US005815149A

United States Patent (19] 11] Patent Number: 5,815,149
Mutschler, 111 et al. 45] Date of Patent: Sep. 29, 1998
[54] METHOD FOR GENERATING CODE FOR 5,699,310 12/1997 Garloff et al.cvvveeennnennnn.e. 395/701
MODIFYING EXISTING EVENT ROUTINES 5,699,518 12/1997 Held et al. ..ooeveeveeeeeeeennne, 345/335
FOR CONTROLS ON A FORM Primary Fxaminer—Raymond J. Bayerl
Assistant Examiner—Cao H. Nguyen
[75] Inventors: Kugene Otto. Mutschler, 111; Joseph Attorney, Agent, or Firm—IJ. Ronald Richebourg; Mark T.
Peter Stefaniak, both of San Clemente; Starr: Steven R. Petersen
Bao Quoc Vu, Mission Viejo, all of ’
Calif. [57] ABSTRACT
(73] Assignee: Unisys Corp., Blue Bell, Pa. The flisc}osed invention %s a methoc} for generating code 1n
a maintainable form and in performing needed maintenance
e for the same. This method 1s useful 1n a computing system
21] Appl. No.: 803,157 having at least one server and a multiplicity of clients
21 Filed: Feb. 19, 1997 coupled thereto by means of a network. The server includes
- a CPU executing legacy programs and at least one storage
:51: Int. Cl.6 .. GO6F 7/00 device for Storing forms of the legacy program. The gener-
52 US.CL o, 345/335; 395/682; 707/505 ated code implemen‘[s the host forms while al]owing for
58] Field of Search 345/333, 335, additional logic to be added. The method of this invention
345/331, 967; 395/701, 682; 707/506, 505 operates 1n at least one of the clients for generating code for
modifying existing event routines for controls on the forms.
[56] References Cited Moreover, the code generated by the method of this inven-
US. PATENT DOCUMENTS tion 1s separated jfrom additional logic .adgied by a
programmer, and this programmer-added logic 1s retained
5,668,997 9/1997 Lynch-Freshner et al. 395/683 even as the generated code 1s revised.
5,687,373 11/1997 Holmes et al.ccoeeieeinnnnnn.e. 395/682
5,696,914 12/1997 Nahaboo et al.ccooeuvevennnnn 345/333 30 Claims, 13 Drawing Sheets

POWER CLIENT CODE GENERATION ASSISTANT - 3 GL TRIPS (WELCOME.VBP) ¢ ﬁ
FILE VIEW WINDOW HELP N 40
TRIPS FRM y 41 53 54 55 56
50 5 P / / / /
N SUMMARY BUTTON EDIT BOX LIST BOX COMBO BOX | PICTURE MENU
(TRIPS) REPOSITORY FORM ASSOCIATION SELECTION
42 —
REPOSITORY FORM NAME WELCOME ‘ Y
CONTROL AND DATA NAME ASSOCIATION
TYPE CONTROL NAME DATA NAME Y DATA NAME
V CODEDISPLAY CODEDISPLAY <
V JOBIDDISPLAY JOBIDDISPLAY /
V EMPSSN EMPSSN 49
9 @
9 ¢ — -
® ® /
46
V TRIPS COMMENTS TRIPS COMMENTS
vV XMIT XMIT -3
T N 44 HELP 44
CLOSE 48 43 ~~ 49

5,815,149

Sheet 1 of 13

Sep. 29, 1998

U.S. Patent

Ol

WNINN3L TIWNIANIL
\\) \Mi tE .
o il | L "9
X X
-l — -l — it —aniflf — - e -
! 3 AMOLISOdI \ G
~ _ | wu3Au3s
MYOMLIN
T >
YIAYIS
S100010¥4d
- / AdY13IHd0Hd
HO
di/doL
19¢
ONIT
H3ddVIA / o
SNYHOOYd FUYMLIOS o

Ll

9L — k=

_\l.lllull.ll Il_lrl.lfj

AdOLISOd3d
1IN0

———
e

A

Y

==

1!
1 J
A]
| |

=== |[[|[{{[HI}I]]]

R—)

-

|J

4 ™

14

NOILVHINIO 340D

INVISISSY

1N3ITO d3IMOd

(SHOLYTINWT) L1D2INNODOANI

SINVEO0dd JdVMAMLHOS

5,815,149

Sheet 2 of 13

Sep. 29, 1998

U.S. Patent

¢ Old

SINJWNOD SdIdL P 4

A31VadN SMANSINL P 4

Sdldl 11X3

) 4

ALIAILOY TIAVHL IAOHddY P 4

SNOILONNA ‘NINQY H3A0HddY P 4 IDONVAQY/HLINY TIAVHL YV ILVIED P ¢

31V 313730 HO LO3IHHOD ‘ILIT1dN0D P 4

dAANN) INFWTLVLS NO HINONI P 4

SI1vY H14/49V4 NO JHINONI P 4

ATINO SH3IAO¥UAY Sl ¥O4 d3HINOD3IA) < . JdOMSSVd d3A0HddY

) \v A/
Ve 77

0c¢

L

Sdldl O1L WO 1M o7

dd1lV d1vddO

d31 NO JHINONI

JANVN LSV

NSS ddAO 1dWd

GC

P 4
) 4

d13dH 404 .¢éw ~d0- 103135 Ol . X

5,815,149

Sheet 3 of 13

Sep. 29, 1998

U.S. Patent

€ 'Ol

07 7| 1INSNVHL
9661 ‘€Z ¥IGW3DIA 39 TIIM LNIFWAVC QdVD LIAIHD XIWY 123HIQ LXIN FHL

0661 ‘€1 ¥39N303Ad 'Avaidd 39 T1IM LISOd3d 1034Id LX3AN IHL

SLNIWWOD SdIL Sdial 1IX3
96/60/21a31vAdN SM3N SdIdl ALIAILOY T3AVHL JAOHIY
SNOILONNS NINAY ¥3A0¥ddY | | JONVAAQY/ HLNY T3AVYHL V 31Vv3HD

¥31 ¥ 3137340 YO 1039H09D ‘J131dWOD ¥31 V ILv3HD
(AAWIN) LNTWIL1VLS NO FHINONI H31 NO FHINONI
S31VH H14/4v4 NO FHINONI | J13H MO 4. MO~ 13T3S O X

JdOMSSVd 4dNOdddY

\T\] ” JNVYN 1SV

Ve [~ — “ NSS IIAOTdINT
02

Sdldl Ol JNOD 13M

5,815,149

Sheet 4 of 13

Sep. 29, 1998

U.S. Patent

79 =
g€ / S/
A dv:0 ‘ A (daA’.) ¥ 21SYd TVNSIA
L _ .
cot s3nba hm\ 2dAL 40 S3I4 1S
\ q9¢
QPe ~ _
, A
_ | e
d13H NIg
| 30d dgA IN0DTIM
omm.\ Y \'0 _ Y d9A DHVIA
_ < — eye /L
| T3ONVO / NI\IDd\:D LA TNOOTIM
/ EO0L \\\
L~ SII™OLOINIC JNVYN 3714
&
MO
7 - NOILDI T3S 123royd
e6e i] o
11 A _ SdidL " 19¢ JWVN NOILILYVd
L€ | \‘
0€] |

NOILOJ1dS NOILLILdVd

(SAI¥1 19€) NOILD313S NOILYOINddY

et

5,815,149

Sheet 5 of 13

Sep. 29, 1998

U.S. Patent

GOl
" 67~ d13H It mw/ S ~__ 3501
TN /
) - LIAX LINX A
SINIWNOD SdIdl o | | SINJWWOD SdidL A .
.ll_\ o
~-f— ®
. —

o NSSdN3 NSSdWNT A

R AV1dsiaaigor AV1dSIiaalgor A

r ><._aw_omooo | AV1dSIa3aod >.

JNVN VLvQa A | JNVN V1VQ JNVN TOHLNOD AdAL
_ NOILYIDOSSY JWVN V.1VA ANV TOHLNOD -
A JWODT1IM - JNYN WHO4 AHOL1ISOd3
NOILD313S NOLLYIDOSSY WHOA4 AHOLISOdaH (Sdidl)
AN3IN JHN1OId | X0g9 0gnod X094 1Sl X049 11a3 NOLLNg AHVIWIANS \
\\.\.\1
\ \ \ \ 26— b3 05
9G GG pC e’y A B NHASdIML
8/ 413H MOANIM MIIA 3714

(daA INODT13M) SdIYL 19 € - INVLSISSY NOILVHINTD IA0D INIITD ¥IMOJ

U.S. Patent Sep. 29, 1998

T

EMULATOR INVOKED TO

HOST APPLICATION TO
DISPLAY A HOST SCREEN

'

61

CONNECT TO & EXECUTE —

Sheet 6 of 13 5,815,149

FOR 3GL
APPLICATIONS

POWER CLIENT DEVELOPMENT
STUDIO INVOKED TO CAPTURE
SCREEN IMAGE AND MARK ENTRY/DISPLAY
FIELDS AND STATIC TEXT

62

Y

AND STATIC TEXT INTO SCREE
CONTROL LANGUAGE (SCL)

ENCODE ENTRY/DISPLAY FIELD '
N

64

N

63

s ~~| GENERATOR READS SCL

STORE ENCODED SCL
IN REPOSITORY

B X
POWER CLIENT CODE

AND CREATES VB/PB FORM

-

se/,

VB/PB FORM COMPILED UNDER
THEIR RESPECTIVE CLIENT
BUILDER TOOLS

|

67/

FIG. 6A

POWER CLIENT CODE CHECK-IN
IMPORTS VB/PB CODE INTO
REPOSITORY

GO TO A /”'
FIG. 7A

U.S. Patent Sep. 29, 1998 Sheet 7 of 13 5,815,149

70
(START >/

Y FOR LINC

LINC WORKBENCH INVOKED TO | APPLICATIONS
CONNECT TO & EXECUTE | - 71
HOST APPLICATION TO
DISPLAY A SCREEN

Y

STORE ENCODED SCL
IN REPOSITORY

|

POWER CLIENT CODE = | - 73
GENERATOR READS SCL
AND CREATES VB/PB FORM

|

VB/PB FORM COMPILED UNDER / 74
THEIR RESPECTIVE CLIENT
BUILDER TOOLS

72

A\

|

Y

POWER CLIENT CODE CHECK-IN / 79
IMPORTS VB/PB CODE INTO
REPOSITORY

T]

GO TOA 70
FIG. 7A

FIG. 6B

U.S. Patent Sep. 29, 1998 Sheet 8 of 13 5,815,149

78
[START >/

FOR MAPPER
Y .o APPLICATIONS
POWER CLIENT DEVELOPMENT |
STUDIO INVOKED TO DESIGN
AND DISPLAY A FORM
\
Y i

ENCODE ENTRY/DISPLAY FIELDS
AND STATIC TEXT INTO SCREEN >
CONTROL LANGUAGE (SCL)

80/

STORE ENCODED SCL
IN REPOSITORY

| S

POWER CLIENT CODE
/ GENERATOR READS SCL
82 AND CREATES VB/PB FORM

y

VB/PB FORM COMPILED UNDER
THEIR RESPECTIVE CLIENT
- / BUILDER TOOLS

L

Y

l POWER CLIENT CODE CHECK-IN
IMPORTS VB/PB CODE INTO
84 REPOSITORY
85
GO TOA
\< FIG. 7A

FIG. 6C

U.S. Patent Sep. 29, 1998 Sheet 9 of 13 5,815,149

®)
{ o Y o I
USER OPERATIONS PERFORMED: 90

1. RUN CGA: /
2. |IF CODE IMPORTED INTO REPOSITORY
(LE., METHOD OF FIG. 6A, 6B OR 6C USED):
INVOKE CHECK-OUT MODULE, AND
EXPORT CODE FROM REPOSITORY,
3. INVOKE CGA MODULE.

Y 91
DISPLAY A LIST OF
AVAILABLE /
APPLICATIONS
(PARTITIONS)
93
92
Y / / o
OPEN THE PARTITION DISPLAY A LIST
SELECTED AND OBTAIN OF VB PROJECTS
AND DISPLAY THE LIST OF —— OR PB PBL FILES
SERVER FORMS IN AS THE USER
THE APPLICATION SELECTS VARIOUS
DIRECTORIES /94
PARSE THE
DISPLAY A LIST OF FORMS APPLICATION PORTION
OBTAINED FROM THE
9B Alauhegiiei s < | OF THE SELECTED
PROJECT TO OBTAIN
THE LIST OF VB OR PB
@ - | FORMS IN THE PROJECT
Y
USER SELECTS A PARSE THE FORM
FORM RO > SELECTED FROM 9T

96 THE LIST OF
\ DISPLAYED FORMS THE DISPLAY

Y

98
FIG. 7A \(GOTOB>

FIG. 7B

U.S. Patent Sep. 29, 1998 Sheet 10 of 13
FOR EACH CONTROL AND EVENT
ROUTINE OBTAINED IN THE PREVIOUS B
STEP. STORE THE VB OR PB INFORMATION &
/ STORE THE FORM'S CONTROLS (FIG. 8)
100
101
ARE
THERE MORE YES
ONTROLS & EVENT
?
106 0
\ NO
DOES /
SELECT HOST THE FORM
FORM FROM CONTAIN THE VES
BLOCK 91TO |<NO ADDITIONAL
CORRESPOND CONTROL
TO THE CLIENT INFORMATION
FORM FROM TABLE 02
BLOCK 96 ?

L/

m

5,815,149

DISPLAY 3 LISTS
BASED ON
INFORMATION
STORED IN BLOCK 97,
FIG. 7A AND BLOCK 105;
THE LIST OF CONTROLS
ON THE FORM,; THE LIST
OF SERVER DATA
NAMES ASSOCIATED
WITH A CONTROL; AND, l

THE LIST OF SERVER
DATA NAMES THAT ARE
NOT ASSOCIATED WITH

A CONTROL

104

OBTAIN NAME OF SERVER
FORM FROM TABLE AND
STORE THIS INFORMATION

k.

DISABLE (GREY OUT) THE

LIST OF SERVER FORMS
IN THE APPLICATION

L

OBTAIN ADDITIONAL
INFORMATION
CONCERNING

CONTROLS THAT HAVE
DATA NAMES

ASSOCIATED WITH
THEM FROM THE TABLE

AND STORE THIS
INFORMATION

U.S. Patent

PRESENT IN THE FORM (L.E., WAS STEP

Sep. 29, 19938 Sheet 11 of 13

WAS
TABLE CONTAINING
ADDITIONAL INFORMATION

110

5,815,149

YES

IN BLOCK 105, FIG.7B,

EXECUTED
?

Y

DISPLAY ADDITIONAL
NO INFORMATION STORED
| IN BLOCK 105

Y .

112

BETWEEN CONTROLS AND DATA
\ NAMES AS THE USER SELECTS FROM THE

SECOND AND THIRD LISTS AND MOVES

ESTABLISH AND REMOVE LINKS

THEM BETWEEN THE LISTS

Y

113

\ ASSOCIATED WITH DATA NAMES,

L

ACCEPT AND STORE CHANGES
AND ADDITIONS TO ADDITIONAL
INFORMATION FOR CONTROLS

EITHER BY ORIGINAL PARSE OR
BY USER MODIFICATION IN THE
PRECEDING STEFP

115

USER INVOKES THE CODE

N

111

NO 114

YES

GENERATION STEP

i S

116

GENERATE CODE BASED ON INFORMATION
OBTAINED IN BLOCK 100, FIG. 7B, FINAL STATE
OF ASSOCIATIONS OBTAINED IN BLOCK 112, AND
ADDITIONAL CONTROL INFORMATION

OBTAINED IN BLOCK 113

Y

GO TOD 117
FIG. 7D

FIG. 7C

U.S. Patent Sep. 29, 1998 Sheet 12 of 13 5,815,149

(START) 7 129
¢

EXAMINE A
CODE ITEM 126
FROM PARSING
STEP 97,
FIG. 7TA

i —

127 128
/ /

S TORE N RETURNY - 129
TEMA \(YES| 2o3-co TO
CONTROL ity DIAMOND
DEFINITION i 101,
? FIG. 7B
NO
133
130 13
134
WAS ~
S RETURN
TEM YES) NO STORE TO
PREVIOUSLY IN GLOBAL
A GLOBAL DIAMOND
VECLARATION GENERATED DECLARATION o
: BY THE CGA | LIST G e
. 5 |
132
NO YES -ED_IECA/RD r '
139

135
/

136 _ 138
/

I'II'EM ves . ARE STOREIN | RE%RN
A NON-EVENT “P"‘;'éggﬁﬁ NO_ SNUOB'\I!{_(E\J'EI'II\II\I-II-E DIAMOND
SUBROUTINE - v 101

? ' FIG. 7B

YES A

137
REMOVE / |
NO [140 CODE

BETWEEN
< %?GT(;BF) MARKERS FIG. 8A

U.S. Patent Sep. 29, 1998 Sheet 13 of 13 5,815,149

P

STORE A TABLE IN THE
GENERATED CODE FOR 190
EACH FORM CONTAINING /

THE ADDITIONAL CONTROL
INFORMATION TABLE AND THE
| MARKS THAT INDICATE WHICH
CODE WAS SUPPLIED BY THE

CGA

ARE
THERE MORE
FORMS TO BE

PROCESSED
?

YES GO TO E
FIG. 7A

122
EXIT CGA FIG 7D
MODULE
144
141 - 143 \
STORE IN RETURN
- MARKERS EVENT TO
PRESENT SUBROUTINE DIAMOND
? | LIST 101
I | FIG. 7B
YES
_ i _
REMOVE CODE |
| BETWEEN MARKERS | FIG. 8B

| —

142

5,315,149

1

METHOD FOR GENERATING CODE FOR
MODIFYING EXISTING EVENT ROUTINES
FOR CONTROLS ON A FORM

FIELD OF THE INVENTION

The present mvention generally relates to client/server
computing systems, and more particularly to a method for
converting existing forms of legacy programs into a more
modern and widely-used format.

BACKGROUND OF THE INVENTION

With the rising popularity of client/server computing,
businesses are looking for even better ways to increase their
competitive advantage. Information 1s one of business’s
most precious commodities. There 1s a need for flexibility to
position 1nformation 1in ways that best support business
organizations and their customers.

Client/server technology offers graphical user interfaces
(GUI’s) a choice of open systems, rapid application
development, increased end-user productivity and much
more. By combining this technology with the Internet and
intra-nets, a powerful system 1s made available to distribute
information throughout the business and customer commu-
nities. The World Wide Web 1s a purely client/server envi-
ronment that can bring business to customers. Even 1f a
business has information that needs to be kept within the
organization, the web technology 1s still available as an
intra-net, which 1s a web site behind a firewall and made
available only to employees of the organization.

There 1s also a need to make the move to client/server and
Internet technologies without having to migrate from exist-
ing host applications. The best way to build now client/
server applications that can be integrated with current appli-
cations 1s to combine the enterprise-wide dependability with
the flexibility of distributed processing.

Early attempts at capitalizing on the advantages of the
client/server and Internet applications 1involved the use of a
PC as a “dumb terminal”, or a character-based network
terminal, that interacted directly with legacy programs oper-
ating on a mainframe or host computer. This approach was
unsatisfactory because the user was limited to a character-
mode display. Later attempts included such solutions as the
Designer Workbench (which is available from Unisys
Corporation, assignee of this invention). The Designer
Workbench gives the user the ability to capture forms
descriptions that are on the mainframe, and to convert
character-based fields 1nto Windows-based visual elements
such as boxes, buttons, etc. A language called SCL (Screen
Control Language) was created for describing the visual
clements.

SCL 1s generated directly from LINC, which 1s one of the
types of legacy programs operating on the host. SCL 1s
created manually using the Designer Workbench for third
generation languages (3GL) such as COBOL or ALGOL
legacy programs; and, 1n the case of MAPPER, which 1s a
third system and language for legacy programs, there 1s no
way to generate SCL. For MAPPER the user must use a
forms designer tool (such as Designer Workbench product)
for drawing the visual elements to generate the required SCL
that matches the MAPPER application.

More recently, it was possible to take the SCL definitions
of a form and turn them into a Visual Basic or PowerBuilder
executable program. PowerBuilder 1s a product of Powersoft
Company (which has recently merged with Sybase, Inc. of
Emeryville, Calif.), and Visual Basic is a product of

10

15

20

25

30

35

40

45

50

55

60

65

2

Microsolt Corporation of Redmond, Washington. Code was
ogenerated for various controls and events that duplicated the
actions of the Designer Workbench. With the forms in Visual
Basic or PowerBuilder, it was possible for the user to add
additional logic to perform tasks not available 1n the original
forms. However, there was still a problem with maintain-
ability. That 1s, 1t became necessary to mark code and
ogenerate 1t 1n such a way that local logic edited by the user
1s kept as separate as possible from the logic that 1s gener-
ated automatically.

SUMMARY OF THE INVENTION

It 1s therefore an object of the method of the present
invention to provide an evolutionary approach to client/
server technology so that a user can retain their existing
information technology investment 1n legacy programs, yet
move to client/server computing. A user can INCrease pro-
ductivity and reduce training costs because using the method
of the present invention does not require any changes to the
legacy programs.

Another object of the method of the present mnvention is
to integrate with leading third-party client builders so that a
user can leverage the power of, for example, Visual Basic or
PowerBuilder. The connectivity capabilities of the present
invention allows one to build modern client applications for
new and existing legacy applications such as 3GL, LINC,

and MAPPER.

A feature of the method of the present invention 1s that the
ogenerated code 1implements the host forms while allowing
for the incorporation of additional logic.

A feature of the method of the present invention resides in
the provision of generating code that 1s separated from
additional logic added by a programmer, and such
programmer-added logic 1s retained even as the generated
code 1s revised.

An advantage of the method of the present 1nvention 1s
that it allows interactive manipulation of the associations
between controls on the client builder form and fields of the
legacy application form and provides for a continuous
display of the status of these associations.

Accordingly, the present invention 1s useful in a comput-
ing system having at least one server and a multiplicity of
clients coupled thereto by means of a network. The server
includes a CPU executing legacy programs and at least one
storage device disposed for storing forms of the legacy
program. The method of this mmvention operates 1n at least
one of the clients for generating code for modifying existing
event routines for controls on the forms. This method
includes the obtaining and displaying of a list of application
forms from the storage device. In response to a user select-
ing a specific client builder project, the application portion
of the specific client builder project is parsed to obtain a list
of client builder forms.

The user then selects from the list of client builder forms,
and the method parses the selected form to allow client
builder control and event routine information to be obtained.
The user then selects from the list of application forms and
assoclates the application form with the selected client
builder form. A first list of controls on the selected client
builder form, as found by the parsing step, 1s displayed along
with a second list, which 1s empty and will contain data
names from the associated application form. Members of the
second list are to be associated with members of the first list.
A third list of data names from the associated application
form 1s displayed and is to be assigned to the second list.

Links between controls on the selected client builder form
and data names from the associated application form are

5,315,149

3

established and removed as items are moved by a user
between the second and third lists. The user can also make
changes and additions to this information, which are stored
for controls of the selected client builder form associated
with data names of the associated application form. A new
client builder program 1s generated based on the information
stored. A table 1s inserted 1n the new client builder program,
which was generated in the preceding step, and it contains
information necessary to determine in a future parse of the
new client builder program the association between the
controls of the selected client builder form and the associ-
ated application form.

If the step of parsing the selected client builder form
determines that 1t contains a such a table associating controls
of the selected client builder form and data fields of the
assoclated application form, then a form section of the table
1s parsed to find the name of an application form with which
the selected client builder form 1s associated. The list of
available application forms 1s disabled so that no other
application form can be selected to be associated with the
selected client builder form. The control section of the table
1s then parsed to find names of controls on the client builder
form and data names from the associated application form
with which they are associated. The control section 1s further
parsed to obtain additional information about the control,
depending on 1its type. Then, a first list of these controls of
the selected client builder form 1s displayed, along with a
second list that contains the data names found by the parse
of this table to be associated with those controls. The third
list contains data names from the associated application
form that were not found to be associated with controls and
which can later be associated with members of the first list.

These and other objects, features and advantages of the
present i1nvention will become apparent when taken in
conjunction with the following description and attached
drawings, wherein like characters indicate like parts, and
which drawings form a part of this application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a client/server system that
could execute the method of the present invention.

FIG. 2 1s a print of a computer screen display from a
MAPPER application form for TRIPS, a report for tracking
employee expenses, that 1s convertible by using the method
of the present invention.

FIG. 3 1s a print of a computer screen display of the same
form for TRIPS after adding visual controls using the
Development Studio.

FIG. 4 1s a print of a computer screen display of the
opening screen of the method of the present invention,
where an association of the location of the Visual Basic or
PowerBuilder project with the client repository portion.

FIG. § 1s a print of a computer screen display of the
summary display of the method of the present invention,
where the Visual Basic or PowerBuilder form 1s associated
with the SCL form name and then the controls of the form
are assoclated with the data names.

FIGS. 6A through 6C illustrate the steps performed in
generating a screen display for three different applications.

FIGS. 7A through 7D 1llustrate the steps performed by the
method of the present invention to generate the code for
modifying the 3GL form shown 1n FIG. 2 to the modernized
form shown in FIG. 3.

FIGS. 8A and 8B form a flow chart of the process for
storing 1information obtained in parsing the selected form.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

The method of the present invention integrates the popu-
lar client-builder tools with legacy applications 1n order to
simplify the form development process. This means that one
can create a unified Windows front-end “look and feel” for
even the most complex applications and automatically dis-
tribute these client programs to end users throughout an
enterprise. This method 1s 1deal for building and interfacing
powerful desktop client applications with 3GL, LINC, and
MAPPER applications.

One embodiment of the method of the present invention,
sometimes referred to as Code Generation Assistants
(“CGA”), enables developers to create new applications or
edit existing forms without starting from mainframe-based

3GL, LINC, or MAPPER legacy applications.

The 3GL, LINC, or MAPPER application 1s moved
toward a PowerBuilder or Visual Basic form. But not all
applications have the same starting place. Because of the
Code Generation Assistants software, each business can
determine 1ts own starting place for the move to client/server
computing. The user interface allows one to select host
forms and controls within forms to insert logic 1 the
PowerBuilder or Visual Basic forms.

After developers add a GUI and local logic to screens of
host applications, there 1s no guarantee that those forms will
never need modification. One 1s constantly looking for ways
to add capabilities to business applications, since business
processes are constantly changing and are never static. It 1s
therefore possible that the host application could change,
rendering the current forms invalid by adding or deleting
data fields. In order to edit all forms once the host applica-
tion has changed, the user simply adds new logic and then
runs the CGA to re-generate the programs and to re-assign

the new server controls with the new or existing form
controls.

Referring now to FIG. 1, a client/server system configu-
ration 1s 1illustrated, including a host or mainframe 10,
terminals 11 and 12 coupled thereto and network connec-
tions 13 to one or more clients 14. The mainframe 10 1s
coupled to a network server repository 15 and the client 14
1s coupled to a client repository 16. The mainframe 1is

capable of executing software programs including such
legacy programs as MAPPER, LINC and 3GL as 1llustrated

by a block 18.

The network server repository 15 1s a flexible tool that
allows distribution of forms and local logic throughout an
enterprise. The repository 15 1s the database that contains
3GL, LINC, and MAPPER form objects, image objects, and
data files that are downloadable from the host system, as
needed.

The repository 16 holds profiles and scripts that provide
network security administration, and defines network access
and passwords. It provides version control for Development
Studio forms.

The repository 16 also contains the objects and scripts
necessary to develop and properly display forms in the
PowerBuilder and Visual Basic environments. The develop-
ment repository contains the .PBL and .EXE files for the
PowerBuilder environment, and the project files: (MAK or
.VBP, .FRM, and .EXE) files in the Visual Basic environ-
ment. The CGA, or the method of the present invention,
reads from and writes to the repository 16.

As one begins modernizing their applications, developers
can take advantage of the repository 16 to share tasks. When
a new form 1s stored in the repository, it 1s immediately

5,315,149

S

available to other development environment users. If a
second developer wants to add the local logic using Pow-
erBuilder or Visual Basic, that developer can access the most
current version from the repository 16.

The client 14 1s capable of executing software programs
including INFOConnect (with or without Emulators),
PowerClient, and the program embodying the method of the
present invention: “Code Generation Assistant”. These soft-
ware programs are depicted by a block 17 1n FIG. 1. The
client 14 1s also capable of executing many of the more
popular and widely-used programs such as PowerBuilder
and Visual Basic. The INFOconnect program includes three
parts of a suite that runs with PowerClient, and they are the
Unisys MT Emulator, the UTE Emulator and the IBM 3270,
all of which are available from DCA, Inc., of Cincinnati,
Ohio. PowerClient 1s a program available from Unisys
Corporation of Blue Bell, Pa., assignee of the present
invention. PowerClient includes 10 components: Code Gen-
eration Assistants (two), 3GL Work Bench, LINC Work
Bench, MAPPER, Development Studio, Repositories on the
Mainframe (two), CBT and Web Agent.

At development time, the Visual Basic or PowerBuilder
source code that has been created with the present method 1s
stored 1n the client repository 16 and then copied to the
network repository 15. It 1s noted that a multiplicity of
clients may be connected to the same network, even though
not illustrated in FIG. 1, and at run time each client so

connected can access the network repository 15.

Referring now to FIG. 2, a print of a screen display of a
form for a 3GL legacy application 1s illustrated. When a
client user calls up the INFOconnect and logs onto the server
and specifies TRAVEL, this particular form entitled TRIPS
appears on the screen. It 1s a typical form to be completed
by an employee of an organization for reimbursement of
travel expenses. Each field of this form 1s depicted by a
space between opposing arrowheads. For example, the field
entitled EMPLOYEE SSN is that space 20 between oppos-
ing arrowheads 21 and 22, and includes a display screen
cursor 23. The next field LAST NAME 1s that space 24
between opposing arrowheads 25 and 26. The remaining,

fields of the form are similarly depicted. There are a total of
fifteen (15) fields on this form.

Preparatory to modifying the TRIPS form using the
method of this invention, the user captures this form using
the combined facilities of the INFOconnect Emulator and
the PowerClient Development Studio (PDS). The user then
creates data names for each field of the form. SCL syntax
will contain each of the data names created. For example, for
the form shown 1n FIG. 2, the following SCL syntax will be
created and stored in the repository 16. The user would
indicate the data entry fields and the static text in the form.

SCL SCL OFEFSETS

DATANAMES Row Column Length
EMPSSN 3 19 20
LASTNAME 4 19 25
CREATOR 5 19 10

The user/creator has a great deal of flexibility and can
create a push button or a window for a speciiic field, can
change names or use previous text, etc. The output 1s stored
in the PC Repository 16.

10

15

20

25

30

35

40

45

50

55

60

65

6

Referring now to FIG. 3, a print illustrates a computer
screen display of a modernized version of the 3GL form
shown 1n FIG. 2 and described hereinabove. Notice that this
modernized form includes windows for entering data,
wherein window 20 corresponds to the space 20 1in FIG. 2 for
entry of an Employee SSN. Window 24 corresponds to the
space 24 in FIG. 2. ATRANSMIT button 28 1s added by the
modernizing process.

Referring now to FIG. 4, a print 1llustrates the opening,
screen display of the method of the present invention,
wherein the user associates Visual Basic or PowerBuilder
project with a partition. A window 30 (containing the value
“3GL TRIPS™) identifies the partition name selected. The
term “partition” as used herein refers to the forms and
associated data for a specific host application. Other parti-
tion names may be selected by clicking on the down arrow
31. A window 32 identifies the file name, which 1n this
example 15 “WELCOME.VBP” and refers to the Visual
Basic project file for this form. Window 33, which 1s directly
below the window 32, displays the individual File Names 1n
the directory speciiied 1n the window 35. The File Names
displayed 1n the window 33 may be scrolled up or down by
clicking on an up arrow 34A or a down arrow 34B, respec-
tively. Window 35 1dentifies the Directories that may be
seclected. In the example shown, the Directory
“CAPCE\BIN” 1s the directory where WELCOME.VBP 1s
located. The mdividual Directories displayed in the window
35 may be scrolled up or down by clicking on an up arrow
36A or a down arrow 36B, respectively. The drives available
reflect those selected by the current view displayed in
window 38.

A window 37 displays Files of a particular Type, and this
example File “VISUAL BASIC 4”(*.VBP) which means
that only files with the suffix “.VBP” are displayed. Addi-
tional File Types may be displayed in the window 37 by
clicking on the down arrow 37A. A window 38 displays the
Drive selected and may be scrolled to display other Drives
that may be selected by clicking on the arrow 38a. Three
function buttons 39A through 39C are disposed for the user
as follows: the button 39A 1s for the user to approve by
clicking the selections made; the button 39B 1s to be used to

CANCEL the operation; and, the button 39C displays a
HELP menu.

Referring now to FIG. §, a print illustrates a computer
screen display where the data names for the TRIPS form are
associated by a user with the Visual Basic or PowerBuilder
form control names. A window 41 displays the File selected,
which 1n the 1llustrated example 1s “TRIPS.FRM”, and 1s the
particular form being processed. (A project can have more
than one form.) A window 42 displays the repository form
name for the server form, which in the illustrated example
1s “WELCOME”. A window 43 displays the Control Name
and Data Name that are to be associated by use of the
method of the present mnvention. Note that the Data Name
column 1ncludes names from the original 3GL form shown
in FIG. 2, while the names 1n the Control Name column are
from the modernized form shown 1n FIG. 3. A window 44 1s
disposed for displaying Data Names prior to association. For
example, the Data Name “TRIPS__ COMMENTS” 1s shown
in the window 44 prior to association. When the user clicks
on the left arrow button 45 TRIPS COMMENTS 1s moved
to the window 43. If the user clicks on a button 48 (CLOSE),
the displayed window 1s closed; and, if the user clicks on a
button 49 (HELP) a help text is displayed for this dialog.

Referring now to FIG. 6A, a flow chart 1s shown that
illustrates the steps performed 1n modernizing a form for
3GL applications. The process begins with a start bubble 60

5,315,149

7

followed by a step (block 61) of invoking the emulator to
connect to and execute a host application for display on the
screen of the client 14. Next, the Development Studio of the
PowerClient is invoked (block 62) to capture a screen image
and mark entry/display fields, including any static text.
Following this, the entry/display fields and static text are
encoded (block 63) into screen control language (SCL). The
encoded SCL is stored in the repository 16 (block 64).

The PowerClient code generator reads the SCL language
and creates (block 65) a form in either Visual Basic or
PowerBuilder (i.e., VB/PB form). The VB/PB form is next
compiled under their respective Client Builder tools (block
66). The PowerClient code check-in then imports (block 67)
the VB/PB code 1to the repository 16. Finally, a branch 1s
taken (bubble 68) to the process shown in FIG. 7A at

connector A, which 1s described further hereinafter.

Referring now to FIG. 6B, a flow chart 1s shown that
illustrates the steps performed 1in modernizing a form of a
LINC application. The process begins with a start bubble 70
followed by a step (block 71) of invoking the LINC work-
bench to connect to and execute a server application to
display a screen. When a LINC application 1s downloaded,
as performed herein, it 1s already 1n screen control language
(SCL). Hence, the next step (block 72) 1s to store the
encoded SCL 1n the repository 16. Following this, the
PowerClient code generator reads the SCL and creates a
VB/PB (Visual Basic or PowerBuilder) form (block 73). The
VB/PB form 1s then compiled under their respective client
builder tools (block 74). The PowerClient code check-in
imports the VB/PB code from the preceding step into the

repository 16 (block 75). A branch is taken (bubble 76) to
connector A of FIG. 7A.

Referring now to FIG. 6C, a flow chart 1s shown that
illustrates the steps performed 1n modernizing a form of a
MAPPER application. The process begins with a start
bubble 78 followed by a step (block 79) of invoking the
PowerClient Development Studio to design and display a
form. Next, the enftry/display fields and static text are
encoded (block 80) into screen control language (SCL). The
encoded SCL is then stored in the repository 16 (block 81).
Following this, the PowerClient code generation reads the
SCL and creates a VB/PB (Visual Basic or PowerBuilder)
form (block 82). The VB/PB form is then compiled under
their respective client builder tools (block 83). The Power-
Client code check-in imports the VB/PB code into the
repository 16 (block 84). Finally, a branch is taken (bubble
85) to the connector A of FIG. 7A.

It 1s noted at this juncture of the description that as an
alternative to the methods described above, the user can
invoke a client builder for any kind of application, such as
Visual Basic or PowerBuilder, and design the form 1n the
context thereof. The user then saves the form. Note in this
example that no SCL 1s created, and the form 1s not stored
in the repository 16.

Referring now to FIG. 7A, the first of a four-part drawing,
illustrates the code generation assistant (CGA) of the
method of the present invention. This method would be
invoked when 1t 1s desired to modify the characters of a form
created by one of the methods shown 1n FIGS. 6A, 6B or 6C.
The process begins with a connector A, which denotes a
continuation of any of the previous application examples.
From the connector A, there are several user-performed
operations depicted as follows: The user runs the CGA; and,
if the code 1mported into the repository 16 (i.e., one of the
previously-described methods 1llustrated 1n FIGS. 6A, 6B or
6C was used), then the check-out module is invoked and the

10

15

20

25

30

35

40

45

50

55

60

65

3

source code stored 1n the repository 1s exported to a normal
disk file. The user then invokes the CGA module (all as

depicted by a block 90). If, on the other hand, the form was
designed 1n VB or PB, the checkout module need not be
used, as the source code already exists.

In response to the steps invoked by the user, the process
then displays a list of available applications as denoted by
the repository partitions they occupy (block 91). This is
illustrated 1n space 30 of the screen shown 1n FIG. 4. The
partition selected by the user 1s opened; and, the list of forms
in the application that are available on the server 1s obtained
and displayed (block 92), which is illustrated in window 30,
FIG. 4. If the form was modernized by one of the methods
shown 1in FIG. 6 A, 6B or 6C, the form 1s pre-determined, and
the display 1s fixed and cannot be changed. If the form was
developed first in a ClientBuilder, the user chooses the host
form with which this VB/PB form will be associated. A list
of VB projects (.VBP) or PB (.PBL) files is displayed as the
user selects the various directories (block 93), which 1s
llustrated in windows 32, 33, 35 37 and 38, FIG. 4. The user
selects one of these projects by using the OK button 39A.
Next, the application portion of the selected project 1s parsed
to obtain the list of the VB/PB forms in the project (block
94). A list of the VB/PB forms thus obtained is displayed
(block 95), which is illustrated in window 41, FIG. §. The
user then selects a form from the list of displayed forms
(block 96), and the form selected from the display is parsed

(block 97). The process continues in the diagram shown in
FIG. 7B, as depicted by a bubble 98.

Referring now to FIG. 7B, the process continues from a
connector B to an 1iterative loop as follows: for each control
and event routine obtained 1n the step depicted by the block
97, store the VB/PB information and display the form’s
controls (block 100). Details of the process depicted by the
block 100 are illustrated in FIG. 8 and amplified further
hereinafter. Next, an imnquiry 1s made as to whether or not
there are more controls and events (diamond 101). If the
answer to this inquiry 1s yes, then a return 1s made back to
the block 100 for processing the next control and event
routine. If there are no more control and event routines, then
another mquiry 1s made as to whether or not the form
contains an additional control information table (diamond
102). The additional control information table is kept as a set
of comments 1n the ClientBuilder form. These comments are
located such that they are retained when the form 1s subse-
quently read into the ClientBuilder and then saved back to
a disk drive. A sample additional control information table,
such as that for populating the screen illustrated in FIG. §,
1s as follows:

‘TIPCS VERSION 1

‘FORM

‘Form = “welcome™, 853977531

‘END FORM

‘CONTROL

‘Control = v__codedisplay, CodeDisplay, 2,

C__SINGLELINEEDIT, “(null)”, “(null)”, 0, 0, O

‘Control = v__jobiddisplay, JobldDisplay, 3,
C__SINGLELINEEDIT, “(null)”, “(null)”, 0, 0, O

‘Control = v_empssn, EmpSSN, 4, C_SINGLELINEEDIT,
“(null)”, “(null)”, 0, 0, O

‘Control = wv__lastname, LastName, 35,
“(null)”, “(null)”, 0, 0, O

‘Control = v__apppasswrd, AppPasswrd, 6,
“(null)”, “(null)”, 0, 0, O

‘Control = wv__teringq, TERIng,
“(null)”, “(null)”, 0, 0, O

‘Control = v__tercreate, TerCreate, 8,

C_SINGLELINEEDIT,
C_SINGLELINEEDIT,
7, C_SINGLELINEEDIT,

C_SINGLELINEEDIT,

5,315,149

9

-continued

“(null)”, “(null)”, 0, 0, O

‘Control = v__authcreate, AuthCreate, 9,
“(null)”, “(null)”, 0, 0, O

‘Control = v__travelapprove, TravelApprove,
C__SINGLELINEEDIT, “{(null)”, “(null)”, 0, 0, O

‘Control = v__exit, Exit, 11, C_SINGLELINEEDIT, “(null)”,
“(null)”, 0, 0, O

‘Control = v_ farrates, FarRates,
“(null)”, “(null)”, 0, 0, O

‘Control = v__statementing, Statementlng,
C__SINGLELINEEDIT, “{(null)”, “(null)”, 0, 0, 0

‘Control = v__monthyear, MonthYear, 14, C_ SINGLELINEEDIT,
“(null)”, “(null)”, 0, 0, O

‘Control = v__termodify, TERModity, 15, C__SINGLELINEEDIT,
“(null)”, “(null)”, 0, 0, O

‘Control = v__funtionsapprove, FuntionsApprove,
C__SINGLELINEEDIT, “{(null)”, “(null)”, 0, 0, O

‘Control = v__tripsnews, TripsNews, 17, C_SINGLELINEEDIT,
“(null)”, “(null)”, 0, 0, O

‘Control = v__tripscomments, TripsComments,
C__SINGLELINEEDIT, “{(null)”, “(null)”, 0, 0, O

‘Control = v__xmitl, Xmzit, 19, 16 , @

‘END CONTROL

‘1IPCS END

C_SINGLELINEEDIT,

10,

12, C_SINGLELINEEDIT,

13,

16,

18,

If the answer to the inquiry 1n the diamond 102 1s yes, then
the name of the server form from the table i1s obtained and
stored (block 103). This table is present if and only if the
VB/PB form was generated by one of the methods 1llustrated

in FIGS. 6A, 6B, or 6C.

Following this, the list of server forms in the application,
window 42 FIG. §, is disabled (grayed out) since they were
previously stored (block 104). Next, the additional informa-
tion concerning controls that have data names associated
with them 1s obtained from the table and stored in internal
tables (block 105). If the answer to the mquiry of diamond
102 1s no; the user selects a host form from those displayed
by the block 91 that corresponds to the client form selected
in the step depicted by the block 96. This step 1s 1llustrated
by a block 106. Next, three lists are displayed (block 107).
These lists are based on information stored in the parsing
step (block 97—FIG. 7A). The three lists are: controls on the
form, server data names associated with a control, and server
data names that are not associated with a control. The first
two are displayed in window 43 (FIG. §), and the last is
displayed 1n the window 44. It the additional control table 1s
present, 1t contains the association of controls with data
names and forms that are displayed in the second column of
the first window 43; otherwise, they are taken from the
chosen repository form and are displayed in the unassigned
control window 44. Following this step, a branch 1s taken to

a continuation of the process in FIG. 7C (bubble 108).

Referring now to FIG. 7C, from the connector C an
inquiry 1s made as to whether or not the table containing
additional information was present in the form (diamond
110). That 1s, was the step of obtaining additional informa-
tion concerning controls (block 105—FIG. 7B) performed?
If the answer to this inquiry i1s yes, then the additional
information stored 1n the step depicted by the block 105 1s
displayed (block 111). This 1s accomplished by the user
employing tabs 51, 52, 53, 54, 55 and 56 as shown 1n FIG.
5

Once the block 111 step has been performed, or if the
answer to the inquiry of the diamond 110 is no, then links
between controls and data names are established and
removed as the user selects from the second and third lists,
and moves them between lists (block 112). This is accom-
plished by the user employing the arrow buttons 45, 46 and
47 shown in FIG. §. Following this (or, 1n fact, in alternation

10

15

20

25

30

35

40

45

50

55

60

65

10

with it), the user may use tabs 51-56 to modify or add
additional control information for each of the controls on the
form individually (block 113). If the form contained the
additional control information, then the user may modily it
using the dialogs mmvoked by the tabs 51-56. If the form did
not contain the additional control information, the user may
add 1t at this time. When the user indicates that processing,
for the control 1s complete, this information 1s stored in

internal tables.
An 1nquiry 1s next made as to whether or not the operation

depicted by the block 113 is done (diamond 114), and if not
a return 1s made back to the step depicted by the block 112.
On the other hand, if the answer to the mnquiry of diamond
114 1s yes, then the user invokes the code generation step
(block 115). Code is then generated (block 116) based upon
the information obtained in the steps depicted by the block
100 and the diamond 101, the final state of the associations
obtained 1n the step depicted by the block 112, and the
additional information obtained in the step depicted by the
block 113. The process 1s continued 1n FIG. 7D as depicted
by a bubble 116.

The code generation step, as depicted by the block 116,
comprises reproducing the original code of the client builder

form as parsed in the step depicted by the block 97, but with
the following additions and modifications:

Code relating to the association between controls on the
client builder form and those on the server form 1is
generated by the inclusion of subroutines necessary to
handle the events generated by the receipt of data from
the host and those generated by user actions. The code
in the 1nterior of these routines 1s delimited by pairs of
specially-formatted comment delimiters. If this form
was previously generated using the process described
herein, these subroutines already exist and contain
these comment delimiters. In this case, the newly-
generated code 1s placed between these delimiters.

If the form was not previously generated using the process
described herein, then these subroutines might or might not
exist, depending on how the client builder program was
written. If these subroutines do not already exist, they are
added to the code. The code relating to the association of
server form and client builder controls 1s enclosed 1n the
specially-formatted comment delimiters. If these subrou-
tines do exist, they do not contain the necessary code to deal
with the association of client builder and server controls. In
this case, the new code relating to these associations 1s
placed within the specially-delimited markers at the begin-
ning of the existing subroutine.

Supporting global data, if required and based on the
control types used, 1s generated. To avoid name clashes in
the global name space, a unique identifier of the form 1is
included as part of the name. This unique identifier is
obtained from the additional control information table
parsed 1n the step depicted by the block 105, FIG. 7B, if
present; otherwise, one 1s generated so that 1t can be placed
in a new copy of the table.

Referring now to FIG. 7D, the process continues as
denoted by a connector D, followed by a process step of
storing a table in the generated code for each form contain-
ing the additional control information table and the marks
that indicate which code was supplied by the CGA (block
120). This table is a set of comments, as described as part of
the step depicted by the block 1035, and it comprises the
contents of the data structures manipulated as server form
fields were linked with client form controls in the step
depicted by the block 112 and as the various controls were
updated as described 1n the step depicted by the block 113.

5,315,149

11

Next, an inquiry 1s made as to whether or not there are more
forms on the server 10 to be processed (diamond 121). If the
answer to this inquiry 1s yes, then a branch 1s taken to the
process block 96 (FIG. 7A) as denoted by a connector E. If
there are no more forms on the server 10 to be processed
then, an exit i1s taken from the CGA module (bubble 122).

Referring now to FIG. BA, the first sheet of a two-part
flow chart detailing the step depicted by the block 100, FIG.
7A, 1s 1llustrated. This part of the process relates to the
storing of information obtained by parsing the selected client
builder form. After a start bubble 125, the original source
code obtained by the parsing step (FIG. 7A, 97) 1s examined
item by item to determine where it should be stored (block
126). An inquiry 1s made as to whether or not the current
item under examination is a control definition (diamond
127), and if yes it is stored in a control definition list (block
128). A return is then made back to the diamond 101 shown
in FIG. 7B (bubble 129).

On the other hand, if the 1tem 1s not a control definition,
then another inquiry 1s made as to whether or not the i1tem
is a global definition (diamond 130). If the answer to this
Inquiry 1s yes, then yet another inquiry 1s made as to whether
it was previously generated by the CGA (diamond 131). If

the answer to this inquiry i1s yes then the item 1s discarded

(block 132) and a return is made back to the diamond 101,
FIG. 7B (bubble 133). On the other hand, if the item was not
previously generated then 1t 1s stored 1n a global declaration
list (block 134) and a return is made to the diamond 101.

If the 1tem 1s not a global declaration, then still another
inquiry 1s made as to whether or not the 1tem 1s a non-event
subroutine (diamond 1385). If the answer to this inquiry is
yes, then another inquiry 1s made as to whether or not
markers are present (diamond 136). If the answer to this
latter inquiry 1s yes, then the code between the markers is
removed (block 137). Following this, the item is stored in a
non-event subroutine list (block 138). If no markers are
present then a branch 1s taken to then same step depicted by
the block 138. After this, a return 1s made back to the
diamond 101, FIG. 7B (bubble 139). If the item is not a
non-event, then a branch 1s taken to a continuation of this
flow chart as shown in FIG. 8B (connector F, depicted by a
bubble 140).

Referring now to FIG. 9B, from the connector E, an
inquiry 1s made as to whether or not markers are present
(diamond 141). If the answer to this question is yes, then the
code is removed between the markers (block 142). Once this
step has been completed, or if no markers are present the
item is stored in an event subroutine list (block 143). Finally,
a return 1s made to the diamond 101, FIG. 7B, as depicted
by a bubble 144.

In summary of the above, 1f the code 1s determined to be:
(1) code that defines the characteristics of a control on the
selected client builder form 1n a list of control definitions it
is stored 1n a list of such definitions; (2) code that is a global
data declaration for the selected client builder form 1n a list
of global data declarations 1s stored 1n such a list of global
declarations, on the condition that 1t does not have a special
name as generated by the code generation step (block 116)
at some previous time; (3) a subroutine that does not handle
an event for a control on the selected client builder form 1n
a list of subroutine definitions 1s stored in such a list of
subroutine definitions; or, (4) a subroutine that handles an
event for a control on the selected client builder form 1n a list
of subroutine event definitions 1s stored in such a list of
subroutine events.

As subroutines are stored as above, each 1s examined for
the presence of a pair of code markers generated by the code

10

15

20

25

30

35

40

45

50

55

60

65

12

generation step (116) at some previous time. If the code
markers are found, any source code between the markers 1s
removed, while the markers are left in the subroutine (block

137 and 142).

While there has been shown what 1s considered the
preferred embodiment of the present invention, it will be
manifest that many changes and modifications can be made
therein without departing from the essential spirit and scope
of the mmvention. It 1s intended, therefore, in the annexed
claims, to cover all such changes and modifications which
fall within the true scope of the mvention.

What 1s claimed 1s:

1. In a computing system having at least one server and
a multiplicity of clients coupled thereto by means of a
network, said server having a CPU executing legacy pro-
orams and at least one storage device coupled thereto, said
storage device being disposed for storing forms of said
legacy program, a method operating 1n at least one of said
clients for generating code for modifying existing event
routines for controls on said forms, said method comprising
the steps of:

a. displaying on a screen of said at least one client a list
of available applications;

b. 1n response to a user’s selection of an application,
obtaining and displaying a list of application forms

stored 1n said storage device;

C. 1n response to a user’s selection of a drive and a
directory, displaying a list of client builder projects;

d. 1n response to a user’s selection of a specific client
builder project, parsing application portion of said
specific client builder project to obtain a list of client
builder forms therefrom;

¢. displaying a list of client builder forms 1n said specific
client builder project;

f. 1n response a user’s selection of one of said list of client
builder forms, parsing said selected client builder form;

o. storing client builder control and event routine infor-
mation obtained 1n the parsing of step { hereof;

h. determining from the parsing of step f hereof that said
selected client builder form does not contain a table
assoclating controls of said selected client builder form
and data fields of any application form,;

1. 1n response to a user’s selection of one of said list of
application forms, associating said application form
with said selected client builder form;

j. displaying a first list of controls on said selected client
builder form as found by the parsing in step { hereof,
displaying a second list, which 1s empty and will
contain data names from said associated application
form, that will be associated with members of said first
list and displaying a third list of data names from said
assoclated application form to be assigned to said
second list;

k. establishing and removing links between controls on
said selected client builder form and data names from
said associated application form as items are moved by
a user from said second and said third lists 1n accor-
dance with step j hereof;

1. accepting and storing changes and additions for controls
of said selected client builder form associated with data
names of said associated application form;

m. generating a new client builder program based on
information stored 1n steps ¢ and 1 hereof and on said
links established 1n step k hereof and marking parts of
said new client builder program added as a result of the
execution of steps k and 1 hereof; and,

5,315,149

13

n. mserting a table 1n said new client builder program
generated in the preceding step containing information
necessary to determine 1n a future parse of said new
client builder program the association between the
controls of said selected client builder form and said
assoclated application form.

2. Amethod as in claim 1, when said parsing step of claim

1 step I determines that said selected client builder form
contains a table associating controls of said selected client
builder form and data fields of an application form, said
steps 1 and 7 of claim 1 are replaced by the following steps:

a. parsing a form section of said table to find a name of
an application form with which said selected client
builder form 1s associated and storing the name of said
associated application form;

b. disabling (“graying out”) said list of available appli-
cation forms so that no other application form can be
selected to be associated with said selected client
builder form as 1n step 1 of claim 1;

c. Turther parsing said form section of said table to find
and store a unique identifier to be used 1n said code
generation step m of claim 1;

d. parsing each entry of a control section of said table and
storing a name of a control of said selected client
builder form that 1t contains and a data name of said
assoclated application form with which said control
name 18 associated or a distinguished data name indi-
cating that said control name 1s not associated with any
data name of said associated application form;

¢. further parsing each of said entries parsed in the
preceding step and storing additional information con-
cerning said control name, depending on type of said
control name;

f. parsing each entry of a help section of said table to find
and store a name of a data name of said associated
application form and associated text from said help
section used to describe 1t;

o, displaying a first list of controls on said selected client
builder form that were found by said parsing step 1 of
claim 1, displaying a second list, which contains data
names found 1n step d hereof that are associated with a
control on said first list and displaying a third list of
data names from said associated application form
which were not found 1n step d to be associated with a
control on said first list.

3. Amethod as 1n claim 2, for each element of said second
list created as a result of the execution of step g of claim 2,
said step of generating a new client builder program further
comprises the step of generating client builder global
declarations, giving each of said global declarations a name
that 1) identifies it as having been generated by the method
of the present invention; and, 2) is different from any other
client builder global declaration hereby generated by virtue
of incorporating 1nto 1ts name said unique 1dentifier obtained
in step ¢ of claim 2, and then copying said declaration to said
new client builder program.

4. A method as 1n claim 2, and for each element of said
second list created as a result of the execution of step g of
claim 2, wherein said step of generating a new client builder
program further comprises the step of generating code for
client builder subroutines which perform tasks other than
handling events and placing said generated code 1nto ele-
ments of the list of client builder subroutines.

5. A method as 1n claim 4, for each element of said list of
client builder events further including the step of copying
said subroutine to said new client builder program.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. A method as 1n claim 4, wherein said step of placing
generated code for a subroutine into an element of a list of
client builder subroutines further comprises the steps of:

a. searching said list of client builder subroutines for a
subroutine with the same name as said subroutine;

b. determining that said searching step finds no existing
subroutine with the same name as the code to be placed,;
and

c. placing said subroutine at the end of said list of client
builder subroutines.

7. A method as 1n claim 6 wherein said step of searching

finds an existing subroutine further comprises the steps of:

a. examining said existing subroutine for the presence of
code markers such as would have been placed 1n said
subroutine during a previous execution of said code
generation step m of claim 1 at some previous time;

b. determining that said code markers do not exist;

c. Inserting a sequence including one of said code
markers, said generated code and a second of said code
markers 1nto said existing subroutine.

8. Amethod as 1n claim 7 wherein said step of examining,
said existing subroutine determines that said existing sub-
routine contains code markers further comprising the step of
placing said generated code between said existing code
markers.

9. A method as 1n claim 2, for each element of said second
list created as a result of the execution of step g of claim 2,
said step of generating a new client builder program further
includes the steps of generating code for client builder
subroutines that handle events, and placing said generated
code 1nto elements of said list of client builder events.

10. A method as 1n claim 9, for each subroutine on said list
of client builder events further including the step of copying
said subroutine to said new client builder program.

11. A method as 1n claim 9, wherein said step of placing
generated code for a subroutine into an element of a list of
client builder events further comprises the steps of:

a. scarching said list of client builder events for a sub-
routine with the same name as said subroutine;

b. determining that said searching step finds no existing
subroutine with the same name as the code to be placed,;
and

c. placing said subroutine at the end of said list of client
builder events.

12. Amethod as in claim 11 wherein said step of searching

finds an existing subroutine further comprises the steps of:

a. examining said existing subroutine for the presence of
code markers such as would have been placed 1n said
subroutine during a previous execution of said code
generation step m of claim 1 at some previous time;

b. determining that said code markers do not exist;

c. Inserting a sequence including one of said code
markers, said generated code and a second of said code
markers 1nto said existing subroutine.

13. A method as 1n claim 12 wherein said step of exam-
ining said existing subroutine determines that said existing
subroutine contains code markers further comprising the
step of placing said generated code between said existing
code markers.

14. A method as 1n claim 1 wherein said step of storing
information obtained in parsing said selected client builder
form further comprises the step of storing original source
code obtained by said parsing step f of claim 1 which 1s
determined to be code that defines the characteristics of a
control on said selected client builder form in a list of control
definitions.

5,315,149

15

15. A method as 1n claim 14, and for each element of the
control definition list stored therein, said step of generating
said new client builder program further comprises the step of
copying said stored source code for said control definition to
said new client builder program.

16. A method as 1n claim 1 wherein said step of storing
information obtained in parsing said selected client builder
form further comprises the step of storing original source
code obtained by said parsing step f of claim 1 which 1s
determined to be code that 1s a global data declaration for
said selected client builder form in a list of global data
declarations on the condition that it does not have a special
name as generated by an invocation of said code generation
step m of claim 1 at some previous time.

17. A method as 1n claim 16, and for each element of the
olobal declaration list stored therein, said step of generating
a new client builder program further comprises the step of
copying said stored source code for said global declaration
to said new client builder program.

18. A method as in claim 1 wherein said step of storing
information obtained 1n parsing said selected client builder
form further comprises the steps of:

a. storing original source code obtained by said parsing
step I of claim 1, which 1s determined to be a subroutine
that does not handle an event for a control on said
selected client builder form m a list of subroutine
definitions; and,

b. as subroutines are stored in the preceding step, exam-
ining each of said subroutines for the presence of a pair
of code markers as generated 1n an invocation of said
code generation step m of claim 1 at some previous
time and, should said code markers be found, removing
any source code between said markers, while leaving
said markers 1n said subroutine.

19. A method as 1 claim 1 wherein said step of storing

information obtained 1n parsing said selected client builder
form further comprises the steps of:

a. storing original source code obtained by said parsing
step 1 of claim 1 that 1s determined to be a subroutine
which handles an event for a control on said selected
client builder form 1n a list of client builder events; and,

b. as event subroutines are stored in the preceding step,
examining each of said event subroutines for the pres-
ence of a pair of code markers as generated 1n an
invocation of the code generation step m of claim 1 at
some previous time and, should said code markers be
found, removing any source code between said
markers, while leaving said markers 1n said event
routine.

20. A method as 1n claim 1 and for each element of said
second list created as a result of the execution of step 1 of
claim 1, wherein said step of generating a new client builder
program further comprises the step of generating client
builder global declarations, giving each of said global dec-
larations a name that 1) identifies it as having been generated
by the method of the present invention; and, 2) is different
from any other client builder global declaration hereby
generated by virtue of 1incorporating 1nto its name a unique
identifier obtained from one based on a monotonically
increasing function, such as the current time, and then
copying said declaration to said new client builder program.

21. A method as 1n claim 20, for each element of said list
of client builder events further including the step of copying
said subroutine to said new client builder program.

22. A method as 1n claim 1, and for each element of said
second list created as a result of the execution of step 1 of
claim 1, wherein said step of generating a new client builder

10

15

20

25

30

35

40

45

50

55

60

65

16

program further comprises the step of generating code for
client builder subroutines which perform tasks other than
handling events and placing said generated code 1nto ele-
ments of the list of client builder subroutines.

23. A method as 1n claim 22, wherein said step of placing
generated code for a subroutine into an element of a list of

client builder subroutines further comprises the steps of:

a. searching said list of client builder subroutines for a
subroutine with the same name as said subroutine;

b. determining that said searching step finds no existing

subroutine with the same name as the code to be placed,;
and

c. placing said subroutine at the end of said list of
subroutines.

24. Amethod as 1n claim 23 wherein said step of searching

finds an existing subroutine further comprises the steps of:

a. examining said existing subroutine for the presence of
code markers such as would have been placed 1n said
subroutine during a previous execution of said code
generation step m of claim 1 at some previous time;

b. determining that said code markers do not exist;

c. Inserting a sequence including one of said code
markers, said generated code and a second of said code
markers 1nto said existing subroutine.

25. A method as 1 claim 24 wherein said step of exam-
ining said existing subroutine determines that said existing
subroutine contains code markers further comprising the
step of placing said generated code between said existing
code markers.

26. A method as 1n claim 1, and for each element of said
second list created as a result of the execution of step 1 of
claim 1, wherein said step of generating a new client builder
program further comprises the step of generating code for
client builder subroutines that handle events, and placing
said generated code into elements of said list of client
builder events.

27. A method as 1n claim 26, for each subroutine on said
list of client builder events, further including the step of
copying said subroutine to said new client builder program.

28. A method as 1n claim 26, wherein said step of placing
generated code for a subroutine mnto an element of a list of
client builder events further comprises the steps of:

a. scarching said list of client builder events for a sub-
routine with the same name as said subroutine;

b. determining that said searching step finds no existing

subroutine with the same name as the code to be placed,;
and

c. placing said subroutine at the end of said list of client
builder events.

29. Amethod as 1n claim 28 wherein said step of searching

finds an existing subroutine further comprises the steps of:

a. examining said existing subroutine for the presence of
code markers such as would have been placed 1n said
subroutine during a previous execution of said code
generation step m of claim 1 at some previous time;

b. determining that said code markers do not exist;

c. Inserting a sequence Including one of said code
markers, said generated code and a second of said code
markers 1nto said existing subroutine.

30. A method as 1n claim 29 wherein said step of exam-
ining said existing subroutine determines that said existing
subroutine contains code markers further comprising the
step of placing said generated code between said existing
code markers.

	Front Page
	Drawings
	Specification
	Claims

