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LOAD/STORE UNIT IMPLEMENTING NON-
BLOCKING LOADS FOR A SUPERSCALAR
MICROPROCESSOR AND METHOD OF
SELECTING LOADS IN A NON-BLOCKING
FASHION FROM A LOAD/STORE BUFFER

This application is a continuation of application Ser. No.
08/421.211, filed Apr. 12. 1995, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to superscalar microprocessors and.
more particularly. to a load/store unit of a superscalar
MICTOProcessor.

2. Description of the Relevant Art

Superscalar microprocessors obtain high performance in
computer systems by attempting to execute multiple instruc-
tions concurrently. One important way in which superscalar
microprocessors achieve high performance is through the
use of speculative execution of instructions. As used herein.
an instruction is speculatively executed if it is executed
before the execution is known to be required by the program
being executed. An instruction may be executed
speculatively, for example, if a branch instruction is ahead of
it in program instruction sequence and the processor has not
yet calculated which path through the program the branch
will select. Many other examples of speculatively executing
instructions exist in superscalar microprocessors.

Due to the widespread popularity and acceptance of the
x86 architecture, microprocessor designers have made
efforts to create superscalar microprocessors that implement
this architecture. By supporting this architecture, such
designers advantageously maintain backwards compatibility
with previous implementations such as the 8086, 80286.
80386, and 80486; and the large amount of software written
for these implementations.

Superscalar microprocessors are employed within com-
puter systems. These computer systems typically contain a
variety of other devices including fixed disk drives, video
display adapters, floppy disk drives, etc. Also needed in
computer systems is a relatively large main memory which
stores the instructions that the microprocessor will execute
and data the microprocessor will manipulate, until such data
or instructions are requested by the microprocessor. This
memory is typically composed of dynamic random access
memory chips, herein referred to as “DRAM”. The amount
of time necessary from the request of a storage location
within the DRAM to the data becoming available at the
outputs of the DRAM chips. herein referred to as DRAM
access time, has not decreased significantly. Instead. as
semiconductor fabrication technology has improved.
DRAM manufacturers have chosen to make larger amounts
of DRAM memory available on a single monolithic chip.
Although a single memory location in a modern DRAM can
react much faster than locations in older DRAM, the larger
number of locations available loads the outputs of the
DRAM., making the DRAM access time substantially the
same from generation to generation of DRAM devices.
However, superscalar microprocessor designers have used
semiconductor manufacturing technology improvements to
create microprocessors that run at faster clock rates and that
are capable of executing more instructions simultaneously.
As used herein “clock cycle” or “clock rate” refers to a unit
of time in which a microprocessor performs its various
functions. such as instruction execution, memory request.
ctc. At the end of a clock cycle, the results for that cycle
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(such as the result an instruction execution produces) are
saved so that another part of the microprocessor (i.e. a
subsequent pipe stage) will have the results available in the
next clock cycle for subsequent manipulation or storage. As
a result of the aforementioned speed difference between
modern microprocessors and DRAM memory, the memory
bandwidth requirements of microprocessors have increased
but available memory bandwidth has not increased. In other
words, more recent microprocessors are running substan-
tially faster than older microprocessors and are coupled to
larger DRAM memories (allowing larger applications and
data sets) that are running at a speed similar to previous
versions of DRAM memories. A large performance problem
can be seen with this configuration, in that the micropro-
cessor In many cases will be waiting for instructions and
data to be provided by memory. reducing the computer
system’s overall performance.

Superscalar microprocessor designers have made efforts
to solve the problem of accessing a slow memory. Part of
this solution involves including caches into the micropro-
cessor designs. Caches are small. fast memories that are
either included on the same monolithic chip with the micro-
processor core., or are coupled nearby. Data and instructions
that have been used recently by the microprocessor are
typically stored in these caches. and are written back to
memory after the instructions and data have not been
accessed by the microprocessor for some time. The amount
of time necessary before instructions and data are vacated
from the cache and the particular algorithm used therein
varies significantly among microprocessor designs. and are
well known. Data and instructions may be stored in a shared
cache, variously referred to as a combined cache or a unified
cache. Also. data and instructions may be stored in distinctly
separated caches, typically referred to as an instruction
cache and a data cache.

Caches are typically organized as an array of “lines”. The
term “line” is used herein to refer to some number of
memory locations configured to store contiguous bytes of
data or instructions from main memory. When the micro-
processor accesses the cache, a portion of the address is used
to “index” the cache. Indexing the cache refers to choosing
a line or set of lines to access. searching for the contents of
the address being requested. If one of the lines so examined
contains the data or instructions that reside in main memory
at the requested address, then the access is said to be a “hit”.
It none of the lines selected in accordance with the above
indexing contains the data or instructions that reside in main
memory at the requested address, then the access is said to
be a “miss”. When the cache is configured such that more
than one line is associated with a given index. then the lines
are typically referred to as “ways” of that index.

Some caches are capable of handling multiple accesses
simultaneously. Caches configured in this way may have
“banks” wherein the cache memory cells are configured into
separately accessible portions. Therefore, one access can
address one bank, and a second access a second, indepen-
dent bank. and so on.

As superscalar microprocessor designers have continued
to increase the number of instructions that are executed
concurrently. caches have become an insufficient solution to
the performance problems associated with large. slow
memories. First, the caches are much smaller than the main
memory. Therefore, it is always true that some data or
instructions requested by the microprocessor will not be
currently residing in the cache. The chips and/or silicon area
required to build caches are expensive, so making the caches
larger increases the overall computer system cost signifi-
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cantly. Second. caches typically hold data and instructions
that have been previously requested by the microprocessor.
Therefore, whenever the microprocessor begins a new pro-
gram or accesses a memory location for the first time. a
significant number of accesses to the main memory are
required. When used in the context of a superscalar micro-
processor as described herein. access means either a request
for the contents of a memory location or the modification of
the contents thereof. Third. in modern day microprocessors
the amount of time necessary to access data or instructions
in the cache is becoming a performance problem in the same
way that DRAM access times have been.

In an attempt to solve some of the problems associated
with caches, some microprocessors implement a “prefetch-
ing algorithm” wherein the microprocessor attempts to guess
which memory locations it will be accessing in the near
future and makes main memory requests for these locations.
These schemes have had varying degrees of success.
However. such schemes can also deleteriously affect the
performance of the microprocessor in some situations.
Whenever a significant number of wrong guesses are made,
the microprocessor will replace data or instructions in the
cache with the contents of memory locations that it does not
need. This. in turn. will cause memory references to retrieve
the data that had been replaced by the prefetched data.

Retrieving data from main memory is typically performed
in superscalar microprocessors through the use of a load

instruction. This instruction may be explicit. wherein the
load instruction is actually coded into the software being
executed. This instruction may also be implicit, wherein
some other instruction (an add. for example) directly
requests the contents of a memory location as part of its
input operands.

Storing the results of instructions back to main memory is
typically performed in superscalar microprocessors through
the use of a store instruction. As with the aforementioned
load instruction, the store instruction may be explicit or
implicit. As used herein. “memory operations” will be used
to refer to load and/or store instructions,

In modern superscalar microprocessors, memory opera-
tions are typically executed in one or more load/store units.
These units execute the instruction, access the data cache (if
one exists) attempting to find the requested data, and handle
the result of the access. As described above, data cache
access typically has one of two results: a miss or a hit.

A load/store unit typically also handles other, special
conditions associated with memory operations. For
example, an access may be “unaligned” or “misaligned”. A
memory operation requests or modifies data of a particular
size., typically measured in bytes. The size for a particular
memory operation depends on many things. including the
architecture that the microprocessor is implemented to and
the particular instruction that created the memory operation.
A memory operation is said to be unaligned or misaligned if
the address calculated by the memory operation does not
have a number of zeros in its least significant binary digits
(or “bits”) equal to or greater than the sum of 2 raised to a
power equal to the size of the requested datum and minus
one. The formula for calculating the required number of
least significant zeros 1s:

2(:4‘.-:# of memory request in bym.:}_l ‘

Unaligned accesses sometimes require multiple accesses to
the data cache and/or memory.

Most instructions that a microprocessor executes ulti-
mately received their operands from main memory or the

10

15

20

25

30

35

45

50

33

65

802.588

4

data cache. The operands a particular instruction receives
may have been requested from memory directly. or may be
the result of some other instruction whose operands were
requested from memory. Therefore, the performance of a
superscalar microprocessor when running many programs is
dependent in large part on how quickly the load/store unit
can execute memory operations. In many superscalar
microprocessors. the load/store unit executes onc memory
operation per clock cycle. Also, if a memory operation is
found to miss the data cache, the load/store unit often ceases
instruction execution until the missed address has been
transferred from main memory. Thus, a memory operation
that misses the data cache “blocks” subsequent memory
operations from executing, even if they may hit the data
cache. Blocking the subsequent memory accesses 1n many
cases deleteriously affects performance of the superscalar
microprocessor because instructions that require the data
from the memory accesses cannot execute as quickly as
might otherwise be possible.

Some superscalar microprocessors attempt to solve the
aforementioned blocking problem by placing miss requests
into a buffer between the data cache and the main memory
interface. The buffer may be configured. for example, as a
queue with a certain number of entries. While this buffering
mechanism does help solve the blocking problem., more
silicon area on the microprocessor chip is necessary to
implement the buffers and the associated control functions.
Furthermore. complexities are introduced in the form of
comparators between accesses to the cache and the accesses
that are currently queued. Without these comparators. mul-
tiple requests to the same miss line would be allowed into
the buffer, causing multiple transfers to and from main
memory to occur, thus deleteriously affecting performance.
Only one transfer to or from main memory is necessary; as
a result, the other memory operations that access the same
line may fetch their data from the data cache. If more than
one transfer to or from main memory of a given line are
queued. these extraneous transfers will delay further
requests for main memory, deleteriously affecting perfor-
mance. Exemplary forms of superscalar miCroprocessors
implementing such a buffering solution include the Pow-
erPC 601 microprocessor produced by IBM Corporation and
Motorola, Inc., and the Alpha 21164 microprocessor pro-
duced by Digital Equipment Corporation.

Another component of a load/store unit that may directly
affect performance of a superscalar microprocessor is the
number of buffer entries that store memory operations
awaiting operands or an opportunity to access the data
cache. In many implementations. a queue structure is used
for the buffer. Typically. a buffer is provided for load
memory operations and another, separate buffer is provided
for store memory operations. When one of these buffers fills,
a subsequent memory operation of that type may stall
instruction execution of the entire microprocessor until it is
allowed into the buffer. deleteriously affecting performance.
Memory operations are placed into these buffers when
dispatched to the load/store unit and are removed when data
cache access is attempted. or sometime thereafter. When
used in the context of operating on a memory operation, the
term “remove” refers to the act of invalidating the storage
location containing the memory operation. The act of invali-
dating may be accomplished, for example, by changing the
state of a particular bit associated with the storage location
or overwriting the storage location with a new memory
operation. Much of the design time for a load/store unit is
dedicated to choosing the size of these buffers such that the
amount of processor stall time due to these buffers being full
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is minimized. The choice is further complicated by the fact
that buffers require silicon area to implement, so an arbi-
trarily large number of queues cannot be used. The choice is
still further complicated by the fact that the mix of instruc-
tions in common software programs is constantly changing.
such that studying older programs to choose queue sizes
may result in a less than optimal design.

SUMMARY OF THE INVENTION

The problems outlined above are in large part solved by
a superscalar microprocessor employing a load/store unit
with a load/store buffer implementing a non-blocking load
selection strategy in accordance with the present invention.
In one embodiment. a load/store buffer is provided which
allows both load memory operations and store memory
operations to be stored within it. Memory operations are
selected from the load/store buffer for access to the data
cache. including cases where the memory operation selected
is subsequent in program order to a memory operation which
is known to miss the data cache and is stored in the buffer.

In one embodiment. a device of the present invention is
configured to store memory requests that miss the data cache
unttl such time as they are allowed to make a main memory
request. In this way, other memory operations that may be
waiting for an opportunity to access the data cache may
make such accesses, while the memory operations that have
missed await an opportunity to make a main memory
request. Therefore,, the device of the present invention
solves the aforementioned “blocking” problem.

One miss is permitted to make a request to main memory,
and when the line associated with the request is stored into
the data cache, misses are allowed to reaccess the data cache.
Those whose addresses are contained in the newly received
line will then be completed as data cache hits. This imple-
mentation advantageously removes the buffers used in pre-
vious implementations to store data cache misses. along
with some of the control logic necessary to operate those
buffers. In particular, the comparators that were required to
restrict accesses to one per missed line are removed. Instead.
the misses remain in the unified buffer until one miss is
transferred into the cache from main memory, then misses
arc attempted to the data cache again. If a memory operation
remains a miss after this access, it will continue to reside in
the buffer. and another request for main memory transfer
will be initiated.

Broadly speaking. the invention contemplates a load/store
unit comprising a buffer and an output control unit. The
buffer includes a plurality of storage locations configured to
store information regarding pending memory operations.
The buffer further includes an input port configured to
receive the memory operation information. The buffer also
includes a data cache port configured to communicate data
access commands to a data cache. Associated with each of
the plurality of storage locations within the buffer is a miss
bit. The miss bit is set during a clock cycle that the memory
operation stored in the associated storage location access the
data cache and is found to miss.

The output control unit of the invention is coupled to the
buffer, and is configured to select a memory operation stored
within one of the plurality of storage locations within the
buffer to access the data cache. The output control unit is
further configured to direct data cache access commands
assoclated with the operation to the data cache.

The invention further contemplates a method for selecting
a second memory operation stored in a load/store buffer for
access to a data cache during a clock cycle in which a first
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memory operation stored in the load/store buffer is specu-
lative and is known to miss the data cache, comprising two
steps. The first step involves examining the first memory
operation to determine that a miss bit associated with said
first memory operation is set. The second step is selecting
said second memory operation because said miss bit asso-
ciated with said first memory operation is set.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw-
ings in which:

F1G. 1 is a block diagram of a superscalar microprocessor
which includes a load/store unit coupled to a data cache. 6
functional units and 6 decode units.

FIG. 2 is a block diagram of a load/store unit in accor-
dance with the present invention coupled to a data cache.

FIG. 3 is a block diagram of a load/store buffer in
accordance with the present invention.

FIG. 4A is a diagram of a storage location from the
load/store buffer shown in FIG. 3.

FIG. 4B is a diagram of several clock cycles indicating
when certain information arrives at the load/store buffer
shown in FIG. 3 and certain other functions associated with
operating the load/store buffer.

FIG. 4C is a block diagram showing store data forwarding
for loads that access memory locations that are currently
represented by stores in the load/store buffer.

FIG. 4D is a block diagram showing the layout of various
sections of the load/store unit of the present invention.

While the invention is susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood.
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary. the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims,

DETAILED DESCRIPTION OF THE
INVENTION

Turning now to the drawings. FIG. 1 shows a block
diagram of a superscalar microprocessor 200 including a
load/store unit 222 in accordance with the present invention.
As llustrated in the embodiment of FIG. 1, superscalar
microprocessor 200 includes a prefetch/predecode unit 202
and a branch prediction unit 220 coupled to an instruction
cache 204. Instruction alignment unit 206 is coupled
between instruction cache 234 and a plurality of decode
units 208A-208F (referred to collectively as decode units
208). Each decode unit 208A—208F is coupled to a respec-
tive reservation station unit 210A-210F (referred collec-
tively as reservation stations 210). and each reservation
station 210A-210F is coupled to a respective functional unit
212A-212F (referred to collectively as functional units
212). Decode units 208, reservation stations 210, and func-
tional units 212 are further coupled to a reorder buffer 216.
a register file 218 and a load/store unit 222. A data cache 224
is finally shown coupled to load/store unit 222. and an
MROM (microcode need only memory) unit 209 is shown
coupled to mstruction alignment unit 206.

Generally speaking, instruction cache 204 is a high speed
cache memory provided to temporarily store instructions
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prior to their dispatch to decode units 208. In one
embodiment. instruction cache 204 is configured to cache up
to 32 kilobytes of instruction code organized in lines of 16
bytes each (where each byte consists of & bits). During
operation. instruction code is provided to instruction cache
204 by prefetching code from a main memory (not shown)
through prefetch/predecode unit 202. It is noted that instruc-
tion cache 204 could be implemented in a set-associative. a
fully-associative. or a direct-mapped configuration.

Prefetch/predecode unit 202 is provided to prefetch
instruction code from the main memory for storage within
instruction cache 204. In one embodiment, prefetch/
predecode unit 202 is configured to burst 64-bit wide code
from the main memory into instruction cache 204. It is
understood that a variety of specific code prefetching tech-
niques and algorithms may be employed by prefetch/
predecode unit 202,

As prefetch/predecode unit 202 fetches instructions from
the main memory. it generates three predecode bits associ-
ated with each byte of instruction code: a start bit. an end bit,
and a “functional” bit. The predecode bits form tags indica-
tive of the boundaries of each instruction. The predecode
tags may also convey additional information such as
whether a given instruction can be decoded directly by
decode units 208 or whether the instruction must be
executed by invoking a microcode procedure controlled by

MROM unit 209, as will be described in greater detail
below.

Table 1 indicates one encoding of the predecode tags. As
indicated within the table, if a given byte is the first byte of
an instruction, the start bit for that byte is set. If the byte is
the last byte of an instruction. the end bit for that byte is set.
If a particular instruction cannot be directly decoded by the
decode units 208. the functional bit associated with the first
byte of the instruction is set. On the other hand. if the
instruction can be directly decoded by the decode units 208.
the functional bit associated with the first byte of the
instruction is cleared. The functional bit for the second byte
of a particular instruction is cleared if the opcode is the first
byte. and is set if the opcode is the second byte. It is noted
that in situations where the opcode is the second byte. the
first byte is a prefix byte. The functional bit values for
instruction byte numbers 3-8 indicate whether the byte is a
MODRM (mode register/memory)or an SIB (scale-index-
base) byte. as well as whether the byte contains displace-
ment or immediate data.

TABLE 1

Encoding of Start, End and Functional Bits

Instr. Start End Functional
Byte Bit Bt Bit
Number Value Value Value Meaning
EEEEEE————————————————————————————————————————
1 1 X 0 Fast decode
1 | X 1 MROM mstr.
2 0 X 0 Opcode 1s first
byte
2 0 X 1 Opcode is this
byte, first
byte is prefix
3-8 C X 0 Mod R/M or
SIB byte
3-8 0 X | Displacement or
immedsate data;
the second
functional bit
set tn bytes
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TARLE I-continued

m

Encoding of Start. End and Functional Bits

Instr. Start End Functional
Byte Bit Bit Bit
Nuwmber Value Value Value Meamng
e ——————————————————————————————————

3-8 mdicates
immediate data

1-8 X 0 X Not last byte
of mstruction

1-3 X 1 X Last byte of
mnstruction

M

As stated previously, in one embodiment certain instruc-
tions within the x86 instruction set may be directly decoded
by decode unit 208. These instructions are referred to as
“fast path” instructions. The remaining instructions of the

x86 instruction set are referred to as “MROM instructions”.
MROM instructions are executed by invoking MROM unit
209. When an MROM instruction is encountered. MROM
unit 209 parses and serializes the instruction into a subset of
defined fast path instructions to effectuate a desired opera-
tion.

Instruction alignment unit 206 is provided to channel or
“funnel” variable byte length instructions from instruction
cache 204 to fixed issue positions formed by decode units
208 A—208F. Instruction alignment unit 206 is configured to
channel instruction code to designated decode units
208A-208F depending upon the locations of the start bytes
of instructions within a line as delineated by instruction
cache 204. In one embodiment, the particular decode unit
208A—208F to which a given instruction may be dispatched
is dependent upon both the location of the start byte of that
instruction as well as the location of the previous instruc-
tion’s start byte, if any. Instructions starting at certain byte
locations may further be restricted for issue to only one
predetermined issue position. Specific details follow.

Before proceeding with a detailed description of the
load/store unit 222, general aspects regarding other sub-
systems employed within the exemplary superscalar micro-
processor 200 of FIG. 1 will be described. For the embodi-
ment of FIG. 1. each of the decode units 208 includes
decoding circuitry for decoding the predetermined fast path
instructions referred to above. In addition, each decode unit
208A-208F routes displacement and immediate data to a
corresponding reservation station unit 210A-210F. Output
signals from the decode units 208 include bit-encoded
execution instructions for the functional units 212 as well as
operand address information, immediate data and/or dis-
placement data.

The superscalar microprocessor of FIG. 1 supports out of
order execution. and thus employs reorder buffer 216 to keep
track of the original program sequence for register read and
write operations, to implement register renaming, to allow
for speculative instruction execution and branch mispredic-
tion recovery. and to facilitate precise exceptions. As will be
appreciated by those of skill in the art, a temporary storage
location within reorder buffer 216 is reserved upon decode
of an instruction that involves the update of a register 10
thereby store speculative register states. Reorder buffer 216
may be implemented in a first-in-first-out configuration
wherein speculative results move to the “bottom™ of the
buffer as they are validated and written to the register file,
thus making room for new entries at the “top” of the buffer.
Other specific configurations of reorder buffer 216 are also
possible, as will be described further below. If a branch
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prediction is incorrect. the results of speculatively-executed
instructions along the mispredicted path can be invalidated
in the buffer before they are written to register file 218.

The bit-encoded execution instructions and immediate
data provided at the outputs of decode units 208 A—208F are
routed directly to respective reservation station units
210A-210F. In one embodiment. each reservation station
unit 210A-210F is capable of holding instruction informa-
tion (i.e.. bit encoded execution bits as well as operand
values, operand tags and/or immediate data) for up to three
pending instructions awaiting issue to the corresponding
functional unit. It is noted that for the embodiment of FIG.
1. each decode unit 208A-208F is associated with a dedi-
cated reservation station unit 210A-210F, and that each
reservation station unit 210A-210F is similarly associated
with a dedicated functional unit 212A-212F. Accordingly.
six dedicated “issue positions” are formed by decode units
208, reservation station units 210 and functional units 212.
Instructions aligned and dispatched to issue position 0
through decode unit 208A are passed to reservation station
unit 210A and subsequently to functional unit 212A for
execution. Similarly, instructions aligned and dispatched to
decode unit 208B are passed to reservation station umt 210B
and into functional unit 212B, and so on.

Upon decode of a particular instruction. if a required
operand is a register location, register address information is
routed to reorder buffer 216 and register file 218 simulta-
neously. Those of skill in the art will appreciate that the x86
register file includes eight 32 bit real registers (i.e.. typically
referred to as EAX, EBX, ECX, EDX. EBP, ESI. EDI and
ESP}). as will be described further below. Reorder buffer 216
contains temporary storage locations for results which
change the contents of these registers to thereby allow out of
order execution. A temporary storage location of reorder
buifer 216 is reserved for each instruction which, upon
decode. modifies the contents of one of the real registers.
Therefore, at various points during execution of a particular
program, reorder buffer 216 may have one or more locations
which contain the speculatively executed contents of a given
register. If following decode of a given instruction it is
determined that reorder buffer 216 has previous location(s)
assigned to a register used as an operand in the given
instruction, the reorder buffer 216 forwards to the corre-
sponding reservation station either: 1) the value in the most
recently assigned location, or 2) a tag for the most recently
assigned location if the value has not yet been produced by
the functional unit that will eventually execute the previous
instruction. If the reorder buffer has a location reserved for
a given register, the operand value (or tag) is provided from
reorder buffer 216 rather than from register file 218. If there
is no location reserved for a required register in reorder
buffer 216. the value is taken directly from register file 218.
It the operand corresponds to a memory location, the oper-
and value is provided to the reservation station unit through
load/store unit 222.

Details regarding suitable reorder buffer implementations
may be found within the publication “Superscalar Micro-
processor Design” by Mike Johnson, Prentice-Hall. Engle-
wood Cliffs, N.J., 1991, and within the co-pending. com-
monly assigned patent application entitled “High
Performance Superscalar Microprocessor”, Ser. No. 08/146.
382. filed Oct. 29, 1993 by Witt, et al. These documents are
incorporated herein by reference in their entirety.

Reservation station units 210A-210F are provided to
temporarily store instruction information to be speculatively
executed by the corresponding functional units 212A~212F.
As stated previously, each reservation station unit
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210A-210F may store instruction information for up to three
pending instructions. Each of the six reservation stations
210A--210F contain locations to store bit-encoded execution
instructions to be speculatively executed by the correspond-
ing functional unit and the values of operands. If a particular
operand is not available, a tag for that operand is provided
from reorder buffer 216 and is stored within the correspond-
ing reservation station until the result has been generated
(Le.. by completion of the execution of a previous instruc-
tion. It is noted that when an instruction is executed by one
of the functional units 212A-212F, the result of that instruc-
tion is passed directly to any reservation station units
210A-210F that are waiting for that result at the same time
the result is passed to update reorder buffer 216 (this
technique is commonly referred to as “result forwarding™).
Instructions are issued to functional units for execution after
the values of any required operand(s) are made available.
That is. 1f an operand associated with a pending instruction
within one of the reservation station units 210A-210F has
been tagged with a location of a previous result value within
reorder buffer 216 which corresponds to an instruction
which modifies the required operand. the instruction is not
issued to the corresponding functional unit 212 until the
operand result for the previous instruction has been
obtained. Accordingly, the order in which instructions are
executed may not be the same as the order of the original
program instruction sequence. Reorder buffer 216 ensures
that data coherency is maintained in situations where read-

after-write dependencies occur.

In one embodiment, each of the functional units 212 is
configured to perform integer arithmetic operations of addi-
tion and subtraction, as well as shifts, rotates, logical
operations, and branch operations. It is noted that a floating
point unit (not shown) may also be employed to accommo-
date floating point operations.

Each of the functional units 212 also provides information
regarding the execution of conditional branch instructions to
the branch prediction unit 220. If a branch prediction was
incorrect, branch prediction unit 220 flushes instructions
subsequent to the mispredicted branch instruction that have
entered the instruction processing pipeline, and causes
prefetch/predecode unit 202 to fetch the required instruc-
tions from instruction cache 204 or main memory. It is noted
that in such situations, results of instructions in the original
program sequence which occur after the mispredicted
branch instruction are discarded. including those which were
speculatively executed and temporarily stored in load/store
unit 222 and reorder buffer 216. Exemplary configurations
of suitable branch prediction mechanisms are well known.

Results produced by functional units 212 are sent to the
reorder buffer 216 if a register value is being updated, and
to the load/store unit 222 if the contents of a memory
location is changed. If the result is to be stored in a register,
the reorder buffer 216 stores the result in the location
reserved for the value of the register when the instruction
was decoded. As stated previously, results are also broadcast
to reservation station units 210A-210F where pending
instructions may be waiting for the results of previous
instruction executions to obtain the required operand values.

Data cache 224 is a high speed cache memory provided to
temporarily store data being transferred between load/store
unit 222 and the main memory subsystem. In one
embodiment, data cache 224 has a capacity of storing up to
eight kilobytes of data. It is understood that data cache 224
may be implemented in a variety of specific memory
configurations, including a set associative configuration.

Generally speaking, load/store unit 222 provides an inter-
face between functional units 212A-212F and data cache
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224. In one embodiment, load/store unit 222 is configured
with a load/store buffer with sixteen storage locations for
data and address information for pending load or store
memory operations. wherein the storage locations are con-
figured as a linear array of storage locations. However. it Is
understood that the number of storage locations may vary in
further embodiments of the invention. Functional units 212
arbitrate for access to the load/store unit 222. When the
buffer is full. a functional unit must wait until the load/store

unit 222 has room for the pending load or store request
information. The load/store unit 222 also performs depen-
dency checking for load memory operations against pending
store memory operations to ensure that data coherency Is
maintained. Load memory operations may be executed by
the load/store unit 222 in a different order than they are
provided to the load/store unit 222. Store memory opera-
tions are always executed in the order that they were
provided.

In one embodiment., decode units 208 indicate to the
load/store unit 222 what kind of memory operation each
decode unit is decoding in a given cycle. The decode units
208 will indicate one of four possible conditions: no load/
store operation has been decoded, a load operation has been
decoded. a store operation has been decoded, or a load-op-
store operation has been decoded. Load-op-store operations
occupy two storage locations in the load/store buffer. one for
the load operation and one for the store operation. These
operations are then treated as independent operations in the
load/store buffer. At least one clock cycle later, the address
and the data (for stores) is provided by the functional units
212 to the load/store unit 222. This information is trans-
ferred into the storage location that holds the memory
operation that the address and data is associated with. This
association is determined by comparing reorder buffer tags
provided by functional units 212 to reorder buffer tags
previously stored in the load/store buffer.

In one embodiment. load and store memory operations
that are stored in the load/store buffer are indicated to be no
longer speculative by at least one pointer from reorder buffer
216. The pointer is a tag value which can be compared by the
load/store unit 222 to the tags stored in the plurality of
storage locations within the load/store buffer to update the
speculative status of the memory operations stored therein.
In another embodiment, the number of pointers provided by
the reorder buffer 216 is two.

In one embodiment, the load/store unit selects up to two
memory operations per clock cycle to access the data cache.

The load/store unit uses a fixed priority scheme for making
the selection. The scheme is as follows: stores that are no
longer speculative are highest priority, loads that are misses
and are no longer speculative are second highest priority.
and loads that are speculative and have not yet accessed the
cache are last in priority. Stores are higher priority than loads
because they are the oldest instructions in the reorder buffer
when they are no longer speculative, and it is desirable to
retire them as quickly as possible. Load misses also are not

processed until they are non-speculative due to the long
latency of main memory transfers. If the load is cancelled.

the data will not be useful but the long latency transfer will
continue, possibly blocking other transfers needing access to
main memaory.

Other considerations that also affect which memory
operations are selected to access the data cache are: the
alicnment of the operation and the bank of the data cachet
that an operation is going to access. If a load memory
operation is selected for the first access of a given cycle and
is unaligned. then the second access selected will be either
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an aligned memory operation or the second access will not
be made in the current cycle. In the next cycle. the second
half of the unaligned load memory operation is selected as
the first access. If a store memory operation is selected for
the first access of a given cycle and is unaligned, then the
second access made in that cycle is the second half of the
store memory operation. If either store access misses the
data cache, both halves are aborted and the line that contains
the miss is transferred to the data cache from main memory.
If an aligned memory operation is selected as the first access
and an unaligned load memory operation is selected as the
second access. then in the next clock cycle the second access
selected will be the second half of the unaligned load
memory operation. If an aligned memory operation is
selected as the first access and an unaligned store memory
operation is selected as the second access. then the second
access will not be made in this clock cycle.

Bank conflicts are also considered by the load/store unit
in selecting memory operations to access the data cache in
a given cycle. If two operations have been selected to access
the data cache in a given cycle. and bits 2. 3, and 4 of their
respective addresses are equal, then the second access will
not be made in this cycle.

In another embodiment. a load memory operation is
selected to access data cache 224 in a given cycle if load
memory operations prior to the load memory operation in
program order have accessed data cache 224 and been found
to miss. The prior memory operations remain within the
buffer and therefore require no extra buffers to store them,
saving silicon area.

As will be shown in FIG. 4A, each entry in the load/store
buffer of load/store unit 222 contains a miss/hit bit. The
miss/hit bit is used in the selection of memory operations to
access the data cache. in order to implement the non-
blocking function. The miss/hit bit disqualifies load memory
operations that are speculative from selection for access 1o
the data cache. In this way, a speculative load memory
operation that is subsequent to a speculative load memory
operation that misses the data cache may be selected to
access the data cache. Therefore, load/store unit 222 imple-
ments a non-blocking scheme in which load memory opera-
tions are allowed to access the data cache in clock cycles in
which speculative load memory operations that have missed
the data cache exist in the load/store buffer. In one
embodiment, 8 locations (starting from the bottom of the
load/store buffer) are scanned for such load memory
operations, allowing up to 7 speculative load misses to be
stored in the load/store buffer before blocking occurs.

Another important factor in the non-blocking scheme of
load/store unit 222 is that the comparators required by
previous non-blocking schemes to ensure that only one
request per cache line is made to the main memory system
are not required. As noted above, these comparators are
necessary in prior non-blocking schemes to keep a second
miss to the same line as a miss already queued for access (o
the main memory system from accessing the memory sys-
tem. Typically in these previous schemes, when a second
request is made for the line currently being fetched from
main memory, blocking occurs. Load/store unit 222 holds
the misses in the load/store buffer. When one miss becomes
non-speculative, it accesses main memory while other
misses remain in the buffer. When the data associated with
the address that missed is transferred into data cache 224, the
miss/hit bits in the load/store buffer are reset such that the
associated memory operations are no longer considered to
be misses. Therefore, the associated memory operations will
be selected to access data cache 224 in a subsequent clock
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cycle. If the memory operation is now a hit. it completes in
the same manner as other speculative load memory opera-
tions that hit the data cache. If the memory operation is still
a miss, the miss/hit bit is set to indicate miss. and the
memory operation waits to become non-speculative.
Therefore., the comparators are not necessary and multiple
misses to the same cache line do not cause blocking.

In one embodiment, load memory operations are selected
for removal from the load/store buffer if the operation is a
data cache hit. Load memory operations are further selected
for removal if the load operation has missed the data cache.
1s no longer speculative (as indicated by the aforementioned
reorder buffer pointers), and the line containing the miss is
selected to be transferred from main memory (not shown) to
the data cache. Store memory operations are selected for
removal from the load/store buffer if the store memory
operation is non-speculative (as indicated by the aforemen-
tioned reorder buffer pointers). and the store memory Opera-
tion is a data cache hit. Store memory operations are further
selected for removal from the load/store buffer if the store
memory operation is non-speculative (as indicated by the
aforementioned reorder buffer pointers). the store memory
operation is a data cache miss, and the line containing the
miss is selected to be transferred from main memory to the
data cache. In another embodiment. memory operations are
selected for removal from the load/store buffer if a cancel
signal is received from reorder buffer 216, along with a
reorder buffer tag that matches the memory operation.

Turning now to FIG. 2, a block diagram of a load/store
unit in accordance with the present invention is shown.
Load/store unit 222 is shown to include an input port 1000
for receiving memory operation commands and information
associated with those operations. In one embodiment, up to
SIX operations may be provided in a given clock cycle. The
information comprises the linear address associated with the
instruction and also data, if the memory operation is a store.
This information is provided at least one clock cycle after
the associated memory operation command is provided. As
FIG. 2 shows, load/store unit 222 comprises input control
unit 1001, store pointer 1002, load pointer 1003, load/store
buffer 1004, output control unit 1005, input reorder buffer
pointers 1006 and 1007, and data cache ports 1008. In one
embodiment, load/store buffer 1004 is configured as a linear
array of storage locations.

Input control unit 1001 directs memory operations 1000
to particular storage locations within load/store buffer 1604.
In one embodiment. this direction is accomplished through
the use of two pointers: store pointer 1002 and load pointer
1003. Each store memory operation that is received in a
given clock cycle is transferred into a storage location within
load/store buffer 1004 beginning at the storage location
pointed to by store pointer 1002, and increasing in storage
location numbers for each subsequent store memory opera-
tion received. Store pointer 1002 is then incremented by the
number of store operations received in the clock cycle.
Similarly, each load memory operation that is received in a
given clock cycle is transferred into a storage location within
load/store buffer 1004 beginning at the storage location
pointed at by load pointer 1003, and decreasing in storage
location numbers for each subsequent load memory opera-
tion received. Load pointer 1003 is then decremented by the
number of load operations received in the clock cycle. It is
the responsibility of the decode units 208 to dispatch only as
many load and store memory operations as can be stored
between store pointer 1002 and load pointer 1003. The load
unit provides communication to the decode units 208 in the
form of the difference between load pointer 1003 and store
pointer 1002 to aid the decode unit in this function.
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In one embodiment, when the load/store buffer is empty.
store pointer 1002 points to the first storage location and
load pointer 1003 to the last storage location in the load/store
buffer 1004. The store pointer 1002 is incremented for each
store memory operation received into the load/store buffer.,
and the load pointer 1003 is decremented for each load
memory operation received into the load/store buffer, As
load memory operations are removed from the load/store

buffer 1004, the storage locations between load pointer 1003
and the end of the load/store buffer 1004 are copied into the
storage locations below which are vacated by the removed
load memory operations. The copying occurs in such a way
that the remaining memory operations occupy contiguous
positions at the end of load/store buffer 1004 and the
remaining memory operations are still in program order. The
removed load memory operations need not be contiguous in
the buffer. The load pointer 1003 is then incremented by the
number of load instructions removed. Similarly, as store
memory opcrations are removed from the load/store buffer
1004, the storage locations between store pointer 1002 and
the beginning of the load/store buffer 1004 are copied into
the storage locations above which are vacated by the
removed store memory operations. The copying occurs in
such a way that the remaining memory operations occupy
contiguous positions at the beginning of load/store buffer
1004 and the remaining memory operations are still in
program order. The removed store memory operations need
not be contiguous in the buffer. The store pointer 1002 is
then decremented by the number of store memory operations

removed.

Output control unit 1005 selects memory operations
stored 1n load/store buffer 1004 for access to the data cache
224. In one embodiment, output control unit 1605 selects up
to two memory operations for the aforementioned access.
The output control unit 1005 implements the priority scheme
described above for selecting the memory operations. Reor-
der buffer pointers 1006 and 1007 are used to indicate which
memory operations are no longer speculative, as described
above.

Turning next to FIG. 3. an embodiment of load/store
buffer 1004 is shown in more detail. Shaded area 1010
depicts storage locations that are holding store memory
operations. Shaded area 1011 depicts storage locations that
are holding load memory operations. In this embodiment,
the storage locations are configured as a linear array of
locations. A linear array of locations is an organization of
locations wherein each location can be located within the
array utilizing a single number. Store memory operations are
transferred into the buffer from one end, while load memory
operations are transferred into the buffer from the opposite
end. In this way, the properties of storing load memory
operations and store memory operations in separate queuing
structures are maintained. However, this embodiment
advantageously makes use of a single set of storage loca-
tions to provide both load and store queuing locations.
Hardware, and hence silicon area, are saved as compared to
a performance-equivalent number of separate load and store
buffers. For example, this embodiment contains 16 storage
locations. At any given time up to 16 store memory
operations, or alternatively 16 load memory operations.
could be stored in the load/store buffer 1004. A performance-
equivalent number of separate load and store buffers would
therefore require 16 load buffers and 16 store buffers. Each
of these buffers would be required to contain the same
information that the load/store buffer 1004 contains.
Therefore, the separate load and store buffer solution com-
monly used in superscalar microprocessors consumes con-
siderably more silicon area than load/store buffer 1004.
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Also shown in FIG. 3 are load pointer 1003 and store
pointer 1002. Because this embodiment contains 16 storage
locations, load pointer 1003 and store pointer 1002 are
depicted as four bit pointers. In other embodiments, the
number of storage locations may vary and therefore the
number of bits that load pointer 1003 and store pointer 1002
require may vary as well. Other embodiments may also be
configured with load/store buffer 1004 as some other orga-
nization than a linear array. For example. a two dimensional
array might be used. in which a storage location is identified
by a pointer consisting of two numbers: a row and a column
number. It is understood that there are other possible ways
to configure load/store buffer 1004. In one embodiment.
store pointer 1002 is not allowed to become equal to or

greater than load pointer 1003. In this way. load memory
operations and store memory operations are stored in storage
locations distinct from each other in any given clock cycle.

Also shown in FIG. 3 is an output LSCNT{2:0] 1012. This
output is the difference between load pointer 1003 and store
pointer 1002, and in one embodiment indicates how many
memory operations may be transferred to the load/store unit
222. Units that transfer memory operations to the load/store
unit 222 use this information in their algorithms to limit the
number of memory operations transferred in a given clock
cycle.

Turning now to FIG. 4A. a diagram of the storage
locations within load/store buffer 1004 is shown. The stor-
age locations are divided into three fields. In one

embodiment, the first field consists of 6 bits. One bit is a
valid bit, indicating when set that the storage location
contains a memory operation and indicating when not set
that the storage location does not contain a memory opera-
tion. The remaining five bits of the first field comprise a tag
which indicates which entry in the reorder buffer 216 the
memory operation is associated with.

The second field 1021 consists of 66 bits. The first 32 bits
of the field are the address that the memory operation is to
manipulate. The next bit is an address valid bit, indicating
when set that the aforementioned address has been provided
and indicating when not set that the aforementioned address
has not been provided. The next 32 bits in field 1021 are the
data associated with the memory operation. For stores, these
bits contain the data that is to be stored at the aforemen-
tioned address. For data that is less than 32 bits wide, the
data is stored in field 1021 in a right-justified manner. The
final bit in field 1021 is a data valid bit. indicating when set
that the aforementioned data has been provided and indi-
cating when not set that the aforementioned data field has
not been provided.

The third field 1022 of the storage locations contains other
important information for each memory operation. In one
embodiment, the following information is saved:

the size of the data to be manipulated measured in bytes;

the miss/hit state of the memory operation in data cache
224, wherein this bit being set indicates a miss and this
bit not being set indicates that the operation has not
accessed the data cache;

the dependent bit, wherein this bit being set indicates that
a load memory operation is dependent on a store
memory operation stored in another storage location of
the load/store buffer and this bit not being set indicates
that no such dependency exists;

the entry number of the storage location containing the
aforementioned dependency. wherein this field con-
tains random information if the aforementioned depen-
dent bit is not set. Other embodiments store additional
miscellaneous information in field 1022.
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Turning now to FIG. 4B. a timing diagram showing
typical operation of one embodiment of the load/store unit is
shown. Three complete clock cycles are shown. labeled
ICLKA4. ICLKS. and ICLK6. In ICLLK4. load and/or store
memory operations are received as indicated by arrow 1030.
The load pointer is decremented by the number of load
memory operations received in clock cycle ICLK4 at arrow
1031. The number of load memory operations received in a
given cycle can be zero or more. The store pointer is also
incremented by the number of store memory operations
received in ICLK4 at arrow 1031. As with the load opera-
tions above. the number of store operations received in a
given clock cycle can be zero or more. At arrow 1032, the
load/store unit has calculated a news value for LSCNT 1012,
which is the difference between the decremented value of
load pointer 1003 and the incremented value of store pointer
1002

At the beginning of ICLKS., as indicated by arrow 1033.
the load/store unit 222 examines the tags of memory opera-
tions currently residing in the load/store buffer 1004, and
begins the process of selecting operations to access the data
cache for this cycle. The fixed priority scheme as described
above is used as the selection criteria. At arrow 1034, tags
for memory operations that are being provided with
addresses and/or data are transferred to the load/store unit
from functional units 212. This information is used in the
selection process at arrow 1035. At arrow 1036, the selection
process is complete and up to two access for the data cache
have been selected. At arrow 1037, the address and data that
were indicated as being transferred in this clock cycle (at
arrow 1034) are provided by the functional units 212. The
address and data are transferred into the storage locations
within the load/store buffer at arrow 1038.

In clock cycle ICLKG6, the data cache 224 is accessed.
Also in this clock cycle, if one or both of the memory
operations accessing the cache is a load memory operation.
the tags of the load memory operations first field 1020 of
FIG. 4A are compared to the tags of any stores that are
currently stored in the load/store buffer. Simultaneously. the
addresses of the load memory operation and any stores that
are currently stored in the load/store buffer are compared. If
the load memory operation is found to be after the store
operation in program order via the aforementioned tag
compare and the address of the load is found to completely
overlap the address of the store via the aforementioned

address compare, then the data that the load memory opera-
tion is attempting to retrieve is actually the data in the store
memory operations storage location. This data is provided
from the data portion of the store memory operation’s
storage location. In this context, “completely overlap”
means that all of the bytes that the load memory operation
is retrieving are contained within the bytes that the store
memory operation is updating. Also, “partially overlap”™
means that some of the bytes that the load memory operation
is retrieving are contained within the bytes that the store
memory operation is updating. If the aforementioned data
has not been provided to the load/store unit. or the address
of the load memory operation partially overlaps the store
memory operation, then the load memory operation does not
retrieve its data in this cycle. Instead. it remains in the
load/store buffer until the store memory operation is per-
formed. If a store memory operation in the buffer is before
a load memory operation in program order but the store
memory operation does not yet contain a valid address for
comparison, the load memory operation is treated as if the
store address partially overlaps the load memory operation.
If the load memory operation is found to be before any store
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memory operations that might be in the load/store buffer. or
if the load memory operation’s address does not match any
of the store memory operation’s address. then the data for
the load memory operation is provided from the data cache.
It the load memory operation is a data cache miss, and the
conditions mentioned in the previous sentence are met, no
data is provided for the load memory operation in this clock
cycle.

At arrow 1039, the result of the operation is driven to the
reorder buffer 216. At arrow 1040, the miss bit and the
dependent bit in field 1022 (as shown in FIG. 4A) of the
memory operations accessing the data cache in this clock
cycle are updated with the miss/hit state of the access and
any dependency on stores in the load/store buffer that was
detected.

Turning now to FIG. 4C, exemplary hardware implement-
ing the aforementioned memory operation dependency
checking is shown. The arrows 1050 and 1051 indicate the
addresses of the two memory operations selected to access
the data cache in this clock cycle. The addresses are con-
veyed on a pair signal lines labeled LSLINAD?[31:2] and
LSILINADI1|31:2] for the first and second accesses. respec-
tively. These addresses are compared to the addresses stored
in each of the storage locations within load/store buffer 1004
using comparators 1052A-1052F. Whether or not the
addresses overlap is indicated at the output of the compara-
tors. This information is input to control units 1083 and
1054. which also perform the tag comparisons mentioned
above. If a tag comparison shows that the memory operation
is after the operation residing in the load/store buffer and the
address comparison snows complete overlap, then the store
data is forwarded as outputs 1055 and 1056. respectively.
This data is then used as the result of load memory opera-
ton. If the load memory operation depends on a store
memory operation but that store memory operation’s data
has not been provided, then the load memory operations
remains in the load/store buffer 1004 until the store memory
operation’s data is provided.

Turning now to FIG. 4D, a diagram of the load/store unit
222 is shown. The load/store unit 222 is divided into several
partitions. LSCTL 1060 is the control block. This block
contains the logic gates necessary to control the load/store
buffer 1004, as well as other portions of the load/store unit.

LDSTSTAT 1061 contains the status information for each of
the storage locations in the load/store buffer. That is, LDST-

STAT 1061 contains the information of field 1022 of FIG.
4A. LDSTTAGS 1062 contains the information of field 1020
of FIG. 4A for each storage location of load/store buffer
1004. LDSTADR 1063 contains the address portion of field
1021 of FIG. 4A for each storage location of load/store
buffer 1004. LDSTDAT 1064 contains the data portion of
field 1021 of FIG. 4A for each storage location of load/store
buffer 1004. Finally, LSSPREG 1065 contains segment
registers, which are further described below.

FIG. 4D also shows inputs 1000 of FIG. 2. herein shown
as the signals used in one embodiment. RTAGnB 1066 is a
set of signals providing the tag that identifies the position of
the memory operation within the reorder buffer 216.
ITYPEnB 1067 identifies the memory operation as either a
load, a store, or a load-op-store operation. RESLARB 1072
provides the address for memory operations, and RESnB
1073 provides the data for store memory operations.

FIG. 4D also shows outputs of the load/store unit 222.
LSRESO/XLSRESO 1068 is the data output for the first
access to the data cache 224. The two sets of signals are
provided as differential inputs to the reorder buffer.
Similarly, LSRES1/XI.SRES1 1069 is the data output for the
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second access to the data cache 224. Also. LSLINAD® 1070
and LSLINAD1 1071 are the addresses for the first and
second data cache accesses, respectively.

In accordance with the foregoing description. a high
performance superscalar microprocessor including a load/
store unit employing a unified load/store buffer has been
described which implements, in a substantially smaller
space, a performance-equivalent buffer to the separate load
and store buffers commonly used. The unified buffer stores
both load and store memory operations, storing loads from
one end of the buffer and stores from the other end. In this
way, the properties of storing loads and stores in separate
buffers are maintained while the physical space required for
the buffers is advantageously reduced.

Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

What is claimed is:

1. A load/store unit for implementing non-blocking load
memory operations in a superscalar microprocessor com-
prising:

a buffer including a plurality of storage locations config-
ured to store information regarding pending memory
operations wherein said buffer further includes an input
port configured to receive said information. and
wherein said buffer further includes a data cache port
configured to communicate data access commands to a
data cache, and wherein each of said plurality of
storage locations is configured to store a miss bit and a
corresponding memory operation, and wherein said
miss bit is indicative. in a first state, that said corre-
sponding memory operation misses said data cache:
and

an output control unit coupled to said buffer, wherein said
output control unit is configured to select a particular
memory operation stored within a particular one of said
plurality of storage locations within said buffer if said
miss bit stored in said particular one of said plurality of
storage locations is in a second state different from said
first state and each one of said plurality of storage
locations which is storing a memory operation prior to
said particular memory operation in program order is
storing said miss bit in said first state, and wherein said
output control unit is further configured to direct a data
access command associated with said particular
memory operation to said data cache.

2. The load/store unit as recited in claim 1 wherein said
buffer is configured as a linear array of storage locations for
memory operations.

3. The load/store unit as recited in claim 1 wherein said
output control unit is configured to select said particular
memory operation from said buffer according to a fixed
priority scheme.

4. A load/store unit for implementing non-blocking load
memory operations in a superscalar microprocessor com-
prising:

a buffer including a plurality of storage locations config-
ured to store information regarding pending memory
operations wherein said buffer further includes an input
port configured to receive said information. and
wherein said buffer further includes a data cache port
configured to communicate data access commands to a
data cache, and wherein each of said plurality of
storage locations are configured with a miss bit, and
wherein said miss bit is configured to be set during a
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clock cycle in which said memory operation accesses
said data cache and misses said data cache; and

an output control unit coupled to said buffer. wherein said
output control unit is configured to select a memory
operation stored within said plurality of storage loca-
tions within said buffer. and wherein said output control
unit is further configured to direct a data access com-
mand associated with said operation to said data cache;

wherein said output control unit is configured to select

said memory operation from said buffer according to a

scheme wherein:

store memory operations that are not speculative are
given a high priority:

memory operations that are not speculative and are
known to miss said data cache via previous access (0
said data cache are given an intermediate priority:
and

load memory operations that have not previously
accessed said data cache are given a low priority.

5. The load/store unit as recited in claim 4 wherein said
output control unit is configured with a pointer provided by
a reorder buffer, wherein said pointer is configured to
indicate the speculative state of said memory operation.

6. The load/store unit as recited in claim 5 wherein said
output control unit is further configured to select a load
memory operation during a clock cycle in which previous
load memory operations which are indicated as speculative

by said pointer provided by said reorder buffer have said
miss bits associated with said previous memory operations

set.

7. The load/store unit as recited in claim 1 wherein said
miss bit stored in each of said plurality of storage locations
is reset during a second clock cycle in which said data cache
is updated with a plurality of bytes transferred from a main
memory.

8. The load/store unit as recited in claim 1 wherein said
buffer is configured to store a miss memory operation that is
speculative and has said miss bit associated with said muss
memory operation in the set state until a clock cycle In
which said memory operation is selected to transfer a
plurality of bytes from main memory to said data cache.

9. A method for selecting a second memory operation
stored in a load/store buffer for access to a data cache during
a clock cycle in which a first memory operation stored in
said load/store buffer is speculative and is known to miss
said data cache. comprising:

examining said first memory operation to determine that

a miss bit associated with said first memory operation
is in a first state indicative that said first memory

operation misses said data cache; and

selecting said second memory operation for access to said
data cache in response to detecting said miss bit asso-
ciated with said first memory operation in said first
state, wherein said second memory operation is subse-
quent to said first memory operation in program order.

10. The method as recited in claim 9 further comprising
setting said miss bit associated with said first memory
operation during a clock cycle in which said first memory
operation accesses said data cache and is found to miss.

11. The method as recited in claim 9 further comprising
resetting said miss bit associated with said first memory
operation during a clock cycle in which a plurality of bytes
are transferred from main memory to said data cache.

12. The method as recited in claim 9 further comprising
storing said first memory operation within said load/store
buffer until a clock cycle in which said first memory
operation is indicated to be non-speculative and is selected
to transfer a plurality of bytes from a main memory to said
data cache.
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13. The method as recited in claim 11 further comprising
selecting said first memory operation to access said data
cache during a second clock cycle after said resetting step.

14. The method as recited in claim 9 further comprising
selecting said first memory operation to access said data
cache in response to detecting that said miss bit is in a
second state different from said first state.

15. A load/store unit for implementing non-blocking load
memory operations in a superscalar microprocessor com-
prising:

a buffer including a plurality of storage locations config-
ured to store information regarding pending memory
operations wherein said buffer further includes an input
port configured to receive said information. and
wherein said buffer further includes a data cache port
configured to communicate data access commands to a
data cache, and wherein each of said plurality of
storage locations are is configured with to store a miss
bit and a corresponding memory operation, and
wherein said miss bit is configured to be set during a
clock cycle in which said memory operation accesses
said data cache and indicative. in a first state. that said
corresponding memory operation misses said data
cache; and

an output control unit coupled to said buffer, wherein said
output control unit is configured to select a particular
memory operation stored within a particular one of said
plurality of storage locations within said buffer in
response to detecting that said miss bit stored in said
particular one of said plurality of storage locations is in
a second state different from said first state and detect-
ing that each one of said plurality of storage locations
which is storing a memory operation prior to said
particular memory operation in program order is stoi-
ing said miss bit in said first state, and wherein said
output control unit is further configured to direct a data
access command associated with said particular
memory operation to said data cache.

16. The load/store unit as recited in claim 1S wherein said
buffer is configured as a linear array of storage locations for
memory operations.

17. The load/store unit as recited in claim 15 wherein said
output control unit is configured to select a new memory
operation from said buffer according to a fixed priority
scheme.

18. The load/store unit as recited in claim 15 wherein said
output control unit is configured to select a new memory
operation from said buffer according to a scheme wherein:

store memory operations that are not speculative are given
a high priority;
memory operations that are not speculative and are known

to miss said data cache via previous access to said data
cache are given an intermediate priority; and

load memory operations that have not previously accessed

said data cache are given a low priority.

19. The load/store unit as recited in claim 18 wherein said
output control unit is configured with a pointer provided by
a reorder buffer. wherein said pointer is configured to
indicate the speculative state of said memory operation.

20. The load/store unit as recited in claim 19 wherein said
output control unit is further configured to select a load
memory operation during a clock cycle in which previous
load memory operations which are indicated as speculative
by said pointer provided by said reorder buffer have said
miss bits associated with said previous memory operations
set.
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21. The load/store unit as recited in claim 15 wherein said
miss bit stored in each of said plurality of storage locations
is reset during a second clock cycle in which said data cache
1s updated with a plurality of bytes transferred from a main
memory.

22. The load/store unit as recited in claim 18 wherein said
buffer is configured to store a miss memory operation that is

3
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speculative and has said miss bit associated with said miss
memory operation in the set state until a clock cycle in
which said memory operation is selected to transfer a
plurality of bytes from main memory to said data cache.
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