US005815514A
United States Patent (19] 11] Patent Number: 5,815,514
Gray 45] Date of Patent: *Sep. 29, 1998
(54] VARIABLE RATE BIT INSERTER FOR 5,068,878 11/1991 TLin et al. veevereeveeveeeereeresresren. 375/362
DIGITAL DATA STORAGE 5,109,385 4/1992 Karp et al. ..ocoocovvviveeiveeriniienn, 371/42
5,172,381 12/1992 Karp et al. .cooeeeveeivciieiinnannennneen 371/42
[75] Inventor: Martin D. Gray, La Jolla, Calif. 5,222,139 6/1993 Takaragi et al.ccovvvveereennnnnnnn 380/28
5,528,607 6/1996 Weng et al.coeeeviiiviiniinninnnnnnns 371/42
: : - - 5,570,379 10/1996 Sasaki et al. ...cocoveveerninnennnnnnnn. 371/42
[73] Assignee: Overland Data, Inc., San Diego, Calit. 5.579.324 11/1996 BUNIGAId wovoooveereereeererreeereeree 371/42
| *] Notice: This patent 1ssued on a continued pros- FOREIGN PATENT DOCUMENTS
ccution application filed under 37 CFR
1.53(d), and 1s subject to the twenty year 0347934A2 12/1989 European Pat. Off. .
patent term provigiong of 35 US.C. 0 507 196 A2 10/1992 FEuropean Pat. Off. .
154(a)(2). 0511498A2 11/1992 FEuropean Pat. Off. .
0593173A2 4/1994 FEuropean Pat. Off. .
- 06124451 6/1994 Japan .
21] Appl. No.: 599,149 07111047 4/1995 Japan .
-,y 1. WO06086 10/1987 WIPO .
22| Filed:— Feb. 9, 1996 0310057A2 4/1989 WIPO .
51] Int. CL® e, HO3M 13/00 WO 93/10534 5/ f~993 WIPO .
52] US. Cle oo 371/42; 371/37.1; 371/40.14; WO2407332 - 3/1994 - WIPO.
341/58; 341/59 | |
58] Field of Searchooooo....... 371/42, 40.1, 37.4, Lrimary Examiner—Reba 1. Elmore
371/37.7, 37.1, 38.1, 40.14; 370/94.1; 395/182.03; Assistant Examiner—McDicunel Mare
Attorney, Agent, or Firm—Knobbe, Martens, Olson & Bear,
341/58, 59
LLP
[56] References Cited [57] ABSTRACT
U.s. PATENT DOCUMENTS A variable rate bit inserter 1s provided which efficiently
4,559,568 12/1985 Watanabe et al. ...ccoeoeeeeueenn..... 360/48 encodes data prior to writing to a magnetic storage media. In
4,736,377 4/1988 Bradlye et al.ccceeevvevvrennennnns 317/42 a preferred embodiment, the bit insertion technique monitors
4,779,275 10/1988 YOSl}imotO 371/42 the phase and ampﬁ‘[ude content of the data stream and
4,862,457 8/}989 MOI:lmOtO 371/42 nserts appropriate bit patterns to ensure that phase and
4,907,225 3/ :h990 Gullc}(et al. e 370/94.1 amplitude lock are maintained on the data stream for reading
4,908,826 3/1990 Hertrich ..oooevveniviieiniinnennne., 371/37.4 and decoding BUFEOSES
4.978.955 12/1990 HOWell wvroveeooeeooeeooeooeeooonn 341/109 S PUIPOSES.
4,993,029 2/1991 Galbraith et al. 371/40.14
5,014,274 5/1991 Higurashi et al.ceee...... 371/40.1 14 Claims, 12 Drawing Sheets
720
N 700
MEMORY MICRO 4/(
RESOURCE CONTROLLER
J 705 //0\ 775 725
HOST -
DATA OMA REED- 8L 0CK RANDOMISER/ DATA
STREAM ENCODER ENCODER MEDIA

102

5,815,514

Sheet 1 of 12

Sep. 29, 1998

U.S. Patent

AV3YLS

1Nd1N0
viv(Q
1SOH

g/ o1/
L7/
4300230 4300230 VIQIN
NG NONOT0S N oqe . = ¥oLovdlX3 L JOVH0LS
~Q33Y /43SINOONVYIA V1VQ
7/ a5/ Y44
394N0534 43TI0YLNOD
AMONIN Atvtieny
orv/
o/ Ol
co/
VIQ3N 4300IN3 43Q0IN3 ALELRS
39VYH0LS 'NOILY3SNI 118 e N La—| WOW010S A LNdNI
ViVQ /¥43SINOONYY -Q33Y M%
s/ _ 01/ S0/
43 TI0HLNOD 324N0S3Y
0¥DIN AHOWIN

oo/ b\‘

oc/

5,815,514

Sheet 2 of 12

Sep. 29, 1998

U.S. Patent

T

3dV1

_ % 24

5 SNOILYISNI

ANVA 001

d3T1041INOD

(OYIIN)

oc/

§C2 907 o0c

CEFR-ERY, |

g

Ny3llvd 118

dIZINOONVY

d3INNOD
NOILYISNI

dIMO 1104
JRILIN 300D

— hlele— " E—— L] — L —— p——— "I I
L]]

://m<\ 43Q0IN3

Ndilivd
viv(Q

5,815,514

Sheet 3 of 12

Sep. 29, 1998

U.S. Patent

NY3illvd
VivQ

G55

oS

d3I TTO4INOD

(0¥OIN)
NIVIN

d01IVyl1X3
Ndillvd 1i8

d3INNOD
NOILIOVYLIX3

dIMOT104

JILIN 300D
/8

473

JOV
773

$O1/

(2274

idVil

osc

U.S. Patent Sep. 29, 1998 Sheet 4 of 12 5,815,514

400

£470
DETERMINE DETERMINE DETERMINE PREAMBLE
NULL PHASE AGC PATTERN
METRIC METRIC METRIC METRIC

440
NO

METRIC
EXCEEDED
?

YES

450

INSERT
BIT PATTERN

Fig. 4

U.S. Patent

Sep. 29, 1998

200

VALUL
OF R3 0

INCREMENT
RS COUNTER

RS

COUNTER

=10
?

SET NULL
METRIC FLAG

600

ABSOLUTE
VALUE

OF R3#2
?

YES
INCREMENT
AGC COUNTER

AGC

COUNTER

=60
?

YES

625

Sheet 5 of 12

CLEAR
R3S COUNTER

T0 ZERO

CLEAR

AGC COUNTER

T0 ZERO

SET
AGC
FLAG

5,815,514

U.S. Patent Sep. 29, 1998 Sheet 6 of 12 5,815,514

/00
START
705
DETERMINE
| R3— Rs|
710

TRANSFORM TO
WEIGHTED AVG
VALUES

775

COMPUTE MOVING
AVERAGE FROM
PREVIOUS DATA

/720

MOVING

AVERAGE <

THRESHOLD
?

NO

YES

SET
PHASE
FLAG

£ig.7

U.S. Patent Sep. 29, 1998 Sheet 7 of 12 5,815,514

&00

507

507

PREAMBLE
PATTERN
DETE':(.ZTED

(/5] %
E05
LAST
BITS 00
?
NO

INSERT
APPROPRIATE
BIT

YES

INSERT
1100 BIT

PATTERN

INSERT
1100 BIT
PATTERN

275 G20
LAST INSERT
BITS 01 1001 BIT
? PATTERN
NO

525 530

LAST
BITS 10
?

NO

INSERT
0110 BIT
PATTERN

540

INSERT
0011 BIT
PATTERN

550

RETURN
TO MAIN
(FIG.4)

U.S. Patent Sep. 29, 1998 Sheet 8 of 12 5,815,514

S00
START
970
INSERT
920
TOO
BIG
?
937 YES
TRUNCATER

940

CHANGE
RANDOMIZER

INITIAL SETTING
FOR NEXT BLOCK

950

OVERWRITE
LAST BLOCK

U.S. Patent Sep. 29, 1998 Sheet 9 of 12 5,815,514

71000

7070
INSERT
7020
T00
BIG
?
1040
71030

CHANGE
RANDOMIZER YES

FOR A
LONG TIME
?

INITIAL SETTING
FOR NEXT BLOCK

fig. 10

U.S. Patent Sep. 29, 1998 Sheet 10 of 12 5,815,514

DATA BLOCK
PREAMBLE HEADER DATA CRC POSTAMBLE

f7g. 77

U.S. Patent Sep. 29, 1998 Sheet 11 of 12 5,815,514
ksl
O +

g 024 X X X

DATA
STREAM

(=) 1= %

o~ e e o o
T e#i T
Fig. 1 2a

PR
O O O O
1= 1= X X
0

Fig. 126

U.S. Patent Sep. 29, 1998 Sheet 12 of 12 5,815,514

e
O O O O
1% & X X

fig. 7 2c

in =
+
X X X

Fig. 12d

5,815,514

1

VARIABLE RATE BIT INSERTER FOR
DIGITAL DATA STORAGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mnvention relates to a system and method for
encoding data for storage on a magnetic or other data storage
media and, 1n particular, to a variable rate bit insertion
encoding system and method.

2. Description of the Related Art

Variable-rate bit insertion techniques are well known as a
method for making a data stream robust against the detection
of possible errors in the data stream. Typically, this method
has application in the communication field, although vari-
able rate bit msertion has been used in other applications, as
1s well known 1n the art. According to this technique, data
bits are 1nserted 1nto selected portions of a data stream where
there 1s an increased likelihood that an error will be made 1n
detecting the data bits accurately at this portion of the data
stream. For example, variable-rate bit insertion may be used
in a communications system where the receiving decoder 1s
self-clocked. It 1s important that long strings of ones or zeros
be broken up so that the phase locked loop at the detector
side does not lose phase lock on the clock rate at which the
data 1s being transmitted. This 1s particularly important in
applications involving reading, for example, from magnetic
tape since tape storage media typically have a very uncertain
speed proiile so that frequent clocking information 1s prei-
crable to maintain phase lock. Thus, in such applications
where 1t 1s desirable to maintain phase lock at the reading or
receiving side, data bits are intentionally inserted into
“trouble regions” within the output data stream so that at the
detector side, suflicient information is present 1n the received
data signal to maintain accurate phase lock on this data
signal so that the data stream can be properly decoded.

Although the method of variable-rate bit insertion i1s
desirable as an inexpensive and fairly simple method of
increasing the robustness of data against errors, such a
method has typically been found to be 1mpractical 1in other
applications. Most notably, variable-rate bit insertion has
had limited applicability 1n the magnetic recording environ-
ment. Magnetic recording typically mvolves storage onto a
tape or a disk, where data 1s stored to the magnetic tape or
disk first and then read back. To provide for robust storage
of data, variable rate bit insertion might be used to encode
the data before writing to the magnetic media, and when the
data 1s read back, the inserted bits would be detected and
discarded. However, since the actual number of bits which
are to be mserted 1s highly unpredictable, it 1s possible that
the number of bits 1nserted would extend the length of the
data stream by as much as 10 to 12 percent. Such an
extension of the data stream 1s unacceptable for purposes of
data storage, especially when it 1s desirable to maximize data
storage elficiency. For example, if a particular data stream
has characteristics such that a bit insertion 1s called for every
10 bits, then the amount of data to be stored onto the
magnetic media will increase by 10 percent. This effectively
makes a 500-megabyte storage media mto a 450-megabyte
storage media.

In an effort to transform the data stream into a form that
1s amenable to variable-rate bit insertion, the incoming data
stream 1s first randomized using, for example, a pseudo-
random noise code which 1s exclusive ORed with the
incoming data stream to give the resulting output a random
or pseudo-random character. This random character ensures
that the probability of a data stream of being extended by

10

15

20

25

30

35

40

45

50

55

60

65

2

more than 1 percent, for example, 1s statistically negligible.
This 1s because bit insertion 1s typically performed to
break-up regular patterns so that a substantially random
pattern will require very few bit insertions. Thus, by ran-
domizing the data before applying the variable-rate bait
insertion techniques, such techniques can be more readily
applied 1n applications involving data storage on magnetic
or other data storage media.

It has been found, however, that 1n certain instances, when
the incoming data pattern has a characteristic that correlates
with the pseudo noise code (i.e., the randomizer polynomial)
in such a way as to produce undesirable encoded character-
istics (e.g., long strings of ones or zeros, or other redundant
patterns), the randomization of the data stream using that
particular randomizing polynomial does not act to prevent
the length of the inserted data bits from being prohibitively
long. A data stream having this characteristic 1s typically
referred to as a degenerate pattern. Thus, when the incoming
data stream 1s degenerate, variable-rate bit insertion tech-
niques are not practical for use with magnetic storage or
other data storage media. Furthermore, simply the possibil-
ity of such a degenerate data pattern has generally been
considered as an impediment to the use of variable-rate bit
insertion 1n the data storage environment.

In addition to the aforementioned shortcomings of
variable-rate bit insertion 1n the data storage applications, it
has been found that conventional techniques of variable-rate
bit insertion do not always ensure that errors on the receive
side associated with loss of phase information and automatic
cgain control are alleviated. For instance, if a detected data
stream has characteristics such that a maximum swing in
amplitude 1s not observed for a long period of time, this can
cause the automatic gain control at the detection side to lose
tracking, thereby introducing amplitude errors into the
detected signal. Furthermore, loss of phase lock may result
from data patterns other than consecutive strings of zeros
and ones. Accordingly, simply inserting a bit 1n long strings
of zeros and ones does not ensure that phase lock will be
maintained 1n a self-clocking system at the decoding side.
Thus, a need exists for an improved data encoding method
which resolves the difficulties associated with variable-rate
bit insertion 1n data storage applications and also accounts
for receive-side errors associated with miscalibration of the
automatic gain control or phase lock loop.

SUMMARY OF THE INVENTION

A system and method of data coding 1n accordance with
the teachings of the preferred embodiment of the mvention
alleviates the aforementioned shortcomings associated with
variable-rate bit insertion in data storage applications. In
accordance with the present invention, rather than inserting,
only a single data bit during a variable-rate bit insertion
technique, multiple bits that encode maximum phase and
amplitude information are inserted into the data stream so
that the information necessary for maintaining phase lock
and for properly calibrating the automatic gain control
during the read operation 1s always present within the
recorded data stream. According to a particularly advanta-
geous embodiment of this invention, four data bits are
inserted upon each detection of a “trouble region” of the data
stream.

In a preferred embodiment, the method of variable-rate bit
insertion 1s combined with a configurable randomizer so that
if 1t 15 determined that a particular pseudo-random random-
1zing code produces a degenerate data pattern, the random-
1zing polynomial can be reinitialized so that the randomizer

5,815,514

3

1s reconfigured. It has been found that if one pseudo-noise
code produces a degenerate pattern, then another which 1s
orthogonal to 1t, such as one 1n the same family, will not
result n a degenerate data pattern. Thus, in a preferred
embodiment, the reconfiguration of the randomizer to an
orthogonal code ensures that a degenerate data pattern will
not be produced by the randomizer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a and 1b are overall system diagrams that illustrate
exemplary embodiments of a data encoder and a data
decoder system, respectively, for coding data to be stored on
a data storage media and decoding data which 1s read from
the data storage media.

FIG. 2 1s a simplified block diagram that illustrates the

main functional elements of the randomizer/bit 1nsertion
encoder of FIG. 1a.

FIG. 3 1s a simplified block diagram that illustrates the

main functional elements of the derandomizer/bit extractor
decoder of FIG. 1b.

FIG. 4 1s a flowchart that 1llustrates the general method
used to insert a data bit pattern 1 accordance with the
variable-rate encoding method of the present invention.

FIG. 5 1s a flowchart that illustrates a submethod used to

determine the null metric within the null metric subroutine
block of FIG. 4.

FIG. 6 1s a flowchart that 1llustrates the general method
used 1n accordance with the present invention to determine
the automatic gain control metric within the gain control
metric subroutine block of FIG. 4.

FIG. 7 1s a flowchart that 1llustrates the method used 1n
accordance with the present invention to determine the

phase metric within the phase metric subroutine block of
FIG. 4.

FIG. 8 1s a flowchart that illustrates the submethod used
within the insert bit pattern subroutine block of FIG. 4 to
select and 1nsert the appropriate bit pattern into the input
data stream.

FIG. 9 1s a flowchart that illustrates a general method used
in accordance with the present invention to reconfigure the
randomizer polynomial when data 1s to be stored to a
magnetic disk.

FIG. 10 1s a flowchart that illustrates the overall method
used 1 accordance with the present invention to reconfigure
the randomizer polynomial when the data storage media
written to 1s a magnetic tape.

FIG. 11 schematically illustrates the format of a data
block 1n one preferred embodiment of the mvention.

FIGS. 12-12d schematically illustrate the method used
within a convolutional encoder to simulate the read-head
impulse response 1n order to determine the null, phase, and
automatic gain control metrics.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1a 1s a highly simplified schematic block diagram
that 1llustrates an exemplary data encoder system for use in
encoding a data input stream for storage on a data storage
media. As depicted in FIG. 1a, the system 100 includes a
Reed-Solomon encoder 105, which receives the data input
stream from a direct memory access (DMA) channel 102,
which manages the flow of data in and out of the shared
memory resources. Reed-Solomon encoding 1s well known
in the art, and will not be described in detail herein.

10

15

20

25

30

35

40

45

50

55

60

65

4

Furthermore, 1t will be appreciated by those of ordinary skill
in the art that the data mput stream need not be encoded by
a Reed-Solomon encoder. In practice, other forms of error
encoding, such as trellis encoding, convolutional encoding,
etc., may be used in the system of FIG. 1a as called for by
the specific application. Once the data has been Reed-
Solomon encoded within the Reed-Solomon encoder 1035,

the data 1s block interleaved within a block interleaver 110.
As 1s well known 1n the art, a block interleaver typically
comprises a matrix wherein the data stream 1s fed 1n by rows
and read out by columns. By block interleaving the encoded
data, errors which occur during a deep fade (1.e., when a long
succession of data is lost due to Rayleigh fading effects) are
distributed 1n smaller chunks throughout a larger portion of
the data input stream so that within any given region, errors
in the data are more likely to be recoverable. Once the data
has been block interleaved, the data are input to a
randomizer/bit-msertion encoder 115. In accordance with
the preferred embodiment of the present invention, the
custom randomizer/bit-insertion encoder 115 randomizes
the incoming data stream with a configurable pseudo noise
code, and thereafter inserts data bit patterns as necessary in
order to make the randomized data stream robust against
well-known detection errors such as the loss of phase lock
or calibration on the automatic gain control (AGC) circuit on
the decoding side. The randomizer/bit-insertion encoder 115
will be described 1n greater detail below with reference to

FIG. 2.

Once the data has been randomized and bit msertion has
taken place at the appropriate “trouble spots,” the data is
stored onto a data storage media 125 which, for example,
may comprise a magnetic disk, a magnetic storage tape, or
the like. The block interleaver 110 and the randomizer/bait-
insertion encoder 115 both operate under the control of a
microcontroller 120.

FIG. 1b 15 a highly ssmplified block diagram which shows
an exemplary system used to decode data stored on the data
storage media 125 when the data has been encoded by the
system and method described with reference to FIG. 1a. As
shown 1n FIG. 1b, data read from the data storage media 125
1s fed into a derandomizer/bit-extractor decoder 130. The
derandomizer/bit-extractor decoder 130 1s described in
orecater detail below with reference to FIG. 3. The
derandomizer/bit-extractor decoder 130 acts to essentially
reverse the randomization and bit-insertion process per-
formed within the randomizer/bit-insertion encoder 1135.
That 1s, the decoder 130 detects, extracts and discards the
data bit patterns that were mserted within the encoder 1135,
and thereafter derandomizes the data to obtain the original

data stream that was input to the randomizer/bit-insertion
encoder 1135.

Thereafter, the output of the derandomizer/bit-extractor
decoder 130 1s provided to a block deinterleaver 135, which
reorders the 1terleaved blocks mto their original order, as 1s
well understood 1n the art. After the data has been deinter-
leaved within the block deinterleaver 135, this data 1s fed
into a Reed-Solomon decoder 145. The Reed-Solomon
decoder 145 acts to detect and correct errors within the
output data stream. Once the data has been Reed-Solomon
decoded, the output data stream from the Reed-Solomon
decoder 145 should be a reconstruction of the data stream
that was originally input to the Reed-Solomon encoder 105
for storage on the data storage media 125. A DMA channel
147 directs the flow of data to the appropriate memory
resource. The derandomizer/bit-extractor decoder 130, the
block deinterleaver 135, and the Reed-Solomon decoder 145

are all under the control of a microcontroller 140, which

5,815,514

S

may, 1n one embodiment, be implemented as the same
microprocessor as the microcontroller 120.

In the preferred embodiment, the microcontrollers 120,
140 enable/disable the encoder 115 and the decoder 130.
Furthermore, the microprocessor monitors error status from
the decoder 130 (e.g., CRC errors, insert extraction errors,
etc.). The microprocessor further monitors the encoder 115
for excessive 1nsertions and provides the correct randomizer
seed for the encoder 115 and the decoder 130. In addition,
the microprocessor creates header bytes for each block
indicating address information for the Reed-Solomon
decoder and the randomizer seed required for decoding. The
microprocessor further invokes rewrites when a read-after-
write error 1s detected. Finally, the microprocessor imnvokes
a read retry when the capability of the Reed-Solomon
encoder/decoder 1s exceeded as 1s well understood 1n the art.
Each of the main operations of the microcontrollers 120, 140
will be described 1n greater detail below.

FIG. 2 1s a schematic block diagram that illustrates the
main functional elements of the randomizer/bit-insertion
encoder 115 of FIG. 1a. As shown 1n FIG. 2, a data pattern
input provided by the block interleaver 110 enters a ran-
domizer 200. In one preferred embodiment, the randomizer
200 comprises an exclusive OR gate, which receives the
input data pattern on a first mnput and receives a pseudo-
random noise code on a second 1nput via a second 1input from
a pseudo-noise code generator 205. As will be described 1n
orcater detail below, the pseudo-noise code generator 205
comprises a shift register and adder configuration, which 1s
defined by a randomizer polynomial, discussed in greater
detail below. Of course, 1t will be appreciated that the
randomization of data using a linear feedback shift register
(LESR) is well understood and conventional. By reinitial-
1zing the input values of the pseudo-noise code generator
register, the pseudo-noise code that i1s generated by the
ogenerator 205 can be reconfigured so that the pseudo-noise
code can easily be changed on the fly (e.g., in between data

blocks).

The output of the randomizer 200 feeds to a bit pattern
mserter 210, as well as a code metric follower 215. The code
metric follower 215 provides an 1nput to an 1nsertion counter
220, which 1n turn provides an mnput to the bit pattern
mserter 210, as well as to a bit-insertion threshold detector
225. The bit-insertion threshold detector 225 provides a
status signal to the main microcontroller 120, which in turn

provides a control signal to the pseudo-noise code generator
205.

The output of the bit pattern inserter 210 1s provided to the
data storage media. As shown in FIG. 2, the media may
comprise a magnetic tape 230 or a magnetic disk 235. It will
be appreciated by those of ordinary skill in the art that the
bit pattern 1nserter 210 1s typically connected to one or the
other of the data storage media 230, 235, and 1s not typically
connected to both simultaneously.

In operation, the data pattern from the interleaver 110 1s
exclusive ORed with the pseudo-noise code to produce an
output data pattern on the line 206 with an essentially
random data pattern distribution. As discussed briefly above,
data patterns that have an essentially random characteristic
(i.., data distribution) are statistically ideal for minimizing
the number of data bits which must be inserted to break up
redundant patterns which increase the likelihood of a decod-
Ing €rror.

The randomized output over the line 206 1s detected by
the code metric follower 215, which determines whether or
not the randomized data stream meets the three separate

10

15

20

25

30

35

40

45

50

55

60

65

6

metric criteria defined 1n accordance with the present inven-
tion to minimize the likelihood of decoding error. The
operation of the code metric follower 215 will be described
in greater detail below with reference to FIGS. 4-7.

When the code metric follower 215 determines that a bat
pattern 1s to be inserted within the randomizer data stream
along the line 206, the 1nsertion counter 220 1s incremented,
and the appropriate bit pattern 1s inserted by the bit pattern
inserter 210. Although, 1n one preferred embodiment, the bit
pattern 1nserted comprises a four-bit word, 1n practice, a
single bit or, alternatively, a multiple bit word (i.e., having
two, three or more bits) could be inserted as called for by the
specific application. The method employed by the bit pattern
inserter 210 to insert the appropriate bit pattern will be
described 1n greater detail below with reference to FIGS. 4
and 8. Once the bit pattern 1s mnserted, the data stream passes
through a storage media for permanent storage. For
example, the data stream may be written to the tape 230 or
to the magnetic disc 235.

The msertion counter 220 keeps track of the number of bit
patterns which are 1nserted into the data stream output by the
bit pattern inserter 210. If too many insertions are detected
within the insertion detector 225, this causes a signal to be
transmitted to the micro controller 120. The micro controller
120 controls the pseudo-noise code generator 2035 to recon-
figure the pseudo-noise code output by the generator 2085.
The method by which the micro controller 120 modifies the
pseudo-noise code output by the pseudo-noise code genera-

tor 205 will be described 1n greater detail below with
reference to FIGS. 9 and 10.

Data written to either tape or disc can be encoded. As data
1s being written to the magnetic disc 2385, 1if the disc sector
size 1s exceeded due to variable rate encoding of the data
written to the sector, the block 1s truncated at the end of the
sector and the sector 1s overwritten with the same data
randomized using a different randomizing code (i.c., seed).

In this manner, not only can a data pattern be randomized
to reduce the number of bit insertions made on a data stream
to be stored, but the randomizer code can be reconfigured on
the 1ly so that, 1n the event that the original randomizer code
1s msuflicient to produce the number of bit insertions under
the tolerable amount, the subsequent randomizing code will
result in a bit insertion frequency which 1s within the
allowable limits for storage on a magnetic medium.

FIG. 3 1s a schematic block diagram which illustrates the
main functional elements of the derandomizer/bit extractor
decoder 130 of FIG. 1b . As shown 1n FIG. 3, data storage
media such as the tape 230 or the disc 235 inputs data into
an automatic gain control circuit 305 which automatically
adjusts the amplitude of the incoming data stream to an
appropriate level for monitoring by a code metric follower
310. An analog-to-digital convertor 307 1s used to restore the
analog signal output of the AGC circuit 305 to the digital bit
strcam written to the magnetic media. The code metric
follower 310 operates 1n substantially the same manner as
the code metric follower 215 of FIG. 2. The code metric
follower 310 receives the data stream output by the A/D
convertor circuit 307 and generates command signals to an
extraction counter 315 as well as to the main micro con-
troller 120. The input to the main micro controller 120
provides an indication to the micro controller 120 that a
particular bit pattern detected within the data stream corre-
sponds to an inserted bit pattern rather than to the natural bat
pattern of the data. When the code metric follower 1n the
decoder 310 detects a pattern that contains an insertion, the
extraction counter 315 is notified. The extraction counter

5,815,514

7

315 removes the inserted data bits and at the same time
verifles that the extracted bits are the correct polarity based
upon the polarity of the previous two decoded bits, as
described below with reference to FIG. 8. If the polarity 1s
incorrect, an error status signal 1s generated to inform the
microcontroller 140.

The bit pattern extractor 320 outputs the data stream
through a cyclical redundancy code (CRC) check circuit
325. The CRC check circuit 325 veridies that the appropriate

bits are extracted from the data stream and outputs a signal
to the micro controller 120 if an error has been detected.
When an error 1s detected by the CRC check circuit 325, the
block 1s flagged as an erasure. In the subsequent Reed-
Solomon decoder 1435, the data which 1s tagged as an erasure
1s reconstructed using the correction capabilities provided by
the Reed-Solomon decoder 145. As 1s well known 1n the art,
Reed-Solomon encoding allows for error detection as well
as correction. The proportion to the number of corrections to
the number of detections can be varied depending upon the
desired application. In the preferred embodiment of the
mvention, the Reed-Solomon encoder/decoder 1s set to
perform the maximum number of corrections (i.e., to correct
as many errors as are detected). This is because the detection
of errors 1s advantageously performed using the CRC. In the
event that more errors are detected than can be corrected, the
microcontroller 140 requests a retransmission of the data.
Once the data has been checked by the CRC check circuit
325, the data 1s once again exclusive ORed with the appro-
priate pseudo-noise code via a derandomizer circuit 330
(comprising an exclusive-OR gate in one advantageous
embodiment) and a pseudo-noise code generator 335. The
pseudo-noise code generator 335 receives 1nstructions from
the micro controller 120 indicating which pseudo-noise code
1s to be used to decode a given block of data via the
derandomizer 330. As 1s well understood 1n the art, the
information concerning which code to use for derandom-
1zation can be obtained from the header portion of the block
of data, which 1s typically randomized using a fixed code
rather than a variable code. Consequently, the same data
pattern which was 1nitially written for storage to the tape 230
or disc 235 1s reproduced at the output of the exclusive-OR
gate 330, and transferred to the block de-interleaver 135 (see
FIG. 1b) for further processing.

FIG. 4 1s a flowchart that 1llustrates the general method
used 1n accordance with the present invention to 1nsert a data
pattern 1n accordance with the wvariable-rate encoding
method of the present invention. As depicted 1n FIG. 4, the
method 1nitiates, as represented by a start block 400, and
enters four metric subroutine blocks 410, 420, 430, 435 for
parallel processing to determine a null metric, a phase
metric, an automatic gain control (AGC) metric, and a
preamble pattern metric, respectively.

The null metric determined within the subroutine block
410, is used as a measure of consecutive zeros (commonly
referred to as a null pattern) detected within the data stream.
As discussed briefly above, when a null pattern persists
within the data stream for an extended period, the effects can
be deleterious on the decoding so that errors are more likely
to occur. Thus, the subroutine block 410 tabulates the length
of a null pattern and outputs a flag or a metric value
indicative of a null pattern. The method used within the
subroutine block 410 to determine the null method 1is
described 1n greater detail below with reference FIG. 5.

As represented within the subroutine block 420, the phase
metric of the incoming data stream 1s determined. The phase
metric 1s an indication of the phase content of the data
stream. As discussed briefly above, 1t 1s important for a data

10

15

20

25

30

35

40

45

50

55

60

65

3

stream to contain adequate phase content since data decod-
ing 1s based not only on amplitude, but on phase. Thus, a
decoder may lose calibration if the phase content of the
incoming data signal 1s sufficiently low that the phase
decoder 1s unable to sufficiently recalibrate. This can result
in 1naccurate phase measurements made by the phase
decoder. Thus, as a measure of the phase content of the
incoming data stream, the subroutine block 420 outputs a
phase metric value. The method employed within the sub-
routine block 420 1s described 1n greater detail below with

reference to FIG. 7.

As represented within the subroutine block 430, the
automatic gain control (AGC) metric 1s determined. For
purposes of accurately determining the amplitude at which
the read signal should be input to the A/D converter 307
(FIG. 3), the automatic gain control circuit 305 must amplify
the data stream from the magnetic media to the appropriate
level. However, this AGC circuit 305 sometimes requires
recalibration. This recalibration depends upon variations in
the amplitude of a signal to determine the gain amplitude
which the signal ought to have. Thus, it 1s particularly
advantageous 1if the signal occasionally undergoes a maxi-
mum amplitude variation while reading the data pattern so
that the AGC circuit 305 i1s able to recalibrate at the
appropriate intervals. Thus, if the determination 1s made
within the subroutine block 430 that a maximum amplitude
variation has not occurred within a determined 1nterval, then
an AGC flag, or a measurement value indicating how long,
it has been since a maximum amplitude variation, 1s output
by the subroutine block 430. The method employed within
the subroutine block 430 to determine the AGC meftric 1s
described 1n greater detail below with reference to FIG. 6.

In one particularly advantageous embodiment of the
invention, the code follower 218 1s configured to monitor the
header and data field portions of the data block 1n order to
ensure that the preamble pattern 1s not reproduced outside of
a preamble field. The monitoring for the preamble pattern 1s
performed within the subroutine block 435. If it 1s deter-
mined that any 14 bit portion of the preamble has been
reproduced elsewhere, then a flag 1s set which causes the bit
inserter to 1nsert a single bit at the end of this 14 bat
sequence. In this case, the inserted bit 1s chosen to be the
same as the second to last encoded bit, thereby ensuring that
a preamble sequence 1s not recorded in the header or data

fields of a block.

The metrics determined within the subroutine blocks 410,
420, 430, 435 serve as 1nputs to a decision block 440 which
determines 1f any one of the null, phase or AGC metrics has
been exceeded. In one advantageous embodiment, the sub-
routine blocks 410, 420, 430, 435 simply set flags to indicate
that a metric threshold has been exceeded. If any one of the
metrics has been exceeded, then a bit pattern 1s 1nserted 1nto

the data stream to compensate for the “trouble spot,” as
represented within a subroutine block 450 (see FIG. 8).
However, 1f 1t 1s determined within the decision block 440
that the metric has not been exceeded, then the method
returns to the 1nputs of the subroutine blocks 410, 420, 430,
435. The appropriate metric values are reset at the beginning
of each new block of data.

FIG. 5 illustrates a flow chart of the submethod used to
determine the null metric within the null metric subroutine
block of FIG. 4. The submethod begins as represented within
a start block 500, and a determination 1s made 1f the value
stored within register R, of the register-implemented
impulse response simulator of FIG. 12 1s equal to 0. As will
be described 1 greater detail below with reference to FIGS.
12 through 12d, the impulse response of the read head used

5,815,514

9

to read data from the magnetic storage media 1s stmulated as
a means of estimating the null, phase and AGC metrics. The
value contained within the register R, 1s indicative of the
duration of a null pattern so that the value contained within
the register R; can be used to determine whether or not a bit
pattern must be inserted to break up a null pattern.

If 1t 1s determined that the value contained within the
register R, 1s equal to 0, as represented within the decision
block 505, then a counter (i.e., an R; counter) 1is
incremented, as represented within an activity block 510.
However, 1f it 1s determined within the decision block 505

that the value stored within the register R, 1s not equal to O,
then the R; counter 1s cleared to 0, as represented within an

activity block 515, and the method returns to the decision
block 505.

Once the R, counter has been incremented, a further test
1s performed, as represented within a decision block 520, to
determine 1f the value stored within the R, counter 1s equal
to 10. If the value stored within the R; counter 1s not yet
equal to 10, then this indicates that the null pattern 1s not
sufliciently long to merit insertion of a bit pattern. However,
if 1t 1s determined that the value stored within the R counter
1s equal to 10, then this 1s an 1ndication that the null pattern
1s of a sutficient length to require 1nsertion of a bit pattern to
break up the null pattern. Thus, if the value stored within the
R, counter 1s less than 10, the method returns to the decision
block 503; however, 1f the value stored within the R, counter
1s equal to 10, then a null metric flag 1s set to indicate that
a bit pattern 1s to be 1nserted by the bit pattern inserter 210,
as represented within an activity block 525.

Once the null metric flag has been set, as represented
within the activity block 525 this indicates that an insertion
will be made. The R, counter will then be automatically
cleared to O when the inserted bit pattern 1s detected since
this will cause R; to set to a non-zero value. The method
then returns to monitor the value stored within the register
R..

FIG. 6 1s a flow chart which 1llustrates a general method
used 1n accordance with the present invention to determine
the automatic gain control metric within the gain control
metric subroutine block of FIG. 4. The method begins, as
represented within a start block 600, and a test 1s performed
to determine if the absolute value stored within the register
R, 18 not equal to 2, as represented within a decision block
605. As will be discussed in greater detail below, the value
stored within the register R, may be used as a measure of
read amplitude. Thus, if the absolute of the register R, 1s not
equal to 2, then this indicates that the read amplitude has not
exhibited a maximum variation in the positive or negative
directions. Thus, there 1s a danger that the automatic gain
control will be unable to accurately calibrate, since a maxi-
mum amplitude variation has not been observed by the
automatic gain control circuitry. For this reason, the method
of FIG. 6 keeps track of the number of clock cycles which
franspire between maximum amplitude variations. To
accomplish this, an automatic gain control counter i1s
incremented, as represented within an activity block 610.
However, 1f 1t was determined within the decision block 6035
that the absolute value stored within the register R; was
equal to 2, then this indicates that a maximum amplitude
variation has been observed by the AGC circuitry so that the
AGC counter 1s cleared to 0, as represented within an
activity block 615. From the activity block 615, the method
returns to the decision block 605, where the read amplitude
1s again monitored.

Once the AGC counter has been imncremented, as repre-
sented within the activity block 610, a determination 1is

10

15

20

25

30

35

40

45

50

55

60

65

10

made, as represented within a decision block 620, if the
AGC counter has incremented up to a value of 60. A value
of 60 stored within the AGC counter indicates that 60 clock
cycles have transpired since the last maximum variation 1in
amplitude, and 1t has been found that this number of clock
cycles 1s a convenient number at which to insert an appro-
priate bit pattern for purposes of recalibrating the automatic
gain control circuitry. Thus, as depicted 1n FIG. 6, if the
AGC counter increments to a value of 60, then an AGC
metric flag 1s set to indicate that the appropriate bit pattern
1s to be mserted, as represented within an activity block 6235.
If the AGC counter 1s not yet incremented to a value of 60,
then the method returns to the decision block 603 to continue
monitoring read amplitude variations via the value stored
within the register R..

As will be described 1n greater detail below with reference
to FIG. 8, 1n order to determine which bit pattern will be
inserted 1nto the data stream, as indicated within the activity
block 625, the 2 bits within the data stream prior to the
inserted bit pattern are monitored, and a bit pattern 1is
selected 1n order to ensure that the combination of the input
bit pattern and the prior 2 data bits in the data stream
cooperate to produce a maximum amplitude variation. Once
the AGC null metric flag has been set, this will cause the
insertion of a bit pattern which will subsequently clear the
AGC counter to 0, as represented within the activity block
615. In the meantime, the method resumes monitoring the
simulated read amplitude.

FIG. 7 1s a flow chart which 1llustrates the method used 1n
accordance with the present invention to determine the
phase metric within the phase metric subroutine block of
FIG. 4. The method 1nitiates, as represented within a start
block 700, and the absolute value of the difference between
the value stored within the register R and the R, of FIG. 12
1s calculated, as represented within an activity block 705.

Thereafter, the value calculated within the activity block
705 1s transformed 1nto a weighted average value, as rep-
resented within an activity block 710. Since, 1n the embodi-
ment described herein, the value calculated within the activ-
ity block 705 may be 0, 1, 2, 3 or 4, then the corresponding
welghted average values are 0, 2, 4, 6 and 8. For example,
if the value calculated within the activity block 705 1s 3, then
this value will be transformed to a value of 6 within the
activity block 710, while it the value calculated within the
activity block 705 1s 4, then this value will be transformed
to a value of 8 within the activity block 710.

Thereafter, as represented by an activity block 715, a
moving average 1s computed from the weighted average
values calculated for the all of the bits starting from the
preamble of the data block which have been monitored for
phase content. This moving average 1s recalculated each
time a new value 1s calculated within the activity block 7085.
Advantageously, at the beginning of each data block, the
average value 1s set to some number 1ndicating near maxi-
mum phase content. As the moving average 1s calculated this
value varies as determined by the actual phase content of the
data stream. If this moving average falls beneath a certain
threshold value, then this indicates that the data stream has
a very low phase content, so that a bit pattern should be
inserted to improve phase calibration. The reason for this 1s
that the value stored within the register R, 1s a time delayed
1s version of the value stored within the register R,. Thus,
the difference between the values stored within the register
R. and R, 1s a measure of the rate of change of the data
stream at a sample time corresponding to the value stored
within the register R,. Thus, this differential value measures
the phase content so that from this differential value, an

5,815,514

11

indication can be made as to whether or not a bit pattern
needs to be 1nserted 1n order to increase the phase content of
the data stream.

Once the moving average has been calculated, a determi-
nation 1s made 1f this moving average 1s less than the
threshold value, as represented within a decision block 720.

In one advantageous embodiment, the threshold value 1is
greater for the header field than for the data field (see FIG.

11), however, the actual values used for these threshold
values may vary from application to application and may be
determined as called for by the particular implementation. A
phase metric flag 1s then set as represented within an activity
block 723, and the method returns to monitor for phase
content. In this manner, when a lack of phase content is
detected within the data stream, a flag 1s set which causes a
bit pattern to be inserted 1n order to increase the phase
content of the data stream. However, 1f the moving average
1s above the threshold value, then the method reenters the
activity block 705 to determine the next difference value.
FIG. 8 1s a flow chart which 1llustrates a submethod used
within the 1nsert bit pattern subroutine block of FIG. 4 to
select and insert the appropriate bit pattern into the input
data stream. The method 1nitiates, as represented by start
block 800, and a determination 1s made 1f the preamble
pattern has been detected, as represented within a decision
block 801. If the preamble pattern has been detected, then
this causes the appropriate bit to be inserted into the data

stream, as represented within an activity block 802.
Otherwise, if the preamble pattern has not been detected, a
determination 1s made if the flag which has been set 1s the
null metric flag, as represented within a decision block 803.
If the null metric flag has been set, then a bit pattern of
“1100” 1s 1nserted 1nto the data stream to break-up the null
pattern, as represented within an activity block 804. The
insertion of a data pattern of 1100 conveniently breaks up
the null pattern, and also includes phase and amplitude
information to provide for accurate phase and amplitude
calibration. From the activity block 804, the method returns
to the main method of FIG. 4.

If 1t 1s determined within the decision block 803 that the
null metric flag has not been set, then a determination 1s
made 1if the previous 2 bits in the data stream were “00,” as
represented within a decision block 803. If the last two bits
were 00, then a bit pattern of 1100 1s 1nserted into the data
stream, as represented within an activity block 810, to
produce a 6-bit pattern of “001100.” However, if 1t 1s
determined within the decision block 8035 that the previous
2 data bits were not 00, then the method proceeds to
determine 1f the last 2 bits were “01,” as represented within
a decision block 815. If the last 2 bits were 01, then a bit
pattern of 1001 1s 1nserted, as represented within an activity
block 820, to produce a 6-bit data pattern of “011001.”
However, 1f the last 2 data bits in the data stream were not
01, then the method proceeds to a decision block 8285,
wherein a determination 1s made 1f the last 2 data bits were
“10.” If the last 2 data bits 1n the data stream were 10, then
a data pattern of 0110 1s inserted, as represented within an
activity block 830, to produce a 6-bit data pattern of
“100110.” However, 1f the last 2 data bits were not 10, then
this indicates that the last 2 data bits were 11, so that a data
bit pattern of 0011 1s inserted into the data stream, as
represented within an activity block 840, to produce a 6-bit
data pattern of “110011.” It will be appreciated by those
skilled 1n the art that the method of bit insertion described
above ensures that maximum phase and amplitude 1nforma-
tfion 1s 1nserted 1nto the data stream to assist the phase locked
loop and the AGC circuit so that phase lock and gain
calibration are not lost.

10

15

20

25

30

35

40

45

50

55

60

65

12

Once the appropriate data bit pattern has been mserted
within the activity blocks 810, 820, 830 or 840, then the
method returns to the main method of FIG. 4, as represented
within an activity block 850. In this manner, the method of
the preferred embodiment ensures that the appropriate sui-
ficient phase content will be 1nserted into the data stream to
provide for accurate phase lock calibration. Furthermore,
since the msertion of a 4-bit data pattern in accordance with
the method of FIG. 8 will result 1n a maximum phase
variation (1.e., R;—Rs=4 or -4), and since this value is
welghted so that a maximum phase variation will result 1n an
even larger contribution to the moving average, onc bit
pattern 1nsertion should be sufficient to raise the moving
average well over the threshold level so that the bit pattern
insertion obtains optimum phase content.

FIG. 9 1s a flow chart which 1llustrates the general method
used 1n accordance with the present invention to reconfigure
the randomizer polynomial when data 1s to be stored to a
magnetic disk. The method 1nitiates as represented within a
start block 900 and thereafter, whenever a bit pattern is
inserted 1nto the data stream, as represented within an
activity block 910, a determination 1s made whether the
number of bits mserted 1s too large for a given block of data
as represented within a decision block 920. In one
embodiment, the number of insertions 1s tabulated, and 1f
four times this number of insertions 1s greater than the
number of bits which would cause the data block to be too
large for storage onto the disk, a flag 1s set.

Thus, 1f 1t 1s determined that the number of insertions has
not exceeded the threshold value, the method returns to the

activity block 910 for tabulation of the next bit pattern insert.
However, if it 1s determined that the threshold value has
been exceeded within the decision block 920, the method
proceeds to truncate the last data block as represented within
an activity block 930. That 1s, the data block which 1s written
to the disc 1s truncated so as not to exceed the sector size to
which the data block 1s written. Thereafter, the randomizer
initial settings for the next data block to be randomized are
changed by the microcontroller 120, as represented within
activity block 940. In one advantageous embodiment, the
randomizer 1nitial settings can be changed to settings for an
orthogonal pseudo-noise code to that which was used on the
last block of data.

The method used to reconfigure a randomizing polyno-
mial to produce an orthogonal code 1s well known 1n the art.
The reconfiguration to an orthogonal code ensures that the
next block of data will not have a high correlation with the
1s new pseudo-noise code. This 1s because, orthogonal codes
have an essentially zero correlation with one another so that,
assuming that consecutive blocks of data have essentially
the same bit pattern characteristic, when a bit pattern has a
high correlation with a given pseudo-noise code, the same
pattern will have a low correlation with a pseudo-noise code
orthogonal to the original pseudo-noise code. Thus, by
changing the randomizer initial settings for the next block of
data so that the new pseudo-noise code 1s orthogonal to the
last pseudo-noise code, the number of 1nsertions for the data
bit stream can always be reduced beneath the threshold
required for storage onto the disk.

In one preferred embodiment, the randomizing polyno-
mial used to generate the family of pseudo-noise codes used
to randomize the data stream 1s:

g(x) = P ey Py M P Y 1 e e 1

Finally, after the randomizer initial setting has been
changed, the last block of data, for which a number of

5,815,514

13

insertions was too high, 1s overwritten using the new
pseudo-noise code as represented within an activity block
950. All subsequent data blocks are also randomized using
the new pseudo-noise code. It should be noted that 1n the
case of the disk storage, 1t 1s possible to change the ran-
domizer polynomial coefficients on the fly and to overwrite
the last data block because of the characteristics of a disk
storage media which allow for overwrite on the fly. Thus, 1n
accordance with the method of FIG. 9, data can be written
to a disk drive without the danger that such data will be too
large for storage purposes since changing of the randomizer
polynomial on the fly will ensure that the percent increase
for a given data block will never exceed the sector space
allocated for storage to the magnetic disk.

It should be noted here, that 1n certain instances data has
been encoded 1n such a way as to anficipate changes 1n a
randomizer polynomial (i.e., with the specific intent of
producing a degenerate pattern) so that if a straightforward
method of changing the randomizer polynomial coeflicient
1s used, 1t 1s still possible that such data streams will require
an unacceptable number of bit 1s 1nsertions. Thus, 1n accor-
dance with a preferred embodiment, the method of changing
the randomizer polynomials i1s itself pseudo-random or
non-deterministic so that data streams which are intention-
ally encoded to frustrate data storage 1n this method may still
be randomized 1n such a way so as to reduce the number of
bit insertions to a tolerable level. As 1s well known 1n the art,
a number of mutually orthogonal codes are associated within
a family of codes defined by the randomizer polynomial.
Thus, any one of the codes orthogonal to the code used last
could be randomly chosen as the next randomizer seed.
Alternatively, a complex, non-repetitive pattern for choosing,
consecutive codes could also be used, as called for by the
particular application.

FIG. 10 1s a flow chart which illustrates the overall
method used in accordance with the present mnvention to
reconflgure the randomizer polynomial when the data stor-
age media written to 1s a magnetic tape. The method 1nitiates
as represented within a start block 1000, and thereafter, any
bit msertions mto the data stream are tabulated as repre-
sented within an activity block 1010. If it 1s determined that
the number of 1nsertions for a given data block 1s within the
allowable limits, as represented within a decision block
1020, then the method returns to the activity block 1010 to
await the next insertion. However, 1if 1t 1s determined within
the decision block 1020 that the number of msertions has
exceeded the allowable threshold level, then a further deter-
mination 1s made within a decision block 1030 1f the number
of msertions 1s too large for one or more blocks of data. In
one advantageous embodiment, one block of data 1s moni-
tored before it 1s determined that the number of insertions
has been excessive for too long of a time, however two, three
or more blocks could also be monitored as called for by the
particular application. If a number of 1nsertions has not been
excessive for too long of a period, then the method returns
to the activity block 1010. However, 1if 1t 1s determined
within the decision block 1030 that the number of 1nsertions
has been too large for too long of a time, then the randomizer
initial settings (i.e., the coefficients to the randomizer
polynomial) are changed for the next block as represented
within an activity block 1040. The method employed within
the activity block 1040 1s substantially identical to the
method employed within the activity block 940 of FIG. 9.

After the randomizer polynomial coefficients have been
changed for the next data block, the method returns to the
activity block 1010 to continue monitoring of the number of
inserts 1nto the data stream. In this manner, the preferred

10

15

20

25

30

35

40

45

50

55

60

65

14

embodiment ensures that the number of bit insertions into
data to be stored onto a magnetic tape does not increase the
size of the data to be stored above a tolerable limit (e.g., 1%).

FIG. 11 schematically illustrates a format of a data block
in one preferred embodiment of the invention. The overall
block format 1s application specific. Each block preferably
consists of a series of framed sub-blocks containing an
interleaved series of systematic Reed-Solomon code words.

Error correction i1s based primarily on erasures. This 1is
ciicient and uses a low bandwidth.

As shown 1n FIG. 11, each data block includes a
preamble, a header, a data portion, a cyclical redundancy
check (CRC) portion and a postamble. The preamble typi-
cally comprises a four-byte segment which 1s used to 1den-
tify the beginning of a new data block, and 1s advanta-
geously not encoded with the pseudo-noise code so that it 1s
not necessary to know the pseudo-noise code in order to
detect the preamble segment. In one actual embodiment, the

preamble 1s “01001100110011001100110011001111.”

The header segment contains inifialization for the data
secgment scrambler, as well as other information. It 1s prel-
erably a three byte sequence which 1s sent to the shared
memory resource by the microcontroller 120 for each 512
bytes data block received by the shared memory resource
from the host. The header field therefore preferably consists
of the first three bytes received by the encoder from the
direct memory access (DMA) channel. Prior to recording,
the header is randomized using a fixed randomizer code (i.¢.,
seed). Because the header is randomized using a fixed seed
which 1s always available to the decoder 130, the header
randomization may result in a header sequence with poor
read characteristics. For instance, the fixed header random-
1zer may produce a header which contains a long string of
zeros. Because re-randomization 1s unavailable for the
header field, 1t 1s preferable to use a different encoding
scheme for the header field than the data field. For example,
the header could be encoded using a fixed 45 or 86 code. This
1s less efficient than the variable rate insertion code used on
the data block, but it provides a better assurance of read-
ability 1n the absence of re-randomization. As a preferable
alternative, the variable rate bit 1insertion can be performed
on the header, but with different bit insertion thresholds for
null sequence length, phase content, and amplitude varia-
tions than are utilized when writing the data field to better
ensure adequate read characteristics for the header field.

The randomizer 1nitialization 1s preferably identical for all
sub-blocks 1n a physical frame. Because of read while write
error correction, sub-blocks may be associated with a track
or frame different from the physical track or frame they are
recorded 1n. Thus, information used to compensate for this
effect 1s mncluded within the header.

The data field contains data which has been encoded using,
the randomizing polynomial. This data field includes the last
512 bytes from the DMA channel. In one advantageous
embodiment, randomization of the data involves exclusive
OR-1ng the data with the least significant bit of the 24-bit
randomizing polynomial discussed above according to a
method which 1s well known 1n the art.

The CRC segment advantageously comprises a six byte
field calculated from the preceding header and data fields
after the randomization. This sub-block 1s never randomized
and allows a sub-block to be validated without knowledge of
the randomizer initialization. In one preferred embodiment,
the polynomial used to calculate the CRC field 1s:

g(x)=x" O M x0T PP O

X2+ PP e B P17 30 P+t 1

The postamble field advantageously comprises a four-bit
pattern such as 0101.

5,815,514

15

FIGS. 12-12d schematically illustrate the method used
within a convolutional encoder to simulate the read head
impulse response 1n order to determine the null, phase, and
AGC metrics. In order to determine whether or not the read
head used to read the data from the magnetic media 1s
receiving suificient amplitude and phase information, 1t is
important to simulate the effects of the read head using a
partial response simulation method. In the particular imple-
mentation used 1n the preferred embodiment, the extended
partial response, class 4 (EPR4) is simulated since the
simulation using this method 1s closest to the actual response
observed 1n the read head used 1n the preferred embodiment.

As depicted 1n FIG. 12, a data stream 1s input mto a
parallel multiplier circuit wherein each bit of the data stream
1s simultaneously multiplied by either a positive one or a
negative one. As depicted in FIG. 12, a bit from the data
stream 1s multiplied by a positive 1 and then added to the
value within a register R,, while the same bit 1s multiplied
by 1 and added to the value stored within a register element
R, . The same data bit 1s also multiplied by a -1 to be added
to the value stored within the register elements R, and R,
respectively. Upon each clock cycle, the value stored within
the shift register elements are shifted over by 1 bit so that a
convolutional encoding 1s performed to simulate the read
head 1mpulse response.

For example, as depicted 1n FIG. 12a-12d, assuming that
the register elements R,—R. are mitialized to 0, when the
first bit 1n the data stream 1s received, register elements
R,—R: will respectively have values of 1, 1, -1, -1, 0, and
0, as depicted 1n FIG. 12a. Subsequently, the values within
the shift register elements R,—R < are shifted by one element
so that R, 1s equal to 0, R, 1sequal to 1, R, 1s equal to 1, R,
1s equal to -1, R, 1s equal to -1, and R. 1s equal to O.

Thereafter, when the next data bit in the data stream 1s
applied, (e.g., a 0 as shown in FIG. 12b), this value is
multiplied by the appropriate multiplier value and added to
the value stored within the shift register elements R,—R-.
Because the data stream value 1s 0 as shown 1n the example
of FIG. 125, this does not change the value of any of the bits
stored within the shift register elements R,—R..

However, 1in the next clock cycle the data bits are shitted
once again and the next bit i the data stream 1s then
multiplied by the appropriate multiplier values and added to
the respective values within the shift register elements
R,—R;. As depicted 1in FIG. 12¢, when a 1 1s applied in the
next clock cycle, this causes a value of 1 to be added to the
0 value stored within the shift register element R, while a
value of 1 1s also added to the 0 value stored within the shift
register element R . Furthermore, values of -1 are added to
the values stored within the shift register elements R, and R4
thereby resulting 1n a net O value to be stored within the shaft
register elements R, and R;. Finally, the shift register
clements R, and R, include the shifted values of -1 and -1,
respectively.

Once again, these values are shifted by one element (so
that R,—Rs are now equal to 0, 1, 1, 0, 0, -1, respectively)
and the next bit in the data stream 1s multiplied by the
appropriate factor and added to the shift register elements
R,—R;. The subsequent multiplication and addition to the
value stored within the shift register elements R—R; results
m valuesof 1,2, 0, -1, 0, and -1 to be stored within the shift
register elements R,—R <, respectively.

As will be appreciated from the above-described method,
whenever a long stream of consecutive zeros 1s mput as the
data stream, this will eventually cause the register value of
R, to assume a value of O for an extended number of clock
cycles. Thus, the value stored within register R; 1s indicative

10

15

20

25

30

35

40

45

50

55

60

65

16

of a null within the data stream. Furthermore, 1t will also be
appreciated that the value of R, 1s indicative of gain content
so that the value of R; will become a +2 or a =2 whenever
a large amplitude variation 1s observed 1n the data stream.
Thus, whenever a value of 2 or -2 has not appeared within
the register element R, for an extended period of time, this
indicates that the data stream 1s devoid of amplitude infor-
mation so that a bit pattern which adds amplitude 1nforma-
tion must be 1nserted as described above. Finally, 1t will be
appreciated that since the value stored within register ele-
ment R. 1s stmply a time delayed version of the value stored
within register element R, the difference between the value
stored within the register elements R; and R taken during
the same clock cycle will be indicative of the “slope” of the

impulse response produced by the data stream at time R,.
Thus, the difference between the value stored within the
register element R and the value stored within the register
clement R, 1s a measure of the phase content, where a large
difference indicates a high phase content and a small dif-
ference indicates a low phase content.

Although the preferred embodiment has been described 1n
detail above, 1t will be appreciated by one of ordinary skill
in the art that certain obvious modifications could be made
to the preferred embodiment without departing from the
spirit or central characteristics of the invention. For
example, the insertion counter could be implemented as a
device which monitors overall block size or the ratio of
inserted bits to non-1nserted bits. Therefore the scope of the
invention should be interpreted in light of the following
appended claims.

What 1s claimed 1s:

1. An apparatus for error encoding a digital data stream to
be stored onto a data storage medium, said apparatus com-
Prising;:

a data stream 1nput terminal configured to receive an input
data stream; monitoring device which monitors said
data stream to determine if a bit insertion is to be
performed;

a bit inserter which 1nserts one or more bits into said data
stream, at a rate which varies depending on said input
data stream content, after said code monitoring device
determines that a bit insertion 1s to be performed
thereby producing an encoded output data stream; and

a write head configured to receive said encoded output
data stream and to write said encoded data stream onto
said data storage medium.

2. An apparatus as defined 1n claim 1, wherein said bat
inserter mnserts a multiple bit word that encodes maximum
phase information.

3. An apparatus as defined 1n claim 2, wherein said
inserted multiple bit word also encodes maximum amplitude
information.

4. An apparatus as defined in claim 1, wherein said bit
inserter mnserts a multiple bit word that encodes maximum
amplitude mnformation.

5. An apparatus as defined in claim 1, wherein said bat
inserter mserts a four bit word.

6. An apparatus as defined 1n claim 1, wherein said digital
data stream 1s written to said data storage medium in
assoclation with a determined preamble sequence;

wherein said code monitoring device monitors said digital
data stream to determine if said digital data stream
comprises a subset of said preamble sequence; and,

wherein said bit inserter 1nserts a bit at one end of said
subset of said preamble sequence.
7. A method of error encoding a digital data stream to be
stored onto a data storage medium, said method comprising
the steps of:

5,815,514

17

Inputting a data stream;

monitoring said data stream to determine 1f a bit insertion
1s to be performed;

inserting one or more multiple bit words at a rate which
varies depending on data stream content 1nto said data
stream when said bit insertion 1s to be performed; and

storing said data stream onto said data storage medium.

8. A method as defined in claim 7, wherein said step of
inserting includes the step of inserting a multiple bit word
that encodes maximum phase mnformation.

9. A method as defined 1n claim 8, wherein said inserted
multiple bit word further encodes maximum amplitude
information.

10. A method as defined 1n claim 7, wherein said step of
inserting mcludes the step of inserting a multiple bit word
that encodes maximum amplitude mmformation.

11. A method as defined 1 claim 7, wherein said multiple
bit word comprises a four bit word.

12. A method of storing data on data storage media
comprising;

receiving an mmput data stream;

estimating a read channel response to said mput data
stream;

inserting one or more multiple bit words into said input
data stream 1n response to said estimating to produce an

10

15

20

25

138

output data stream, wherein said multiple bit words are
selected to produce a read channel response of greater
magnitude than that produced by said input data stream
without said multiple bit word inserted; and

storing said output data stream onto said data storage

media.

13. The method of claim 12, wherein said estimating
comprises estimating the response of an Extended Class 4
Partial Response read channel, and wherein said inserting
one or more multiple bit words comprises mserting the word
“0011” at one or more locations 1n said nput data stream.

14. An apparatus for error encoding a digital data stream
comprising:

a data stream 1nput terminal configured to receive an input

data stream;

a read channel response estimator configured to monitor
said 1nput data stream and to produce an output signal
when a read channel response to said input data stream

1s estimated to contain one or more predetermined
characteristics;

a variable rate bit inserter which 1nserts one or more bits
into said nput data stream 1n response to said read
channel response estimator output signal.

	Front Page
	Drawings
	Specification
	Claims

