USOO5799192A

United States Patent (9 1] Patent Number: 5,799,192
Yasuda (451 Date of Patent: *Aug. 25, 1998
[54] TOOL ENCAPSULATING METHOD AND 5,551,030 8/1996 Linden et al. ...oeeuvevnerveeerirenenn, 395/613
APPARATUS THEREOF FOREIGN PATENT DOCUMENTS
[75] Inventor: Mitsuhiro Yasuda. Itami, Japan 334018 2/1991 Japan .
4257973 9/1992 Japan .
[73] Assignee: Mitsubishi Denki Kabushiki Kaisha.
Tokyo. Japan OTHER PUBLICATIONS
. : :) Goeting, Richard. “Viewlogic Adds to Framwork.” Elec-
[*] Notice: Tlus‘ patent]lissu?d 0}%; mnctl;nug% pCrl{;Sli tronic Engineering Times. pp. 1-2. Jun. 21. 1993.
";C;];‘(z’f; ZI:IE iza;lilj}ect ” tl!:; , ; enty year Coelho, D.R.. “VHDL Looks for Open ASIC Library.”Elec-
patent term provisions of 35 U.S.C. tronic Engineering Times, pp. 1-4. Jun. 14, 1993.
154(a)(2). Primary Examiner—Emanuel Todd Voeltz
Assistant Examiner—DPeter J. Corcoran, I
[21] Appl. No.: 738,685 Attorney, Agent, or Firm—QOblon, Spivak. McCleland.
_ Maier & Neustadt, P.C.
[22] Filed: Oct. 28, 1996
[57] ABSTRACT
Related U.S. Application Data The processing contents which change according to the
[63] Continuation of Ser. No. 257,742, Jun. 8, 1994, abandoned. spectfication of the tool encapsulation are provided through
_ o o descriptions in the user interface definition file, the param-
[30] Foreign Application Priority Data eter definition file and the invocation command definition
Jun. 11, 1993 [JP] JAPAD eoooeereeeeeeeeer s, s-140718 1le. The environment file defines if each of the definition
files is to be used or not. The processing system reads the
[S1] IIL. CLS oo eerere e sansesersonsns GOG6F 9/45 contents of the definition files and converts those into the
[S2] US. Cle et crensase s eesssesne sessnons 3957701 function presented by the framework to realize the tool
[58] Field of Searchocooonuecveccessrene... 395/705, 706, encapsulation. The tool encapsulation for the plural kinds of
395/701, 613 frameworks can be realized with a single common descrip-
tion not using extension languages presented by the
[56] References Cited frameworks. so that the tool encapsulation operation for the
plural kinds of frameworks is considerably shortened and
U.5. PATENT DOCUMENTS the maintenance efficiency is also improved.
3,075,847 12/199] Frommecocecrnmcecrssacorsonsans 395/700
5,423,023 6/1995 Batch et al. .oooveereecroneeerronanns 395/401 4 Claims, 10 Drawing Sheets

COMMEN DESCRIFTION 1

ERICTSNG

I OYSTEM Sh

FROCESSING
SYSTEM 33

T RAMEWURR l
A

A

k

,
:.:3

T

ﬁ
LRI NT

CETINITICN
bt

SR A INVCCATION
W || R cousl |
DT HITKN ! .T"E'-J” EF AT
i} L i
h““*-[" R M""T.
~—-ﬁ1! [.-'
1.1 3
L T |
m IO | TR | b
) L FAR

AN W2

U.S. Patent Aug. 25, 1998 Sheet 1 of 10 >,799,192

COMMON DESCRIPTION 1

I

PROCESSING PROCESSING
SYSIEM 3¢ SYSIEM b

FRAMEWORK RAMEWORK |
i A ‘ 3

U.S. Patent Aug. 25, 1998 Sheet 2 of 10 5,799,192

SMULATOR L] |

DISPLAY

DEFINITION
DESCRIPTION

SIMULAIOR

STSTEM CONSTRUGTION

COMPARE

U.S. Patent Aug. 25, 1998

USER
NTERFACE

DEFINITION
Lt

|

PARAMETER
DerINITION

L FILE

Sheet 3 of 10

T00L 100L
CNVIRONMENTY 0 1 \NDEPENDENT DFPENDENT
DEFINITION | PART PART
FILE
20 /b
FRAMEWORK

F7G. 3

5,799,192

INVOCATION
COMMAND
DEFINIION

Lt

U.S. Patent Aug. 25, 1998 Sheet 4 of 10 5,799,192

el . —— R .

.;Following environment variable must not be changed.
EncapSkillDef=nil
EncapFormFunc=t
EncapFieldCheckFunc=nil
EncapParmFunc=t
EncaplnvokeFunc=t
EncapPostFunc=nil
l EncapApplyButton=nil

EncapFormDef= “VirtualTool”
EncapParmDef= “VirtualTool’
- EncaplnvokeDef= “VirtualTool’
EncapLogFile= “VirtualTool.log"
EncapRunDir= ("Virtual/%s" gv_virtualpat)

)
i
!
;
|
|
i
;
t

LG, F b

__-.-I-""-_ - "'l-—-___r

(toggle toggle
?prompt Virtual Simulation Mode”

L I 1 3 I 4 " u

?choices (“Simulationl” “Simulation2

2state '(“siml” “sim2” “sim3")

|

(boolean "boolean

?prompt Virtual Simulation Optional Switch’
state (“ON” “OFF")

)

Simulationd”)

FIG. 6

U.S. Patent Aug. 25, 1998 Sheet 5 of 10 5,799,192

“Virtual Tool Form”

(string 'string
prompt " Tool Name”

Pvalue "Virtual Simulation”
?editable nil
?global ‘gd_string

)

| (file -file

7prompt Data File”

value “~/Virtual/virtual.data”
%global ’gd_file)

i (directory 'directory
?prompt “Pattern Directory
value

i ?global ’gd_directory

|

(integer ’integer

?prompt Virtual Simulation Time [s]’
| Jvalue 0

)

(float ’float
?prompt “Virtual Simulation Count [tu]’
value 0.0

)

Jscale 'scale
2prompt Virtual Simulation Range [0-10]
‘ ?value 0

‘)?range '(0-10)

(cyclic 'eyclic

| ?prompl " Virtual Node”

2choices (“Local Node” “Virtual Nodel™ “Virtual Node2")
?global gd_RunNode

)

(radio 'radio H
2prompt " Virtual Simulation Netlist Format

2choices {“Virtual Net-1" “Virtual Net-2")
2state (“VNETL” “VNET2') N

) Fr7G. 5

U.S. Patent Aug. 25, 1998 Sheet 6 of 10 5,799,192

o — il I — A - — ETELE— o —— E—

-tool ‘gd_string
_datafile ‘gd_file
| -patdir ‘gv_directory’

-simtime EncapFormHandle->integer’
-count EncapFormHandle->float’
-range EncapFormHandle->scale
-nettype "EncapFormHandle->radio
-mode ‘EncapFormHandle->toggle
-option ‘EncapFormHandle->boolean’

LG, 7 :

)

N

virtual.sh-rundir ‘EncapRunDir "-parmfile EncapParmDef ".parm

LG &

U.S. Patent Aug. 25, 1998

(SIART)

Sk WRONME‘Ni
SETTING

FORM DISPLAY &
PARAMETER CHECK

CORRECT
PARAMETER
’

TES

JOOL INTERrACE
| DATA” GENERATION

519 TOOL INVOCATION
COMMAND GENERATION

| Too wocaTony
10 ~J EXFCUTE CONTROL &
TERMINATION PROCESS

Sheet 7 of 10

ENVIRONMENT

DEFINTTON
HILE

JOLR
NTERFACE .
JEFINITION

FILE

PARAMETER
- DEFINITION
FILE

INVOCATION
COMMAND
DEFINITION
FILE

FI1G. 9

5,799,192

U.S. Patent Aug. 25, 1998 Sheet 8 of 10 5,799,192

gy o i =7 il p— e

o) (o)

R ———— —
Tool Name [Virtual Simulation |
|

Data File | ~/Virtual/virtual.data

Pattern Dictionary o |
|

Virtual Simulation Time | 0

Ao, _ i L

Virtual Simulation Count | 0.0

kil ——— . e ey R — T

Virtual Simulation Range |_[{] ,

Virtual Node i virtual Node 1 |

Virtual Simulation Netlist Format € Virtual Net-1 <> Virtual Net-2

Virtual Simulation Mode WM Simulation! [Simulation2 [JSimulation3

Virtual Simulation Optional Switch 1B

FIG. 70

U.S. Patent Aug. 25, 1998 Sheet 9 of 10 5,799,192

PROGRAM Pt
(LANGUAGE b)

(LANGUAGE o)
F RAMEWORK - RAMEWORK
A 3
FIG. 77

BACKGROUND ART

- . Saaas male A

U.S. Patent Aug. 25, 1998 Sheet 10 of 10 5,799,192

(SIART)

INTERFAGE FOR TOOL
INVOCATION INFORMATION
ACQUISITION S|

W

‘

i

CORRECT
PARAME TER
7

YES

GENERATION OF T00L |4
NVOCATION. COMMAND

TOOL INVOCATION &
| AND TS CONTROL

TERMINATION PROCESS 36

END

FrG. 72

BACKGROUND ART

3.799.192

1

TOOL ENCAPSULATING METHOD AND
APPARATUS THEREOF

This application is a Continuation of application Ser. No.
08/257.742. filed on Jun. 8. 1994, now abandoned.

BACKGROUND OF THE INVENTION

1. Fleld of the Invention

The present invention gencrally relates to those which
take the method of framework in the systematization tech-
nique such as the soft development environment and the
CASE (computer aided software engineering). and particu-
larly to a method and an apparatus for encapsulating a tool
for designing an object of design such as the LSI (large scale
integrated) using the CAD (computer aided design) into a
framework for the CAD.

2. Description of the Background Art

FIG. 11 is a block diagram showing a conventional tool
encapsulating apparatus. Various frameworks A, B, . . .
which are presented from different vendors have conven-
tionally been known as the frameworks for the electric
system CAD for designing the LSI. When configuring a
system by encapsulating various tools for designing of the
LST such as simulators into such frameworks A, B, an
engineer programs the programs Pa, Pb. . . . for realizing the
encapsulation specification using unique tool encapsulating

languages (extension languages) a. b, . . . presented by
respective frameworks A, B, . . . Then. by working each
encapsulation program Pa, Pb, . . . on each framework A,
B. ..., each framework A, B, . . . interprets the contents of

each encapsulation program Pa, Pb. . . . and realizes the

function of tool encapsulation.

FIG. 12 is a flow chart showing basic contents of the
processings realized by the encapsulation programs Pa,
Pb. . . . First, the step SI is a step of the user interface for
obtaining the tool invocation information. In this step, all the
information such as parameters required in invoking the tool
is obtained from a user (an LSI designer) through a user
interface display output, for example, for urging the user
input. Next, the step S2 is a step for checking if the
information such as a parameter inputied by the user is
correct or not. If it 1s not correct, the flow proceeds to the
step S3 to perform an error processing. for example. If it is
correct, the flow proceeds to the step $S4 to generate an
invocation command for actually invoking the tool from the
data inputted in the step S1. Next, in the step S5. the
invocation command generated in the step S4 is activated
using the function of the framework to perform execution
control of the tool. When the execution of the tool is
finished. it proceeds to the step S6. where the termination
process 1s executed corresponding to the termination state of
the tool (the normal termination or the abnormal
termination, for example) and the termination state of the
tool is indicated to the user.

In the conventional tool encapsulation apparatus shown in
FIG. 11. the tool encapsulation must be realized by produc-
ing the encapsulation programs Pa. Pb, . . . generally
including the processing procedure in FIG. 12 using exten-
sion languages a. b, . . . presented by the respective frame-
works A. B, . .. for each framework A. B, . . . of different
kind. Accordingly. the language specification must be under-
stood for each framework to produce a tool encapsulation
program. resulting in a problem that the tool encapsulation
requires a great deal of labor. Furthermore. in the program
maintenance, if the same tool is encapsulated in different
kinds of frameworks A, B, if an encapsulation function

35

1)

15

20

25

30

35

45

50

33

65

2

in a certain framework is changed. the same change must be
made correspondingly using different extension languages
in other frameworks, too. resulting in a problem that the
overlapping maintenance work requires a great deal of labor.

SUMMARY OF THE INVENTION

According to the present invention. a method of encap-
sulating a tool for designing an object of design with CAD
in a framework for the CAD comprises the steps of prepar-
ing a file for providing a description defining a tool encap-
sulation specification dependent process in which process-
ing contents variously change according to encapsulation
specification of the tool. preparing a processing system
defining a framework function dependent process in which
processing contents are determined depending only on a
function of the framework but independently of the encap-
sulation specification of the tool and also defining a proce-
dure for making the framework execute the framework
function dependent process and the tool encapsulation speci-
fication dependent process defined by the description in the
file, and executing encapsulation of the tool into the frame-
work by providing the file to the framework to which the
processing system is applied. |

According to the first aspect of the tool encapsulation
method of the present invention, the file for providing the
description defining the tool encapsulation specification
dependent process in which the contents of process vari-
ously change according to the specification of the encapsu-
lation of the tool is provided to arbitrarily and variously

“determine the specification of the encapsulation of the tool

through the file, and the framework function dependent
process in which the contents of processing are determined
depending only on the function of the framework indepen-
dently of the specification of the tool encapsulation is
defined in the processing system, and the procedure for
making the framework execute the framework function
dependent process and the tool encapsulation specification
dependent process is also defined in the processing system.
Therefore, only by previously preparing individual process-
ing systems corresponding to each of the plurality of kinds
of frameworks. the same tool encapsulation can be realized
in the plural kinds of frameworks only by making a descrip-
tion in a single file.

Accordingly, the tool encapsulating operation can be
remarkably simplified and the maintenance operation also
becomes considerably easier.

Preferably, the step of preparing the file includes at least
one of the steps of preparing a user interface definition file
providing a description for defining a user interface for
obtaining predetermined information necessary to invoke
the tool from a user, preparing a parameter definition file for
providing a description defining a parameter for transferring
the predetermined information to the framework as tool
invocation information. and preparing an invocation com-
mand definition file for providing a description defining
generation of a tool invocation command defining an invo-
cation sequence of the tool.

According to the second aspect of the tool encapsulation
method of the present invention, at least one of the step of
preparing the user interface definition file. the step of
preparing the parameter definition file and the step of
preparing the invocation command definition file is provided
as the step of preparing a file. Therefore, a file can be newly
provided, or the described contents in the file can be added,
changed or deleted only in a necessary file.

Preferably, the tool encapsulation method further includes
the step of preparing an environment definition file for

3.799.192

3

providing a description specifying as to whether each of the
user interface definition file, the parameter definition file and
the invocation command definition file is to be used or not.
and the step of executing encapsulation of the tool includes
the step of executing encapsulation of the tool in the
framework with any of the user interface definition file. the
parameter definition file and the invocation command defi-
nitton file which is specified to be used by the environment
definition file by providing the environment definition file to
the framework to which the processing system is applied.

According to the third aspect of the tool encapsulation
method of the present invention. the tool encapsulation is
executed in the framework using only a desired one(s) of the
user interface definition file, the parameter definition file and
the invocation command definition file according to the
contents of the environment definition file. Therefore, an
encapsulation program in an extension language, for
example, which is separately prepared can also be used in
part where the file is not used. and the contents of the
encapsulation program separately prepared can be minimum
necessity.

The present invention is also directed to an apparatus for
encapsulating a tool. According to the present invention. the
apparatus for encapsulating a tool for designing an object of
design with CAD in a framework for the CAD comprises a
file for providing a description defining a tool encapsulation
specification dependent process in which processing con-
tents variously change according to encapsulation specifi-
cation of the tool. and a processing system defining a
framework function dependent process in which processing
contents are determined depending only on a function of the
framework but independently of the encapsulation specifi-
cation of the tool and also defining a procedure for making
the framework execute the framework function dependent
process and the tool encapsulation specification dependent
process defined by the description in the file, wherein the
encapsulation of the tool into the framework is executed by
providing the file to the framework to which the processing
system is applied.

According to the first aspect of the tool encapsulation
apparatus of the present invention, the file for providing the
description defining the tool encapsulation specification
dependent process in which the contents of process vari-
ously change according to the specification of the encapsu-
lation of the tool is provided to arbitrarily and variously
determine the specification of the encapsulation of the tool
through the description in the file, and the framework
function dependent process in which the contents of pro-
cessing are determined depending only on the function of
the framework independently of the specification of the tool
encapsulation is defined in the processing system. and the
procedure for making the framework execute the framework
function dependent process and the tool encapsulation speci-
fication dependent process is also defined in the processing
system. Therefore. only by previously preparing individual
processing systems corresponding to each of the plurality of
kinds of frameworks. the same tool encapsulation can be
realized to the plural kinds of frameworks only by making
a description in a single file.

Accordingly. the tool encapsulating operation can remark-
ably be simplified and the maintenance operation also con-
siderably becomes easier.

Preferably. the file includes at least one of a user interface
definition file providing a description defining user interface
for obtaining predetermined information necessary to
invoke the tool from a user, a parameter definition file for

10

15

20

25

30

33

45

50

35

65

4

providing a description defining a parameter for transferring
the predetermined information to the framework as tool
invocation information. and an invocation command defi-
nition file for providing a description defining generation of
a tool invocation command defining an invocation sequence
of the tool.

According to the second aspect of the tool encapsulation
apparatus of the present invention, at least one of the user
interface definition file. the parameter definition file and the
invocation command definition file is provided as a file.
Therefore, a file can be newly provided. or the described
contents in the file can be added. changed or deleted only in
a necessary file.

Preferably, the tool encapsulation apparatus further
includes an environment definition file for providing a
description specifying as to whether each of the user inter-
face definition file, the parameter definition file and the
invocation command definition file is to be used or not, and
the encapsulation of the tool in the framework is executed
with any of the user interface definition file, the parameter
definition file and the start command definition file which is
specified to be used by the environment definition file by
providing the environment definition file to the framework
to which the processing system is applied when executing
the tool encapsulation.

According to the third aspect of the tool encapsulation
apparatus of the present invention, the tool encapsulation is
executed in the framework using only a desired one(s) of the
user interface definition file. the parameter definition file and
the invocation command definition file according to the
contents of the environment definition file. Therefore, an
encapsulation program in an extemsion language, for
example, which is separately prepared can also be used in
part where the file is not used. and also the contents of the
encapsulation program separately prepared can be minimum
necessity. |

Accordingly, it is an object of the present invention to
provide a method and an apparatus for encapsulating a tool
in which the same tool can be encapsulated in a plural kinds
of frameworks only by making a predetermined description
without considering a kind of a framework, that 1s, an
extension language which is unique to the framework

It is another object of the present invention to provide a
method and an apparatus for the tool encapsulation 1n which

the operation of the tool encapsulation is considerably
simplified.

It is sill another object of the present invention to provide
a method and an apparatus for the tool encapsulation in
which the labor of the maintenance in changing the speci-
fication of the tool can be remarkably decreased when the
same tool is encapsulated in a plural kinds of frameworks.

These and other objects, features. aspects and advantages
of the present invention will become more apparent from the
following detailed description of the present invention when
taken in conjunction with the accompanying drawings.

BRIEF D BRIEF DESCRIPTION OF THE
DRAWINGS

FIG. 1 is a block diagram showing a preferred embodi-
ment of a tool encapsulation apparatus according to the
present invention;

FIG. 2 is a diagram showing the specific image of the
concept in FIG. 1;

FIG. 3 is a block diagram showing the common descrip-
tion and the processing system in detail;

5.799.192

S

FIG. 4 is a diagram showing one example of an environ-
ment definition file:

FIGS. 5 and 6 are diagrams showing an example of a user
interface definition file

FIG. 7 is a diagram showing an example of a parameter
definition file;

FIG. 8 is a diagram showing an example of an invocation
command definition file

FIG. 9 is a flow chart illustrating the processing procedure
in the processing system;

FIG. 10 is a diagram showing an example of the form;

FI1G. 11 is a block diagram showing a conventional tool
encapsulation apparatus; and

FIG. 12 is a flow chart illustrating the processing in a
conventional encapsulation program.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a block diagram showing one preferred embodi-
ment of a tool encapsulation apparatus according to the
present invention. The same tool for LSI designing, for
example, is encapsulated in a plurality of frameworks A.
B. ... for the electric system CAD provided by a plurality
of vendors, for example. A tool encapsulating engineer
prepares a common description D for the plurality of frame-
works A, B, . . . in common according to the specification of
tool encapsulation regardless of extension languages each
unique to each of the frameworks A, B, . . . Processing
systems Sa, Sb, . . . are prepared in advance for each of the
frameworks A, B. Each processing system Sa, Sb, . . .
defines the processing procedure according to the functions
of each framework A, B, . . . so that each framework A.
B, ... can perform the tool encapsulation operation accord-
ing to the common description D. This enables the engineer
to realize the tool encapsulation to the plural kinds of
frameworks A, B, . . . at a time only by preparing one
common description D for the tool encapsulation. When the
specification of the tool encapsulation is changed. the engi-
neer can deal with the plural kinds of frameworks A, B, . . .
only by changing the contents of the single common descrip-
tion D, so that the maintenance work is very easy.
Furthermore. the common description D can satisfactorily
include a predetermined description independent of the
extension languages for individual frameworks A. B, so
that the labor of understanding the extension languages is
not required.

FIG. 2 is a diagram showing the specific image of the
concept in FIG. 1. In the figure, the example is shown in
which the SIMULATOR. the COMPARE and the DISPLAY
which are CAD tools are encapsulated by the common
description D (system configuration definition description)
through the processing systems Sa, Sb to the two frame-
works A and B.

FIG. 3 is a block diagram showing in detail the relation
among the common description D, one of the processing
systems Sa. Sb, . . . and one of the frameworks A. B.
A processing system 2 is prepared in advance for a frame-
work 1. As the common description D, a user interface
definition file 3, a parameter definition file 4. and an invo-
cation command definition file 5 having contents corre-
sponding to the tool encapsulation specification are pre-
pared. The processing system 2 has a function of reading the
contents of the user interface definition file 3, the parameter
definition file 4, and the invocation command definition file
5 and realizing the act the same as that in the case where the

10

15

20

30

33

45

50

35

65

6

tool encapsulation specification is described in the extension
language on the framework 1. Furthermore, an environment
definition file 6 is provided for making a determination as to
whether the processing contents of each of the user interface
definition file 3. the parameter definition file 4 and the
invocation command definition file § are to be executed or
not according to the characteristic of the tool.

The user interface definition file 3, the parameter defini-
tion file 4 and the invocation command definition file 5 are
files for providing descriptions which define the tool encap-
sulation specification dependent process having its process-
ing contents variously changing according to the specifica-
tion of the tool encapsulation. The processing system 2 has
a tool independent part 2z and a tool dependent part 2b. The
tool independent part 2a defines the framework function
dependent process in which its processing contents are
determined depending only on the function of the frame-
work independently of the specification of the tool encap-
sulation and also defines the procedure for making the
framework 1 execute the framework function dependent
process. The tool dependent part 25 defines the procedure
for making the framework 1 execute the tool encapsulation
specification dependent process defined by the user interface
definition file 3, the parameter definition file 4 and the
invocation command definition file 5, By applying the
processing system 2 to the framework 1 and providing the
definition files 3 through 6. the tool encapsulation in the
framework 1 is realized by any of the user interface defini-
tion file 3. the parameter definition file 4 and the invocation
command definition file 5 which is specified to be used by
the environment definition file 6.

The environment definition file 6é provides a description
for defining as to whether each of the user interface defini-
tion file 3, the parameter definition file 4. and the invocation
command definition file 3 is to be used or pot. One example
of the environment definition file 6 is shown in FIG. 4.

The user interface definition file 3 provides a description
defining the user interface for acquiring from a user prede-
termined information required for invoking the tool. One

example of the user interface definition file 3 is shown in
FIG. 5 and FIG. 6.

The parameter definition file 4 provides a description
defining parameters for transferring the predetermined infor-
mation obtained using the user interface definition file 3 to
the framework 1 as tool invocation information. One
example of the parameter definition file 4 is shown in FIG.

7.

The invocation command definition file § provides a
description defining generation of a tool invocation com-
mand defining the invocation sequence of the tool. One
example of the invocation command definition file § is

shown in FIG. 8.

FIG. 9 is a flow chart illustrating one example of the
processing procedure in the processing system 2. The pro-
cessing system 2 can substantially be composed of a pro-
gram working on the framsework 1. The contents of each step
are determined by the environment definition file 6, the user
interface definition file 3, the parameter definition file 4 and
the start command definition file 5 in the environment
setting in the step S11. the form display and the parameter
check in the steps 512 and S13. the tool interface data
generation in the step 514 and the generation of the tool
invocation command in the step S15. respectively. The
details in the precesses will be described later.

Now, the general processing contents made in the con-
ventional tool encapsulation program can be classified as

described below.

5.799.192

7

(a) The pre-processing for encapsulation;

(b) The production of the user interface for acquiring tool
invocation information;

(¢) Check as to whether the acquired information Is
correct or not;

(d) Expansion of the tool invocation information inputted
by a designer using (b) into actual tool Invocation
information;

(d1) Production of the input data file;
(d2) Production of the tool invocation command;

(e) Tool invocation/execution control;

(f) After-processing at the tool termination.

The processing contents of (a). (¢) and (f) are uniquely
established depending on the functions of the framework not
depending on the encapsulated tool. The processing contents
of (b), (¢) and (d) are determined depending on the encap-
sulation specification of the tool.

In the present invention. the processing contents of (a). ()
and (f) are defined in the processing system 2. As to (b). (¢)
and (d)., the encapsulation specifications are defined in
definition files away from the constraint of the framework as
the common description D. Specifically. the user interface
definition file 3 is provided to define (b) and (c), the
parameter definition file 4 is provided to define (d1). and the
invocation command definition file S is provided to define
(d2).

In the environment definition file 6 of FIG. 4.
“EncapSkillDef=nil” means to skip the load processing of
the SKILL file. Now, “SKILL” is an extension language of
the framework OPUS/DFII produced by Cadence Design
Systems, Inc., and the SKII 1 file means an encapsulation
program the same as the conventional one written using the
extension language SKILL. “EncapFormFunc=t" means to
display the form (FIG. 10) according to the user interface
definition file 3. “EncapFieldCheckFunc=nil” means to skip
the checking process of a field value by the SKILL function.
“EncapParmFunc=t" means to produce a parameter file
according to the parameter definition file 4.
“EncaplnvokeFunc=t" means to invoke the tool according to
the invocation command definition file 5. “EncapPostFunc=
nil” means to skip the after-processing of the tool execution
by the SKILL function. “EncapApplyButton=nil" means
designation of not providing an Apply button to the form.
“EncapFormDef=" is followed by a user interface definition
file name. “EncapParmDef=" is followed by a parameter
definition file name. “EncapinvokeDef=" is followed by an
invocation command definition file name. “Encapl.ogFile="
is followed by a log file name. “EncapRunDir="is followed
by a tool execution directory. Other than those described
above. there are the execution node of tool, the execution
priority of tool and so on.

The user interface definition file 3 in FIG. 5 works to
construct a user interface using parts of graphic such as the
menu and the form. One example of the form is shown in
FIG. 10. One menu or form each has a field to store
information.

The following contents can be defined in the user inter-
face definition file 3.

(1) The order of arrangement of the fields;

(2) The type of field (character/integer. etc.);

(3) The characteristic by fields (prompt. or display only,
etc.);

(4) The checking function by fields;

($) The mechanism of interchange of information with the
framework.

10

15

20

25

30

33

45

3C

35

65

8

This can define the contents of the above-described (b)
The production of the user interface for acquiring tool
invocation information and (c¢) Check as to whether the
acquired information is correct or not, and which are con-
verted in functions which correspond to the framework 1 by
the processing system 2.

One field starts with “(“and ends with”)”. As to (1) the
order of arrangement of the fields mentioned above, they
may be displayed in the order of description in the field
description. The top may be the title field. and following
ones may be described by field types. FIG. 10 1s a diagram
showing a display comresponding to the description in FIG.
§. The above-described (2) the type of field (character/
integer. etc.) includes “‘string. file. boolean”. The
above-described (3) characteristics by fields (prompt, or
display only, etc.) includes “?editable nil”. for example.
which indicates “‘display only”. The above-described (4) the
checking function by fields includes “?range”. for example.
which checks as to whether a numeral value in the specified
range (0 10) has been inputted or not. The above-described
(5) the mechanism of interchange of information with the
framework will be described in the description on the
parameter definition file 4 below.

The parameter definition file 4 is a file for defining the
method of producing a parameter file of the tool (Shell
Script). The template of the contents to be written in the
parameter file of the tool (Shell Script) is described in the
parameter definition file 4. The Shell Script is a command
sequence generally provided in the UNIX which is a typical
operating system of the framework.

As shown in FIG. 7, the key words of parameters of the
tool “-tool”, . . ., “-option” are written as they are 1n the
parameter definition file 4. The remaining descriptions are
for reference of values. For example, “‘gd_ string’™ means
transmission of data by the global variable. which can refer
to values of forms in other design steps (such a display as
shown in FIG. 10 in another design step). Now, the design
step means the SIMULATOR. the COMPARE, and the
DISPLAY in the display of the frameworks A and B in FIG.
2. for example. In this case, the value inputted in the global
variable designated by “?global ‘gd_ string’™ in the user
interface definition file 3 is referred to.
“*EncapFormHandle—integer’” is a reference utilizing a
pointer of the form, where “EncapFormHandle” indicates a
name of the form and “integer” indicates a name of the field.
Thus the value in the “integer” field in that form is referred
to.

The invocation command definition file S is a file for
defining the invocation sequence of the tool (Shell Script).
In the invocation command definition file 5 of FIG. 8.
“EncapRunDir” indicates a tool execution directory and
“EncapParmDef” indicates a parameter definition file name.
The Shell Script is executed according to this command
sequence. Describing the tool invocation in the Shell Script
to actually give the tool the parameter file produced accord-
ing to the definition in the parameter definition file 4 enables
transmission of all the argument information to the tool.
That is to say, the interface with the tool is made with the
data in which arguments for invocation are filed. but if the
actual tool does not require these arguments but requires
another data format, a measure can be taken by invoking the
tool from the Shell Script and producing the required data
and the like in the Shell Script.

Next. the flow chart of FIG. 9 showing the processing
procedure in the processing system 2 will be described.
First. in the step Sli. one of the three is selected, that is, the
encapsulation operation is to be defined by the definition

3.799.192

9

files, this step is to be omitted. or, the program written in the
extension language separately prepared is to be used. about
cach of the steps S12, S§14. and S15 according to the

description in the environment definition file 6. Also, the
following information necessarily required in encapsulating
are described, that is, the log file name, the execution
directory, directory which is based on, the execution node of
tool and the execution priority of tool.

Next, in step S12. such a form display as shown in FIG.
10 is made according to the contents of the user interface
definition file 3 and the user inputs the parameters which the
tool needs using the form. In the step S13, the correctness of
the inputted parameters is checked referring to the contents
of the user interface definition file 3 about the input in each
field in the form. Then. if it is correct. the flow proceeds to
the step S14. and if it is not correct, a warning message is
outputted and it returns to the form output in the step S12.
In the step S14, a parameter file for taking the interface with
the invocation tool is produced on the basis of the parameter
definition file 4. As has been described above, the tool is not
directly invoked in this preferred embodiment. but the Shell
Script keeping the interface rules with the parameter file is
invoked. There is the parameter definition file 4 as a template
definition file of the parameter file. ¥f there is no execution
directory for outputting the interface data or invoking the
tool at this time, it is produced by “EncapRunDir”. Next, in
the step S1S5. the tool invocation command is produced
according to the invocation command definition file §. Then
in the step S16, the tool invocation/execution control is
performed using the tool invocation control function which
the framework has, and the terminal processings are per-
formed such as the normal termination, the error termination
and so on. Necessary information such as the log file name,
the tool execution node, the tool execution priority and the
like are referred to at the time of tool invocation. Thus, the
same function as an encapsulation program described in the
extension language can be realized using the definition files
3 through 6 in the processings described above.

While the invention has been shown and described in
detail, the foregoing description is in all aspects illustrative
and not restrictive. It is therefore understood that numerous
modifications and variations can be devised without depart-
ing from the scope of the invention.

I claim:

1. A method of encapsulating a tool for designing an
object of design with computer aided design (CAD) in a
plurality of frameworks for the CAD, each framework
having a Shell Script as a command sequence and having a
different unique extension language for tool encapuslation,
comprising the steps of;

preparing a file for commonly providing to said plurality
of frameworks regardless of said extension language a
common description defining a tool encapsulation
specification dependent process in which processing
contents variously change according to an encapsula-
tion specification of said tool;

preparing a plurality of processing systems, each process-
ing system being encapsulated to only a respective
framework and defining a respective tool independent
framework function dependent process in which pro-
cessing contents are determined depending only on a
function of said respective framework but indepen-
dently of said encapsulation specification of said tool
and for defining a tool independent procedure for
making said respective framework execute said respec-
tive framework function dependent process and also

10

13

20

23

30

35

45

50

35

635

10

defining a tool dependent procedure for making said
respective framework execute said tool encapsulation

spectfication dependent process defined by the descrip-
tion in said file; and

executing encapsulation of said tool into said plurality of
frameworks by providing said file to each of said
respective frameworks to which said respective pro-
cessing system is encapsulated;

wherein the step of preparing said file includes at least one
of the steps of preparing a user interface definition file
providing a description defining user interface for
acquiring predetermined information necessary (o
invoke said tool from a user,

preparing a parameter definition file for providing a
description defining producing a parameter file in
accordance with the Shell Script for transferring said
predetermined information to said framework as tool
invocation information, and

preparing an invocation command definition file for pro-
viding a description defining generation of a tool invo-
cation command for defining an invocation sequence of
said tool in accordance with an invocation of the Shell
Script.
2. The tool encapsulation method according to claim 1.
further comprising the step of

preparing an environment definition file for providing a
description for specifying as to whether each of said
user interface definition file, said parameter definition
file and said invocation command definition file is to be
used or not; wherein

said step of executing encapsulation of said tool includes
the step of executing encapsulation of said tool in said
framework by any of said user interface definition file,
said parameter definition file and said invocation com-
mand definition file which is specified to be used by the
environment definition file by providing said environ-
ment definition file to said framework to which said
processing system is applied.

3. An apparatus for encapsulating a tool for designing an
object of design with computer aided design (CAD) in a
plurality of frameworks for the CAD, each framework
having a Shell Script as a command sequence and having a
different unique extension language for tool encapsulation,
comprising:

a file for commonly providing to said plurality of frame-
works regardless of said extension language a common
description defining a tool encapsulation specification
dependent process in which processing contents vari-
ously change according to an encapsulation specifica-
tion of said tool; and

a plurality of processing systems. each processing system
being encapsulated to only a respective framework and
defining a respective tool independent framework func-
tion dependent process in which processing contents
are determined depending only on a function of said
respective framework but independently of said encap-
sulation specification of said tool and for defining a tool
independent procedure for making said respective
framework execute said respective framework function
dependent process and also defining a tool dependent
procedure for making said respective framework
execute said tool encapsulation specification dependent
process defined by the description in said file; wherein

encapsulation of said tool into said plurality of frame-
works is executed by providing said file to each of said

5.799.192
11 12

respective frameworks to which said respective pro- 4. The tool encapsulation apparatus according to claim 3,
cessing system is encapsulated; further comprising

wherein said file comprises at least one of an environment definition file for providing a description

a user interface definition file providing a description
for defining user interface for acquiring predeter-
mined information necessary to invoke said tool
from a user.

a parameter definition file for providing a description
defining producing a parameter file in accordance

specifying if each of said user interface definition file,
said parameter definition file and said invocation com-
mand definition file is to be used or not; wherein

encapsulation of said tool in said framework is executed

by any of said user interface definition file, said param-

with the Shell Script for transferring said predeter- 10 eter definition file and said invocation command defi-
mined information to said framework as tool invo- nition file which is specified to be used by the envi-
cation information. and ronment definition file by providing said environment

an invocation command definition file for providing a definition file to said framework to which said process-
description defining generation of a tool invocation ing system is applied when executing said tool encap-
command for defining an invocation sequence of 13 sulation.

said tool in accordance with an invocation of the
Shell Script.

	Front Page
	Drawings
	Specification
	Claims

