United States Patent g
Ngo et al.

0 0 A0 0

US005802375A
(117 Patent Number: 5,802,375
451 Date of Patent: Sep. 1, 1998

[54] OUTER LOOP VECTORIZATION

[75] Inventors: Viet N. Ngo, Eagan; Wei-Tek Tsai,
New Brighton, both of Minn.

[73] Assignee: Cray Research, Inc., Eagan, Minn.

[21] Appl No.: 344,236

[22] Filed: Nov. 23, 1994

[51] INt CLS cernereecmensencssensenenssasicrsssansennes GOOF 9745

[52] ULS. Clu oecerrerecnmrecasssscsscsmsssmsansssssessnssnssssanse. 390/ 109

[58] Field of Searchcccvureeennn. 395700, 701-709

[56] References Cited

U.S. PATENT DOCUMENTS

4,128,880 12/1978 CIaY, JT. wercrsmessescssermmeenes 395/800.04
4,636,942 1/1987 Chen et al.cvvicrccsecnsscnseens 3957742
4642764 2/1987 Auslander et al. ...ccecressencree. 39709
4710872 12/1987 Scarboroghe.seeeeseseseeee 3957707
4782444 1171988 Munshi et al.ccocccresvrnssneaneee 3937709
4833606 5/1989 Twasawa et al.c.cersessnerenes 393709
4843545 6/1989 Kikuchicocrmmccccsasccissiennes 3937707
4,847,755 7/1989 Morrison et al.ccomrsseerieeenss 39379
5,107,418 4/1992 Cramer et al. .occrcencercevceneens 3997709
5161216 1171992 Reps €t al. wucreccemsesssssessene 395704
5274812 12/1993 INOUE ..evverccrcsincarasserssssesseacssasss 39 103
5481723 171996 Hairis et al. ..ceccvccrnsesncsansnees 393706
5485619 171996 Lai et al. ..cccorvnrenesscnssnssnncsans 395700
5,584,027 12/1996 Smithcccccccvenemnceraseccseacnses 36707

OTHER PUBLICATIONS

Michael Wolf, “High Performance Compilers 1992,”
Oregon Graduate Institute, Workshop, pp. 348--353 and pp.
370-379.

(C__smrr_)

¢

Banjeree, Loop Transformations for Restructuring Compil-
ers: The Foundations, Kluwer Academic Publishers, 1993;
pp. 1-48.

Zima et al., Supercompilers for Parallel and Vector Com-
puters, ACM Press Frontier Series, Addison-Wesley, Menlo
Park, CA 1991; pp. 218-237.

Allen et al., Automatic Translation of Fortran Programs to
Vector Form, ACM Transactions on Programming Lan-

guages and Systems, Oct. 1987, vol. 9, No. 4; pp. 490-542.

Bose, Heuristic Rule-Based Program Transformations for
Enhanced Vectorization, Proceedings for the International
Conference on Parallel Processing, 1988; pp. 63—66.

S. Carr, Memory—Hierarchy Management PhD thesis, Rice
University, Oct. 1992; pp. 1-87.

Aho, Sethi and Ullman, Compilers, Principles, Techniques
and Tools, Addison—Wesley, 1986; Ch. 9, pp. 585-722.

Primary Examiner—Alvin E. Oberley

Assistant Examiner—St. John Courtenay, 111

Attorney, Agent, or Firm—Schwegman, Lundberg,
Woessner & Kluth, PA.

[57] ABSTRACT

A system and method for vectorizing a non-innermost loop
of a nested loop. Iterative loops of a nested loop are analyzed
to determine if they can be vectorized (vector legality). If
more than one iterative loop can be vectorized, a selection
criteria is applied to select the iterative loop which would
provide the most return from vectorization (vector
selection).

BUILD PDG 30

| FoR K=t N |52

| EXTRACT G(K) h54

8 Claims, 7 Drawing Sheets
SAVE TO LIST OF
VECTORIZABLE [-50
L LOOFS

U.S. Patent Sep. 1, 1998 Sheet 1 of 7

10

SOURCE CODE [=
VECTORIZING
COMPILER | oBJECT CODE

FIG. 1

14

U.S. Patent Sep. 1, 1998 Sheet 2 of 7 5,802,375

20

SYNTAX ANALYSIS
FRONT—END(C OR FORTRAN) SEMANTIC ANALYSIS

INTERMEDIATE CODE)22

CONTROL ANALYSIS
DATA DEPENDENCE ANALYSIS
MID—END LOOP RESTRUCTURING
LOOP LEVEL PARALLELIZATION
DOALL TRANSFORMATION
VECTORIZATION
CLASSICAL OPTIMIZATION

INTERMEDIATE CODE)»-26

CODE GENERATION
BACK—END REGISTER ASSIGNMENT

INSTRUCTION SCHEDULING

24

28

FIG. 2

U.S. Patent Sep. 1, 1998 Sheet 3 of 7

START

DETERMINE CONTROL AND |. 30
DATA DEPENDENCIES

FOR K=1,N 32

34
S
LOOP K _YES
VECTORIZABLE
SAVE K TO LIST
OF VECTORIZABLE |36
LOOPS
38

YES

DETERMINE BEST LOOP | 4
TO VECTORIZE
VECTORIZE THAT LOOP |42
EXIT
FIG. 3

U.S. Patent

Sep. 1, 1998 Sheet 4 of 7

L4 : DO |4 =1,Nj

B1,1
Brn,,1
Lm+1: DO Im+1=1,Nm+1
Bm+h1
Ln . DO |n =1,Nn
Bn..1
ENDDO
Bm+1.2
ENDDO
U'me+1: DO Im+1="1,Nm+1
Un » - DO lfn =1,Nr!|
Bn.1
ENDDO
ENDDO
Bmﬂi
ENDDO
B1,2
ENDDO

FIG. 4

5,802,375

U.S. Patent Sep. 1, 1998 Sheet 5 of 7 5,802,375

S(111) s(112) S(121) S(122) S(211) S(212) S(221) S(222)

v drgrdrd

T(111) T(112) T(121) T(122) T(211) T(212) T(221) T(222)

FIG. Da

S(111) S(112) S(121) S(122) S(211) S(212) S(221) S(222)

AL K

T(111) T(112) T(121) T(122) T(211) T(212) T(221) T(222)

FIG. Sb

U.S. Patent Sep. 1, 1998 Sheet 6 of 7
START

BUILD PDG [0

FOR K=1N [2%

EXTRACT G(K) 54

1

K—VECTORIZATION NO

PREVENTING EDGES
2

58

DEPENDENCE
CYCLES
?

SAVE TO LIST OF
VECTORIZABLE
LOOPS

60

62

NO

YES

FIG. 7

U.S. Patent Sep. 1, 1998 Sheet 7 of 7 5,802,375

START

CALCULATE METRIC | 74
FOR G(k)

74

YES

REORDER 76
STATEMENTS
GENERATE VECTOR | 9g

CODE

EXIT

STATEMENT
REORDERING
?

5,802,375

1
OUTER LOOP VECTORIZATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to the field of compilers for
computer programs and, more particularly, to a method of
vectorizing nested loops.

2. Background Information

Vectorization is one of the most fundamental and effective
techniques for exploiting parallelism. Vector computers such
as those described in U.S. Pat. No. 4,128,880, issued Dec. 5,
1978 to Cray and U.S. Pat. No. 4,636,942, issued Jan. 13,
1987 to Chen et al., the disclosures of which are hereby
incorporated by reference, have been used to obtain large
increases in processor bandwidth through the use of sets of
pipelines which can operate in parallel to speed processing
of data. Vector processors will usually operate most effec-
tively on arrays of data. In some situations, however, per-
formance enhancements can be obtained by transforming
scalar operations into vector computations. For example, the

loop

DO I=1,64 A(N=A(I}+5 ENDDO

can be vectorized by fetching 64 different A(I) values to a
vector register, adding 5 to ecach element of the vector
register and storing the resulting vector back into A(I). In
contrast, serial execution will perform 64 fetching, 64 addi-
tion and 64 storing operations. The total vector operations
for the above loop are {fetch, add, store} while serial
execution requires sixty four iterations of the fetch, add, and
store scalar operations. Vectorization is typically performed
during code compilation. A wide range of vectarizer designs
have been proposed.

Related Loop Transformations

The fundamental transformations involved in vectorizing
a loop include statement re-ordering, loop distribution, strip-
mining and vector statement generation. These are sum-
marily described as follows.

Statement re-ordering interchanges the textual positions
of two statements within a loop body. Loop distribution
splits a loop with more than one statement into a sequence
of loops by distributing the coatrol over single of less-sized
group of statements. Strip-mining blocks the iteration space
into strips, where each strip’s length is equal to or smalier
than the vector length of the underlying vector register.
Vector statement generation is essentially mapping the input
source code into machine vector code. It involves code
generation for vector load and store operations.

In terms of legality, i.e., whether or not a particular loop
transformation can be carried out, two statements can be
re-ordered if there is no loop-independent dependence
between the two statements. Loop distribution is legal if

there is no loop-carried dependence pointing backward.
Strip-mining a loop is always legal.

Vectorization of Nested Loops
Nested loops are those iterative sequences in which a loop

is placed within another loop. For instance, the instruction
sequence

10

15

35

45

35

60

65

2

-
(1) DOI=1, 64
(2) IF A(D) = 0 THEN
(3) T = B(I)
(4) DOT=1,12
(5) T =T/ CLY)
(6) ENDDO
(7) BT
(8) ENDIF
9) ENDDO

is a nested loop in which the innermost loop is the DO J loop
while the outer loop is the DO I loop. Vectorization of a
nested loop can be complicated. The simplest approach to
nested loop vectorization is to vectorize the innermost loop.
In some cases, however, as in the example shown above, the
innermost loop may not be vectorizable due to a command
or data dependency. (In the example above the inner DO J
loop is not vectorizable due to the recurrence/cycle of T at
line 5.) In other cases, even where the innermost loop is
vectorizable the program may operate most efficiently if a
non-innermost loop is the loop that is vectorized. (For
instance, even if the inner DO J loop could be vectorized, the
inner loop has a trip count of only 12 and cannot yield much
performance improvement. On the other hand, the DO Iloop
has a trip count of 64.)

The potential benefits of non-innermost loop vectoriza-
tion (also termed “outer loop vectorization” or “OLV™) have
been recognized. One of the most powerful OLV restruc-
turing transformations presented to date is loop interchange
(see, e.g., Banerjec, Loop Transformations for Restructuring
Compilers, The Foundations, Kluwer Academic Publishers,
1993; Wolf, “Advanced Analysis and Optimizing for
Parallelism”, WORKSHOP, Oregon Graduate Institute,
1993; and Zima et al., Supercompilers for Parallel and
Vector Computers, ACM Press Frontier Series, Addison-
Wesley, Menlo Park, Calif., 1991). Under loop interchange
the positions of the innermost loop and the target non-
innermost loop are swapped, resulting in the innermost
placement of the target loop. Loop interchange has been
used to achieve such different optimization objectives as
vectorization, parallelization and locality. In vectorizing,
loop interchange has been used to move loops with cyclic
dependencies outward and to move those loops without
dependencies inward. The innermost loop or loops can then
be vectorized to improve performance.

For instance, Wolf suggests the vectorization of an outer
loop via loop interchange followed by inner loop vectoriza-
tion. Wolf also describes “super vector” performance, a
technique in which an innermost vectorizable loop is moved
outward in order to enhance memory reuse. Finally, Wolf
discusses nested loop vectorization but limits it to situations
where one or more vectorizable loops can be moved to
become the most deeply nested loops.

Zima et al. and in Allen et al. describe a framework which
can be used to generate vector code for a statement S at all
levels. (See Allen et al., “Automatic Translation of Fortran
Programs to Vector Form,” ACM Transactions on Program-
ming Languages and Systems, %(4):491-542, October 1937.)
The framework operates to breaks dependence cycles by
determining the smallest number c, such that the serial
execution of the c, outermost loops suffices to break the
dependence cycle; the remaining innermost loops, if any,
can then be executed in vector mode. Under the framework,
an outer loop is not vectorized if there is a recurrence on any
of its inner loops. Loop interchange is used to move the
recurrence outward.

Bose, “Heuristic Rule-Based Program Transformations
for Enhanced Vectorization,” Proceedings of the Interna-

5,802,375

3

nona!l Conference on Parallel Processing, 1988, proposes a
knowledge-base approach under which a vectorization pro-
gram works with the user interactively to come up with the
best possible form of source code to be submitted to the
compiler. Bose teaches that outer-loop vectorization can be
used to improve register reuse. This framework also uses
loop interchange to ‘innermost’ an outer vector candidate
loop.

In some situations, however, loop interchange may not be
legal. Furthermore, even when interchange is legal, inter-
changing can potentially destroy vector reuse opportunities,
resulting in a net performance degradation.

For instance, in order to carry out the loop interchange
operation in a nested loop, it is necessary to convert the
nested loop into a perfect nest. Lines 2, 3 and 7 in the nested
loop example above hinder the formation of a perfect nest.
Line 2 (i.c., the IF-conditional) can be pushed inside the
J-loop. But lines 3 and 7, since they have been generated by
scalarization techniques, cannot be eliminated so easily. (For
more information on scalarization techniques see S. Carr,
Memory-Hierarchy Management, PhD thesis, Rice
University, October 1992, which is hereby incorporated by
reference.) In fact, there is no known compiler technique
which can reverse-scalarize; forward scalarization is popular
since it yields several advantages, but reverse scalarization
has not yet been developed. Thus, the above loop example
cannot be transformed into a perfect nest. This implies that
the I-loop cannot be made innermost and hence that the
I-loop cannot be vectorized. In other words, the traditional
approach fails to vectorize the outer loop.

Furthermore, even if the loop-interchange were to be
successful, e.g., if lines 3 and 7 were absent, there may be
more than one choice of loop for vectorization. Suppose the
above nested loop, instead of being a 2-level nested loop,
was a 3-level nested formed by adding, for instance, an
additional loop DO K=1,64 at the outermost level. Now,
both the I-loop and the K-loop are vectorization targets and
a decision must be made as to which loop to vectorize. This
decision cannot always be answered by the techniques of
loop interchange followed by innermost loop vectorization.
Instead, a framework is needed for guiding the vectorization
of non-innermost loops without loop interchange and for
optimally selecting the non-innermost loop having the larg-
est return from vectorization. In addition, a composite
performance metric is needed for capturing the most sig-
nificant cost parameters of vector computer operation and
for predicting the performance improvement that can be
expected if a particular loop is vectorized.

SUMMARY OF THE INVENTION

The present invention is a method of vectorizing a non-
innermost loop of a nested loop which does not rely on loop
interchange. According to the method, the iterative loops of
a nested loop are analyzed to determine if they can be
vectorized (vector legality). If more than one iterative loop
can be vectorized, a selection criteria is applied to select the
iterative loop which would provide the most return from
vectorization (vector selection).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of vectorizing
compiler which can be used to vectorize loops in source
code according to the present invention;

FIG. 2 is a flow diagram of the steps taken by a computer
in compiling source code into executable code;

FIG. 3 is a flow diagram of the steps taken by a computer
in determining whether vectorization of a particular loop
within a nested loop is legal and whether it is optimal;

5

10

15

35

55

4

FIG. 4 illustrates an n-level nested loop;
FIGS. Sa and Sb illustrate statement execution orderings;

FIG. 6 shows an example of a data dependence constraint;

FIG. 7 is a more detailed flow diagram of the steps taken
by a computer in FIG. 3 when determining whether vector-
ization of a particular loop within a nested loop is legal; and

FIG. 8 is a more detailed flow diagram of the steps taken

by a computer in FIG. 3 to select the optimal loop to be
vectorized.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following detailed description of the Drawings,
reference is made to the accompanying drawings which
form a part hereof, and in which is shown by way of
illustration a specific embodiment in which the invention
may be practiced. It is to be understood that other embodi-
ments may be utilized and structural or logical changes may
be made without departing from the scope of the present
invention. The following detailed description, therefore, is
not to be taken in a limiting sense, and the scope of the
present invention is defined by the appended claims.

FIG. 1 shows a computer system 10 having a vectorizing
compiler 12 connected to a storage unit 14. In a sequence
such as is shown in FIG. 2, source code stored in storage unit
14 (such as C or FORTRAN code) is read by compiler 12,
is analyzed, a check is made for vectorizable code and the
code is then compiled. The compiled code is then stored
back to storage unit 14. In the preferred embodiment,
vectarizing compiler 12 is implemented as a software pro-

gram running on a computing platform such as a mainframe
or a workstation.

One embodiment of the sequence of steps performed by
vectorizing compiler 12 is shown generally in FIG. 2. In
FIG. 2, at step 20 compiler 12 reads source code from
storage unit 14 and performs syntax and semantic analyses.
If the analyses complete in a normal manner, intermediate
codcnlspmducadmdstcmdmﬂwrwlthmmmpﬂcrum
back in storage unit 14. Control then moves to step 24.

At step 24, compiler 12 reviews intermediate code 22 for
vectorizable loops. This review includes both control and
data dependence analysis. In particular, vectorizing compiler
searches for nested loops in order to determine whether one
or more of the iterative loops can be vectorized. If more than

one loop of a nested series of loops can be vectorized,
compiler 12 assesses the relative value of vectorization of
each of the vectorizable loops and selects one of the loops
as the optimal loop to be vectorized. In addition to nested
loop vectorization, other classical optimization techniques
may be applied to further improve the performance of the
generated code. Step 24 produces intermediate code 26 from
intermediate code 22 and stores intermediate code 26 either
within compﬂer 12 or back in storage unit 14. Control then
moves to step 28.

At step 28, compiler 12 reads intermediate code 26 into
memory, gcmrates executable code based on intenmediate

code 26 and assigns registers or schedules instructions as
applicable. Compiler 12 stores the resulting execttable code
cither within compiler 12 or back in storage unit 14.

Outer Loop Vectarization Using Direct
Vectorization

The problems associated with vectorization of nested
loops through loop interchange described above can be

alleviated to some extent by maintaining each loop’s posi-

5,802,375

5

tion within the nested loop. One problem with such a direct
vectorization OLV approach is that for any non-innermost
loop the contents of loops internal to that loop may be
varying. Therefore, any method used to vectorize a non-
innermost loop must determine not only the data and control
dependencies of the loop in question but also the execution
constraints imposed by the loops internal to that loop. One
method of doing so is described next.

In one embodiment of the present invention, when com-
piler 12 determines the presence of a nested loop within the
source code being compiled it enters a special routine which
analyzes each iterative loop within the nested loop to
determine if it is vectorizable (vector legality). If more than
one iterative loop is vectorizable, compiler 12 then applies
a selection criteria to sclect an optimal iterative loop from
the plurality of iterative loops (vector selection).

A representative sequence of steps performed by compiler
12 in determining optimal direct vectorization of loops
within a nested loop is shown generally in FIG. 3. In FIG.
3, compiler 12 begins by moving to step 30 where control
and data dependencies inherent to the nested loop are
determined. Control and data dependency analysis is well
known in the art (see, e.g., Ferrante et al.,, The Program
Dependence Graph and Its Use in Optimization, ACM
Transactions on Programming Languages and Systems, pp.
319-349, Vol. 9, No. 3, July 1987 and Ballance et al.,
Program Dependence Graphs for the Rest of Us, Technical
Report 92-10, The University of New Mexico, Department
of Computer Science, August 1992, which are hereby incor-
porated by reference.). In one such embodiment, the control
and data dependency analysis is performed by constructing
a program dependence graph for the nested loop. (The
advantage of the program dependence graph is that it
explicitly represents both control and data dependencies.
Since both dependencies are present in a single form,
transformations like vectorization can treat control and data
dependence uniformly as will be detailed below.)

Control dependency analysis looks at whether execution
of one of the vertices in the graph conditionally depends
upon the execution of another vertex. Data dependence
analysis captures the dependence relationship between suc-
cessive iteration instances of an iterative loop. A data
dependence relation is a read-write ordering (i.e. a
constraint) with respect to a particular data element which
must be followed to preserve the semantic intent of the
original code. Details on data dependence can be found in
the Zima et al. reference cited in the Background of the
Invention.

In the following discussion, the term data dependence
encompasses three classes of data dependence: flow, anti,
and output. Therefore we have defined a symbol 8* which
denotes the class of data dependencies including flow, anti
and output dependencies. Let S and T denote statements in
a loop body. Then a dependence T 8* S is termed backward
iff S lexically precedes T. Otherwise, the dependence is a
forward dependence.

Once the control and data dependencies are kmown,
compiler 12 moves to step 32 and enters an iterative loop to
determine the vectorizable loops. In the example shown in
FIG. 3, the nested loop is an N-level nested loop. At step 34,
a check is made on the kth level loop to determine if it is
vectorizable. If not, control moves to step 38. If, however,
the kth-level loop is vectorizable, control move to step 36
and a designation for that loop is added to the list of
vectorizable loops. Control then moves to step 38.

At 38, a check is made to see whether k=N. If so, the loop
is exited and control moves to step 40. If not, control moves

to 34, k is incremented and the next higher level loop is
examined.

10

15

35

45

55

65

6

At 40, compiler 12 applies selection criteria to the loops
contained in the list of vectorizable loops compiled above
and determines the loop which provided an optimal return
on vectorization. At 42, that optimal loop is vectorized.

Program Model

A program model for direct vectorization will be
described next. That program model will then be used to
further develop the concept of vector legality for direct

vectorization.

In the following discussion the lexicographic ordering is
defined as follows. Let I=(1,,1,, .. .1,) and J=(j,, 325 « + « Jp)

denote vectors of m integers, L J €Z”. We make the
following definitions involving It

I is a zero vector if all its elements are zero.

The leading element of I is the first nonzero element.

lev(l) is the position of the leading element. For example,
if i, is the leading element of I then lev(I)=1. If Lis a zero
vector then lev(D=o-.

The leading negative element of I is the first negative
element.

The leading positive element of I is the first positive
element.

I is lexicographically positive (negative) if its leading
element is positive (negative).

The sign of an integer i is depoted by sign(i) and is one
(1) if i is positive, minus one (-1) if i is negative and
zero if 1=0.

I1is a direction vector if each of its components is one of
the integers 1, 0, —1.

The distance vector d of I, J, is denoted by dist(IJ) and is
defined by dist(1))=J-L

The direction vector 8 of L J, denoted by dir(LJ), is the
sign of the distance vector d=dist(LJ). Thus for all loop
levels, k (1=k=m), 0 is defined as follows:

1ifdy >0
Oifdy=0
-1i#fdp <0

O =

The partial order relation I<, J is defined as follows:

i<y B - - - s G and iP

An n-level nested loop is shown in FIG. 4. In FIG. 4, for
any given value of k (where (1=k=n)), loop L, at level k
contains two instruction sequences B, (where (1=51=2)).
Each B, , consists of a combination of sequences of assign-
ment and conditional statements. Therefore, there are (N, X
N,X . ..xN,) instances of the innermost loop body B, ;

Gamma (I') will be used as a generic term to denote the
iteration space of 1,, (1=k=n). Let S and T be two
assignment statements in the loop body. Then we write S<T
if S lexically precedes T. The lexicographical ordering of
statements is total. Let << denote serial execution order. The
serial execution order of the instances of S €B,, ; is defined
by S(D)<<,S(J) iff I<,J; this can be written as S(I)<<S(J) iff
6=dir(l, J). A similar notation is used to express dependen-
cies. We say that S(I) 6,T(J) iff S(D<<,S(J).

Let G=<V.E,T> be the associated program dependence
graph for the loop model where

V is the set of all nodes in FIG. 4. In addition, V includes
the requisite START, STOP, MULTI and LOOP nodes.

5,802,375

7

E is the set of all dependence edges. E is a subset of
VxXVXZ*XL where L is the set of dependence types:
L ={control, anti, flow, output},

T is a node type mapping. Given a node m €V, T(m)
identifies the type of node m as one of the following:
START, STOP, IF, MULTI, LOOP.

Let ¢ €E, then e is a dependence edge of the form
e=(8,T.,0,00), where S,T eV, with 6eZ" and oe {control, anti,
fiow, output ;. We use e=(5,T,0) as a shorthand to denote a
data dependence edge.

Let G'=<V,E> denote the data dependence subgraph of G
where

E'={e=(5, T,6,0) €E: 0 {anti, fiow, output} }

We augment G' to form a level k data dependence graph. The
data dependence graph for a loop at level k is represented by

G,=<V_E,>, a k-th level dependence graph of GG', where
V,={neV:peB, ; where h=k and 1=1=2} and

E,={e=(S,T,0) €E' and §,T eV lev(B)=k or lev(G)==o}.

A level k program dependence graph is a graph formed by
layering the control and G, subgraphs. Let G,,,=<V
denote a program dependence graph for some loop at level
k where

Ept={e=(S,T,E,a) eE: ¢ eE, or a={controi}} and

Vo ={,veV:30, o (v, B,cz) €E ;. }.

A dcpendcnce path in G,, is a path 15=P(Gp,) of the form
=S:,55, .. . 3, Where §, (1 SrSt) arc assignment statements
and for every q (1=q=t) the dependence S_5*S_,,, where *
€ {control, anti, flow, output }, holds.

Let C(S,G,,) denote the set of all cyclic paths from S to
S in G, where S is a statement in Vk. We have C(5,G,0)
—{n'n=P(GP,L)=Sl,Sz, .. 9,18 a path in G, where t=1 and
S.=S=5}.

The Outer-Loop Vectorization Framework

Two forms of loop structure are popular: the serial loop
and the fully parallel loop (i.c., DOALL). Neither structure
can adequately express the execution order of statements
within a vectorized loop. Consider, for instance, a loop

DO I=1,2

S(I)
T(I)
ENDDO

where S and T represent assignment statements and where
the execution constraints include a forward loop-
independent dependence between S(I) and T{I) but where
S(I) and T(I) are separately vectorizable.

If this is declared as a serial loop then the execution order
is

S(1)->T(1)—=S2)y->T(Q2),
which does not allow any opportunity for vectorization. On
the contrary if this is declared as a DOALL loop, then the
two threads (S1—T1) and (S2—-T2) can be executed in
parallel. Yet, neither of these two lexical structures permit
the user to specify a vectorization of the form:

Step 1: Vector execution of S(1) and S(2)

Step 2: Vector execution of T(1) and T(2)
which is needed to vectorize within the above execution
constraints. Note that Step 1 must be totally compileted
before Step 2 can begin execution. In other words, there
ought to be four execution orderings: S(1)—-T{(1), S(1)-T
(2), S(2)—T(1), and S(2)—T(2). The serial loop syntax does

10

15

35

45

35

65

8
not implement the 5(2)—=T(1) part, despite implementing
such unwanted orderings as $(1)—=S(2) and T(1)—T(2). The
DOAILL loop misses the S(1)=T(2) and S(2)-T(1) con-
straints.

In light of these shortcomings, we propose the DOVEC
construct which precisely implements the above four (and
only four) execution orderings. Syntactically, the DOVEC
construct uses the word ‘DOVEC’ instead of ‘DO’ in the

loop header. DOVEC emulates the effect of vectorization of
a loop at a particular level in the nested loop.

Vector Execution Ordering Rules: A Basic
Constraint

First, we consider a single DOVEC loop without any
inner nesting depth, i.c., a single level loop, with 1 as the
iteration count and two statements S and T constituting the
loop body. Assume S lexically precedes T. Let i, and j, be
two instances of the I trip count. Thus, 1, J €I'. Let vl denote
the degree of parallelism in a hardware vectorizer {e.g., with
a 64-clement vectorizer, vl would be 64). The vector execu-
tion ordering constraints (v*') of this single loop is given as
follows:

1. 8Gp) < TGy @) & [H])
2. Wip) <SG W i) 2]
3. Wi;) < Wjiy) if il 2 [Fvi]
4. SGip) < SG;) W [igvi] S [iwvi]

where a vl of one corresponds to a serial execution order and
where, when vl is very large (1.¢., approaching infinity), then
the condition (1) above is trivially implied while the con-
dition (2) cannot be satisfied. Thus, with the generic
DOVEC construct, in situations where vl can be arbitrarily
large, the condition (2) can never be met.

This is not true, however, for a mixed loop nest. A mixed
loop nest is a nest of loops consisting of one or more DO
loops and a single DOVEC loop. This is the situation that
arises when one loop out of the nested loop is vectorized. Let
(L1, - thnLvLa-n - L) denote a mixed loop nest
whurcthcl loop L, is aDOVEC loop. Every other loop in
the mixed nest is a DO loop. Let B(I) denote an instantiation
of the loop body of L,.

Definition 1 (Vector Execution Order: v,)
Thc vector execution order at level 1 for L,, denoted by

v,”, is defined by the following rules (v, is a short hand for
the vector execution order constraints at level 1 when vl is

infinitely large):

1. If I and J are index values such that I<,J where k#1,
then all iterations of B(I) shall be executed before the
iteration instance B{(J).

2. If =J; S and T are statements in B; and S<T, then
instance S{I) of S shall be executed before the instance
T(I) of T.

3. Let I and J be index values such that I<,J. Let I'=(i, .i,,
voe g 150y gy oo sl)y T=000 2000100015 - -« - Jm) 2D
statement S<T in B.

3.1 X I'=J', then S(I) shall be executed before T(J).
3.2 I I'<,J where 1<k=m, then the iteration B(I) shall
be executed before the iteration B(J).
3.3 K J'<,I' where I<k=m, then the iteration B(J) shall
be executed before the iteration B(I).
For example, consider the mixed loop nest below:

DOII=1,2
DOVECL =1, 2
DOL=1,2

5,802,375

9
-continued
S{Ih 121 13)
T{,, L, I;)
ENDDO
ENDDOVEC
ENDDO

The mixed loop nest is of three levels, of which the
innermost and outermost level loops are DO-loops and the
middle loop is a DOVEC. This would be equivalent to direct
vectorization of the middle loop. FIG. Sa shows the execu-
tion order for serial execution of the above loop nest without
vectorization (treating DOVEC as a simple DO loop). FIG.
5k shows the execution order after direct vectorization of the
middle loop. It should be noted that FIG. 5b shows two serial
ordering edges that are no longer in the vector execution
order. It is the detection of these missing edges and the
determination of whether they are critical to existing data
dependencies which drives direct vectorization.

Vector Legality

The transformations necessary to perform innermost loop
vectorization have been well studied (see, e.g., either of the
Wolf or the Zima et al. references cited in the Background

of the Invention). However, the feasibility of vectorizing a
non-innermost loop has not been addressed and is the focus
of this section. This section will develop a framework to
determine when it is feasible to vectorize an outer loop.
Vectorization of a loop at level k, L, requires ensuring that:
1. The data dependence relation (generated by the loop) is
not violated by the constraints of v,.
2. There is no dependence cycle within the statements in
the loop and all dependencies are forward.
If so, we can rewrite the loop body with a sequence of vector
statements.

We focus on condition (1) and derive a condition for
which v, of all statement instances at L, is semantically
- valid. L, being non-innermost doesn’t change the applica-
bility of statement reordering and loop distribution to satisfy
condition (2). The following theorem ensures (G, contains
the necessary data dependence edges to verify whether or
not v, violates a program semantic.

Theorem 1

The execution order constraints imposed by E-E, are
satisfied by v,.

Proof

Choose an arbitrary e eE'-E,. Let e=(S,T,0). Then choose
any L J eI such that sign (J-I)=0. We will show that ((S, I),
(T, 1)) ev,- That is, that SO)<T(J) is in the vector execution
order v,. Let h=lev(0). Since e ¢ E,, h<k or h>k (and hs#).
But by rule 1 of the definition of v, in Definition 1 above,
h ¢ {eok}—>S(D<T().

In essence Theorem 1 argues that if a data dependence
edge, e, is carried by an outer loop, L., where (lev(e)<k),
the dependence will be satisfied by serial execution of that
outer loop. I, however, ¢ is camried by an inner loop
(lev(e)>k), v, will not disturb the serial execution order of its
inner loops. In either case, e can be ignored. For example,
consider the following nest:

DO1=1, 100
DO J=2, 100

ALY) = AAQT - 1)
ENDDO
ENDDO

The nest has a recurrence generated by the inner do-j loop.
However, since E,;=¢, the recurrence/edge can be ignored.
Given that we know some of the data edges to include for
legality test of v,, let us now characterize some of the data
dependence constraints that will be violated by v,.

10

15

35

45

35

65

10

Definition 2

A dependence S, 8* S, is k-vectorization preventing iff v,
violates the data dependence.
Theorem 2

Let O be the direction vector associated with a dependence
S & Tinloop L,. Let i, i €0, denote repetition of i a total
of h times. If h is zero then i ¢6. © is k-vectorization
preventing if 8=(0*1, 1, 0%, -1, . . .) where h=0.

Proof

LetI=(i,) ... dp oo o sipy.c.0and J=(J . o i e o o Jpo
. ..) be two arbitrary iteration vectors in I' such that sign
(J-1)=6. Thus i.<j, and i,>j,. Hence I<,J and S(D<T(J). We
will show that v, will execute T(J) before S(I). Let
I=(i,, ... dp 1 Odpegs - - -)ANAT=(y, « o i 190Jpggs « « <)-
Since i=j, where 1=I<h and j,>i,, we have I'<.J and by rule
3.3 of the definition of v, in Definition 1 above, T(J) will be
executed before S(D).

Theorem 2 identifies the set of constraints in the iteration
space which will be violated by v,. These constraints effec-
tively inhibit vectorization along the k-th dimension. Sup-
pose a data dependence constraint imposes an ordering in
the iteration space as shown in FIG. 6, v, will violate the
constraint I<,J (with i,<j, and i,>j,) by executing J before
L
Lemma 1

E, contains all the potential k-vectorization preventing
dependencies for v,.

Proof

For any arbitrary edge e=(5,T,0), we have lew(6)=k. By
definition of E,, ¢ eb,.

Let B,

denote a set of k-vectorization preventing dependence
edges in E,, where E,/={¢ €E,:e=(S5,T,0) and O 1s
k-vectorization preventing}. The following theorem estab-
lishes that a loop L, is vectorizable if G, contains no cycle
and there exists no k-vectorization preventing dependence in

G
Tﬁgm'am 3

Given (1) there are no cycles in G; and (2) E/=0, it
follows that for any ¢ compatible with ﬁ:, v,(0) satisfies all
data dependencies and will not violate the program semantic
(i.e. after statements are reordered according to G, vector-
ization of L, is legal).
Proof

Since control dependencies can be converted to data
dependencies without 1oss of generality, we will assume that
E,,=E,. Suppose E;”=0 and v, violates the program seman-
tic; we will show that there exists a cycle in G,,,. The idea
that v, violates the program semantic implies that there is a
serial ordering S(D<<,T(Y) for some I, J el and S,T €V, and
that this order must be retained because of the presence of
dependencies. v,, however, does not retain this order, i.e.
((S,.D,(T.J)) ¢v,. By theorem 1 above, e=(S,T,0) eE,. If 5=T
then (S,S,0) is a cycle in GJE,Jt and the proof is done. Suppose
that S#T. Then lev(0)» since S<T implies ((S,I), (TJ)) ev,
(rule 2 of the definition of v, given above), contradicting the
hypothesis; and T<S is inherently impossible. Therefore,
lev(0) must be k. Given that ¢ ¢ E;°, suppose

case S<T: this is not possible since ((S,I), (TJ)) ev, by rule

3.1 and 3.2 of the definition of v, above (and ¢ ¢E.°).

case T<S: for some % in G,, where ¢ er. If e C(S,Gp
then T and S can be reordered since lev(0)=k. This
contradicts the hypothesis. Therefore T must be in
C(S,G,.). We conclude that there exists a cycle in G.
Therefore, through Theorem 3 we know that when the
ordering imposed by the vector execution order at a par-
ticular level is a superset of the ordering imposed by the
program dependencies, the loop at that level can be vector-
ized.

5,802,375

11

One embodiment of the sequence of steps 30 through 38
taken to determine vector legality in FIG. 3 is shown in FIG.

7. In FIG. 7, at 50 compiler 12 prepares a program depen-
dence graph (PDG) for the nested loop. As detailed above,

the PD(provides a picture of both the data and control
dependencies in one graph. Once the control and data
dependencies are known, compiler 12 moves to step 52 and
enters an iterative loop to determine the vectorizable loops.
As in the example shown in FIG. 3, the nested loop is an
N-level nested loop. At step 54, a level dependence graph for
level k is extracted from the program dependence graph.
(The level dependence graph G,,, is described at the top of
page 12. Each level dependence graph includes dependence
edges relevant to vectorization of the nested loop at that
level.) Once G, is extracted from the program dependence
graph, Theorem 1 guarantees that G,, captures all the
control and data dependence edges that the compiler must
consider to safely vectorize the kth loop.

At step 56, the level k dependence graph is examined for
k-vectorization preventing edges. For example, in FIG. 5b if
you are going to vectorize the outer loop you must make sure
that there are no dependence edges indicated at the the
crossed-out edges. If there are such edges (termed
k-vectorization preventing edges), then according to Theo-
rem 2 the nested loop cannot be vectorized at level k; control
then moves to step 62. If, however, there are no
k-vectorization preventing edges, the nested loop may still
be able to be vectorized at level k and control moves to step
58 for a dependence cycle check

At step 58, the level dependence graph for a level k is
examined for dependence cycles. For instance, the graph can
be fed to a cycle detection algorithm such as that described
in Tarjan, “Depth First Search and Linear Graph
Algorithms”, SIAM Computing, 1, pp. 146-60. I there are
any level k dependence cycles, the nested loop cannot be
vectorized at level k and control moves to step 62. If,
however, there are no level k dependence cycles, the nested
loop can be vectorized at level k and control moves to step
60. At 60, a designation for the kth level loop is added to the
hist of vectorizable loops and control moves to step 62.

At 62, a check is made to see whether k=N. If so, the loop
is exited.

Direct vectorization therefore provides a mechanism for
vectorization of non-innermost loops without the overhead,
including the tracking of data dependencies, imposed by the
loop mterchange schemes described above.

Vector Selection

10

15

25

35

45

The previous section developed a framework for legality

of outer loop vectorization. Since there can be only one loop
in the nest that can be vectorized, we now focus on the
question which loop to vectorize when there is more than
one loop choice. Vectorizing a loop implies that a vector
sequence of vector instructions is generated for that loop.
Different loops require different vector sequences and the
performance of the loop depends on the selected vector
sequence.

There are many parameters in each loop contributing to
the differences among the loops. We call these parameters
vector variants and they inciude:

Trip count(T): T is the length of the loop.

Gather/Scatter(GS): GS is indirect load or store, e.g., in
A(INDX(T)).

Conditional(C): C indicates whether or not the vector
sequence is conditional.

Stride-1{V): V is the physical stride between consecutive
memory locations.

55

12

Reduction(R): R is a vector code sequence which
re-associates the computation; refer to Table 1 for an

example of vectorization of a vector reduction loop.

TABLE 1
DOi=1, 512 tmp(0) = s
s =5+ ai) DOi=1, 512 64
ENDDO tmp(i:++63) = tmp(izi+63) + a(i:i+63)

ENDDO
§ = tree__height__reduction(tmp(1:64))

Let A={T, GS, C, V, R}. With two loops to choose from,
there are IAIxIAl combinations that need to be considered in
order to select which loop to vectorize. We will show a few
combinations using small code fragments.

REAL 2a(1000,1000), b(1000,1000), c(1000)
DOi=1, 10
DOj=1, 10
a(1)) = a(,j) + 1
ENDDO
ENDDO

Assume the array element’s layout is column-major.
Vectorizing the i loop is a better choice because “i” has V
(stride one access).

The trip count of the loop, T, is also another important
parameter. Suppose that T is much larger than T,,

DOi=1, 10
DO j = 1, 100

a(i) = a(i)) + 1
ENDDO
ENDDO

then the cost trade off between V and T must be determined.
Cost trade-off must also be made between a vector loop,
i, and a reduction loop, j. For example, in the nested loop

DOi=1, 100
DO =1, 100

e(1) = o(3) + a(ij)
ENDDO
ENDDO

vectorizing loop-i is mare profitable. However, if T, is much
larger than T, for example, in the following nested loop

DOi=1, 10
DO j = 1, 1000

(i) = (i) + a(i))
ENDDO
ENDDO

then vectorizing loop-j would be more profitable.
Gather/scatter and conditional operations could also have
different impacts on loop choice. For example, in

DOi=1, 10
DO j = 1, 1000
IF (c(i)) THEN

a(i,j) = b(i,ndx())
ENDIF

ENDDO
ENDDO

a decision to vectorize loop-i results in vector accesses
which are strider but are conditional. A decision to vectorize
loop-j avoids the condition problem (¢(i) is invariant with
respect to loop-j) but the access to b(i,indx(j)) requires an
additional vector load.

Vector Selection Metric

From the discussion above it is apparent that, in selecting
a loop to be vectorized from a set of n loops, there are |AF"

5,802,375

13

combinations of cost trade-offs that must be considered. We
propose a metric which is computationally less intensive
than the exhaustive computations of all combinations. This
metric computes the overhead cost associated with each loop
if it were to be executed as vector. The overhead of each loop
is then compared to decide which loop should be vectorized.
There are three different sources of vector overhead in this

metric: vector loop overhead (VLO), vector start up (VSC)
for each vector operation, and memory access overhead
(MO). VLO is the cost needed to strip-mine the loop when
its trip count is larger than the vector length (VL) of the
vector register. VSC is overhead needed to initiate the vector
instruction. MO is overhead for non-unit stride access.

The vector variants defined in A above can be equated to
overhead. T and V have a direct relation to VLO and MO,
respectively. Others need to be converted. C implies the
memory operations it controls are being converted to GS.
GS is treated as two MO’s. R translates to an MO plus initial
set up cost plus final reduction cost. Table 2 below shows the
summary of the various costs. Unit stride is used as a base

unit for memory operation.

TABLE 2
Overhead Value When Comment
VLO 0 trip < VL no loop structure
cl tip & VL remaining vector and branch
back
VSC c2 always vector startup cost
ML VSC unit stride memory Joad
VSC+c34c4 reduction ¢3: setup c4: final reduction
VSC4ch pop-unit stride unit stride used as base
MS VSC non-unit stride memory store

We now define the metric as

O=(VLOHT/VLY*(MLAMS)VT,

where (T/VL) is the number of vector trips. The metric
computes the overhead associated with each loop of interest.
Since the metric is measured in term of overhead, preference
will be given to loops with lower overhead.

Let us apply the metric to the previous examples. Assume
that VLO=20 and VSC=5.

DOi=1,10
DOj=1,10

a(1,)) = a(iy) + 1
ENDDO
ENDDO

then,

O=0+1*(VSC+VSCO)Y10
OAOH1¥(VSC+eHVSCHV10

and, since ¢5>{), loop-i is a better choice.
On the other hand, for the nested loop

DOi=1, 10
DO j =1, 100
adij) = a(1y) + 1
ENDDO
ENDDO

10

15

20

35

45

55

14
-continued
O; = (0+1%VSC+VSC)y10
Q; = (0+1%VSC+c5+VSC))/100

= (4+ 2%5)100

and loop-j is the better choice as long as the non-unit stride
latency is less than 30. In the nested loop

DO i= 1, 100
DO j=1, 100
c(i) = c(i) + a(L,))
ENDDO
ENDDO

then,
0O; = (VLO+2*%2VSC + VSC)y100= 50/100

O; = (VLO+2%VSC+c3+c4+VSC+c5+VSCHY100
= (50+C3+C4+C5)100

and, therefore, loop-i is better.
In the nested loop

DOi=1,10
DO j =1, 1000

c(i) = c(i) + a(1))
ENDDO
ENDDO

then,
O; = (0+1%2VSC + VSC)V10 = 15/10

O; = (204 16%(VSC +c3 + ¢4+ VSC +¢3 + VSCHY1000
= (2604 16%(c3 + c4 +¢5))¥1000

and, therefore, loop-j is the better candidate if the overhead
of reduction and non-unit stride for a(i,j) is less than 77.5.
Finally, in the nested loop

DOi1=1,10
DO j=1, 1000
IF (c(1)) THEN
a(i) = biiindx(j))
ENDIF
ENDDO
ENDDO

then,
O; = (0+1%VSC+VSC+c5))VI10=(30+c35)10

0; = (VLO+16(VSC + VSC +c35))/1000
= (500 + 16*c5y1000

and loop-j is a better choice.

One embodiment of the above selection metric as applied
to steps 40 and 42 in FIG. 3 is shown in FIG. 8. In FIG. 8,
at steps 70 and 72 compiler 12 calculates a value for each of
the vectorizable loops using the above metric. This contin-
ues until the list of vectorizable loops is exhausted. The
vectorizable loop having the highest value metric is then
selected as the loop to be vectorized. The loop to be
vectorized is examined at 74 to determine if statements
within the loop should be reordered. Statement reordering is
crucial in vectorizing loops which may otherwise not be
vectarizable. For instance, in the code fragment produced
below the outer loop DO-i is not vectorizable because there
is a flow backward induced by B.

DOI=1, 100
DO J =2, 100
ALY = ABAY)
Al + L)) =g(ALT - 1)
ENDDO
ENDDAO

The loop is, however, vectorizable with statement reorder-
ing.

5,802,375

15

If the statements do not have to be reordered, control
moves to 78. If, however, a determination is made at 74 that
statements within the loop should be reordered, control
moves to 76, statement reordering occurs in a manner known
in the art and control moves to 78. At 78 vectorized code for
the nested loop is generated and the routine is exited.

Experiments and Observations

This section presents experimental results of outer loop
vectorization opportunity and performance using Perfect
Benchmark code.

Experiment Description

Our environment is a Cray Y-MP8 (shared-memory mul-
tiprocessor with eight PEs). Each PE has 64-element vector
capability. Total system memory size is 256 MB arranged in
256 banks. The CPU clock cycle is 6.0 nanosecond. The
Unicos operating system runs on this eight-processor
platform, which supports autotasking. The Cray Fortran-90
environment was used. That environment includes state-of-
the-art dependency analysis, loop restructuring technigues
and can detect many DOALL loops thereby generating
parallel SPMD programs. The OLV framework is imple-
mented in the restructuring phase of CF90.

The restructuring phase of CF9) consists of many trans-
formations. Among the transformations, two relevant trans-
formations which impact the data being collect for QLV are
perfect-nest-creation and loop-collapse. Perfect-nest-
creation uses loop distribution to create a perfect nest out of
non-tightly nested loops. A non-tightly nested loop will be
made into a perfect nested loop if distribution does not
require any scalar expansion. Loop-collapse reduces the
nesting depth of a lJoop nest by making the trip count of a
particular loop, L', longer. This transformation always
improves the performance of the nest since the resulting
collapse nest has less loop control overhead. Furthermore, a
longer trip count is desirable if L' is vectorized. Perfect-
nest-creation impacts the frequency of the number of imper-
fect nests and loop-collapse reduces the number of outer
loop candidates available for vectorization.

Speedup
For comparison purposes, we instrumented two compilers
CF90-I and CF90-0. CF90-1 vectorized only the innermost

loop, while CF90-O included the outer loop vectorization
framework. Performance of the generated code by the two

compilers was compared using different input samples. The
input samples included selected subroutines from the Perfect
Club benchmark and the benchmark itself. Speedup is
computed as (time of code generated by CF90-I)/(time of
code generated by CF90-O).

To demonstrate the applicability of OLV at the subroutine
level, we selected 3 subroutine samples with the following
properties:

The nature of the computation of each routine is unique

Each routine has at least one outer loop was vectorized

The nest involving OLV was non-tightly nested

10

15

25

35

45

35

16

The first example tested was the Perfect Club Code 1
benchmark shown below. For Perfect Club Code 1, a
speedup of 2.04 was calculated. CF90-O vectorized DO-2
loop, while CF90-I vectorized DO-1 loop. Both loops have
the same trip count. In this case, vectorizing the outer loop
is better since the inner loop has to perform vector reduction
while the outer loop does not.

———
SUBROUTINE MATVEC (A, B, C)
DIMENSION A(12, 12),B(12)\C(12)
COMPLEX B, C, SUM
DO 2 El, 12
SUM = CMPLX(0.0.)
DO 1 k1, 12
SUM=SUM+CMPLX{A(LJ)*REAL(B())), A(LJ}* AIMAG(B()))
1 CONTINUE
C(T) = SUM
2 CONTINUE
RETURN
END

The second example tested was the Perfect Club Code 2
benchmark shown below. For Perfect Club Code 2, a
speedup of 1.2 was calculated. CF90-O vectorized DO-3
loop, while CF90-1 vectorized the DO-1 and DO-2 loops.
Speedup can mainly be attributed to longer vector length
with no additional vector overhead.

SUBROUTINE SUMPLS(FLN,APAM PLN)
SR COMPUTES FOURIER MULTIPLIERS

IN AP COEFFS. OF SYMMETRIC LEGENDRES

IN AM COEFFS. OF ANTISYM. LEGENDRES
DIMENSION AP(31), AM(31), 1PLN(32,31), FLN(31,31)
COMPLEX APAMFIN

DO 3 L=1, 31

CRP=0.

CIP=0.

DO 1El1, 31,2

CRP=CRP+PLN(LL)* REAL(FLN({L))

CIP=CIP+PLN(IL)*AIMAG(FLN(LL))
1 CONTINUE

CRM=0.
CIM=0.
DO 21=2, 30 2
CRM=CRM+PLN(IL)* REAL{FLN(LL))
CIM=CIM+PLN(LL)* AIMAG(FLN(LL))
2 CONTINUE
AP(L)=CMPLX(CRP+CRM,CIP+CIM)

AM(L)=CMPLX(CRP-CRM,CIP-CIM)
3 CONTINUE

RETURN
END

oRoNe

The last example tested was the Perfect Club Code 3
benchmark shown below. For Perfect Club Code 3, a
speedup of 15.24 was calculated. CF90-Q vectorized DO-4

and DO-8 loops, while CF90-I vectorized DO-3, DO-7 and
DO-6 loops. Speedup can be attributed to much longer
vector length and to the fact that the variable SUM is treated

as a vector invariant. This results in significant vector load
and store savings.

0O

SUBROUTINE VERTIC(FEIGG,EIGGT,DOTPRO,MODS, INOUT)
DIMENSION EIGG(12,12), EIGGT(12,12), DOTPRO(12)

COMPLEX F(961 , 12 },COL(12 },SUM

INOUT=-1 TO OBTAIN VERTICAL MODE EXPANSION

INOUT=+1 TO OBTAIN SPET. COEFS. FROM VERTICAL EXPANSION

IF(INOUT)10,20,30

5.802,375

18

17
-continued

-
10 CONTINUE

DO 4 I=1, 961

DO 2 MOD=1,MODS

SUM=0.,0.)

DO 1 LEV=L, 12

SUM=SUM+CMPLX(EIGGT(LEVMOD)* REAL(F(LLEV)),
1 EIGGTLEVMOD)*AIMAG(F(LLEV)))
CONTINUE
COL(MOD)=CMPLX(DOTPRO(MOD)*REAL(SUM),
DOTPROMOD*AIMAG(SUM))

DO 3 MOD=1,MODS

F(LMOD)=COL{MOD)

CONTINUE

RETURN

CONTINUE

DO 8 I=1, 961

DO 5 MOD=1,MODS

COL{MOD)=F(IMOD)

DO 7 LEV=L, 12

FLLEV)=0.,0.)

DO 6 MOD=1,MODS

3 -

E8 s w

LA

FLLEV)}=F(LLEV+CMPLX(EIGG(LEV,MOD)*REAL(COL(MOD))

1 FIGG(LEVMOD)* AIMAG(COL(MOD)))
CONTINUE

CONTINUE

CONTINUE

RETURN

END

oD ~J1 O™

As noted above, our framework was implemented in
CF90, the Cray Fortran 90 compiler. Experiments were
performed on a Cray YMP-8 using a modified version of
CF90 to allow compilation with or without OLV. OLV
opportunity was found in 305 of 1168 vectorizable nests in
the Perfect Club Code benchmark, with OLV actually
selected for 66 nests. Significant (up to 15x) speedup at the
subroutine level of some routines were also observed. Simi-
lar results can be expected from implementation of the OLV
framework in vector computing systems running Fortran of
other programming languages.

It is clear that direct vectorization of non-innermost loops
provides an advantageous increase in the efficiency of loop
execution. This application is intended to cover any adap-
tations or variations of the present invention and is therefore
limited only by the claims or equivalents thereof.

What is claimed is:

1. A computer-implemented method of vectorizing a
nested loop having a plurality of iterative loops, the method
comprising the steps of:

analyzing each iterative loop to determine if it is

vectorizable, wherein the step of analyzing each itera-
tive loop includes the steps of:

preparing a program dependence graph for the nested
loop, wherein the program dependence graph explic-

itly represents both control and data dependencies;
and

extracting, from the program dependence graph, a level
dependence graph for each of the plurality of itera-
tive loops, wherein each level dependence graph
includes all control and data dependencies relevant
to vectorization of the nested loop at that level;

determining for each iterative loop whether depen-
dence edges in its respective level dependence graph
include a vectorization preventing dependence edge;

determining for each iterative loop whether there are
dependence cycles within its respective level depen-
dence graph; and

if an iterative loop from the plurality of iterative loops
has no vectorization preventing dependence edges
and no dependence cycles within its respective level

dependence graph, indicating that the iterative loop
is vectorizable; and

if more than one iterative loop is vectorizable, applying a

selection criteria to select an optimal iterative loop
from the plurality of iterative loops.

2. The method according to claim 1 wherein the step of
applying a selection criteria comprises the steps of:

calculating a metric for each iterative loop in the plurality

of iterative loops; and
choosing the iterative loop with the best metric.
3. A computer-implemented method of vectorizing a
nested loop having a plurality of iterative loops, including a
kth-level iterative loop, wherein k is an integer greater than
one, the method comprising the steps of:
preparing a program dependence graph for the nested
loop, wherein the program dependence graph explicitly
represents both control and data dependencics;

extracting, from the program dependence graph, a level
dependence graph for the kth-level iterative loop,
wherein the level dependence graph includes all control
and data dependencies relevant to vectorization of the
nested loop at level k;

determining whether any dependence edges within the
level dependence graph are k-vectorization preventing;

determining if there are any dependence cycles within the
level dependence graph; and

if none of the dependence edges are k-vectorization

preventing and if there are no dependence cycles within
the level dependence graph, vectorizing the kth-level
loop.

4. A computer-implemented method of vectorizing a
nested loop having a plurality of iterative loops, the method
comprising the steps of:

preparing a program dependence graph for the nested

loop, wherein the program dependence graph explicitly
represents both control and data dependencies;
extracting, from the program dependence graph, a level
dependence graph for each of the plurality of iterative
loops, wherein the level dependence graph includes all

35

45

35

3,802,375

19

control and data dependencies relevant to vectorization
of the nested loop at that level;

determining for each iterative loop whether dependence
edges in its respective level dependence graph include
a vectorization preventing dependence edge;

determining for each iterative loop whether there are
dependence cycles within its respective level depen-
dence graph;

building a list of those iterative loops having no vector-
ization preventing dependence edges and no depen-
dence cycles within their respective level dependence
graphs;

selecting an iterative loop from the list of iterative loops;
and

vectorizing the selected iterative loop.

5. The computer-implemented method of claim 4 wherein
the step of vectorizing the selected iterative loop comprises
the steps of:

determining if statements within the selected iterative

loop should be reordered; and

if the statements should be reordered, reardering the
statements.
6. The computer-implemented method of claim 4 wherein

the step of selecting an iterative loop from the list of iterative
loops comprises the steps of:

5

10

15

25

20

calculating a metric for each iterative loop in the list of
iterative loops; and
choosing the iterative loop with the best metric.
7. The computer-implemented method of claim 6 wherein
the step of vectorizing the selected iterative loop comprises
the steps of:

determining if statements within the selected iterative
loop should be reordered; and

if the statements should be reordered, reordering the

statements.

8. For computer program code having a nested loop,
wherein the nested loop includes a plurality of vectorizable
iterative loops, a computer-implemented method of select-
ing an optimal vectorizable iterative loop from the plurality
of vectorizable iterative loops, the method comprising the
steps of:

calculating a metric for each of the plurality of vectoriz-

able iterative loops, wherein the step of calculating a
metric includes the step of calculating overhead for an

iterative loop as:
O~VLOHT/VLY* (ML+MSYT;

where (T/VL) is the number of vector trips; and
selecting the iterative loop having the best metric.

* * % ¥k ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,802,375
DATED : September 1, 1998
INVENTOR(S) : Viet N. Ngo, Eagan; Wei-Tek Tsai, New Brighton, both of Minnn.

It is certitied that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

At Col. 6, line 47, please delete equation after ellipses “..., 1,, = ., ,and i, > j,.” and
msert --..., 1,, = J,, and 1, < j, --

At Col. 6, line 63, please delete “iff S(I)” and nsert -- 1f S(I)--
At Col. 7, line 20, please delete “and 1>1>2}" and insert -- 1</<2} --
At Col. 10, line 29, please delete “Let E,” and insert -- Let E? --

At Col. 20, line 23, please delete “ O, = (VLO + (T,/VL)y*(ML+MS)/T, ©
and mnsert missing bracket in claim -- O, = (VLO + (T,/VL)*(ML+MS))/T, --

Signed and Sealed this

Fourteenth Day of December, 1999

Allest. W

Q. TODD DICKINSON

Acting Commissioner of Potents and Trademaris

Anesting Officer

Wil P e s e ., PSS . i _ A el N — e — ™ - e o L .

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

