United States Patent

Hiranandani et al.

[19]

US005812855A
(11] Patent Number: 5,812,855
45] Date of Patent: Sep. 22, 1998

[54] SYSTEM AND METHOD FOR CONSTAINT
PROPAGATION CLONING FOR UNKNOWN
EDGES IN IPA

|75] Inventors: Seema Hiranandani, Menlo Park;

Wingsturn Wilson Ho, San Mateo,
both of Calif.

73] Assignee: Silicon Graphics, Inc., Mountain View,

Calif.

21] Appl. No.: 657,197

22| Filed: Jun. 3, 1996

51] Int. CL® e, GO6K 9/45

52] US.CL o, 395/709; 395/707; 395/708;

707/10; 707/103; 707/203

58] Field of Search ... 395/708, 709,

395/710, 707, 183.14, 706, 685; 707/10,

103, 203

[56] References Cited
U.S. PATENT DOCUMENTS

5,175,856 12/1992 Van Dyke et al. 395/704
5,179,702 1/1993 Spix et al. coovevvviiiieireeeeeeeenn 395/709
5,457,799 10/1995 Srivastavacc.cevevveeeeneveneennnn. 395/709
5,644,709 7/1997 AustInccooveeiiiiiieiiiinennnne, 395/185.06
5,655,122 8/1997 WU weveeveeeeeeereereseseeresrerseves e 395/709

OTHER PUBLICAITONS

Edinburgh Portable Compilers Ltd. “EPC Modula—2" from
http://www.epc.co.uk/em?2.html, 1997.

Marlowe, et al. “Hybrid incremental alias algorithms”,
IEEE, pp. 428437, 1991.

Chow, “Minimizing register usage penalty at procedure
calls”, ACM Press, Proc. of the SIGPLAN’88 Conf. on
Programming Language, pp. 85-94, Jun. 1988.

Cooper, et al., “The impact of interprocedural analysis &
optimizations 1n R.sup.n programming environment”, pub.
in ACM Trans. on programming languages & syst, Oct.

2023 202

/" SQuRCE SOURCE Y
FILE 1 FILE 2

2043 ot

| coRereER CONPILED
. FRONT END FRONT EHD

A0k
INTER-

20ba

INTER-
M-DIATE *.B°

FILE 1 [ILE £

FEDIATE “.B°) - - -

% 20en
1#204h

Ferrante, et al., “The program dependence graph and its use
in optimization”, IBM Technical Report RC-10543, Com-
puter Science, pp. 1-33, Jun. 1984.

Triolet, “Interprocedural analysis based restructuring of pro-
orams’, Proc. on the international workshop on parallel
algorithms & architectures; pub. by North—Holland, pp.
203-2177, Apr. 1986.

Kuck, et al. “Dependence graphs and compiler optimiza-
fions”, 8th annual ACM Symposium on principles of pro-

gramming languages, (POPL), pp. 207-218, Jan. 1981.

Lomet, “Data flow analysis in the presence of procedure
calls”, pp. 559-571, Nov. 1977.

Primary Fxaminer—Emanuel Todd Voeltz
Assistant Examiner—Cuong H. Nguyen

Attorney, Agent, or Firm—Sterne, Kessler, Goldstein & Fox
P.L.L.C.

57] ABSTRACT

The present mvention provides a system and method for
solving interprocedural problems on incomplete call graphs.
For a given program, the present invention constructs a
standard call graph on which the edges are updated with
summary information needed to solve a given interproce-
dural problem such as constant propagation. Each node of
the call graph having an unknown incoming edge 1s cloned.
The call graph 1s then updated so that the unknown 1mmcoming
edges are directed to the clone nodes and the known edges
are directed to the original nodes. This results 1n a purified
call graph on which an imterprocedural problem can be
solved. The present invention then creates a real clone of the
procedure associated with each clone node of the call graph.
The real clones are optimized according to the interproce-
dural solution. The present invention updates the known
procedure calls of the program to call the real clones.
Therefore, known procedure calls take advantage of opti-
mized code, while unknown procedure calls continue to call
unoptimized code.

24 Claims, 8 Drawing Sheets

"aa!!ii')
),rﬂﬂﬂ

COMPILER
FRONT END

LOMPILER
FRONT END

elbn 303

INTER- TNTER-

MEDTATE * B MEDTATE °.8°] .

FILE n FILE %

i
I 1072 fwen Is 02n
TNTERPROCEDURAL INTERPROCEDURAL | | INTERPROCEDURAL
|OCAL PHASE LOCAL PHASE LOCAL PHASE
{042 104p 1040
INTER- INTER- INTER-
MECIATE * .o MEDIATE *.0) + + « [MEQIATE * o
FILE 1 FILE 2 FILE n
Jr-4n5
[FA/TFD PHASE g
1082 40Rb 408n
IKTER- INTER- _INTER-
MEDIATEE = I MEDIATE - I°] - - - |PFOIATE *.1°
CILE 1 FILE 3 FILE n
NE
COMPILER COMPILER o COMPILER COMPILER
BACK END HACK END BACK END BACK END
Jaas e 210n Eall
OBJLCT OBJECT OBJECT ABJECT
" "0t - "o " g
FILE 1 FILE 2 FILE n FILE x
fa Jr

Ex

| INKAGE FOITOR

L INKAGE EDIT[]Hl

. |

EXECUTABLEY" 21%

PROGRAM

Q)

314

U.S. Patent Sep. 22, 1998 Sheet 1 of 8 5,812,855

FIG. 1
104
PROCESSOR
T
SECONDARY 110
MEMORY
11
05~ sus HABBIBESK
114
REMOVABLE REMOVABLE |16
STORAGE STORAGE
| DRIVE UNTT

COMMUNICATIONS L~ 118
INTERFACE

U.S. Patent Sep. 22, 1998

FIG. 2

2022 20

2043

COMPILER
FRONT END

COMPILER
FRONT END

INTER-
McODIATE ©.B°
FILE 1

INTER-
MEDIATE °.8°
FILE ¢

2(ba

2083

COMPILER
BACK END

COMPILER
BACK END

2103 210D

0BJECT
o
FILE ¢

Sheet 2 of 8

204b

060

206b

5,812,855

¢02n

COMPILER ¢04n
FRONT END

INTER-
VEDIATE - B} <o
FILE n
COMPILER | ¢0on
BACK END
0BJECT \ -~ 210n
EC
FILE n
212

L INKAGE EDITOR

EXECUTABLE
PROGRAM

214

U.S. Patent

2023

2043

COMPILER
FRONT END

2063

INTER-
MEDIATE *.B°
FILE 1

2083

COMPILER
BACK END

2103
OBJECT
ey
FILE 1

Sep. 22, 1998 Sheet 3 of 8
FIG. 3
202b 202n
/20‘“] - 204n
COMPILER COMPILER
FRONT ENO FRONT END
206D 206n

INTER-
MEDIATE ~.B°
FILE 2

208b

/

COMPILER
BACK END

210D

INTER-
MEDIATE " .B”
FILE n

208n

COMPILER
BACK END

210n
0BJECT
o
FILE n

212
. YA

L INKAGE EDITOR

EXECUTABLEY ¢1#

PROGRAM

5,812,855

302

304

[COMPILER
FRONT END

306

308

| COMPILER
BACK END

310

OBJECT
NEC
FILE x

11
LINKAGE EDITOR

314

U.S. Patent

Sep. 22, 1998 Sheet 4 of 8

FIG. 4

4 x
Ja 2043 2040 i /204n
COMPILER COMPILER COMPTLER
FRONT END FRONT END FRONT END
20ba 20bb 20bn

INTER-
MEDIATE *.B°
FILE ¢

INTER-
MEDIATE ™ .B°
FILE 1

MEDIATE “ .B°
FILE n

4073 402b 402n

INTERPROCEDURAL
LOCAL PHASE

404b 404 n

INTERPROCEDURAL
LOCAL PHASE

INTERPROCEDURAL
LOCAL PHASE

40435

INTER- INTER-
MEDIATE *.0" MEDIATE “ 0"
FILE ? FILE n
J/f405
IPA/IPQ PHASE
408a 408b 408n

INTER-
MEDIATE *.1°

INTER-
MEDIATE *. [

FILE n
410b 410n
/4108
COMPILER COMPILER COMPILER
BACK END BACK END BACK END
210 210 ¢10n
/o0 /

0BJECT

0BJECT
.0 "0
FILE 1

.0
FILE 2

412
Ja 1

L INKAGE EDITOR

EXECUTABLEYL ¢ 14

PROGHAM

5,812,855

‘lii!iii")

,/—304

COMPILER
FRONT END

306

INTER-
MEDIATE " .B°
FILE x

J08

COMPILER
BACK END

310

OQJEQT
.0
FILE x

312
/

L INKAGE EDITOR
314

U.S. Patent Sep. 22, 1998 Sheet S of 8 5,812,855

FIG. 3
204~ |0
220
208
10, FORMAL FORMAL -MOD
210 51/
SORNROS

222

U.S. Patent Sep. 22, 1998 Sheet 6 of 3 5,812,855

602
FIG. b

'BUILD CALL GRAPH USING | 0%

SUMMARY INFORMATION

SOLVE INTERPROCEDURAL |~ b0t
ALTASE ANALYSIS

b0d

UPDATE EDGE
ANNOTATIONS

CLONE EXTERNALLY b10
CALLABLE PROCEDURES

| SOLVE THE INTERPROCEDURAL e
CONSTANT PROPAGATION PROBLEM
ON PURIFIED CALL GRAPH

CREATE REAL CLONES b0

CLEAN-UP PARAMETER |~b1b
LISTS AT CALL SITES

REMOVE UNNECESSARY b18
CLONES

U.S. Patent Sep. 22, 1998 Sheet 7 of 8 5,812,855

FIG. 7

/02
SO0
ORGS0

¢

21b

U.S. Patent Sep. 22, 1998 Sheet 8 of 3 5,812,855

5,812,855

1

SYSTEM AND METHOD FOR CONSTAINT
PROPAGATION CLONING FOR UNKNOWN
EDGLES IN IPA

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1invention relates to computer software compilation
systems, and more specifically to a compiler that performs
interprocedural analysis and optimization.

2. Related Art
A. Compilers and Interprocedural Analysis (IPA)

A program comprises one or more external source code
files. Each source code file contains one or more program
units. A program unit 1s a subroutine, function, or other
separately compilable software entity. A compiler translates
a program to one or more object files. In particular, a
compiler compiles the source files of a program one at a
fime. For each source file, the compiler works on one
program unit at a time and generates a corresponding object
file. The developer does not have to compile an entire
program at one time, but rather, can compile the program in
separate pieces as 1t 1s developed. After an entire program 1s
compiled, a linkage editor processes all of the object files of
the program and generates an executable program.
Therefore, 1n a conventional compilation system, a devel-
oper 1nvokes two separate steps: a compilation step and a
link step.

There are two major phases of a compiler: a front end and
a back end. The front end of a compiler consists of those
phases that depend on the source language and are largely
independent of the target computer. The front end typically
performs lexical and syntactic analysis, creates the symbol
table, performs semantic analysis, and generates intermedi-
ate code which 1s an intermediate representation of the
source code.

The back end of a compiler includes those phases of
compilation that depend on the target computer and gener-
ally do not depend on the source language, but depend on the
intermediate code. The back end typically performs code
optimization on the intermediate representation and gener-
ates the target object files.

An additional feature of conventional compilation sys-
tems pertains to the creation and use of dynamic shared
objects (DSOs). A DSO is a binary object of a partial
program. Typically a developer only has access to the object
files of a DSO and not to the corresponding source code. The
DSO was compiled separately from the developer’s pro-
oram. The developer links the object files of his program
with the DSO to gain access to the program units contained
in the DSO. Therefore, conventional compilation systems
provide a developer with the ability to generate either an
executable file or a DSO when linking object files.

A disadvantage of a conventional compilation system 1s
that during compilation the compiler only has local mfor-
mation about the program unit on which the compiler is
currently working. The compiler does not have any global
information pertaining to the enftire program or to the
relationships between the program units of the program.
Because of this lack of global information, the back end of
the compiler 1s unable to perform certain optimizations, such
as optimizing the operations involving global variables and
the passing of constant parameters.

A well known technique that solves this disadvantage of
conventional compilation systems 1s interprocedural analy-
sis (IPA). IPA is a phase that is added to a compilation

10

15

20

25

30

35

40

45

50

55

60

65

2

system to analyze an enfire program and collect global
information related to the program units. Global information
includes global variables and how the multiple program
units manipulate and reference the global variables. Once
the global information 1s collected, it 1s then passed to the
optimizer as part of the back end of the compilation system.
Thus, when the optimizer optimizes a program unit, the
optimizer accesses this global information and performs
additional and more aggressive optimization pertaining to
global variables. IPA 1improves the efliciency of the gener-
ated object code by providing optimization at a global level,
thereby 1mproving the run-time performance of the execut-
able program.

B. IPA User Interface

Conventional compilation systems use a standard user
interface for compiling source files of a software program.
More specifically, a developer first generates a Make {ile to

describe how the program 1s to be compiled. Make {iles are
a standard UNIX utility that are well known 1n the relevant
art. The Make {ile 1s used to 1nvoke a compiler and translate
the source files 1nto object files. Conventional object files are
denoted by a standard “.0” sufhix. After all of the object files
are created, a linkage editor combines the object files and
ogenerates an executable program.

Conventional IPA compilation systems, compilation sys-
tems employing an IPA phase, drastically depart from the
standard user interface used by conventional non-IPA com-
pilation systems. First, conventional IPA compilation sys-
tems require a developer to use a new description, or
non-standard, IPA format in a Make file. This extra step 1s
inconvenient to developers 1n that they must learn the new
IPA specific formats.

Second, these systems further require the developer to
invoke a separate IPA step before the link step. The devel-
oper must compile all of the source files, execute an IPA step
on the object files, and then invoke the linkage editor to
generate an executable 1image of the program. Once again, to
use IPA during compilation, developers must perform an
extra step that departs from conventional compilation sys-
tems.

Third, the developer can only perform IPA on the entire
program. The developer cannot select different levels of
optimization at the source file level; that 1s, the developer
cannot compile one source file with IPA and a second source
file without IPA. Conventional IPA compilation systems
treat the IPA phase as a black box to which developers have
no control. All of the files input to the IPA phase of a
conventional IPA compilation system must be of the same
type.

Fourth, conventional IPA compilation systems do not
provide a mechanism for handling DSOs. Because a DSO 1s
compiled separately from a developer’s program, the IPA
compilation system does not have access to the source code
or the global information obtained from compiling the
source code. Therefore, conventional IPA compilation sys-
tems do not allow a developer to link a program with a DSO.
Furthermore, conventional IPA compilation systems only
ogenerate an executable program. A developer cannot com-
pile source code using IPA and generate a binary object of
a partial program or DSO.

Fifth, conventional IPA compilation systems output from
the IPA phase one large output file which takes a long time
for the compiler back end to process. Therefore, conven-
tional IPA compilation systems exhibit large delays in com-
pilation due to the processing of the one large file.

These requirements of conventional IPA compilation sys-
tems 1mpose a burden on the developer to learn a new

5,812,855

3

compilation interface and a detailed knowledge of how the
compilation system uses IPA. Therefore, there 1s a need for
an IPA compilation system that uses the standard compila-
tion user interface to include the use of DSOs.

C. Constant Propagation

Constant propagation 1s an optimization technique that
deduces at compile time that the value of an expression or
variable 1s a constant. The constant i1s then propagated
through the source code, thereby allowing further optimi-
zations to occur; such as, dead code elimination and loop
optimization. Constant propagation 1s most useful when
optimizing parameter values and global variables. In these
cases, constants can be propagated 1nto subroutines, provid-
ing for greater optimization of the source code.

Conventional compilation systems, however, cannot per-
form constant propagation optimization across program
units. As discussed above, conventional compilation sys-
tems work on one program unit at a time and do not retain
summary Information spanning program unit boundaries.
Therefore, these systems are limited to performing constant
propagation within one program unit at a local level only.

Conventional IPA compilation systems perform constant
propagation optimization across program units because
these systems retain summary 1nformation on the program
unit relationships. A problem arises, however, when a sub-
routine of a program 1s externally wvisible and can be
accessed from a binary object or DSO that 1s not an original
part of the program. In these cases, the DSO or other source
code did not go through the IPA phase of the conventional
IPA compilation system. Therefore, the system does not
have any summary information on the program units of the
DSO and cannot perform constant propagation from the
external calling subroutines to the called subroutines. Con-
ventional IPA compilation systems do not solve this prob-
lem. Instead, conventional IPA compilation systems require
a complete program, without any unknown subroutine calls
originating from a DSO or other external subroutine, as
input before performing constant propagation.

Therefore, there 1s a need for an IPA compilation system
that performs constant propagation optimization on an
incomplete program having externally callable subroutines.

SUMMARY OF THE INVENTION

A. Interprocedural Analysis (IPA) User Interface

The present mvention provides an IPA compilation sys-
tem that a developer 1nvokes and uses via a standard
compilation user interface. The present invention allows the
developer to use a standard UNIX Make file, changing only
compile options, to compile a program with IPA. By pre-
serving this traditional compilation user interface, develop-
ers do not have to learn a new user interface, nor learn the
details of IPA implementation and an IPA specific user
interface. The present invention facilitates the use of an IPA
phase.

The present 1nvention restructures the compile command
to invoke only a compiler front end and a summary phase,
but not a compiler back end. The compile command outputs
a data file with a “.0” suthx, called an intermediate “.0” file,
whereas a conventional compile command outputs a binary
object “.0” file. Therefore, from the developer’s point of
view, the compilation command 1s preserved because an “.0”
file 1s generated via compilation. It 1s transparent to the
developer that the “.0” file has a different, extended object
file format compared to the traditional object “.0” file.

The present invention also restructures the traditional link
command to invoke an interprocedural optimization phase,

10

15

20

25

30

35

40

45

50

55

60

65

4

a compiler back end, and a final link step. Similar to the
compilation step, the present mnvention preserves the devel-
oper’s user interface. The developer mnvokes a link com-
mand which mputs “.0” files and generates an executable
image. However, the input “.0” files are not binary object
files, as with conventional compilation systems, but are files
containing an 1ntermediate representation and summary
information. The link command invokes the interprocedural
optimization phase before invoking the compiler back end
and finally the linker. Therefore, the present invention hides
all implementation details pertaining to IPA functionality
from the developer.

The present mvention further provides a developer with
the option of performing IPA on a subset of the program; that
1s, compile one source file with the IPA compile option and
compile a second source file without the IPA compile option.
To accommodate this compilation option, the linker accepts
both intermediate “.0” files and binary object “.0” files as
input. This feature provides a developer with greater control
and flexibility 1mn optimizing a program. A developer can
generate a program using archived libraries, DSOs received
from external sources, or can use source files for which the
IPA compiler option was not chosen.

The present invention further provides a developer with
the option of accessing external binary objects, or DSOs, 1n
designing and implementing a program. After performing its
analysis of externally visible symbols 1n the program, the
present invention modifies the externally visible symbols so
that they are no longer externally visible. Therefore, if a
DSO 1s altered at a later date to include a new reference to
a previously externally visible symbol of the program, the
DSO will no longer execute properly. The program will
generate an error message when executing the DSO.
Therefore, the present invention allows a developer to use
DSOs when implementing a program and compiling with an
IPA option by providing safeguards against external refer-
€nces.

The present mvention further provides a developer with
the option of linking and generating an executable program
or a DSO via the link command. This feature, which 1s not
available with conventional IPA compilation systems,
allows a developer greater flexibility 1in designing and 1imple-
menting multiple programs and reusing software.

The present invention further provides a developer with
faster compilation and linking. The IPA phase of the link
command outputs one or more 1ntermediate files. If multiple
intermediate files are generated, the link command then
invokes multiple mstances of the compiler back end, such
that each 1nstance inputs an intermediate file and processes
it 1n parallel with the other 1nstances. Parallel processing of
the intermediate files results 1in faster compilation and link-
Ing.

Additional features of this invention will become apparent
from the following detailed description of the best mode for
carrying out the invention and from appended claims.

B. Constant Propagation

The present invention solves the problem of conventional
IPA compilation systems not performing constant propaga-
tion on a subset of a program by making a clone, or copy, of
the subroutines that may be called from the outside. The
present mvention does not perform IPA optimization on the
original subroutine, but has the original subroutine retain its
original structure and behavior. Therefore, all unknown calls
from external objects to subroutines in the program are
directed to the original subroutine.

In contrast, the present mnvention performs IPA optimiza-
tion on the clone subroutine with respect to the known calls

5,812,855

S

to the subroutine from other subroutines in the program. The
present invention takes advantage of parameter values asso-
clated with the known calls to the subroutine from within the
program for its IPA optimization. The known calls are then
updated to reference the IPA optimized clone subroutine and
not the original, non-IPA optimized subroutine.

Additional features of this invention will become apparent
from the following detailed description of the best mode for
carrying out the mvention and from appended claims.

BRIEF DESCRIPTION OF THE FIGURES

The present invention 1s described with reference to the
accompanying drawings. In the drawings, like reference
numbers indicate 1dentical or functionally similar elements.
Additionally, the left-most digit(s) of a reference number
identifies the drawing 1n which the reference number first
appears.

FIG. 1 1s an exemplary computer system of the preferred
embodiment;

FIG. 2 1s a block diagram 1illustrating a conventional
compilation system;

FIG. 3 1s a block diagram illustrating the conventional
compilation system with dynamic shared objects (DSOs);

FIG. 4 1s a block diagram illustrating the preferred
embodiment of the present invention for an mterprocedural
analysis user interface;

FIG. 5 1s a block diagram 1llustrating a conventional call
ograph with unknown edges;

FIG. 6 1s a control flow diagram representing the opera-
tion of the preferred embodiment of the present invention for
constant propagation cloning;

FIG. 7 1s a block diagram illustrating a call graph with
cloned nodes receiving unknown edges; and

FIG. 8 1s a block diagram 1illustrating the call graph with
real clones receiving known calls.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

1. Host System of the Preferred Embodiment

The chosen embodiment of the present invention 1s com-
puter software executing within a computer system. FIG. 1
shows an exemplary computer system. The computer system
102 includes one or more processors, such as a processor

104. The processor 104 1s connected to a communication bus
106.

The computer system 102 also includes a main memory
108, preferably random access memory (RAM), and a
seccondary memory 110. The secondary memory 110
includes, for example, a hard disk drive 112 and/or a
removable storage drive 114, representing a floppy disk
drive, a magnetic tape drive, a compact disk drive, a
program cartridge and cartridge interface (such as that found
in video game devices), a removable memory chip (such as
EPROM, or PROM), etc. which is read by and written to by
a removable storage unit 116. Removable storage unit 116,
also called a program storage device or a computer program
product, represents a floppy disk, magnetic tape, compact
disk, etc. As will be appreciated, the removable storage unit
116 includes a computer usable storage medium having
stored theremn computer software and/or data. The remov-
able storage drive 114 reads from and/or writes to a remov-
able storage unit 116 1n a well known manner.

The computer system 102 may also include other similar
means for allowing computer programs or other mstructions

10

15

20

25

30

35

40

45

50

55

60

65

6

to be loaded. Such means can include, for example, a
communications interface 118. Communications interface
118 allows software and data to be transferred between
computer system 102 and external devices. Examples of
communications nterface 118 can include a modem, a
network interface (such as an Ethernet card), a communi-
cations port, etc. Software and data transferred via commu-
nications interface 118 are in the form of signals which can
be electronic, electromagnetic, optical or other signals
capable of being received by communications interface 118.

In this document, the term “computer program product” 1s
used to generally refer to removable storage unit 116, a hard
disk 1nstalled 1n hard disk drive 112, and signals transferred
via communications interface 118. These computer program
products are means for providing software to a computer
system 102.

In an embodiment where the invention 1s implemented
using software, the software may be stored 1n main memory
108, or in a computer program product and loaded into
computer system 102 using removable storage drive 114,
hard disk drive 112, or communications interface 118. The
software, when executed by the processor 104, causes the
processor 104 to perform the functions of the mvention as
described herein.

In another embodiment, the invention 1s implemented
primarily in hardware using, for example, a hardware state
machine. Implementation of the hardware state machine so
as to perform the functions described herein will be apparent
to persons skilled 1n the relevant arts.

The preferred embodiment of the present mvention 1s
directed to execute on a computer system 102 in which the
processor 104, such as Intel, Apple, MIPs, etc., executes the
UNIX operating system. The preferred embodiment of the
present 1nvention 1s 1mplemented 1n software, and more
specifically, 1s written in the programming languages C and
C++. The preferred embodiment 1s described 1n these terms
for convenience purpose only. Other comparable computer
systems 102, processors 104, and programming languages
could alternatively be used.

2. Overview of Conventional Compiler Systems

The present invention 1s directed to a computer compila-
tion system. The data flow diagram of FIG. 2 illustrates the
components of a conventional compilation system and the
flow of data between the compilation components. The
components include: a compiler front end 204a—204#, a

compiler back end 208a—208#x, and a linkage editor 212.
In operation, a developer submits one or more source files

202a-202n1 to the compiler. Each source file 202a—202#
contains one or more program units of a software program.
A compiler front end 204a-204n receives a source file
202a-202x1 and produces an internal representation of the
source file 202a—202x. More specifically, multiple instances
of the compiler front end 204a-204n execute 1n parallel.
Each mstance of a compiler front end 204a—204#7 processes
a source file 202a—202x independent of the others. The
internal representation of the source file 202a—202x1 1is
contained 1 a biary file with a “.B” suilix, called an
intermediate “.B” file 20662067, such that each interme-

diate “.B” file 206a—206n corresponds to a source file
202a-202n.

A compiler back end 2084—208# 1nputs and analyzes the
intermediate “.B” files 2060a—206#. Based on 1ts analysis, the

compiler back end 208a—208x: optimizes the intermediate

representation, thereby making the code more efficient. The
compiler back end 2084—208# then generates object code 1n

a file with a “.0” sufhix, called the object “.0” file 210a—210x,

5,812,855

7

such that each object “.0” file 2104210 corresponds to a
source file 202a—202x and an intermediate file 206a—2067.
More specifically, multiple instances of the compiler back
end 208a-2087n execute in parallel. Each instance of a
compiler back end 2084a—2087n processes an intermediate

“.B” file 206a—2067 independent of the others.

Once all of the source files 202a—202x have been suc-
cessfully compiled, the developer invokes the linkage editor
212 to link the object “.0” files 210a—210x. The linkage
editor 212 creates an executable program 214 that can be
executed on a computer system 102.

The data flow diagram of FIG. 3 illustrates the compo-
nents of a conventional compiler and the flow of data
between the compiler components including the generation
and use of a dynamic shared object (DSO). As described
above, a DSO 1s a binary object of a partial program. A DSO
1s developed and compiled separately from a developer’s
program such that the developer does not have access to the
source code of the DSO, but only has access to the object
code. Typically, a developer accesses a DSO by adding
references to the subroutines and global variables of the
DSO 1n his program and linking his program with the DSO.

Referring again to FIG. 3, a source {ile x 302 1s developed
separate from the source files 2024—2027 of the developer’s
program. Similar to the conventional compilation system
described above, the source file x 302 1s compiled and
linked. The source file x 302 1s submitted to a compiler front
end 304 which generates an intermediate “.B” file x 306. The
compiler back end 308 takes the intermediate “.B” file x 306
as mput and generates an object “.0” file x 310. The object
“.0” file x 310 1s then linked 1nto a DSO “.s0” file 314. It
should be understood that the DSO 1s described 1n terms of
having a single source file, source file x 302, for convenience
purposes only. It would be readily apparent to one skilled in
the relevant art to generate a DSO “.s0” file 314 from source
code contained 1n multiple source files.

Upon the creation of a DSO “.s0” file 314, the developer
can create the source files 20242027 of his program and
add references to the externally visible subroutines and
olobal variables of the DSO “.so0” file 314. Then, when the
developer mnvokes the linkage editor 212 to link the object
“.0” files 210a-210n of his program, the linkage editor 212
pulls 1n the binary object of the DSO “.so” file 314.
Therefore, the developer’s executable program 214 can
access the DSO code and executes the DSO code at run time
according to the DSO references.

3. The Preferred Embodiment of an Interprocedural
Analysis (IPA) User Interface

The data flow diagram of FIG. 4 1llustrates the preferred
embodiment of the present invention for an mnterprocedural
analysis (IPA) user interface. More specifically, FIG. 4
illustrates the components of the preferred embodiment of
an IPA compilation system and the flow of data between
those components. The components of a preferred IPA
compilation system i1include: a compiler front end
2044a—204#, an imterprocedural local phase 402a—402#x, an
interprocedural analysis (IPA)/interprocedural optimization
(IPO) phasc 406, a compiler back end 410¢—410x, and a
linkage editor 412.

In the preferred embodiment of the present invention, a
developer 1nvokes and uses an IPA compilation system with
the same standard user interface as a conventional compi-
lation system. More specifically, the developer employs the
standard two step process when generating an executable
image of a program: compile and link. In contrast, as
discussed above, conventional IPA compilation systems

10

15

20

25

30

35

40

45

50

55

60

65

3

require the developer to learn and use a non-standard user
interface including new compilation commands and file
suffixes.

In the compile step, a developer submits one or more
source files 202a—-202n to the compiler. In the preferred
embodiment, the developer uses the standard UNIX Make
utility to describe how to compile the source files
202a-202n, such as the order of compilation. The developer
simply adds a new compilation flag to a compile command
line to mmvoke the IPA phase of the present invention. The
preferred embodiment of the flag 1s “-IPA.” Therefore, when
the compiler front end 204 parses the “-IPA” flag, 1t will
automatically process the source file 202a—2027 under IPA.

Each source file 2024—2027n contains one or more pro-
oram units of a software program. The compiler front end
2044a-204n receives each source file 202a—202x and pro-
duces an 1nternal representation of the source file
202a-202x1. The mternal representation 1s contained in a
data file with a “.B” suffix, called an intermediate “.B” file
206a-206n, such that each intermediate “.B” file 206a—206#
corresponds to a source file 202a—202n. As discussed above
with FIG. 2, multiple instances of the compiler front end
2044a—-204n execute 1n parallel. Each instance of a compiler
front end 204a-204n processes a source file 202a-202n
independent of the others.

The interprocedural local phase 402qa—4027n inputs and
analyzes the mtermediate “.B” files 206a—206#. The mter-
procedural local phase 402a—402xnsummarizes information
within a program unit that could affect or be affected by
other program units. Similar to the compiler front end
20442045, multiple instances of the interprocedural local
phase 402a—402# execute 1n parallel, such that each instance
works on one program unit at a time. It 1s readily apparent
and well known to one skilled 1n the art to determine the
necessary summary information to retain for minimal IPA
processing.

The interprocedural local phase 402a—402x genecrates a
sccond 1ntermediate representation of a source file
202a-202n which 1s contained 1n a file with a “.0” suffix,
called an intermediate “.0” file 404a —404#. The 1intermedi-
ate “.0” files 404a—404#n are written 1n an extended object
file format and contain the intermediate “.B” file 206a—206#
information and the summary information within a program
unit that might later be used to construct a relationship
between inter-program units. In addition, the summary
information contains the compiler options associated with
cach i1ntermediate file. Therefore, the compiler back end
410a—410n can perform the appropriate level of optimiza-
tion on each file because the IPA/IPO phase 406 has access
to the compilation options in each intermediate “.0” file
404a—404n. This provides the user with the flexibility of
optimizing each file at a different level. In contrast, conven-
tional IPA compilation systems do not maintain the compiler
options between compiler front end 204a—204n and the
compiler back end 410a—410n because an IPA phase 1is
executed between the two.

In the preferred embodiment of the present invention, the
intermediate “.0” files 404a—4047 are written 1n the standard
executable and linking format (ELF). ELF is well known in
the art and 1s an 1nternational standard for describing object
files. Briefly stated, ELF 1s a flexible way of organizing a
binary file. An object file 1s partitioned mto multiple
sections, each section having a type that describes the
information contained in its corresponding section.

The preferred embodiment defines and adds new types,
thereby adding new sections, to the ELF format for describ-

5,812,855

9

ing the intermediate “.B” files 206a—206x. The new types
and sections contain the intermediate representation and the
summary 1nformation as determined by the mterprocedural
local phase 402a—402x. A person skilled i the related art
would know the needed information for the new ELF types
and sections, and would know how to define and add the new
types and sections using the ELF standard. It should be
understood, however, that the preferred embodiment of the
intermediate “.0” files 206a-206# 1s described using the
ELF standard for convenience purpose only. It would be
readily apparent to one skilled 1n the related art to use a
comparable object file format containing the additional
summary information.

The “.0” suilix of the mtermediate “.0” files 404a—404# 1s
a well known and standard suffix for binary object files that
1s recognized by conventional compiler tools. Therefore, the
present mvention recognizes two types of “.0” files: inter-
mediate “.0” files 404a—404n and object “.0”7 files
2104a-210n. The benefit of using the “.0” sufix for the
intermediate files 1s that other compiler tools that require the
“.0” suilix will continue to execute properly. These compiler
tools, however, will not recognize the new types and sec-
tions 1n the ELF format.

After all of the source files 2024-202x have been
compiled, the developer links the object files comprising the
program. In the link step, the IPA/IPO phase 406 inputs and
analyzes the intermediate “.0” files 404a—404n. The IPA/
[PO phase 406 uscs the summary mnformation contained in
the 1mtermediate “.0” files 404a—404n and performs cross-
program unit analysis and optimization. It 1s readily appar-
ent and well known to one skilled in the art to implement the
necessary IPA and IPO functionality.

In the preferred embodiment of the IPAMPO phase 406,
the IPA\IPO phase 406 mputs two types of files having the
“.0” sullix : intermediate “.0” files 404a—404n and object
“.0” files 210a—-210#. For intermediate “.0” files 404a—404#,
the IPA/IPO phase 406 processes the files and forwards the
files to the compiler back end 410a—410x. For object “.0”
files 210a—210#x, the IPA/IPO phase 406 and the compiler
back end 410¢—410n On are skipped and the files are
forwarded directly to the linkage editor 412. This feature
provides a developer with the option of compiling and
linking a program in which only some of the program 1is
processed with IPA. In addition, the developer can use “.0”
files or a library of “.0” files from other sources.

For each intermediate “.0” file 404a—404#, the IPA/IPO
phase 406 performs analysis and optimization based on the
summary information, and then generates modified or opti-
mized versions of the program units 1n intermediate “.I” files
4084—4087. In an alternative embodiment, however, the
IPA/IPO phase 406 could generate one combined interme-
diate “.I” file 408a—408n instead of separate intermediate
“I” files 408a—408n. An mtermediate “.I” file 408a—408#
contains one or more optimized program units that have the
extra, global information incorporated into them by the
IPA/IPO phase 406. Therefore, the compiler back end
410a—410n has access to all the summary information that 1t
needs to perform aggressive optimization. This preferred
embodiment results 1n the compiler back end 410a—4107 not
needing any changes. More specifically, the compiler back
end 410a—410n does not have to be taught to understand the
summary Information. The IPA/IPO phase 406 performs all

of the work to merge the needed mformation into each
intermediate “.I” file 408a—4087.

The compiler back end 410a—410# inputs the intermediate
“I” files 408a—4087 and optimizes the internal representa-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion of the source code accordingly. In the preferred embodi-
ment having multiple intermediate “.I” files 408a—4087,
multiple mstances of the compiler back end 410a—410# are
invoked such that the intermediate “.I” files 408a—408# are
compiled and processed 1n parallel. This parallel processing
speeds up compilation and linking. Parallel processing of the

intermediate “.I” files 408a—4087n 1s possible because the
IPA/IPO phase 406 1nvokes the compiler back end

410a—410n with the compiler options associated with each
intermediate “.I” file 408a—408#. It would be readily appar-
ent to one skilled 1n the relevant art to store the compiler

options, thereby providing for parallel processing at the

compiler back end 410a—410x.

Similar to conventional compilation systems, the com-
piler back end 410a—410#x generates binary object “.0” files
210a-210n. After the developer compiles all of the source
files 202a—202x of the program, the developer can invoke
the linkage editor 412. The linkage editor 412 inputs the
object “.0” files 210a—210# resulting from the compilation
and generates an executable program 214. The developer
can then execute his program on a computer system 102.
Alternatively, upon direction from the developer, the linkage
cditor 412 can link the object “.0”files 210a-210x and
ogenerate a DSO. The developer can use the DSO 1n design-
ing and implementing other programs.

When linking a DSO “.s0” file 314 with the object “.0”
files 210a—210# of a program, the IPA/IPO phase 406 and
the linkage editor 412 must safeguard the developer’s pro-
oram from future modifications made to the DSO. For
example, assuming that the developer’s program contains
externally wvisible symbols, such as global variables or
subroutines, a first version of a DSO may not reference one
of the program’s externally visible symbols, but a second
version of the DSO may. Therefore, to safeguard the devel-
oper’s program from unchecked updates to the DSO, the
IPA/IPO phase 406 mputs the DSO “.so0” file 314 and
determines which of the program’s externally visible sym-
bols may not be referenced from the outside. For each of
those unreferenced symbols, the IPA/IPO phase 406 modi-
fies the definition of the symbol 1n the main program so that
the symbol 1s no longer externally visible. Therefore, 1f a
new version of a program or DSO attempts to reference the
symbol during run-time, the program generates an error
message mnstead of executing incorrectly. This feature of the
IPA/IPO phase 406 protects the IPA optimization assump-
tions made during the compilation of the developer’s pro-
gram.

4. Overview of Call Graphs Using a Conventional IPA
Compilation System

A call graph 1s a standard and well known graphical
representation of software subroutines and the dependencies
between those subroutines. More specifically, each node of
a call graph represents a subroutine and an edge between two
nodes represents one subroutine calling, or invoking,
another subroutine. A node of a call graph represents either
a known subroutine of the program or an external, unknown
subroutine, such as a subroutine 1n a DSO or a subroutine
compiled without the IPA option. The direction of an edge
indicates which node or subroutine calls another.

Each edge between known subroutines i1s also annotated
indicating the value of the parameters passed between the
known subroutines. As described above, an IPA phase of a
conventional IPA compilation system generates summary
information pertaining to the entire program including infor-
mation pertaining to constants. Using this summary
information, the IPA phase builds the call graph and anno-
tates the edges.

5,812,855

11

An edge between an external, unknown subroutine and a
known subroutine, 1s called an unknown edge. An unknown
edge 1s not annotated because the external subroutine was
compiled separately from the original subroutines of the
program. Therefore, the IPA phase does not have any
summary information pertaining to the parameter values
passed between the external subroutine and the known
subroutine. These edges are unknown and are not annotated.

The block diagram of FIG. 5 1llustrates a conventional call
ograph with unknown edges. The nodes are the subroutines or

procedures Main 502, P1 508, P2 514, P3 516, P, .. .
506, and P, . S518. The edges are the directional
arrows drawn between the nodes. Theretfore, the call graph
of FIG. § indicates that procedure Main 502 calls procedure
P1 508, procedure P1 508 calls both procedure P2 514 and
procedure P3 516, unknown procedure P, . 506 calls
procedure P1 508, and unknown procedure P, . 518
calls procedure P2 514. Procedures P, . 506 and
P . . 318 are unknown procedures because they were
not developed as part of the program, but may be included
in a partial program or DSO that the developer linked into
the program.

For convenience purposes only, the following procedure

definitions are provided to further describe the call graph of
FIG. §:

Main ()
call P1 (20)

end

P1 (int 1)
call P2 (10, 1)
call P3 (i)

end
P2 (int x, int y)

end
P3 (int j)
f=+3

end

Based on the above procedure definitions, the edges of the
call graph are annotated according to the actual parameter

values passed to the subroutines. Therefore, edge 504 1s
annotated with the value “20” to indicate that a constant 1s
passed from procedure Main 502 to procedure P1 508. Edge
510 1s annotated with the values “10” and “formal” to
indicate that the two parameters are passed from procedure
P1 508 to procedure P2 514. The “10” represents a constant,
whereas the value “formal” represents that a formal param-
eter of unknown value 1s passed. Edge 512 1s annotated with
the value “formal mod” to indicate that the procedure P3
516 may modity the formal parameter that it receives from
procedure P1 508. The edge 3520 between procedure
P _. .. .and procedure P1 508 and the edge 522 between
procedure P, . and procedure P2 514 are not annotated
because these calls originate from unknown procedures.
Theretore, the values of the parameters passed to the known
procedures P1 508 and P2 514 are unknown.

The problem arises 1n attempting to perform IPA optimi-
zation on those procedures that are externally callable, such
as procedure P1 508 and P2 514. Due to the uncertainty of
the incoming parameter values, the procedures P1 508 and
P2 514 cannot be optimized with respect to their parameters.
Conventional IPA compilation systems cannot handle a call
oraph with unknown, or non-annotated, edges. Therefore,
these conventional IPA systems are limited because they
cannot process an incomplete call graph.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The Preferred Embodiment of Constant Propagation for
Unknown Edges

The preferred embodiment of the present invention pro-
vides constant propagation 1n a call graph having unknown
cdges. FIG. 6 1s a control flow diagram illustrating the
operation of the preferred embodiment of constant propa-
cgation within an IPA compilation system. Control starts at

step 602 and immediately proceeds to step 604. In step 604,
the IPA/IPO phase 406 builds a call graph, as represented in

FIG. 5, using the summary information in the intermediate
“.0” files 404a—404# to annotate the edges of the call graph.
It would be readily apparent to one skilled 1n the art to
ogenerate a call graph using the summary mmformation.

Continuing to step 606, the IPA/IPO phase 406 solves the
interprocedural alias analysis which includes computing the
“mod” mformation for the formal parameters of each node,
or procedure. More specifically, the IPA/IPO phase 406
determines whether a specific procedure can modily a
parameter value or not. For those parameters that can be
modified by a procedure, the IPA/IPO phase 406 assigns the
appropriate edge with a “formal _mod” annotation.

Continuing to step 608, the IPA/IPO phase 406 updates
those edges containing a “formal mod” annotation. For
those parameters that are not modified by the call, the
IPA/IPO phase 406 removes the “formal__mod” annotation
and replaces 1t with a “formal” annotation. For those param-
cters that are modified by the call, the IPA/IPO phase 406
removes the “formal _mod” annotation and replaces 1t with
a “symbolic” or non-constant annotation.

Continuing to step 610, the IPA/IPO phase 406 clones the
externally callable procedures of the call graph. Referring
again to the call graph of FIG. 5, the externally callable
procedures are procedures P1 508 and P2 514. Therefore, a
clone of procedure PI 508 and a clone of procedure P2 514
are created 1n the call graph.

FIG. 7 1s a block diagram illustrating the cloning of
procedures P1 508 and P2 514. The clone of procedure P1
508 1s procedure P1'702, and the clone of procedure P2 514
1s procedure P2'704. More specifically, the IPA/IPO phase
406 creates new nodes on the call graph such that one new
node 1s the clone procedure P1'702 and a second new node
1s the clone procedure P2' 704. At this step, the clones are a
clone of the analysis of the procedures P1 508 and P2 514
and are not real clones of the procedures themselves.

After the clones P1'702 and P2'704 are created, the edges
of the call graph are updated. The external, unknown edges
are redrawn to point to the clone procedures. More
specifically, unknown edge 520 1s updated to point to clone
procedure P1'702 and unknown edge 522 1s updated to point
to clone procedure P2'704. Step 610 results 1n a pure call
oraph 1n which there are no unknown edges and all edges
have known parameter values.

Continuing to step 612, the IPA/IPO phase 406 can now
solve the interprocedural constant propagation problem on
the purified call graph. It 1s readily apparent to one skilled
in the art to apply an iterative technique for solving constant
propagation. It should also be understood, however, that the
interprocedural problem being solved by the preferred
embodiment of the present 1nvention 1s constant propaga-
tion. Alternative embodiments could be implemented by one
skilled 1n the art to solve comparable mterprocedural prob-
lems.

Continuing to step 614, the IPA/IPO phase 406 traverses,
in a well known manner, the nodes of the purified call graph
for which a clone was created 1n step 610. For each such
node, the IPA/IPO phase 406 creates a real clone. A real

clone 1s an actual copy of the source code of an original

5,812,855

13

procedure. The real clones are then optimized via constant
propagation 1n a manner well known to one skilled in the art.
Because the real clones are optimized for known calls, the
calling procedures are then updated to call the real clones.
Similarly, the original procedures remain unoptimized;
therefore, the external procedures retain their call to the
original procedures. This step results in known procedure
calls taking advantage of IPA constant propagation optimi-
zation techniques, while unknown, external procedure calls
are still allowed and take advantage of original, non-IPA

optimized source code.
Step 614 1s 1llustrated 1n the block diagram of FIG. 8. In

FIG. 8, real clones were created for procedures P1 508 and
P2 514, called P1"802 and P2"804 respectively. Therefore,

all calls to the original procedures P1 508 and P2 514 are
updated accordingly. More specifically, procedure Main 502

1s updated to call the real clone P1"802, and procedure P1
508 1s updated to call the real clone P2"804. In addition,

external procedure P, . 506 retains 1ts call to proce-
dure P1 508, and procedure P 518 retains 1ts call to
procedure P2 514.

Continuing to step 616, the IPA/IPO phase 406 cleans up
the parameter lists at the new call sites as updated 1n step
614. This clean up includes eliminating constant parameters,
thereby further optimizing the code.

Continuing to step 618, the IPA/IPO phase 406 cleans up
the call graph by removing all unnecessary real clones. For
example, 1f a real clone was created for a clone, but the
original procedure of the real clone does not have any
iIncoming constants, then the real clone could be removed. It
should be understood, however, that real clones could be
retained based on another criteria. For example, if after the
constant propagation analysis, the interprocedural local
phase 402 performs an array section analysis on the proce-
dures 1n a call graph, a real clone may satisfy that second
criteria, thereby be retained and not removed.

It should be understood that the use of clones and real
clones as described above can be used 1n any interprocedural
analysis problem 1n which there 1s incomplete or unknown
information. The preferred embodiment i1s described in
terms of constant propagation for convenience purpose only.
It would be readily apparent to one skilled 1n the art to apply
this present i1nvention to other imterprocedural analysis
problems, 1ncluding, but not limited to, section analysis.

Continuing to step 620, the IPA/IPO phase 406 exits this
portion of its processing.

krowrn-2

Conclusion

While various embodiments of the present invention have
been described above, 1t should be understood that they have
been presented by the way of example only, and not limi-
tation. It will be understood by those skilled 1n the art that
various changes 1n form and details may be made therein
without departing from the spirit and scope of the invention
as defined 1n the appended claims. Thus, the breadth and
scope of the present mvention should not be limited by any
of the above-described exemplary embodiments, but should
be defined 1n accordance with the following claims and their
cequivalents.

What 1s claimed 1s:

1. A complete executed method for solving interproce-
dural problems on incomplete call graphs, comprising the
steps of:

(a) constructing a call graph having one or more nodes
and one or more edges connecting said nodes, wherein
cach said node corresponds to a procedure 1n a com-
puter program and each said edge corresponds to a
procedure call;

10

15

20

25

30

35

40

45

50

55

60

65

14

(b) updating said call graph with initial edge and node
summary annotation information needed to solve a
given 1nterprocedural problem:;

(¢) cloning said nodes having an unknown incoming edge,
thereby creating one or more clones;

(d) updating said call graph to reflect the creation of said
clones created in step (c), thereby creating a purified
call graph; and

(¢) solving said given interprocedural problem on said
purified call graph.

2. The complete executed method of claim 1, further

comprising:

(f) creating a real clone for each clone created in step (¢);

(g) optimizing said real clone, thereby said real clone
contains an optimized version of a procedure that
solves said given interprocedural problem; and

(h) updating procedure calls of said purified call graph to
call said real clone, thereby creating updated procedure
calls.

3. The complete executed method of claim 2, further

comprising:

(1) cleaning up said updated procedure calls of said
purified call graph.

4. The complete executed method of claim 3, further

comprising:

(j) removing unnecessary real clones.

5. The complete executed method of claim 1, wherein said

orven 1nterprocedural problem 1s constant propagation.

6. The complete executed method of claim 5, further

comprising:

(k) solving iterprocedural alias analysis by determining
whether a procedure can modily a parameter value;

wherein step (k) is executed after step (a) and before step
(b).

7. The complete executed method of claim 6, wherein step

(b) comprises:

(b.1) replacing a “formal__mod” annotation that corre-
sponds to a parameter value of a procedure with a
“formal” annotation, if it is determined in step (k) that
said procedure corresponding to said “formal mod”
annotation cannot modify said parameter value; and

(b.2) replacing said “formal mod” annotation that cor-
responds to a parameter value of a procedure with a
“symbolic” annotation, if it is determined in step (k)
that said procedure corresponding to said “formal _
mod” annotation can modily said parameter value.

8. The complete executed method of claim 5, wherein step

(d) comprises:

(d.1) redrawing unknown incoming edges of said call
oraph to point to said clones.

9. A computer system for solving interprocedural prob-

lems on mmcomplete call graphs, comprising;:

constructing means for constructing a call graph having
one or more nodes and one or more edges connecting,
said nodes, wherein each said node corresponds to a
procedure 1n a computer program and each said edge
corresponds to a procedure call;

first updating means for updating said call graph with
initial edge and node summary annotation information
needed to solve a given interprocedural problem;

cloning means for cloning said nodes having an unknown
incoming edge, thereby creating one or more clones;

second updating means for updating said call graph to
reflect the creation of said clones created by said
cloning means, thereby creating a purified call graph;
and

5,812,855

15

solving means for solving said\given interprocedural
problem on said purified call graph.
10. The computer system of claim 9, further comprising:

creating means for creating a real clone for each clone
created by said cloning means;

optimizing means for optimizing said real clone, thereby
said real clone contains an optimized version of a
procedure that solves said given interprocedural prob-
lem; and

third updating means for updating procedure calls of said
purified call graph to call said real clone, thereby
creating updated procedure calls.

11. The computer system of claim 10, further comprising:

cleaning means for cleaning up said updated procedure
calls of said purified call graph.

12. The computer system of claim 11, further comprising:

removing means for removing unnecessary real clones.

13. The computer system of claim 9, wherein said given
interprocedural problem 1s constant propagation.

14. The computer system of claim 13, further comprising:

second solving means for solving interprocedural alias
analysis by determining whether a procedure can
modify a parameter value;

wherein said second solving means 1s executed after said
constructing means and before said first updating
means.
15. The computer system of claim 14, wherein said first
updating means comprises:

first replacing means for replacing a “formal _mod” anno-
tation that corresponds to a parameter value of a
procedure with a “formal” annotation, 1f it 1s deter-
mined by said second solving means that said proce-
dure corresponding to said “formal__mod” annotation
cannot modily said parameter value; and

second replacing means for replacing said “formal_mod”
annotation that corresponds to a parameter value of a
procedure with a “symbolic” annotation, if 1t 1s deter-
mined by said second solving means that said proce-
dure corresponding to said “formal_mod” annotation
can modily said parameter value.

16. The computer system of claim 13, wherein said

second updating means comprises:

redrawing means for redrawing unknown mcoming edges
of said call graph to point to said clones.

17. A computer program product for use with a computer

system, comprising:

a computer usable medium having a computer readable
program code means embodied 1n said medium for
enabling a processor to solve interprocedural problems
on mcomplete call graphs, said computer program
product having:

first program readable program code means for construct-
ing a call graph having one or more nodes and one or
more edges connecting said nodes, wherein each said
node corresponds to a procedure 1n a computer program
and each said edge corresponds to a procedure call;

second program readable program code means for updat-
ing said call graph with 1nitial edge and node summary
annotation information needed to solve a given inter-
procedural problem,;

third program readable program code means for cloning
said nodes having an unknown incoming edge, thereby
creating one or more clones;

5

10

15

20

25

30

35

40

45

50

55

60

16

fourth program readable program code means for updat-
ing said call graph to reflect the creation of said clones
created by said cloning means, thereby creating a
purified call graph; and

fifth program readable program code means for solving
said given interprocedural problem on said purified call
graph.
18. The computer program product of claam 17, further
comprising:
sixth program readable program code means for creating,
a real clone for each clone created by said third
program readable program code means;

seventh program readable program code means for opti-
mizing said real clone, thereby said real clone contains
an optimized version of a procedure that solves said
ogiven interprocedural problem; and

eighth program readable program code means for updat-
ing procedure calls of said purified call graph to call
said real clone, thereby creating updated procedure
calls.
19. The computer program product of claim 18, further
comprising:
ninth program readable program code means for cleaning
up said updated procedure calls of said purified call
oraph.
20. The computer program product of claim 19, further
comprising:
tenth program readable program code means for removing,
unnecessary real clones.
21. The computer program product of claim 17, wherein
said given 1nterprocedural problem 1s constant propagation.
22. The computer program product of claim 21, further
comprising;
cleventh program readable program code means for solv-
ing 1interprocedural alias analysis by determining
whether a procedure can modify a parameter value;

wherein said eleventh program readable program code
means 1s executed after said first program readable
program code means and before said second program
readable program code means.

23. The computer program product of claim 22, wherein
said second program readable program code means com-
Prises:

first replacing means for replacing a “formal__mod” anno-

tation that corresponds to a parameter value of a
procedure with a “formal” annotation, if it 1s deter-
mined by said eleventh program readable program code
means that said procedure corresponding to said
“formal__mod” annotation cannot modify said param-
eter value; and

second replacing means for replacing said “formal__mod”
annotation that corresponds to a parameter value of a
procedure with a “symbolic” annotation, 1f 1t 1s deter-
mined by said eleventh program readable program code
means that said procedure corresponding to said
“formal__mod” annotation can modily said parameter
value.

24. The computer program product of claim 21, wherein
said fourth program readable program code means com-
PrisSes:

redrawing means for redrawing unknown mcoming edges

of said call graph to point to said clones.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,812,855
DATED : September 22, 1998

INVENTORS : Hiranandani et a/.

It i1s certified that an error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below.

In 1item 54 of the cover page, and also in Column 1, Line 1, delete the word

"CONSTAINT" and insert the word --CONSTANT-- in place thereof:
In Column 13, Line 60, replace "complete” with --computer--;
In Column 14, Line 11, replace "complete" with --computer--;
In Column 14, Line 20, replace "complete” with --computer--;
In Column 14, Line 24, replace "complete" with --computer--;
In Column 14, Line 27, replace “"complete" with --computer--;
In Column 14, Line 29, replace "complete” with --computer--;
In Column 14, Line 35, replace "complete" with --computer--;
In Column 14, Line 47, replace "complete" with --computer--.

Signed and Sealed this
Ninth Day of March, 1999

Q. TODD DICKINSON

A(!E’.Tﬂbng Q_fﬁf.'t'!‘ Acting Commmissioner of Patents und Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

