US005805798A
United States Patent .9 111] Patent Number: 5,803,798
Kearns et al. 45] Date of Patent: Sep. 8, 1998
[54] FAIL-SAFE EVENT DRIVEN TRANSACTION 5,548,750 §/1996 Larsson et al.coovvevennnnnnnn.e, 707/204
PROCESSING SYSTEM AND METHOD 5,652,008 7/1997 Douglas et al. 395/200.01
FOREIGN PATENT DOCUMENTS
|75] Inventors: Kevin A. Kearns, Ringwood, N.J.;
Teresa R. Jahanian, Ann Arbor, Mich.; 0652 519 A2 5/1995 FEuropean Pat. Off. GO6F 11/34
Raymond E. Jeffery, Warwick, N.Y. WO 96 27157
A 9/1996 WIPOccevveveveneeenn. GOOE 12/00
73] Assignee: Electronic Data Systems Corporation, Primary Examiner—Albert DeCady
Plano, Tex. Attorney, Agent, or Firm—Terry J. Stalford; L. Joy
Griebenow
21] Appl. No.: 741,149
A AP AR0- TR 57] ABSTRACT
22| Filed: Oct. 29, 1996 _ _ _
- The system and method of the present invention provide a
51 INt. CLO oo, GO6F 11/00 fail-safe event driven transaction pI'OCGSSiIlg for electronic
52] US.CLo 395/185.01; 395/184.01 commerce applications. The system includes at least one
58] Field of Searchc.cceovvevevnn, 395/180, 181, system node having multiple entitiecs and processes for

395/182.01, 182.02, 182.08, 182.11, 185.01, communicating with outside devices, such as ATMs and

185.09, 185.1, 184.01, 200.53, 200.54; financial 1nstitutions. Multiple links are provided between

707/200, 201, 204 the system nodes to provide flexible routing in case of down

nodes. A configuration database accessible by the processes

[56] References Cited provides a backup enftity or process for each enftity and
process. A system monitor resides at each system node

U.s. PAIENT DOCUMENTS monitors the operational status of each node and commu-

4,807.116 2/1989 Katzman et al. . nicates the status to other nodes.

5,450,601 9/1995 Okudacooevvvvvvevivinevnnnnnnn, 395/200.54

5,537,642 7/1996 Glowny et al. 395/800.01 19 Claims, 6 DI'aWillg Sheets
22

oo

i /}
\

::: i
SYSTEM t

)8 CONFIG 38
26 \ R 30

. e
|
COMMAND CONTROL -
ﬁj FACILITY POINT N | . _J
oan I
I
W S e =He BN APPLICATION JJ
PROCESSES
44, [,
il: 30

TS
SYSTEM
RNEgDoETSE /’Z”/ LIBRARY
) o9
40"
REMOTE
NODES

U.S. Patent Sep. 8, 1998 Sheet 1 of 6 5,805,798

10 19

ROUTER |16
DEVICE | 17
HANDLER
HOST
INTERFACE ™20

18

FIG. 1
(PRIOR ART) 19 | 2

SYSTEM OPERATING 24’
FIG. 8 LIBRARY SYSTEM
CALLS
COMMANDS
ﬁ\?F%F'G- FAILURE | CREATE
26 - | NOTIFICATION
CONTROL
POINT

COMMAND

FACILITY

23 29 27 29

ENTITY TYPE | LOGICAL NAME |PHYSICAL NAME | PROPERTIES..
riG. 4

U.S. Patent Sep. 8, 1998 Sheet 2 of 6 5,805,798

37

—

CONFIG
28 \ .
26 .

CONTROL
POINT

SYSTEM
MONITOR

B 3

'

' I APPLICATION ||
PROCESSES

COMMAND
FACILITY

=)

SYSTEM
LIBRARY

U.S. Patent Sep. 8, 1998 Sheet 3 of 6 5,805,798

LU
of LU
L FIC. 5
PU
LU
LU

\ COMMON (T :
CODE~~
\ :

CUSTOM CODE
I3

APPLICATION
APPLICATION LIBRARY

SYSTEM LIBRARY
COMMUNICATIONS

5,805,798

Sheet 4 of 6

Sep. 8, 1998

U.S. Patent

Y4
<
09~ |
S|V

Jll

09~ 'l
SV

b

09

el
H

111
Sly| HINV

W

91l

1] 1

S

Vv

£

0ClL
NP

U.S. Patent Sep. 8, 1998 Sheet 5 of 6 5,805,798

BLOCK HEADER

SYSTEM HEADER:

- MESSAGE TYPE 90
- EXTENSION SIZE ¥
- APPLICATION HEADER SIZE

- APPLICATION DATA SIZE

EXTENSION *
94 APPLICATION HEADER*
'/ 1 APPLICATION DATA
ol]| w || [w

FIG. 9

CONTROL POINT

OPTIONAL APPLICATION DATA
A — W ———————
S a[s][re[o [[ovola [] [oom
FIG. 104

EXAMPLE: START NEW PROCESS

CMD 9 SIRT | ENTITY STRUCT CONFIG
TKN CMD TKN LEN RECORD

FIG. 108

1 2 3 4 o5 6 7
EI LINE HANDLER HEADER STRUCTURE APPL. HEADER - - - I APPL. DAIA ---

&

LINE HANDLER APPLICATION HEADER

FIG. 11

U.S. Patent Sep. 8, 1998 Sheet 6 of 6 5,805,798

200

e
SVR SVR
322 326 310/@ 302
& HED

320 FIG. 12 %

330 332 334 yopr A

OPERATOR

430
NODE C
7/
/
Ve

400
\ \\ 416

OPERATOR CP N414
422
Z
L

* OPERATOR
425 I 428

402 | 404
NODE A NODE B
50 A\
AN 80
RTR R |10 57

SAF
I

—

TJF 454

A

0
RIR 110 432
12

0

J,805,798

1

FAIL-SAFE EVENT DRIVEN TRANSACTION
PROCESSING SYSTEM AND METHOD

TECHNICAL FIELD OF THE INVENTION

This invention 1s related 1n general to the field of com-
puter systems. More particularly, the invention is related to
a fail-safe event driven transaction processing system and
method.

CROSS-REFERENCE TO RELATED
APPLICATTONS

This patent application 1s related to co-pending U.S.
patent application, Ser. No. 08/741,148, entitled DISTRIB-

UTED ON-LINE DATA COMMUNICATIONS SYSTEM
AND METHOD, filed on Dec. 29, 1996.

BACKGROUND OF THE INVENTION

FIG. 1 1s a simplified block diagram of a conventional
electronic funds and information transfer (EFIT) system 10
using a conventional centralized communications system 11
that allows a number of application programs 12 to com-
municate to outside devices 14 remotely located therefrom.
For example, outside devices 13 may include one or more
automated teller machines (ATMs) 14 and financial institu-
tions 15 1n an electronic funds and information transfer
(EFIT) system coupled, through centralized communica-
tions system 11, to a router application program 16, a device
handler program 17, and a funds transfer authorization
program (AUTH) 18. Centralized communications system
11 may also be coupled to a journal program and database
19 for logging each transaction, and a host 1nterface process
20 for interfacing with financial mstitutions 13.

In operation, when a transaction message for a cash
withdrawal 1s generated at an ATM 14, for example, 1t goes
to centralized communications system 11, which sends the
transaction message to device handler 17. Device handler 17
then extracts information from the transaction message and
builds a message having a predetermined internal format
that 1s understood by application programs 12 and by
centralized communications system 11. This reformatted
message 15 then sent back to centralized communications
system 11 which then forwards the message to router 16.
Router 16 determines the destination for the message and
sends the message back to centralized communications
system 11 for delivery to the destination. The destination
may be authorization program 18, which may access a
database 21 to determine whether the transaction i1s autho-
rized. The authorization contained 1n a return message 1s
then sent to centralized communications system 11 for
delivery to journal 19 to record the transaction, and then
returned to device handler 17, again through centralized
communications system 11. Device handler 17 then converts
the authorization message 1nto an external format and for-
wards 1t to the ATM from which the transaction originated
through centralized communications system 11. ATM 14
then dispenses the funds requested or denies the transaction
according to the information contained 1n the authorization
message.

Where a transaction 1s required to obtain authorization
from a financial institution 15, authorization program 18
would send the transaction message to interface program 2()
through centralized communications system 11. Interface
program 20 then reformats the message into one that 1s
understood by the authorization system at financial 1nstitu-
tion 15, and sends the reformatted message to centralized

10

15

20

25

30

35

40

45

50

55

60

65

2

communications system 11 for delivery to the destination
financial institution for authorization. The financial institu-
tion then generates an authorization message and sends 1t to
centralized communications system 11, which forwards 1t to
interface program 20 for conversion back to the internal
format understood by application programs 12 and central-
1zed communications system 11. The reformatted authori-
zation message 1s then sent to device handler 17 through
centralized communications system 11, which then converts
the message to the external format as described above to
provide the authorization message to the ATM that origi-
nated the transaction.

It may be seen from the foregoing that all the messages
communicated among application programs 12 and outside
devices 13 must go through centralized communications
system 11, which 1s the central controller. As the electronic
funds and information transfer system becomes larger and
larger to accommodate more and more AI'Ms and financial
institutions, centralized communications system 11 becomes
a bottleneck that slows down message delivery and trans-
action response time. This 1s a critical problem because
transactions of this type typically require an almost 1nstan-
taneous response time—banking customers do not like to
wait more than thirty seconds for the ATM to respond to
their cash withdrawal requests. Further, because all commu-
nications must go through centralized communications sys-
tem 11, a smngle point, failure of system 11 would spell
disaster for the enfire electronic funds and information
transfer system and disable all ATMs in the system.

Centralized communications system 11 has a further
disadvantage of being required to recognize the message
format 1n order to determine the destination of the message
for routing purposes. Therefore, the message format cannot
be easily changed without impacting the major functions of
system 11.

The centralized architecture of the system also means that
its growth 1s limited by the capacity of system 11. The
system cannot be easily expanded to accommodate an order
of magnitude more users without costly addition of com-
puting platforms and other hardware components. In the
computer industry, this feature of expandability 1s called
“scalability.” Further, a centralized system such as system 11
1s not portable to other computing platforms, so that its
deployment 1s restricted to a single platform.

SUMMARY OF THE INVENTION

Accordingly, there 1s a need for an event-driven transac-
fion processing system that overcomes the disadvantages
assoclated with a system based on a centralized communi-
cations systems described above.

In one aspect of the invention, a fail-safe event-driven
fransaction processing system has at least one system node
having a plurality of application processes for processing
transactions initiated by a plurality of outside devices. The
system 15 based on a data communications system supplying
a plurality of messaging entities and services to the plurality
of application processes for routing, transmitting and receiv-
Ing messages to and from one another. Further included 1s a
system configuration database for storing each entity and
process and their respective backup enfities. A system moni-
tor which resides at each system node monitors and com-
municates the operational status of the system node to other
system nodes.

In another aspect of the invention, a method for an
event-driven transaction processing system records 1n a
system configuration database a logical identifier for each

J,805,798

3

node 1n the system, a physical address, and status theretfor.
Further, a backup node 1s optionally designated for each
entity 1n the system configuration database. Each node polls
all other nodes 1n the system for their status and their
understanding of the status of all other nodes in the system.
In response to the polling process detecting a downed node,
the processing load carried by the downed node 1s routed to

the backup node.

In yet another aspect of the invention, a transaction
processing system includes at least one system node having
a plurality of processes for communicating with a plurality
of outside devices. A configuration database 1s accessible by
the processes, which stores the logical names of the pro-
cesses and outside devices and their corresponding physical
addresses. A system library further supplies a plurality of
routines to the processes for transmitting and receiving
messages to and from one another. At least one application

process uses the processes and system library for commu-
nication with the outside devices for processing transactions.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, ref-
erence may be made to the accompanying drawings, in
which:

FIG. 1 1s a simplified block diagram of a conventional
clectronic on-line communications system using a central-
1zed communications system,;

FIG. 2 1s a simplified block diagram representation of a
distributed on-line data communications system constructed
according to the teachings of the present invention;

FIG. 3 1s a block diagram of the exemplary system
monitor’s external interfaces to a control point, the operating
system, and applications;

FIG. 4 1s a diagram of an exemplary record structure 1n the
system configuration file;

FIG. 5 1s a diagram of an exemplary communications
conilguration;

FIG. 6 1s a simplified diagram of a distributed on-line data
communications system being utilized in an exemplary
clectronic funds and information transfer application;

FIG. 7 1s a diagram depicting the architecture and process
flow of line handlers according to the teachings of the
present mvention;

FIG. 8 1s a diagram of an exemplary multi-layer archi-
tecture of the distributed on-line data communication system
of the present invention;

FIG. 9 1s a diagram of an exemplary system message
format according to the teachings of the present invention;

FIGS. 10A and 10B are diagrams of exemplary message
structures used between a control point and other processes;

FIG. 11 1s a diagram of an exemplary message structure
used between line handlers and applications;

FIG. 12 1s a block diagram illustrating a database syn-
chronization process according to the teachings of the
present mvention;

FIG. 13 1s a block diagram illustrating an exemplary
process for detecting and handling general failure at a node;
and

FIG. 14 1s a block diagram illustrating an exemplary
process for backup processing and restoring the primary
node.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment(s) of the present invention is
(are) illustrated in FIGS. 2-14, like reference numerals

10

15

20

25

30

35

40

45

50

55

60

65

4

being used to refer to like and corresponding parts of the
various drawings.

Referring to FIG. 2, a simplified block diagram of a
distributed on-line data communications system 22 1is
shown. Distributed on-line data communications system 22
may support application processes implementing a variety of
event-driven applications, including electronic funds and
information transfer (EFIT), point of sale (POS), electronic
health care and benefits transactions, or any message-based
fransaction processing application. System 22 includes a
number of processes, including a system monitor and its
backup 24, a control point 26, a command facility 28, line
handlers 30, an event logger 32, and a diagnostic tracer 34.
System 22 further includes a system library 35 which
contains a set of routines that 1s used by all system processes

and all application processes 36.

System library routines 35 provide interface procedures
for performing basic functions and are preferably bound or
compiled with system and application processes. FIG. 2
illustrates this coupling between system library routines 35
and system monitors 24, control point 26, line handlers 30,
logger 32, tracer 34 and application processes 36 as an open
pipeline to distinguish it from I/O as in the centralized
communication system 11 described above. System library
functions 1include sending, receiving, routing, queuing,
logging, and tracing messages. System library 35 enables
application processes 36 to communicate with one another
and to the outside world. System library 35 preferably
maintains a private data structure in memory that contains
the information necessary to perform the routing and receiv-
ing services for application processes. Each application
process has 1ts own copy of the library data. Therefore, each
application process also has 1ts own view of the processes
with which 1t communicates. This library data 1s dynamic,
depending on the links to other processes that the application
creates and discards. The library data may include environ-
ment variables, buflers for reading 1n messages, and a table
listing all open processes that can send and/or receive
messages. In addition, there are queues containing messages
to be sent to each destination.

System 22 1s especially valuable for event-driven appli-
cations. A message arrival, a timeout, a message failure, an
I/O completion are examples of events. To recognize an
event, an application calls a system library procedure
RECEIVE. System library 35 performs environment and
operating system specific tasks to determine what the event
1s, then gives a value for the type of event and the data
assoclated with the event to the application. The following,
algorithm shows an exemplary main loop of an application
program that uses this method:

While not time to stop
Call RECEIVE

Switch on EVENT-TYPE
it MESSAGE, process message
it COMPLETION, process completion
it FAILURE, process failure
it TIMEOUT, process timer

otherwise, process unknown event
end switch
end while

Environment speciiic tasks may include de-blocking a mes-
sage or checking the queues for more messages to send.
Operating system specific tasks may include interfacing with
the operating system to receive messages from another
program, or Interpreting an operating system error. These
tasks are performed transparent to applications 36.

J,805,798

S

System monitor 24 1s a process running non-stop 1n order
to monitor all system processes and restart any that goes
down, including control point 26. System monitor 24 may
poll processes 1t monitors for status information and receive
acknowledgments therefrom. As 1s also shown 1n FIG. 3,
system monitor 24 accesses a system conilguration database
37 via system library calls 48 for process configuration
information. To operate system monitor 24 non-stop, a
backup process 24' 1s provided which runs 1n parallel with
system monitor 24. System monitor 24 also uses operating
system calls 49 to create new 1nstances of application
processes, stop an instance of an application, and for receiv-
ing failure notifications from application instances. System
monitor 24 preferably checkpoints critical information and
transactions to 1ts backup process 24'. If the primary system
monitor fails, the backup process takes over and continues
from the last checkpoint. Operators may control system
monitor 24 through control point 26 via command facility
28. System monitor 24 may be configured to monitor only
processes at 1its own node 38, to also monitor processes at
one or more other selected nodes 40, or to monitor all the
processes running at all nodes 1n the system depending on
the application.

As shown 1 FIG. 2, system configuration database 37
contains data on all processes 1 system 22, which may
include their logical names, physical addresses, backup
process 1dentities, and other properties. The contents of
system configuration database 37 may be modified by com-
mands from command facility 28. System configuration
database 37 may be accessed remotely, replicated at other
sites, or distributed across multiple sites, depending on the
application needs.

System configuration database 37 contains several
records, where each record contains information on an entity
in system 22. As shown 1 FIG. 4, information in a record
about an entity may include an entity type 23, a logical name
25, physical name 27, and properties 29 unique to the entity
type. Entity type 23 is the type of record or entity; logical
name 25 1s the name by which applications access this
entity; physical name 27 1s the system name and location of
the entity; and properties 29 are mformation specific to the
entity type bemg defined 1n the record. Where desirable,
properties 21 may provide mmformation on the entities that
serve as backups to each entity.

There are several different entity types in system 22,
including but not Iimited to: SYSTEM, PROCESS, LOGI-
CAL UNIT, PHYSICAL UNIT, LINE, USER, TERM,
FILE, ROUTE, NETWORK, COMMAND, NODE,
GROUP, PARAMETER, and ASSIGN. Each entity type 1s
described 1n more detail below.

The SYSTEM entity contains information related to a site
or node 1n the system. Therefore, system configuration
database 37 may include several SYSTEM entity records
containing paths of communication and other mnformation
related to all the nodes 1n the system that can communicate
with one another.

The PROCESS enfity contains information that defines a
process to the distributed on-line data communications sys-
tem. An application that runs on the platform 1s referenced
by its logical name. The physical name includes the running,
process 1dentidier. The properties section defines the location
of the object and the resources a process uses and provides
information that allows the running process to be created.

The LOGICAL UNIT (LU) entity is the most elementary
form of a communications circuit. It describes the tail end
out to a particular device. When a process references an LU
by its logical name, the message gets routed to its line

10

15

20

25

30

35

40

45

50

55

60

65

6

handler 30. The LU has links through optional PHYSICAL
UNIT (PU) entities that terminate at a LINE (L) entity as
shown in FIG. 5. Line handler 30 (FIG. 2) uses the hierar-
chical information of LU,PU,LINE to get the address of the
destination device. The physical location of the device is
described by the physical names of the LU, PU and LINE
entities that are linked together. Therefore, properties of LU
includes the line handler name and the links. Other proper-
ties of the LU entity define the protocol of the LU and
protocol options. An LU can be used to define a communi-
cations path to an external source, such as nstitutions 45 and
ATMs 44 or to other distributed on-line data communica-
tions system nodes 40 (FIG. 2).

The PHYSICAL UNIT entity (PU) is an entity that allows
a network designer to create a collection of one or more LUS .
It 1s a logical division of a LINE entity. The configuration of
communications often naturally follows the hierarchy
shown 1n FIG. 5. A PU entity 1s a means of indicating that
hierarchy which takes advantage of available bandwidth in
communications. The logical name of the PU 1s specified to
access it (such as on an LU’s link chain). The physical name
contains routing information for accessing an LU (a partial
address). Properties include the protocol and a link to other
entities which could be more PUs, but must terminate at a
LINE entity.

The LINE entity defines a port on the physical equipment
from which one or more multiple devices can be accessed
via a communications circuit. The logical name of a LINE
1s specified by the LUs and PUs linked to 1t via the link field.
The physical name describes the machine’s or communica-
tions device’s port name. Properties include the line handler
program, protocol and protocol options.

When a line handler 30 receives a message for an LU, 1t
has already chained the enfity information together. A gen-
eral algorithm for routing 1s used to access the port described
in the LINE record, use the segment of the line described by
the PU record (if present), and the address on the LU record
to transmit the message to the device at the end of the circuat.

The USER entity describes a valid user of the distributed
on-line data communications system 22. It functions prima-
rily as a security measure or for guarded access to the
system. For terminals 1n a secure area, 1t may be set up so
that any user 1s valid. These terminals are defined in the
system configuration database 37 as TERM entities.

The FILE entity defines a file to system 22 and 1ifs
applications. It also has a logical name and a physical
location. Accessing a file by a logical name allows for
transparency of machine and location for a distributed
system. An application accesses a lile by specifying its
logical name, system library 35 (FIG. 2) then determines the
physical name and its properties and provides the access
services and information to the application.

The ROUTE entity 1s a generic entity provided by system
22 to be used by the application library (to be described
below in conjunction with FIG. 6) or applications 36. In this
record type, a logical name 1s specified and a related
“handler” 1s specified. The handler i1s a process entity. The
handler process 1s an application programmed to recognize
a message from the ROUTE source and process 1t accord-
ingly. When an application indicates a ROUTE entity as a
destination, system library 35 automatically routes 1t to the
handler process. This feature 1s useful when an application
has a named command that 1s global to all processes in the
system. This implementation of a global destination (by
using a ROUTE entity) keeps the system platform generic so
that system 22 does not have to know the specifics of an
application and allows flexibility 1n the application.

J,805,798

7

The NETWORK entity 1s a convenient means for describ-
ing the physical network that provides communications for
a system. It does not affect routing but describes the hard-
ware that make up the distributed system.

The COMMAND entity allows an operator to customize
the user interface for application specific commands. A
COMMAND entity consists of a logical name and a physical
name (which is the text of the command), and the destination
for the command. An example of such a command 1s when
an application must obtain new keys for security. A COM-
MAND entity called KEYS is defined 1n system configura-
tion file 37, which 1s used by an operator to inform the
application process to obtain new KEYS.

The NODE entity defines a computing node 1n system 22.
A computing node 1s a set of one or more tightly coupled
physical processors. The configuration of a node 1s hardware
independent, so that 1t may be a set of CPUs or a worksta-
tion. Therefore, an application can be freed of knowing
about 1t by accessing the logical name of the node. The
properties of a node include an indicator of the up or down
status of that node. The NODE enfity 1s specified as a
fime-sync node 1n the SYSTEM enfity. In this manner, all
transactions 1n system 22, even though distributed across
multiple nodes, can be synchronized to the same clock.
Clock synchronization provided by the combination of con-
figuring the SYSTEM record with a time-sync node and
with a system library procedure called SYSTEM TIME.

The GROUP entity allows for logical groupings of entities
in system configuration database 37. It provides a necessary
convenience for monitoring and operating a large distributed
system. When a group name 1s indicated for an operation, all
entities 1 that group are operated on.

The PARAM enfity allows variables in the environment
for application programs to be defined external to the
program, so they can be modified. A PARAM consists of a
logical name and a value. When an application program
needs an environment variable, 1t invokes a procedure from
system library 35 which returns the value of the parameter.
An example would be a PARAM with the logical name
SECURITY and the value ON.

The ASSIGN entity 1s also used to describe the environ-
ment for application programs. It defines files external to the
program, so they can be changed. An ASSIGN consists of a
logical name and a file name or FILE entity. When an
application program needs a file for processing, 1t invokes a
procedure from system library 35 which returns the f{ile
name or FILE enfity.

Also shown 1n FIG. 2 are command facility 28, an
interface to the operators, and control point 26, which 1s a
controller and admainistrator of the respective site or node of
system 22. Command facility 28 may be 1n communications
with a data entry and display device 42, such as a terminal,
computer, or workstation, and may be linked via telecom-
munications lines or computer networks to control point 26.
Command facility 28 may provide a graphical and/or textual
user 1nterface to the operators for receiving commands and
displaying system status.

The primary function of control poimnt 26 1s to handle
requests from command facility 28 to configure, monitor
and control entities 1n the local node. It 1s the sole maintainer
of system conifiguration database 37. Control point 26 1s in
communications with all the processes at the local node and
1s the central transmitter of commands and collector of
information to be returned to command facility 28 for
display. Control point 26 communicates with all processes
via a flexible, extensible, token-oriented message standard

such as shown 1n FIGS. 10A and 10B, described 1n detail

5

10

15

20

25

30

35

40

45

50

55

60

65

3

below, thus allowing for interface with command facilities
on multiple platforms. Command facility 28 1s responsible
for formatting and presenting information relayed by control
point 26 1n a manner that 1s appropriate for the chosen
platform 1n a graphical and/or textual display format. Com-
mand facility 28 and control point 26 further function
together to provide security against unauthorized access to
the system as defined by USER entity records contained in
system conflguration database 37.

Line handlers 30 are processes that are responsible for
data communications with outside devices, such as but not
limited, to ATMs 44, banking institutions 45, and other
nodes 40 of distributed on-line data communications system
22. An ATM 44 is defined, for the purpose of the present
invention, as a dedicated terminal having a data entry device
and screen display that receives and processes transactional
requests from banking customers, such as cash withdrawal,
deposit, balance mquiry, etc. Line handler 30 may be spe-
clalized to operate 1n accordance to speciiic communications
protocols, such as Bisync, X.25, TCP/IP, SNA, and others.
Further, line handlers 30 may include bridge processes to
foreign systems. More than one line handler process 30 may
be 1n execution concurrently to provide communications to
a large number of outside devices.

Event logger 32 1s a logging process which receives
messages destined for a log file 46 and may perform some
filtering functions. The logged messages may be retrieved by
entering appropriate commands at command facility 28 or at
the operating system level. A system library process 1is
provided to format the logged messages.

Tracer 34 1s a process that collects messages communi-
cated between selected processes 1n the system and stores
them 1n a trace file 47. An operator may initiate tracing and
select the processes, the type of messages, and other trace
parameters through command facility 28 or at the operating
system level. A system library process 1s provided to format
the traced file. Further, the stored messages may be retrieved
from file 47 by commands entered at command facility 28.

Referring to FIG. 6, a simplified block diagram 1llustrat-
ing the process tlow of an exemplary fail-safe event-driven
transaction processing system 1s shown. FIG. 6 specifically
depicts the process flow for an exemplary electronic funds
and information transfer (EFIT) application built on a dis-
tributed on-line data communications system 350 constructed
according to the teachings of the present invention 1s shown.
Distributed on-line data communications system 350 may
include multiple nodes located remotely from one another,
cross-country, continent, and/or globe. For example, 1n a two
node system, Node A may be located in Chicago, Ill., and
Node B may be located 1n Plano, Texas. In an EFIT system,
Node A and Node B may represent regional processing
centers.

When applied to EFIT, a transaction may be initiated by
a transaction acquirer such as an ATM 52 being operated by
a banking customer, for example, where the ATM 1s directly
coupled to Node A of distributed on-line data communica-
tions system 50. The customer may, for example, 1nitiate the
transaction by inserting a card 1ssued by a banking institu-
fion that contains a unique card number and associated data
concerning the customer’s account. The customer further
enters the type of transaction desired, such as deposit,
withdrawal, or balance inquiry, and the associated dollar
amount, 1f required. The customer’s desired transaction,
card number, and line and device names/numbers of the
ATM are packaged into a transaction message having a first
predetermined format and communicated to a line handler

(LH) 54.

J,805,798

9

Coupled to line handler 54 is a set of system library (SL)
procedures 60. System 50 may be thought of as having a
multi-layer architecture 70, as shown in FIG. 8. The bottom-
most layer, communications layer 72, represents the data
communications equipment, lines, and protocols used by
line handlers 54 to communicate to outside devices. On top
of communications layer 72 1s a system library layer 74,
which corresponds to the functions performed by the set of
system library procedures 60 and databases used thereby.
System library layer 74 provides messaging services that are
independent from the hardware and communications proto-
col 1n communications layer 72. Above system library layer
74 1s an application library layer 76 which contains addi-
fional messaging services and databases specific to the
application. The top-most layer 1s an application layer 78
which includes application programs to perform specific
functions such as EFIT. It may be seen that system library
layer 74 frees application layers 76 and 78 from reliance and
fight coupling to the hardware and protocols of communi-
cations layer 72 to provide a portable and hardware i1nde-
pendent interface. Referring to FIG. 6, system library layer
74 are shown as system library procedures (SL) 60 bundled
with all the processes, mcluding processes in application
library layer 76 as well as processes 1n application layer 78.
System library procedures 60 may be code that 1s compiled
with the code of each process. Alternatively, system library
procedures 60 may be contained in a run time library that
can be called by all the processes.

In FIG. 6, line handler 54 receives a transaction message
from the ATM as the customer 1nitiates a transaction. Refer-
ring to FIG. 7, additional details of line handler process 54
are shown. In FIG. 7, the arrows depict process flow 1n a
common code (kernel) 31 and custom code 33 of line
handler process 54. A request 1s first received to operate on
an LU, such as start, stop, or transmit. The line handler
operates on the LU common code 31 by first finding the LU
in a status table, then calling custom code 33 to execute the
protocol-dependent functions at appropriate points in the
processing. The status table provides the up/down/
suspended status information about LUs and enfities and 1s
part of a global set of information maintained by common
code 31. Custom code 33 of the line handler then modifies
(if necessary) the message processing based on the protocol,
and returns control to common code 31. The line handler
common code 31 then performs I/0 to the device such as the
ATM, at the calculated address. Alternatively, the 1/O to the
device may be performed by custom code 33. The particular
ATM from which the transaction originated has a predefined
destination or device handler (DH) 80 for all of its transac-
fion messages predefined 1n system configuration 37 as in
FIG. 2. Device handler 80 receives the message and refor-
mats the message into a second predetermined format that 1s
internal to system 50 and shown 1n FIG. 9.

FIG. 9 provides an exemplary format 90 for messages
transmitted in distributed on-line data communications sys-
tem 50. Message format 90 includes a block header 92
which may include information about the block of data that
follows, such as the number of messages 1n the block, the
relative offset to the beginning of the first message in the
block, and the total number of bytes of messages 1n the
block. Block header 92 may also include an identifier that
identifies the data as a message having a format recognizable
by system 50. What follows block header 92 1s a system
header 94, which may contain multiple fields. System header
94 may include mformation such as an identifier indicative
of the type of message, a source entity name, and a desti-
nation entity name. All processes and databases 1n system S0

10

15

20

25

30

35

40

45

50

55

60

65

10

are each assigned a unique logical identifier or name. The
logical 1dentifier 1s assigned and used by system library 60
to address all messages and identify the source and desti-
nation of the messages. System header 94 further includes an
extension size, an application header size, and application
data size. Extension size provides the flexibility to extend
the size of system header by an optional extension field 96,
if necessary. Application header size indicates the size of
application header field 98, which may be used 1n any
manner by application library and application layers 76 and
78 (FIG. 8) and may be optional. Message format 90 also
includes an optional application data field of variable length.
The asterisks (*) appended to the message fields in FIG. 9
indicate whether the fields may be optional. It may be seen
that the exemplary message format 1s generic and allows
different types of applications to utilize the system.

FIG. 10A provides an example of a message using the
format shown 1n FIG. 9 for control point application data.
The message may have fields block header 92, system
header 94, and optional extension 96, optional application
header 98 and optional application data 100. In addition, the
control point application data may include a number of
token identifiers (TKN ID), their respective lengths (LEN),
and associated data. The message terminates with an end
token (END TKN) and length 0 to indicate the end of the
message. In practice, as shown 1n FIG. 10B, to start a new
process, the message may include a command token (CMD
TKN) with its length, and its associated data being the start
process command (STRT CMD). The next token identifier 1s
the entity token (ENTITY TKN), its length, and the system
confliguration database record information related to the
entity or process being started. The command token, start
command, and enfity token may be integer values, alpha-
numeric strings, or any other suitable representation. Note
that in FIG. 10B, the optional ficlds 92-98 have been
omitted.

Referring to FIG. 11, an exemplary message structure
used for communications between line handlers and appli-
cation processes 1s shown. In the line handler application
header portion, a number of fields are used to provide data
on the message. For example, the line handler application
header may include a message type field to indicate whether
the application data contained 1n the message 1s data or
information related to a command. One or more timestamps
may also be provided for statistical analysis and timing
purposes. An error code may also be contained 1n the line
header application header to indicate the nature of an error
that has occurred. Further, an internal identifier used to
identity the destination of the message may also be included.

Continuing the process flow shown 1 FIG. 6, device
handler 80 calls a system library procedure called SYSTEM
SEND to deliver the transaction message received from line
handler 54 to another process, router (RTR) 110. Router 110
1s accessible to an ATM database 112 that contains infor-
mation about the acquirer network, the ATM card numbers
and the respective financial institution owners of the bank
cards, and the ATM networks that the respective bank cards
have permission to access. Accordingly, router 110 looks up
the card number contained 1n the message and determines
that the customer may access this particular ATM network,
and further obtains the logical identifier of the process,
AUTHO1, that may authorize the transaction in question.
Having obtained the logical identifier of an authorizer
(AUTH) 116, router 110 calls APP SEND and specifies in
the message that the authorizer destination (AUTH__DEST)
1s AUTHO1. APP SEND may be part of application library

layer 76 (FIG. 8) which provides a set of application library

J,805,798

11

procedures 114. Application library 114 then receives the
message and calls SYSTEM SEND with the AUTHO1

destination. SYSTEM SEND recognizes AUTHO1 as a local
authorizer program 116, and delivers the message to autho-
rizer 116. The message may be queued until authorizer 116
pulls 1t from the queue to receive 1t. The queue resides 1n the
system library private memory of the sender process.

Authorizer 116 then examines the message, and accesses
a database or card definition file 118 for information needed
to determine whether the requested transaction 1s authorized.
Authorizer 116 then generates an authorization message and
calls APP SEND to deliver the message. Authorizer 116 may
specily 1 the message one or more destinations for the
message, such as RETURN__AND_JOURNAL DEST,
which specifies that the message 1s to be returned to the
originator and logged by the appropriate journal process. In
a predetermined field in message format (FIG. §), additional
destination logical entity names may be specified. Therefore,
authorizer 116 may include a journal (JRNL) 120 as a first
destination and the originator of the message as the second
or next destination in the message. Application library (AL)
114, upon examination of the message, resolves the first
destination (JOURNAL __DEST) as journal 120 and writes
the message thereto. Journal 120 then records the transaction
in a designated file 1n a database 122, and calls APP SEND
with what is specified as the next destination (NEXT__
DEST) in the message. Application library 114 resolves the
next destination as the originator of the transaction message
or the return destination (RETURN__DEST), which is
device handler 80. Application library then calls SYSTEM
SEND to deliver the message to device handler 80. Device
handler 80 sends message to line handler 54, which then
delivers the message to ATM 52. ATM then acts upon the
received message, either performing the requested transac-
fion or denying the requested transaction.

In the above scenario, a requested transaction 1s autho-
rized locally at the same node, Node A. However, a trans-
action requested at Node A may alternatively be authorized
at a remote node, Node B by communicating the transaction
message to Node B. For example, when router 110 receives
the message from device handler 80, and looks up the card
number 1n 1ts database 112, router 110 obtains from database
112 a logical 1dentifier of the process that can authorize the
transaction, for example NODEB.AUTHO1. Router 110 then
calls APP SEND to deliver the message. Application library
114 then gets NODEB.AUTHO01 from the message and calls
SYSTEM SEND with this parameter. System library 60
notes the foreign system name, looks up the system name 1n
a system configuration database names kept in memory for
eficiency and performance 130 by calling a system library
routine, and obtains the logical address of the communica-
tions port to Node B and 1ts line handler 132. Configuration
database 130 preferably stores the logical names and corre-
sponding physical addresses of all system processes and
hardware. Operating 1n this manner, processes need only
know the logical names of other processes they interact with,
and 1t 1s system library’s function to keep track of the
corresponding physical location or addresses and to ensure
proper delivery of messages.

System library 60 then appends the real or physical
destination address to system header 94 (FIG. 9) in the
message as a next destination (NEXT DEST) and queues
the message to line handler 132, which passes the message
on to a line handler 132' at Node B. It may be scen that
messages may be passed between line handlers 132 and 132
via computer networks, telecommunication networks, wire-
less networks, satellite communications and the like.

10

15

20

25

30

35

40

45

50

55

60

65

12

At Node B, line handler 132' gets the message and
forwards it to the next destination (NEXT__DEST) specified
in the message, which 1s NODEB.AUTHO1 or authorizer
116'. Authorizer 116' authorizes the transaction and calls
APP SEND to return an authorization message and record

the transaction i1n one or more journal databases
(RETURN__AND__JOURNAL__DEST). Application

library 114' determines the journal destination (JOURNAL
DEST) to be a journal process, and further notes the origi-
nator of the message as Node A, so 1t calls SYSTEM SEND
specifying the destination as NODEA.JOURNAL. SYS-
TEM SEND then queues and writes the message to journal
120 at Node A. System library 60' notes the foreign system
name of NODEA, looks up the system and determines the
logical name of the communication port to Node A. System
library 60' then appends the real destination address of
journal 120 at Node A to system header 94 in the message
as the next destination (NEXT__DEST). System library 60
further looks up line handler 132' for the communication
port to Node A and queues the message thereto. Line handler
132 gets the message and forwards the message to
NODEA.JOURNAL 120, which 1s specified as the next
destination. Journal 120 then receives the message and
writes to 1ts database or transaction journal file 122. Journal
120 turther calls APP SEND and specifies a next destination
(NEXT__DEST). Application library 114 resolves the next
destination as the return destination (RETURN__DEST),
which 1s specified 1n the message as device handler 80.
SYSTEM SEND then queues and writes the message to
device handler 80, which relays the authorization decision to
the ATM 52. The ATM then either carries out the requested
fransaction or denies the transaction, depending on the
authorization 1n the message.

There are many possible scenarios associated with differ-
ent applications such as EFIT, where distributed on-line data
communications system and method 50 are equally appli-
cable. For example, a host (not shown), such as a banking
institution, may be required to authorize the transaction. A
host interface may be used to interface with the host. Further,
a card holder may access the ATM card network at a first
node, where the transaction i1s required to be authorized at
the host at a second node, but the host interface may exast at
a third node. Therefore, the transaction message must be
relayed from the first node to the second node through the
third node. Similar system library and application library
processes may be used to complete this transaction.

Distributed on-line data communications system and
method 50 according to the teachings of the present inven-
tion are constructed to provide database duplication in the
event of system failure at one or more nodes. Referring to
FIG. 6, a block diagram of the exemplary database dupli-
cation or synchronization system and process 200 1s shown.
Again, an EFIT application 1s used to illustrate system 200.
When some event causes a change 1n a selected number of
files or databases, this change 1s forwarded to the backup
database to update its records. For example, when an autho-
rizer 202 authorizes a transaction that changes the account
balance of an account stored in a positive balance file (PBF)
204, the change 1s packaged 1n a message and sent to a
DB__SYNC process 306. When a customer account file
(CAF) 206 record is updated, authorizer 202 also sends the
updated information in a message to DB__ SYNC process
306. Similarly, a change to an account exception file (AEF)
1s sent by a file server process, CAD SVR 302, to
DB_ SYNC process 306.

The delivery of the update data message 1s performed by
calling the system library routine, SYSTEM SEND. The

J,805,798

13

message may contain a logical identity of the backup system
or node, the record type, and the data changed. DB_ SYNC
process 306 then writes the message to a DB__SYNC store
file 308 and also uses SYSTEM SEND to forward the
message to a DB__SYNC process 320 on the designated
backup system, Node A. Recall that system library 60 may
access system conflguration database 130 to determine the
physical address of the destination system. A timer 310 may
be started to keep track of the elapsed time. DB__SYNC
store file 308 functions as a temporary storage for transac-
fional data that requires duplication at the backup node. It
may be seen that a similar line handler process, as shown 1n
FIG. 3, may be used to deliver the message to remote nodes.

DB_ SYNC process 320 at Node A receives the message
and forwards the message to the server indicated by the
record type contained in the message, including PBF SVR
322, AUTH 324, or CAF SVR 326. The appropriate server
then stores the transaction data in the message to the
respective file or database 330-334. DB_ SYNC process
320 at Node A may send an acknowledgment message to
DB__SYNC process 306 at Node B at the receipt of the
message or atter the transaction data 1s successtully stored in
the proper file. Upon receipt of the acknowledgment
message, DB__ SYNC process 306 deletes the corresponding
message from DB__ SYNC store 308. If at the time timer 310
fimes out the acknowledgment message 1s not yet received
by DB__ SYNC process 306 from the backup system, then
DB_ SYNC process 306 may retrieve the message stored 1n
DB__ SYNC store file 308 and retransmit 1t to the backup
system. The retransmitted message may include a field to
indicate that this 1s a second transmission of a previously
sent message.

Constructed 1n this manner, each system at a node 1is
assigned a backup system or multiple backup at another
node, and the data stored in the databases related to trans-
actions are duplicated. Accordingly, selected files or data-
bases between the primary and the backup systems are
synchronized so that they contain substantially the same
data. It may be determined that certain transactions are
essential to the operations of the system, for example
dispensing cash, so that only databases and files associated
with this transaction are duplicated. For example, account
exceptions file 208 may be duplicated because it records
ATM cards that have been lost or stolen and may come 1nto
unauthorized use; positive balance file 204 provides
accounts that have sufficient balance to support the dispens-
ing of cash; and customer account file 206 contains customer

account information. It may be seen that database synchro-
nization 1s not limited to these databases and files shown 1n
FIG. 6.

Referring to FIG. 7, a sumplified block diagram illustrat-
ing an exemplary process for detecting and handling general
failure of a node 1s shown. A distributed on-line data
communication system 400 1n this instance includes three
nodes, Nodes A, B, and C. Communication between the
nodes 1s accomplished by line handlers 402—406 connecting
to one another as specified 1in system configuration database
130 (FIG. 3) of each node. It may be seen a backup
connection, shown 1n dashed lines, 1s also provided between
line handlers 402—406. Each link, primary and backup, 1s
represented by a logical unit. When messages communi-
cated between line handlers 402406 fail to be received
within speciiied time constraints, the backup link 1s used for
communications between the line handlers. If both the
primary and backup links fail and continue to be down,
control points 412—416 of the nodes may communicate via
a link 420424 coupled therebetween to continue to provide

10

15

20

25

30

35

40

45

50

55

60

65

14

operators located at any node to access other nodes, includ-
ing the node with failures.

Each node also has a system monitor 426—430, which
performs a handshaking protocol with the system monitors
of other nodes. Each system monitor sends a handshake
message to all other system monitors in the system. The
handshake message preferably includes the sender monitor’s
view of the status of all the nodes 1n the system. When a
system monitor receives a handshake message from another
node, 1t compares the status contained 1n the message with
its own data about the status of all the nodes. System
monitors from two or more nodes must agree that a node 1s
potentially down before that node 1s pronounced as down.
For example, 1f the message from system monitor 426 of
Node A has marked Node B as potentially down, and the
message from system monitor 430 of Node C has also
marked Node B as potentially down, then an agreement has
reached as to the status of Node B, and it 1s marked as being
down. A system monitor marks a node as being potentially
down when 1t has communications problems with that node
via the primary and backup links, when 1t 1s unsuccessiul 1n
exchanging handshake messages with the monitor at that
node, or when 1t gets a handshake message from that node
with a request to “Mark me down.” This last scenario may
occur when the node 1s taken off-line temporarily for main-
tenance by an operator.

A more detailed description of the handshake process 1s as
follows. System monitor 426 at Node A reads from the
system conflguration database to obtain the logical names
for the system monitors at other nodes 1n the system, which
identify system monitors 428 and 430. System monitor 426
then sends a handshake message to system monitor 428 at
Node B. The handshake message contains its own status but
no site token. The site tokens are used to communicate the
status of other nodes. At the same time system monitor 426
sends the handshake to Node B, it also sets an interval timer.
System monitor 426 also sends a handshake to system
monitor 430 of Node C, also containing its own status but no
site token. An 1nterval timer 1s also set. System monitor 426
of Node A then receives a handshake message from system
monitor 428 of Node B, which contains the status of Node
B. This information 1s used to update a status table in Node
A. System monitor 426 also receives a handshake message
contamning Node C’s status from system monitor 430, and
uses the data therein to update the status table.

When the imnterval timer set for Node B expires, system
monitor 426 of Node A again sends a handshake message to
system monitor 428 of Node B with Node A’s status and a
site token containing Node (C’s status, as reported in the
status table. Likewise, a handshake message 1s also sent to
node C with Node A’s status and a site token containing
Node B’s status when the second interval timer expires.
System monitor 428 1 Node B responds to Node A’s
handshake message this time with a handshake message
contaiming 1ts own understanding of Node C’s status 1n a site
token. System monitor 426 of Node A then compares Node
C’s status received from Node B with the C’s status entry 1n
its status table. Note that Node A’s status table may list Node
C as down 1f any of 1ts previous handshake messages sent to
Node C went unacknowledged or unanswered. Therefore, 1f
both the status table and Node B’s handshake message
indicate that Node C 1s down, then the system configuration
database of Node A 1s updated to mark Node C as down.
Node B, carrying out the exact process as described above,
will have also discovered the down status of Node C and
updates 1ts system configuration database accordingly.

Takeover processing using a backup node to carry the
transactional load of the failed node then begins. To notily

J,805,798

15

processes within the backup node to begin processing trans-
actions of the failed node, the system monitor of the backup
node may send a command message to the control point of
the same node requesting that the system conifiguration
database be updated to mark the node down, as described
above, and that a broadcast message be sent to all processes
at the backup node that takeover processing 1s to begin.
During takeover processing when one or more nodes are
down, traffic to the failed node(s) are routed to its backup

node. For example 1in FIG. 8, Node B 1s down and Node A
was previously designated as 1ts backup system. Each pro-
cess enfity 1n the system also has at least one designated
backup process, and traffic 1s routed to the backup entities.
For example, a terminal definition file records the network
ownership data of each ATM terminal and each terminal
definition file record may have a primary node name and at
least one backup node name maintained i1n the system
conflguration database.

When a transaction 1s initiated at an ATM 52' coupled
directly to Node B during the takeover operation mode, it 1s
communicated to device handler 80 and router 110 of Node
A for processing. Router 110 determines that its system 1s
the backup system for this transaction during takeover
mode, and sends the transaction message to authorizer 116.
Authorizer 116 also determines that it 1s the backup process
for the particular card definition file (CDF) 118 record for
the current transaction, and authorizers the transaction.
Authorizer 116 may use a different set of predefined trans-
action authorization limits during the takeover mode. Autho-
rizer 116 then sends the message to journal 120 for recording
the transaction in transaction journal file (TJF) 122 and also
writes the transaction to a store and forward file (SAF) 432.

When Node B becomes operational, a restore process 434
communicates database updates to customer account file
(CAF) 436 and positive account file (PBF) 438, so that they
are updated to retlect transactions occurred during the take-
over period.

The description of the present mnvention above 1s gener-
ally set 1n the context of electronic funds and mmformation
transfer as an example. However, the present invention 1s
applicable to any application programs which require
on-line communications with outside devices or systems.
Other examples include application for an electronic benefits
transfer system, automated on-line ticketing, and credit card
point-of-sale transactions.

Although the present mnvention and 1ts advantages have
been described 1n detail, 1t should be understood that various
changes, substitutions and alterations can be made therein
without departing from the spirit and scope of the invention
as defined by the appended claims.

What 1s claimed 1s:

1. A fail-safe event-driven transaction processing system,
comprising:

at least one system node having a plurality of application

processes for processing transactions initiated by a
plurality of outside devices;

a data communications system supplying a plurality of
messaging enfities and services to said plurality of
application processes for routing, transmitting and
receiving messages to and from one another;

a system configuration database storing each entity and
process and their respective backup entities; and

a system monitor residing at each system node for moni-
toring and communicating the failure status of each
system node to one another.

2. The system, as set forth in claim 1, wherein each system

node further comprises:

5

10

15

20

25

30

35

40

45

50

55

60

65

16

at least one application database used 1n processing said
transactions; and

at least one backup application database.

3. The system, as set forth n claim 2, wherein said
application processes further comprise a database synchro-
nization process for transmitting modifications to said appli-
cation database to 1ts backup application database.

4. The system, as set forth in claim 2, wherein said
application processes further comprise a database restore
process for transmitting transactions processed by a backup
system node to an application database residing in a down
system node, after said down system node resumes opera-
fions.

5. The system, as set forth in claim 4, wherein said
transactions processed by said backup system node 1s stored
in a predefined database on said backup system until said
down system node resumes operations and said database
restore process successiully transmits said stored transac-
tions thereto.

6. The system, as set forth 1n claim 1, wherein said system
monitor residing at each node comprises a handshake pro-
tocol for polling system monitors residing at other system
nodes for the failure status of the other system nodes.

7. The system, as set forth in claim 1, further comprising,
a status table accessible by said system monitor for record-
ing the failure status of each system node.

8. The system, as set forth in claim 1, wherein said
application processes i1nclude an authorizer process for
receiving a message containing a request for a transaction,
and authorizing said request.

9. The system, as set forth in claim 1, wherein said
application processes include a router process for receiving,
a message containing a request for a transaction and deter-
mining a destination for said message.

10. The system, as set forth in claim 1, wherein said
application processes mnclude a journal process for recording
cach transaction.

11. The system, as set forth in claim 1, further comprising:

a primary communications link between each system
node and at least one other system node; and

a backup communications link between each system node
and at least one other system node, said backup com-
munications link being operational when said primary
communications link fails.

12. The system, as set forth in claim 11, further compris-
ing a control communications link between each system
node for communicating control messages.

13. A method for operating a fail-safe event-driven trans-
action processing system, comprising the steps of:

recording 1 a system coniiguration database a logical
identifier, a physical address, and failure status for each
node 1n the system;

polling all nodes 1n the system for its status and its
understanding of the failure status of all other nodes 1n
the system; and

routing processing messages to a backup node 1n response

to determining a node as being down.
14. The method, as set forth 1in claim 13, wherein the

polling step comprises the steps of:

sending a handshake message from each node to each
other node 1 the system, the handshake message
containing the failure status of sender node;

receiving the handshake message, updating an entry of the
sender node’s failure status in a status table, and
replying by sending a handshake message to the sender
node, the handshake message containing the failure
status of receiver node;

J,805,798

17

again sending a handshake message from each node to
cach other node 1n the system, the handshake message
containing the failure status of the sender node and all
nodes 1n the system other than an intended receiver of
the handshake message; and

receiving the handshake message, comparing the failure
status of all nodes 1n the message with corresponding
entries 1n the status table.
15. The method, as set forth in claim 14, wherein the
polling step further comprises the steps of:

marking a node as bemg down 1if both status table and a
predetermined number of nodes also 1ndicates that node
as being down 1n the handshake message in the com-
paring step; and

notifying a node designated as a backup node to begin
takeover processing of the downed node’s process load.

16. The method, as set forth in claim 13, further com-

prising the steps of:

performing takeover processing of the downed node’s
process load;

storing transactions performed during takeover process-
Ing;

10

15

138

forwarding the stored transactions to the downed node
when 1t resumes operations; and

updating the downed node’s database to reflect transac-

tions performed during takeover processing.

17. The method, as set forth 1in claim 16, wherein the
fransaction storing step comprises the step of storing modi-
fications to a selected set of databases used 1n takeover
processing.

18. The method, as set forth in claim 13, further com-
prising the steps of:

noting modifications made to data in at least one selected
application database;

forwarding said modifications to a backup application
database;

making the same modifications to data stored in a backup
application database.

19. The method, as set forth in claim 18, wherein said

noting, forwarding, and modification making steps are made

20 periodically to synchronize the data stored in the selected

application database and 1ts backup application database.

	Front Page
	Drawings
	Specification
	Claims

