looking up the
value of an attribute. It also captures the attributes describing,
the lookup query. The class TGlobalRegistrylterator pro-
vides a set of constructors for retrieving entries from the
registry and to access the results of the query. Using the
iterator, a client application can access the object descriptors
one at a time, which are represented by the class TGlobal-
RegistryObjectDescriptor. The object descriptor contains
information (such as the API class and package names, and
other attributes) needed to create the objects.

In the following class declarations, only part of the
methods are shown, and implementation details are not
included. The TAnything class 1s a flexible associative
(key-value pair) array that is efficient for storing primitive
types and other types via the
TAnyExtensionOf<Alype=>object wrapper.

Table 4 shows an example of the TGlobalRegistryQuery
class.

TABLE 4

class TGlobalRegistryQuery {

public:
static const T'SimpleUnicodeArray& kDomain;
static const TSimpleUnicodeArray& kCategory;
static const T'SimpleUnicodeArray& kVersion;
static const T'SimpleUnicodeArray& kOptional;
static const TSimpleUnicodeArray& kID; // global ID
static const T'SimpleUnicodeArray& klnternal;
static const TSimpleUnicodeArray& kAPIClass;
static const T'SimpleUnicodeArray& kAPIPackage;
static const TSimpleUnicodeArray& kImpClass;
static const T'SimpleUnicodeArray& klmpPackage;
static const TSitmpleUnicodeArray& kHeaders;

TGlobalRegistryQuery(const TAnything& attribute ValuePairs);
TGlobalRegistryQuery();

TGlobalRegistryQuery(const TGlobalRegistryQuery&);
~T'GlobalRegistryQuery();

// supports equality and streaming operations

bool operator==(const TGlobalRegistryQuery&) const;
TStream& operator>>=(Tstream&)const;

TStream& operator<<=(TStream&);

10

15

20

25

30

35

40

45

50

55

60

65

14

TABLE 4-continued

// called by TGlobalRegistrylterator
bool Match(const TAnything& attributesValues) const;

const TAnything* GetAttributes() const;
void SetAttributes(const TAnything& attribute ValuePairs);
void RemoveAttributes(const TAnything& attribute ValuePairs);

private:
// assignment operator 1s not supported.
TGlobalRegistryQuery& operator=(const TGlobalRegistryQuery&);

I

In addition to providing a set of slot name tokens that can
be used as keys to lookup their corresponding values 1n a
TAnything data structure, the TGlobalRegistryQuery class
provides a protocol for specifying (and modifying) a set of
attributes; it has the Match() method that the TGlobalReg-
istrylterator class can use to evaluate whether a particular
entry matches the specified attributes. If the match fails, the
SetAttributes() method can be used to modify the query and
re-submit the query again. For example, 1 the initial query
contains attributes Domain=TimeMedia, Category=Player,
Version=3.0, Format=MPEG, etc. If there was no MPEG
player version 3.0, the client application can modily the one
or more attributes via the SetAttributes() method. The
TAnything argument attribute ValuePairs would contain the
new attribute-value pairs (e.g., Version=2.0, Format=
QuickTime). The GetAttributes() and RemoveAttributes()
methods allow the client to modity the attributes 1n the
query.

Table 5 shows an example of the TGlobalRegistrylterator
class.

TABLE 5

class TGlobalRegistrylterator : public
TIteratorOver<TGlobalRegistryObjectDescriptor> {
public:
TGlobalRegistrylterator(const TGlobalRegistryQuery*
queryToAdopt);

.

I'GlobalRegistrylterator(const TUnicodeArray& domain, const
TUnicodeArray&

key);
TGlobalRegistrylterator(const TUnicodeArray& domain);
~TGlobalRegistrylterator();
// supports equality operation
bool operator==(const TGlobalRegistrylterator&) const;

const T'GlobalRegistryObjectDescriptor* First();
const T'GlobalRegistryObjectDescriptor* Next();

private;
// default & copy constructors, assignment operator, streaming
operators
// are not supported.
TGlobalRegistrylterator();
TGlobalRegistrylterator(const TGlobalRegistrylterator&);
TGlobalRegistrylterator& operator=_constT'GlobalRegistrylterator&);

.

I'Stream& operator>>=(T'Stream&) const;

'

I'Stream& operator<<=(TStream&);

The TGlobalRegistrylterator class 1s the primary interface
for the global registry 300; the constructors provide the
protocol for retrieving “object descriptors” that are required
for 1nstantiating new classes. The {first constructor takes a
query as an areument. The resulting 1terator can be used to
iterate over a small list of object descriptors matching the
attributes specified in the query. The second constructor 1s
for client application’s convenience, and takes the domain
and key values as arcuments. Because the key 1s a unique

3,822,580

15

value within a particular domain, there i1s at most one
descriptor that will be returned, and it can be accessed via
the iterator’s First() method. If there is no match, the
method returns a NIL pointer. The last constructor 1s for
client application’s convenience. The iterator can be used to

iterate over a list of object descriptors for a particular
domain. If the search fails, the First() method returns a NIL

pointer. The 1terator manages the storage for the returned
descriptors, so that the returned pointers are just aliases to
descriptor objects owned by the iterator.

Table 6 shows an example of the TGlobalRegistryObject-
Descriptor class.

TABLE 6

class TGlobalRegistryObjectDescriptor

public:
TaligentTypeExtensionDeclarationsMacro(TGlobalRegistryOb-
jectDescriptor)

TGlobalRegistryObjectDescriptor(const TAnything& attributes);
~TGlobalRegistryObjectDescriptor();

// supports hashing, equality, and streaming operations

long Hash() const;

bool operator==(const TGlobalRegistryObjectDescriptor&) const;
TStream& operator>>=(T'Stream&) const;

TStream& operator<<=(T'Stream&);

void GetAttributes(TAnything& attributeValues) const;

protected:
TGlobalRegistryObjectDescriptor();

private:
// copy constructor and assignment operator are not
supported.
TGlobalRegistryObjectDescriptor(const
TGlobalRegistryObjectDescriptor&);
TGlobalRegistryObjectDescriptor& operator=(const
TGlobalRegistryObjectDescriptor&);

J:

The primary protocol provided by TGlobalRegistryOb-
jectDescriptor is the GetAttributes() method for accessing
the attributes of a new class. A client application should use
the global function GlobalRegistryCreateObject (an
example of which is shown in Table 7) to create an instance
of the new class in a type-sale manner.

TABLE 7

template<class AT

ype>
void GlobalRegistryCreateObject(Alype* & theResultPtr,

const TGlobalRegistryObjectDescriptor&
objectType,

const TAllocationHeap& heap =

TAllocation::kDefaultHeap);

The arguments needed by this global function are a base type
pointer, an object descriptor, and a heap object.

Returning once again to the time/media registry example,
the registry interacts with the global registry 300 to create an
instance of a new class (¢.g., TAVIMovie) in the following
way. First, 1t provides a set of attributes and asks the global
registry 300 to return a list of object descriptors that match
these attributes. Some example ways to find this match are
shown 1n Table &, including: lookup by query, lookup by
key, and 1iterate over domain. Second, the time/media reg-
istry will use a set of user defined preferences (set by its
client application before the request to get a list of
sequences) to select an appropriate sequence descriptor. It
then creates an instance of the new player via the Global-
RegistryCreateObject global function using the returned

10

15

20

25

30

35

40

45

50

55

60

65

16

object descriptor as an argument. At this point, the time/
media registry will initialize the default-constructed player

with the appropriate parameters, and then return it to its
client application.

TABLE &

1) Lookup by Query

TAnything attributes;

attributes| TGlobalRegistryQuery::kDomain | = "TimeMedia";
attributes| TGlobalRegistryQuery::kCategory] = "Player";
attributes| TGlobalRegistryQuery::kVersion| = "1.0";

attributes| "Optional”" | "Format" | = "QuickTime";
attributes| "Optional" || "Size" | = "160x120";

TGlobalRegistryQuery query(attributes);
TGlobalRegistrylterator *iterator = new
TGlobalRegistrylterator(query); // create
on heap
if (iterator—>First() == NIL) {
// modily attributes and try again
attributes| "Optional” || "Format" | = "AVI"; // change
"Format" to new value
attributes| "Optional” | Remove("Size"); // remove "Size" attribute
query.SetAttributes(attributes);
delete iterator;
iterator = new TGlobalRegistrylterator(query);

;

TPlayer* player = NIL;

TAnything returned Attributes;

bool found = false;

for (const TGlobalRegistryObjectDescriptor *desc = iterator—=First();
desc != NIL & & found == false;
desc = iterator—->Next()) {
desc—>GetAttributes(returned Attributes);
if (returnedAttributes| TGlobalRegistry::kImpClass | ==
"TAVIMovie") {

found = true;

::GlobalRegistryCreateObject(player, *desc);

;

;

delete iterator;

if (player != NIL) {
// success!
player—>AdoptSequence(movieSequence);

// Do whatever you want with this new movie player
+ [/ else we give up!

2) Lookup by Key
TSimpleUnicodeArray domain("Workspace");
TSimpleUnicodeArray key("84903936"); // this is a global ID
TGlobalRegistrylterator iterator(domain, key); // create local variable on
stack
TGlobalRegistryObjectDescriptor® desc = iterator.First();
if (desc != NIL) {

TPrinter* printer;

::GlobalRegistryCreateObject(printer, *desc);

// Do whatever you want with this new printer
} // else we exit here

3) Iterate over domain

i

I'SimpleUnicodeArray domain{("Translators");

L

I'GlobalRegistrylterator iterator(domain); // create local variable on stack
if (iterator.First() != NIL) {

TTranslator *translator;

TAnything returnedAttributes;

for (const TGIobalReglstryObJectDescnpmr *desc = iterator.First();
desc != NIL && found == false;
desc = iterator.Next()) {
desc—>GetAttributes(returnedAttributes);
// select one from the returned list

::GlobalRegistryCreateObject(translator, *desc);
// Do whatever you want with this new translator
} // else we exit here

One problem that may arise 1s when the returned list
contains more than one entry from the global registry 300.
Some possible ways to solve this problem are to use infor-
mation from user preferences, if available, to pick the “best”

3,822,580

17

candidate. For example, the TGlobalRegistryObjectDescrip-
tor provides a protocol for accessing attributes of a new
class, so that a client application can select the most appro-
priate descriptor based on some user speciiied preferences
before using the descriptor to create an 1nstance of the new
class.

Another solution 1s when there are multiple entries for
different versions of the same type of object, then pick the
one with the most recent version number.

Finally, a simple solution if all else fails, then the first one
returned by the iterator 1s picked by default.

Now that the external design specification has been
completed, some 1nternal design specification will be dis-
cussed. The implementation of the registry 300 on AIX
preferably uses a server because this approach i1s more
cfficient and makes the problem of updating the registry
simpler (this is because the server is the only thing that
knows about the data files in the configuration directory).
The attributes of an entry 302, 304 preferably are be stored
in a TAnything object. The registry’s lookup table uses the
following data structures: a dictionary of domain entries,
where a domain 1s a dictionary of object entries. An object
entry contains a TAnything, which encapsulates all the
attributes associated with that object. The two level dictio-
nary structure is needed to support the LookupByKey()
method, while the domain dictionary structure supports the
LookupByDomain() method. The domain dictionary data
structure also efficiently supports the query mechanism
where all the elements 1n a domain need to be compared
sequentially against the specified attributes in the query.

Several implementation tradeoffs exist. For example,
whether to have a class server or to locally access an object.
The global registry can be implemented as a server.
Alternatively, clients could create a “local access object” to
the global registry. The access object would scan the con-
figuration directory and build an mm-memory image of the
installed classes when the object 1s being constructed. The
some tradeolls between a server and an access object are as
follows:

A server offers global access and arbitrates multiple
aCCESSES.

A server has smaller client application delays during
creation, because an access object needs to build up an
internal data structure for all the entries in the registry.
This operation may involve scan all the file 1 a
directory.

An access object does not have all the server-related
system overhead.

An access object 1s more reliable.

Another implementation tradeofl 1s between using a query
or a simple iterator. The tradeotf here 1s power and flexibility
versus complexity. Having a query mechanism allows a
client application to focus the lookup and get back a small
list of candidates, while using an iterator approach leaves the
task of selecting the returned values up to the client appli-
cation. Of course, the iterator 1s a much simpler mechanism
to implement because 1t simply gives access to all the objects
in a particular domain to the client application. To satisty the
needs of different client applications, the global registry
preferably provides support for both types of retrieval.

Another implementation tradeofl i1s between having a
polymorphic or monomorphic TGlobalRegistryQuery class.
The major benefit of making TGlobalRegistryQuery poly-
morphic i1s that common “queries” (e.g., lookup by key,
iterator for a domain) can be organized into a hierarchy of
query subclasses, while a monomorphic query class

approach would express these common queries as explicit

10

15

20

25

30

35

40

45

50

55

60

65

138

methods 1n another class (e.g., either as TGlobalRegistry
Lookup() methods or TGlobalRegistrylterator
constructors). Because the query object will be streamed
across to an object or class server, TGlobalRegistryQuery
class preferably 1s designed to be a monomorphic class for
efficiency and reliability reasons.

The internal architecture preferably includes several inter-
nal support classes for the global registry 300 API. Examples
of these classes are TDomainEntry, TObjectEntry,
TGlobalRegistryCaller, and TGlobalRegistryDispatcher.

The TDomainEntry’s constructor, shown below 1n Table
9, takes a character string, a Unicode array, or a standard text
as an argument for a domain name, so that i1t could support
the direct lookup of the domain. The Hash() and operator=
=are needed to support the comparison operation being
performed during a lookup in the “dictionary”. For the
time/media domain, TGlobalRegistryDispatcher can lookup
the domain entry as follows: fDomainLookupTable
| TDomainEntry(“TimeMedia™)]. The TDomainEntry, in
turn, has a lookup table for all the objects 1n the domain. This
lookup table 1s may be a “dictionary” data structure 1mple-
mented using a TSetOf, because this 1s a more efficient
approach. Also, because these are internal support classes
used only by the TGlobalRegistryDispatcher 1n 1its
implementation, the data structure 1s made public for effi-
cient access (so there is no need to provide accessor methods

for the data members).

TABLE 9

class TDomainEntry {
public:
TDomainEntry(const char domainName]| |);
TDomainEntry{const TSimpleUnicodeArray&);
TDomainEntry(const TStandardText&);
~TDomainEntry();

long Hash{) const;

bool operator==(const TDomainEntry &) const;

TSetOft<TObjectEntry> fObjectLookupTable;
TSimpleUnicodeArray fName;

Similarly, the TObjectEntry ’s constructor, shown below
in Table 10, takes a character string, a Unicode array, or a
standard text as an arcument for a global ID, so that 1t could
support the direct lookup of an object entry. The Hash() and
operator==are needed to support the comparison operation
being performed during a lookup 1n the “dictionary”. For the
time/media domain, the TGlobalRegistryDispatcher can
lookup the player object as {follows:
domainEntry.fObjectLookupTable[TObjectEntry(“00037)].
The TObjectEntry constructor contains a TAnything, which
consists of a list of attribute-value pairs.

TABLE 10

class TObjectEntry {
public:

TODbjectEntry(const char globallD]]);
TODbjectEntry(const T'SimpleUnicodeArray&);
TODbjectEntry{const T'StandardText&);
~TObjectEntry();
long Hash{) const;
bool operator==(const TObjectEntry&) const;

TAnything {ObjectAttributes;
TSimpleUnicodeArray {ID;

The TGlobalRegistryCaller class, shown 1n Table 11, 1s
used by the TGlobalRegistrylterator to make an RPC to the

3,822,580

19

dispatcher. The primary methods are LookupByQuery(),
LookupByKey(), LookupByDomain(). These methods
invoke the corresponding dispatcher methods to perform the
lookup and return the results. The ShutDown() method is
used to send a request to the registry server to shut down
itself.

TABLE 11

class TGlobalRegistryCaller : protected MRemoteCaller {
public:

TGlobalRegistryCaller();

~TGlobalRegistryCaller();

TCollectionOf<T'GlobalRegistryObjectDescriptor<*
LookupByQuery(const TGlobalRegistryQuery& query);
TGlobalRegistryObjectDescriptor*

LookupByKey{const TUnicodeArray& domainName, const
TUnicodeArray&

key);
TCollectionOf<T'GlobalRegistryObjectDescriptor>*
LookupByDomain(const TUnicodeArray& domainName);

void ShutDown();

13

Table 12 shows an example TGlobalRegistryDispatcher
class.

TABLE 12

class TGlobalRegistryDispatcher : public MRemoteDispatcher {
public:
static const THostSpecificPathName kConfigurationDirectory;

enum EGlobalRegistryRequest {
klLookupByKey,
klLookupByQuery,
klLookupByDomain,
kShutdown,
kMaxRequest = kShutdown

%

TGlobalRegistryDispatcher();
~TGlobalRegistryDispatcher();

TCollectionOf<T'GlobalRegistryObjectDescriptor>*
LookupByQuery(const TGlobalRegistryQuery& query);
TGlobalRegistryObjectDescriptor*

LookupByKey(const TUnicodeArray& domainName, const
TUnicodeArray&

key);
TCollectionOf<T'GlobalRegistryObjectDescriptor>*
LookupByDomain(const TUnicodeArray& domainName);

protected:
void UpdateRegistry();
void Initialize();

13

An UpdateRegistry() function preferably is used to scan
the configuration directory and import all the attribute data
into corresponding TAnything objects from the {files in the
directory; 1t also builds up the two-level dictionary data
structure as described above. An Initialize() function finds
the configuration directory and then calls an
UpdateRegistry() function to set up the internal data struc-
ture. The LookupByKey, LookupByQuery, and LookupBy-
Domain functions are used to implement the semantics of
the corresponding TGlobalRegistryCaller class functions
described above.

The present 1nvention can be summarized in reference to
FIG. 5 which 1s a flowchart of the preferred embodiment
object oriented programming based data-driven global reg-
istry method for use by a client application and a server on
a computer system. This method 1s performed by device-
implemented steps 1 a series of distinct processing steps
500-518 that can be implemented 1n one or more processors.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

A new class defined 1n a shared class library on the server
1s provided 502 which has data members and member
functions related to a particular task. A new class attributes
file 1s generated 504 which specifies attributes associated
with the new class. The new class attributes file 1s placed 506
in a global registry configuration directory on the server
such that a plurality of client applications can access the
olobal registry configuration directory to determine 1f the
new class has been installed 1n the class library.

Subsequently, the global registry configuration directory
1s scanned 508 for class attribute files to generate a lookup
table containing an entry for each class and the associated
attributes 1n the class attribute files. A list of classes 1s
retrieved 510 which match a client applications attribute
query based on contents of a plurality class attributes files 1n
the global registry configuration directory. This set of 1mfor-
mation may be collected 1n the lookup table to facilitate
scarching for classes matching the query. A particular class
1s selected 512 from the retrieved list of classes based on a
predetermined preference set. An instance of the selected
class 1s generated 514 as a new object and the new object 1s
mnitialized 516 with client application specified parameters.
The new object may be 1nitialized with default client appli-
cation speciiied parameters unless particular client applica-
tion specified parameters are obtained from the client appli-
cation.

In addition, the present invention can be summarized 1n
reference to FIG. 6 which 1s a flowchart of another preferred
embodiment object oriented programming based global reg-
istry method for use by a client application and a server on
a computer system which 1s object-based. This method 1s
performed by device-implemented steps 1n a series of dis-
tinct processing steps 600-616 that can be 1implemented in
ONE Or IMOTE Processors.

A new class defined 1n a shared class library on the server
1s provided 602 which has data members and member
functions related to a particular task. In addition, an object
factory class for the new class, defined 1n the shared class
library, 1s provided 604 which has data members and mem-
ber functions related to creating mstances of the new class
and related to attributes associated with the new class such
that a plurality of client applications can access the class
library to determine if the new class has been installed 1n the
class library by accessing the provided object factory class.
The object factory class for the new class preferably 1s stored
606 along with a plurality of other object factory classes 1n
a global registry {ile.

Subsequently, a list of object factory classes which match
a client application attribute query 1is retrieved 608 based on
contents of a plurality object factory classes in the class
library. Only those object factory classes which match a
client applications attribute query need to be resurrected
from the global registry file to form the list of object factory
classes. However, other classes may be resurrected without
modifymg the schema of this global registry process. A
particular object factory class 1s selected 610 from the
retrieved list of object factory classes based on a predeter-
mined preference set. An instance of the selected class 1s
cgenerated 612 as a new object with the selected object
factory class and the new object 1s mnitialized 614 with client
application specified parameters. The new object may be
initialized with default client application specified param-
cters unless particular client application specified param-
cters are obtained from the client application.

Either global registry process may be implemented 1n a
computer system by storing the classes and files 1n a storage
device 120 and using a processor 110 1n conjunction with

3,822,580

21

RAM 114 and/or ROM to generate objects from the stored
classes. A communications adapter 134 may communicate
with a server, operatively coupled to the computer system by
a communication network, to obtain information from a
oglobal registry file or directory the computer system and
other computer systems.

In addition, a program storage device may be created
which is readable by a computer system tangibly embodying
a program of instructions executable by the computer sys-
tem. This program of instructions would perform one or
more parts of either of the object oriented programming
based global registry methods described above.

It 1s to be understood that even though numerous char-
acteristics and advantages of various embodiments of the
present invention have been set forth 1n the foregoing
description, together with details of the structure and func-
tion of various embodiments of the invention, this disclosure
1s 1llustrative only, and changes may be made in detail,
especially 1n matters of structure and arrangement of parts
within the principles of the present mvention to the full
extent indicated by the broad general meaning of the terms
in which the appended claims are expressed. For example,
the actual names or division or functions may be changed
between the OOP classes and objects, detailed above, while
maintaining substantially the same functionality without
departing from the scope and spirit of the present invention.

What 1s claimed 1s:

1. A data-driven global registry method to extend any
framework in an object oriented programming (OOP) based
computer system, the method comprising the steps of:

(a) providing a new class defined in a shared class library
on the server which has data members and member
functions related to a particular task;

(b) generating a new class attributes file which specifies
attributes associlated with the new class; and

(¢) placing the new class attributes file in a global registry
conilguration directory such that a plurality of clients
can access the global registry configuration directory to
determine 1f the new class has been 1nstalled 1n the class
library.

2. The data-driven global registry method of claim 1

further comprising the steps of:

(d) retrieving a list of classes which match a client’s
attribute query based on contents of a plurality of class
attributes files 1n the global registry configuration direc-
tory;

(e) selecting a particular class from the retrieved list of
classes based on a predetermined preference set;

() generating an instance of the selected class as a new

object; and

(g) initializing the new object with client specified param-

cters.

3. The data-driven global registry method of claim 2
wherein the 1mifializing step comprises 1nitializing the new
object with default client specified parameters unless par-
ticular client specified parameters are obtained from the
client.

4. The data-driven global registry method of claim 2
further comprising the step of scanning the global registry
coniiguration directory for class attributes files to generate a
lookup table containing an entry for each class and the
associated attributes in the class attributes files and wherein
the retrieving step comprises generating the list of classes by
scarching the lookup table for entries which match the
client’s attribute query.

5. A program storage device readable by a computer
system tangibly embodying a program of instructions

10

15

20

25

30

35

40

45

50

55

60

65

22

executable by the computer system to perform an object
oriented programming (OOP) based data-driven global reg-
1stry method for use by a client, the method emodied on the
storage device comprising the steps of:

(a) providing a new class defined 1n a shared class library
which has data members and member functions related
to a particular task;

(b) generating a new class attributes file which specifies
attributes associlated with the new class; and

(c) placing the new class attributes file in a global registry
conilguration directory such that a plurality of client’s
can access the global registry configuration directory to
determine 1f the new class has been 1nstalled 1n the class
library.

6. The program storage device of claim 5 wherein the

method further comprises the steps of:

(d) retrieving a list of classes which match a client’s
attribute query based on contents of a plurality of class
attributes files 1n the global registry configuration direc-

tory;
(¢) selecting a particular class from the retrieved list of
classes based on a predetermined preference sef;

(f) generating an instance of the selected class as a new
object; and

(g) 1nitializing the new object with client specified param-
cters.

7. The program storage device of claim 6 wherein the
initializing step of the method comprises initializing the new
object with default client specified parameters unless par-
ticular client specified parameters are obtained from the
client.

8. The program storage device of claim 6 wherein the
method further comprises the step of scanning the global
registry configuration directory for class attributes files to
oenerate a lookup table containing an entry for each class
and the associated attributes 1n the class attributes files and
wherein the retrieving step comprises generating the list of
classes by searching the lookup table for entries which
match the client’s attribute query.

9. A data-driven global registry for use to extend a
framework in an object oriented programming (OOP) based
computer system, comprising:

(a) storage means, on a server in the OOP based computer
system, for storing OOP-based classes, the classes
including a new class defined 1n a shared class library,
which has data members and member functions related
to a particular task; and

(b) a processor, operatively coupled to the storage means,
which generates a new class attributes file that specifies
attributes associated with the new class and places the
new class attributes file 1n a global registry configura-
tion directory on the storage means such that a plurality
of clients can access the global registry configuration
directory to determine if the new class has been
installed 1n the class library.

10. The data-driven global registry of claim 9 further
comprising an object instantiation means, operatively
coupled to the storage means, for retrieving a list of classes
which match a client’s attribute query based on contents of
a plurality of class attributes files 1n the global registry
conilguration directory, selecting a particular class from the
retrieved list of classes based on a predetermined preference
set, generating an instance of the selected class as a new
object, and initializing the new object with client specified
parameters.

11. The data-driven global registry of claim 10 wherein
the object builder means comprises means for initializing the

3,822,580

23

new object with default client specified parameters unless
particular client specified parameters are obtained from the
client.

12. The data-driven global registry of claam 10 wherein
the object builder means comprises:

(a) means for scanning the global registry configuration
directory for class attributes files to generate a lookup
table containing an entry for each class and the asso-
ciated attributes 1n the class attributes files; and

(b) means for generating the list of classes by searching
the lookup table for entries which match the client’s
attribute query.

13. An object-based global registry method for use to

extend a framework 1n an object oriented programming
(OOP) based computer system, comprising the steps of:

(a) providing a new class defined in a shared class library
on the server which has data members and member
functions related to a particular task; and

(b) providing an object factory class for the new class,
defined 1n the shared class library, which has data
members and member functions related to creating
instances of the new class and related to attributes
assoclated with the new class such that a plurality of
client can access the class library to determine if the

new class has been installed in the class library by
accessing the provided object factory class.
14. The object-based global registry method of claim 13
further comprising the steps of:

(¢) retrieving a list of object factory classes which match
a client’s attribute query based on contents of a plu-
rality of object factory classes in the class library;

(d) selecting an object factory class from the retrieved list
of object factory classes based on a predetermined
preference set;

(e) generating an instance of a new class as a new object
with the selected object factory class; and

(f) initializing the new object with client application

specifled parameters.

15. The object-based global registry method of claim 14
wherein the imitializing step comprises 1nitializing the new
object with default client specified parameters unless par-
ficular client specified parameters are obtained from the
client.

16. The object-based global registry method of claim 13
further comprising the step of storing the object factory class
for the new class along with a plurality of other object
factory classes 1n a single global registry file.

17. The object-based global registry method of claim 14
further comprising the step of storing the object factory class
for the new class along with a plurality of other object
factory classes m a global registry file and wheremn the
retrieving step comprises resurrecting only those object
factory classes from the global registry file which match a
client’s attribute query to form the list of object factory
classes.

18. A program storage device readable by a computer
system tangibly embodying a program of instructions
executable by the computer system to perform an object
oriented programming (OOP) based global registry method
for use to extend a framework, the method embodied on the
storage device comprising the steps of:

(a) providing a new class defined in a shared class library
on the server which has data members and member

functions related to a particular task; and

10

15

20

25

30

35

40

45

50

55

60

65

24

(b) providing an object factory class for the new class,
defined 1n the shared class library, which has data
members and member functions related to creating
instances of the new class and related to attributes
assoclated with the new class such that a plurality of
clients can access the class library to determine 1f the
new class has been installed in the class library by
accessing the provided object factory class.

19. The program storage device of claim 18 wherein the

method further comprises the steps of:

(¢) retrieving a list of object factory classes which match
a client’s attribute query based on contents of a plu-
rality of object factory classes 1n the class library;

(d) selecting an object factory class from the retrieved list
of object factory classes based on a predetermined
preference set;

(¢) generating an instance of a new class as a new object
with the selected object factory class; and

(f) initializing the new object with client specified param-

cters.

20. The program storage device of claim 19 wherein the
initializing step comprises 1nitializing the new object with
default client specified parameters unless particular client
specified parameters are obtained from the client.

21. The program storage device of claim 18 wherein the
method further comprises the step of storing the object
factory class for the new class along with a plurality of other
object factory classes 1n a single global registry file.

22. The program storage device of claim 19 wherein the
method further comprises the step of storing the object
factory class for the new class along with a plurality of other
object factory classes 1n a global registry file and wherein the
retrieving step comprises resurrecting only those object
factory classes from the global registry file which match a
client’s attribute query to form the list of object factory
classes.

23. A global registry for use to extend a framework 1n an
object oriented programming (OOP) based computer
system, comprising;:

(a) storage means, on a server in the computer system, for

storing OOP-based classes, the classes, including:

(1) a new class defined in a shared class library on the
server which has data members and member func-
tions related to a particular task; and

(i1) an object factory class for the new class, defined in
the shared class library, which has data members and
member functions related to creating instances of the
new class and related to attributes associated with the
new class such that a plurality of clients can access
the class library to determine 1f the new class has
been 1nstalled 1n the class library by accessing the
object factory class; and

(b) a processor, operatively coupled to the storage means,
which generates a new class object as an instance of the
new class stored 1n the storage means upon request by
a client.

24. The global registry of claim 23 further comprising an
object 1nstantiation means, operatively coupled to the stor-
age means, for retrieving a list of object factory classes
which match a client’s attribute query based on contents of
a plurality of object factory classes in the class library,
selecting an object factory class from the retrieved list of
object factory classes based on a predetermined preference
set, generating an 1nstance of a new class as a new object
with the selected object factory class, and initializing the
new object with client specified parameters.

3,822,580

25

25. The global registry of claim 24 wherein the object
builder means comprises means for imitializing the new
object with default client specified parameters unless par-
ticular client specified parameters are obtained from the
client.

26. The global registry of claim 23 further comprising
means for storing the object factory class for the new class

along with a plurality of other object factory classes in a
single global registry file.

26

27. The global registry of claim 24 further comprising
means for storing the object factory class for the new class
along with a plurality of other object factory classes 1n a
olobal registry file and wherein the object builder means
comprises means for resurrecting only those object factory
classes from the global registry file which match a client’s
attribute query to form the list of object factory classes.

G s x ex e

	Front Page
	Drawings
	Specification
	Claims

