United States Patent |9

Birnbaum

[54]

[75]

[73]

[21]
[22]

[63]

[51]
[52]

[58]

[56]

USO0S5797128A

1] Patent Number: 5,797,128
451 Date of Patent: Aug. 18, 1998

SYSTEM AND METHOD FOR
IMPLEMENTING A HIERARCHICAL
POLICY FOR COMPUTER SYSTEM

ADMINISTRATION
Inventor; William C. Birnbaum. Colorado
Springs, Colo.
Assignee: Sun Microsystems, Inc.. Palo Alto,
Calif.
Appl. No.: 856,038
Filed: May 14, 1997
Related U.S. Application Data
Continuation of Ser. No. 497,729, Jul. 3, 1995, abandoned.
It CLO oo eeeereens s e sras o GO6F 17/30
UK. CL o evveenicens seseeeeres 707/5: 707/3; 395/186:;
395/726; 395/728; 711/163
Field of Searchoooeeeeeeeennne 707/5. 3; 395/186.
305/726. 728: 711/163
References Cited
U.S. PATENT DOCUMENTS
4.584,639 4/1986 Hardyocccvcricrcvrrverionreeanenss 364/200
4914590 4/1990 Loatman et al. ...veveeveenrecrennnas 364/419
5129083 7/1992 Cutler et al. ..ocerecrrevienriaseannas 395/600
5,159,685 10/1992 KUDE .cvrvoreenrremecsccrrensionnersaonses 395/575
3276,773 171994 MeDg umrvcrccrnrcrsaneeoreerressseens 395/55
5278946 1/1994 Shimada et al.ocoveevveerecrienennes 305/62
5321841 6/1994 East et al. .ccovevreerrcrrccricmnecracneas 395/725
5300282 2/1995 Koza et al. ...cevierrinrecmsrcrenssaans 3G95/13
5414812 5/1995 Filip et al. verrvcrvrrienvvnrearannees 7077103
5421004 5/1995 Carpenter et al. 395/575
5.530.861 6/1996 Diamant et al.coceveenrearaanens 395/650
5544316 §/1996 Carpenter et al.creerene. 395/200.03
5548726 8/1996 PettilS .ueveerioeemscernnriersanne 395/200.09
5550971 §8/1996 Brumner et al.eeerenreennen 305/161
5551031 8/1996 Cheng et al. .o.ceorervcomeeereereenens 395/600
55529005 O0/1996 Sebastianoccoicccoveicoiionsenss 364/468 .03
5553218 O9/1996 L €t Al coeerrenveerenrrcrseesreonassnns 395/148
5555346 9/1996 Gross €t al. ..oveervenrevvrcoseercrssases 395/51
5559958 9/1996 Farmrand et al. 305/183.03
5,561,798 10/1996 Haderle et al. ...ouerreveeereennecreee 395/600

OTHER PUBLICATIONS

Hu et al., “Toward an authorization mechantsm for user—role
based security in an objected design model”. IEEE. pp.
195202, Jul. 1993.

Robinson et al.. “A new approach to distributed system
management”, TEEE. pp. 154-163. Sep. 1988.

Moffett et al.. “Policy hierarchies for distrtbuted systems
management”, IEEE. pp. 404—414. Jun. 1992

IBM Technical Disclosure. vol. 34, No. 10B. pp. 309-310.
Mar, 1992,

X/Open Management Services for an OMG Environment
(Draft 0.4), Nov. 1994,

Moffett, Jonathan D. and Sloman. Morris S.. “The Repre-
sentation of Policies as System Objects,” Nov. 1991.
SIGOIS Bulletin vol. 12, No. 2 & 3. pp. 171-184.

Moffett, Jonathan D. and Sloman, Morris S.. “Policy Con-
flict Analysis in Distributed System Management.” Apr. 12,
1993. scheduled to appear in the Journal of Organizational
Computing. pp. 1-19.

(List continued on next page.)

Primary Examiner—Thomas (5. Black

Assistant Examiner—Jean M. Corrielus

Attorney, Agent, or Firm—William J. Kubida; Richard A.
Bachand; Holland & Hart LLP

[57] ABSTRACT

A system and method for implementing a hierarchical policy
for computer system administration which is extremely
flexible in assigning policies 10 managed objects. Policies
are defined to be rules for the values of the attributes of
managed objects. Policy groups comprise the basic building
blocks and they associate a set of policies with a set of
managed objects. Policy groups can also be members of
other policy groups and a policy group inherits the policies
of its parent policy groups supporting the hierarchical speci-
fication of policy. A given policy group may have multiple
parents which allows the “mix-in” of policies from the
parents. Cloning and templates in conjunction with valida-
tion policies and policy groups provide standardization and
a concomitant reduction in system administration complex-

ity.

51 Claims, 12 Drawing Sheets

T ALSWIN RS S T-TRHIE I

34 e

732

—

v

f
! -
‘- CHEATE A SET NAMED SET b MaLlCIEL FOH oy Al l

¥

CRATATE ANC SFT A PARENT MERATOR 70 THE
BE CHRIRG OF THE S8 _OF PARCENT FPOLCYyGROUF 4T

-

128

B

- 11.\1
.’ - .

S '

THY MHAFEMNT

I‘. .

TRUE 7 e RATCRH A Tk WD DR THE ™
Ce i 20 {PARRE WT Pl Iy a7

ST

ITE R 1 CME SALY ThFE FLRCTICN LETPOLICIES

FCIH THE PO 1L GRODUE POIMTED T B THE PAHEMNT N
ASSGH THE RESLULT YO TWVF i

L 140
I

v

D ommmr e a1 ——— - - .. - -t . A — !
BLICD THE AE MWD B35 r P BT 1Y Tt
SF N O SCLACH S FORE Eirad :

1

--'—-.

e Twld
O

4
N

OF THE SET_OF #ARENT RO AT SET

-

L

[MOWE THE FARLHT ITERATON 70 THF SFAT MFMBER I ‘

5,797,128
Page 2

OTHER PUBLICATIONS

Rumbaugh. J.. Blaha, M., Premerlan, W., Eddy. F. and
Lorensen, W., “Object—Oriented Modeling and Design.” Ch.
3. Object Modeling. 3.1.2 Classes. pp. 22. No date.

Sloman. Morris S.. Moffett. Jonathan D. and Twidle, Kevin
P.. “Domino Domains and Policies: An Introduction to the
Project Results.” Domino Paper Arch/IC/4, Feb, 20, 1992,
Dept. of Computing. Imperial College. University of Lon-

don. Ch. 17, pp. 1-20.

X/Open Company Lid.. X/Open Preliminary Specification.,
“Systems Management: Management Services for an OMG
Environment (Draft 0.4).” Dec. 19, 1994, Ch 1-6. pp.
1-215.

¥ Group Membership View.” IBM Technical Disclosure
Bulletin. vol. 34. No. 10B. Mar. 1992, New York. NY., pp.
309-310.

* Moffett. J.D. et al., “Policy Hierarchies for Distributed
Systems Management.” IEEE Journal on Selected Areas in
Communications. Dec. 1993, vol. 11, No. 9. New York, NY.
ISSN 0733-8716. pp. 1404-1414.

*Robinson, D.C.. et al.., “Domains: A New Approach to
Distributed System Management.” Proceedings: Workshop
on the Future Trends of Distributed Computing Systems In
the 1990s (Cat. No. 88§TH0228-7). Hong Kong. Sep. 14-16.
1988. ISBN (-8186-0897-8. 1988, Washington DC. IEEE
Compt. Soc. Press. pp. 154-163.

*“Using Policy Domains to Delegate Administrative
Authority in Distributed System Managed Storage.,” IBM
Technical Disclosure Bulletin, vol. 36, No. 8, Aug. 1993,
New York, NY. pp. 135-138.

**Object Oriented user Administration.” IBM Technical
Disclosure Bulletin, vol. 34, No. 12, May 1992, New York.
NY. pp. 461-465.

5,797,128

Sheet 1 of 12

Aug. 18, 1998

U.S. Patent

AHOW3IW

O/

e semk mhle L SN A — — Ak Ty W dEh A gy SN T T e T W T TR T e i ulhle bl wlee el SR s e
S e W b e e T I W Y EE paa s aae e P D i T BN e ann e mial A ey wy hinh e wie W SgE

W S— = = .
mpuguispupujnjs s ujngn

D000 00aaoan
DOCOO0O0O0000n

U.S. Patent Aug. 18, 1998 Sheet 2 of 12 5,797,128

20

12 14

CLIENT

SERVER

e]

24

18
DATA DATA

0 7 BASE BASE

20

26 -
14 SERVER

22
@ oGS
‘

24

10 \/‘

U.S. Patent Aug. 18, 1998 Sheet 3 of 12 5,797,128

32
MANAGED
OBJECT
34
POLICY
HOST GROUP

36

U.S. Patent Aug. 18, 1998 Sheet 4 of 12 5,797,128

POLICY GROUP A

42

l USER PASSWORD LENGTH >8

‘ HOST SWAP SPACE >200

44 48

USER MANAGED POLICY GROUP C

OBJECT JONES POLICY GROUP B | JSER GID = 40
(| USER GID =41 | ‘
USER PASSWORD
46 CONTAINS
NUMERIC
40 _—Y CHARACTER.

USER MANAGED USER MANAGED
OBJECT SMITH OBJECT JOHNSON

HOST MANAGED

OBJECT CHEYENNE

50 . 54
Fig. 3
GEOGRAPHICAL ORGANIZATION CONF%Tl?éATION
BASED BASED BASED
POLICY GROUP POLICY GROUP POLICY GROUP

66
A MANAGED OBJECT

U.S. Patent Aug. 18, 1998 Sheet 5 of 12 5,797,128

70 SPRINGS

/82

JACKSON J

1

JOHNSON

|

i

. 70
Fig. 5
lf 70
SPRINGS ORGANIZATION
USER PASSWORD LENGTH > 6
/2
/2
i HR
PUBS USER GID = 41
USER GID = 40 l —
USER PASSWORD CONTAINS
NONALPHABETIC CHARACTER
/8 /76 80 82

JONES JOHNSON JACKSON

Fig. 6

5,797,128

Sheet 6 of 12

Aug. 18, 1998

U.S. Patent

g01 7 90! . oor~g6 20t~ vor =><_ | —<_ . g

+3ANNJAIHO/LHOd XS/

HO./ANIWHILSVIN/LHOdX3/
=AHOLO3HIA FWNOH H3SN

8 'bi4

HO./SONIAdS/La0d X3/
=Ad01034Iid JNOH H3SN

_ SONIHAS=HI100dS 1V J35(

NV1 ONIM HLHON

ONIWHILSVIN=HI 100dS TIVIN 935N
NV1TONIM HLNOS

cb

06

O AHAYHODOID SONIHLS

cb

NY'1TONIM HLNOS 701

NV ONIM HLHON

301440
SHLINS
401440

004 o6 301340 96
SINOSNHOr B S.INOP
AMDOH ANNIA4AHD
90! LSOH <0l LSOH

SONIHCS | aANINHILSYIN v6
LSOH LSOH

301440
SINOSHOVI

/ b1y

5,797,128

103090
QIDVNVYW
v
gcl

—

=

I~

8

-

/ »)

0

-

=
<

o

=

<«

U.S. Patent

|

47!

¢

J1IV1dWN31l 1SOH 41V 1dANdL HISN
gz va) 7
dNOHLY ADINIOAd V

oz

NOSNHOI

4NOYD ADMOd
ONIM HLHON
Ay

S

|
A1V 1dEG1 935N

col

901

L/

dNOYHY ADINOd
dH

—

oL "bid4

U.S. Patent Aug. 18, 1998 Sheet 8 of 12 5,797,128

Fig. 11A
130

L 134

CREATE A SET NAMED SET_OF_POLICIES_FOR_EVAL

132
ASSIGN RESULT=TRUE

CREATE AND SET A PARENT ITERATOR TO THE
BEGINING OF THE SET_OF_PARENT_POLICYGROUP SET

136
138
S
THE PARENT
TRUE ITERATOR AT THE END OF THE
SET _OF PARENT POLICYGROUP
SET
?
FALSE 140

FOR THE POLICY GROUP POINTED TO BY THE PARENT
ITERATOR CALL THE FUNCTION GETPOLICIES.
ASSIGN THE RESULT TO TMP_SET

ADD THE MEMBERS OF TMP_SET TO THE
SET_OF_POLICIES_FOR_EVAL

MOVE THE PARENT ITERATOR TO THE NEXT MEMBER
OF THE SET_OF_PARENT_POLICYGROUP SET

U.S. Patent Aug. 18, 1998 Sheet 9 of 12 5,797,128

(A)

| Fig. 11B

SET POLICY ITERATOR TO THE BEGINNING OF
SET_OF_POLICIES_FOR_EVAL SET

148
DOES
THE ITERATOR
TRUE POINT TO THE END OF THE
SET OF POLICIES_FOR_EVAL
2
150

FOR
THE POLICY
POINTED TO BY THE ITERATOR
DOES THE FUNCTION VALIDATE (ATTRIBUTE-
VALUE) RETURN TRUE (VALID) FOR

THE PROPOSED

VALUE
?

TRUE

152

FALSE

ASSIGN RESULT = FALSE
154

MOVE THE POLICY ITERATOR TO THE NEXT MEMBER OF
THE SET_OF_POLICIES_FOR_EVAL SET

RETURN RESULT

156

U.S. Patent Aug. 18, 1998 Sheet 10 of 12 5,797,128
Fig. 12A 162

160

CREATE A SET NAMED RETURN SET OF POLICIES

CREATE AND SET POLICY ITERATOR TO BEGIN

SET_OF_POLICIES

164

166
IS

THE POLICY
TRUE _~|ITERATOR AT THE END OF THE
SET OF POLICIES

¢

?

168

1S
THE

CLASSNAME AND THE |
NAME OF THE POLICY POINTED TO
FALSE BY THE ITERATOR THE SAME AS THE
MANAGEDOBJECT CLASS AND
ATTRIBUTENAME PASSED
INTO THIS

FUNCTION
| ?

170

TRUE

ADD THE POLICY POINTED TO BY THE ITERATOR TO
THE RETURN SET OF POLICIES

MOVE THE ITERATOR TO THE NEXT MEMBER OF THE
SET_OF_POLICIES

U.S. Patent Aug. 18, 1998 Sheet 11 of 12 5,797,128

o 174

SET PARENT ITERATOR TO BEGINING

SET_OF_PARENT_POLICYGRQUP

DOES 176

THE PARENT
ITERATOR POINT TO THE

END OF
SET_OF_PARENT_POLICYGROUP

TRUE

178

FALSE

ASSIGN TO SET_OF_POLICIES THE VALUE RETURNED
FROM THE CALL TO THE GETPOLICIES
(CLASSNAME_OF_MANAGEDOBJECT,
NAME_OF_ATTRIBUTE) FOR THE PARENT POINTED TO

BY PARENT ITERATOR

180

ADD THE SET_OF_POLICIES TO THE

RETURN_SET_OF_POLICIES

182

MOVE THE ITERATOR TO THE NEXT MEMBER OF
THE SET_OF_PARENT_POLICYGROUP

184
RETURN RETURN_SET_OF_POLICIES;

Fig. 12B

U.S. Patent Aug. 18, 1998 Sheet 12 of 12 5,797,128

— 192
FALSE VALIDATEPROPOSEDVALUE
(USERIDENTIFIER, NEW VALUE)
?
TRUE
| 194

ASSIGN USERIDENTIFIER TO NEWVALUE

RETURN

4 196

RETURN

190

5.797.128

1

SYSTEM AND METHOD FOR
IMPLEMENTING A HIERARCHICAL
POLICY FOR COMPUTER SYSTEM

ADMINISTRATION

RELATED APPLICATION

The present application is a continuation of U.S. patent
application Ser. No. 08/497.729 for SYSTEM AND
METHOD FOR IMPLEMENTING A HIERARCHICAL
POLICY FOR COMPUTER SYSTEM
ADMINISTRATION, filed Jul. 3. 1995 and now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates, in general to a system and
method for implementing a hierarchical policy for computer
system administration. More particularly. the present inven-
tion relates to a system and method for implementing a
hierarchical policy for computer system administration
which allows a less experienced system administrator to
perform more difficult system administrative activities while
concomitantly increasing his efficiency of operation.

M. S. Sloman and J. D. Moffet have published several
papers on policy. See, for example: Sloman. M. §.. Moffet.
]. D. and Twiddle. K. P.: “Domino Domains and Policies: An
Introduction to the Project Results” Domino Paper Arch/
IC/4 20 Feb. 1992. Dept. of Computing. Imperial College.
University of London; Moffet, J. D. and Sloman, M. §.:
“Representation of Policies as System Objects” November
1991, SIGOIS Bulletin Vol 12, nos 2 & 3. pp 171-184; and
Moffet, J. D. and Sloman. M. S.: “Policy Conflict Analysis
in Distributed System Management’, 12 Apr. 1993, sched-
uled to appear in the Journal of Organizational Computing.
In the first listed paper. the authors introduce the concept of
“domains” which associate a set of managed objects with a
common set of policies,

Messrs. Sloman and Moffet also describe policy hierar-
chies. However. the hierarchies discussed are merely based
on the refinement of high level general policies. For
example, a high level policy may be: “Protection from L.oss”
which may be refined to “Backup weekly.” This approach is
extremely limited and differs fundamentally from the con-
cepts disclosed in the present invention hereinafter.
Moreover. Sloman and Moftet do not discuss how “mix-ins”
of policies may be applied to managed objects and they do
not discuss the use of templates.

X/Open also includes policy as one of the services pro-
vided in their framework for systems management. See, for
example: X/Open. “Systems Management: Management
Services for an OMG Environment (Draft 0.5)", Dec. 19,
1994. The approach therein proposed utilizes the concept of
policy regions. which, while superficially bearing on the
policy groups disclosed in the present invention, does not
specify any inheritance semantics for hierarchies of such
policy regions and only allows a managed object to be a
member of a single policy region. Moreover. X/Open does
not allow multiple templates for the same object type in a
given policy region. In brief, the X/Open approach does not
support the inheritance. template and membership semantics

necessary to adequately implement a satistactory hierarchi-
cal policy for computer system administration.

SUMMARY OF THE INVENTION

The system and method of the present invention advan-
tageously overcomes the dehciencies of such previous
approaches and supports “mix-ins”. inheritance. template

10

15

20

25

3(

35

45

50

53

65

2

and membership semantics through use of a policy model
which allows a relatively junior system administrator to
perform the more difficult computer system administration
tasks of a senior system administrator. In so doing. the cost
of system ownership is lowered by reducing the amount of
expertise required to manage an organization’s computer
systems thereby allowing for the reduction of the number of
senior system administrators required in its operation.

As disclosed herein, policy has two basic services which
are used to effectuate this improvement. a) services for the
standardization of computer system configuration; and ser-
vices to reduce/limit damage of non-malicious misuse of the
computer system.

In the system and method herein disclosed. “Policy™ is
specified in terms of: 1) managed objects and 2) managed
object attributes. Managed objects are abstractions of
resources which are manipulated by system administrators.
All managed objects are instantiations of a managed object
class. A managed object type (or class) describes a group of
objects with similar properties (attributes), common behav-
ior (operations), common relationships to other managed
objects and common semantics. Types (or Classes) of man-
aged object include, for example: users, hosts and printers.
An example of a managed object would be a particular
computer user: “User™.

On the other hand. managed object attributes are the
characteristics (or properties) of a managed object. Manage-
ment applications manipulate a managed object’s attributes
in order to administer a managed object. Examples of
possible attributes for a managed obiject of the type: “User”
include: user name. user id (“UID”). group id (*GID”),
password, home directory and mail spool location.

System administrators cannot generally define types of
managed objects or their associated attributes. as new types
of managed object must generally be defined by the devel-
opers of the resources. However. system administrators can
create and delete managed objects of defined managed
object types and can manipulate the attributes of the man-

aged objects they create.

With respect to policy services, it is disclosed herein that
a managed object may be composed of attributes. and
policies can be specified for each of the managed object
attributes. For example. a managed object of class X may
have attributes: A. B and C. Each of these attributes can have
a policy. A specific example of a policy is that the length of
the password attribute of a user object must be greater than
siX characters. Thus, utilizing the system and method dis-
closed herein, the senior administrator defines policy by
specifying expressions that describe constraints for the
attributes of a class of managed object.

Many system administration organizations have a hierar-
chical definition of policies. For example. there can be
corporate. division and group policies. Each of these policies
has a scope of influence. For example, the corporate policy
must be followed throughout the enterprise, the division
policy must be followed throughout the division and so on.
This characteristic produces a nesting of policies: a managed
object in a given division must follow the division and
corporate policies. Therefore, the policy services must sup-
port a nesting of policies.

This system and method of the present invention herein
disclosed also allows policies to be specified in a hierarchi-
cal manner. Policies are associated with policy groups and
policy groups can be arranged in a hierarchical manner. A
policy group may also have a set of managed objects
associated with it and the managed objects associated with

5.797.128

3

a given policy group must follow the policies associated
with the policy group.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and objects of the
present invention and the manner of attaining them will
become more apparent and the invention itself will be best
understood by retference to the following description of a
preferred embodiment. taken in conjunction with the accom-
panying drawings. wherein:

FIG. 1A is a simplified representation of a general purpose
workstation computer forming a portion of the operating
environment i1n which the present invention is used;

FIGS. 1B and 1C illustrate the general architecture of one
possible implementation of the system and method for
implementing a hierarchical policy for system administra-
tion of the present invention utilizing a client-server con-
figuration illustrating, respectively. the use of the system by
a relatively junior system administrator (for example. to
change a user password) and the management of the system
by a more experienced system administrator to possibly alter
policies by adding. deleting or modifying the interrelation-
ship between policies in a policy hierarchy;

FIG. 2 is a representative class diagram illustrating the
inheritance and containment (n a possible class hierarchy for
a managed object which may include, for example. a host
computer or a policy group which contains managed objects
and wherein a policy group has children which are managed
objects and a managed object has parents which are policy
groups;

FIG. 3 is a simplified block diagram of a policy relation-
ship having three policy groups: A. B and C, each having
various policies forming a part thereof;

FIG. 4 is a simplified block diagram of a representative

mix-in of policy groups having the same managed object as
a member;

FIG. 5 is a simplified block diagram of a possible basic
environment for the system and method of the present
invention wherein a representative portion of the organiza-
tion previously illustrated is divided into functional sub-
groups: Publications (“PUBs”) and Human Relations
(“HR");

FIG. 6 is a further diagram of the environment of FIG. 5
llustrative of certain policies associated with the PUBs and
HR organizational functions respectively;

FIG. 7 is a further simplified diagram of the hypothetical
physical layout of the Springs site associated with the
preceding figures showing a representative breakdown of the
various local area networks (“LANSs”) in use;

FIG. 8 is a follow-on diagram illustrating the Springs site
geography. the physical layout of the LLANs with their
respective policies and the various managed objects previ-
ously illustrated;

FIG. 9 is a specific example of a policy mix-in for the
user: “Johnson™ wherein he is a member of both the HR and
South Wing LAN policy groups;

FIG. 10 1s a simplified block diagram of a single policy
group assoclated with a number of User and Host templates
for a particular managed object;

FIGS. 11A and 11B are a representative flow chart for the
implementation of the hierarchical policy for system admin-
istration disclosed for the function:
ManagedObject.:ValidateProposed Value(AttributeName.
AttributeValue);

FIGS. 12A and 12B are a representative flow chart for the
implementation of the function: PolicyGroup::GetPolicies
(ManagedObiject(Class., AttributeName); and

5

10

15

20

23

30

35

45

50

535

65

4

FIG. 13 is a representative flow chart for the implemen-
tation of the function: User::set__Userldentifier(newValue).

DESCRIFPTION OF A PREFERRED
EMBODIMENT

The environment in which the present invention is used
encompasses the general distributed computing system.
wherein general purpose computers. workstations or per-
sonal computers are connected via communication links of
various types. in a client-server arrangement, wherein pro-
grams and data, many in the form of objects. are made
available by various members of the system for execution
and access by other members of the system. Some of the
clements of a general purpose workstation computer are
shown in FIG. 1A, wherein a processor 1 is shown, having
an 1nput/output (“I/0”) section 2, a central processing unit
(“CPU”) 3 and a memory section 4. The 1I/O section 2 is
connected to a keyboard 3, a display unit 6. a disk storage
unit 9 and a compact disk read only memory (“CDROM”)
drive unit 7. The CDROM unit 7 can read a CDROM
medium 8 which typically contains programs 11 and data.
The computer program products containing mechanisms to
effectuate the apparatus and methods of the present inven-

tion may reside in the memory section 4, or on a disk storage
unit 9 or on the CDROM 8 of such a system.

With reference now to FIGS. 1B and 1C, the general
architecture of one possible implementation of a computer
system 10 utilizing the system and method for implementing
a hierarchical policy for system administration of the present
invention is shown utilizing, for example. a client-server
configuration.

The use of the computer system 10 by a junior system
administrator 12 is shown in FIG. 1B wherein the system
administrator 12 accesses the client computer 14 through a
user interface (not shown). The client computer 14 has a
directly associated database 18. The client computer 14 is
also coupled to a server computer 20 having a predetermined
policy group comprising a number of policies 22 associated
therewith as will be more fully described hereinafter. The
server computer 20 also has an associated database 24 which
may reside on an internal or external computer mass storage
subsystem. In the client-server model illustrated. most of the
policies 22 may reside in the server computer 20 database 24
although it is also possible that they may be resident
elsewhere in the computer system 10.

On the other hand. the management of the computer
system 10 is shown in FIG. 1C wherein a senior system
administrator is illustrated as a system management function
26 accessing a client computer 14 through a user interface
(not shown) for 1nitjally establishing the various policies 22
of a policy group for the server computer 20 which may be
retained within an associated database 24. The system
management function 26 allows the senior system adminis-

trator t0 change the hierarchies among various policies 22
and to add. delete or modify the policies 22 within a

particular hierarchy. The management of the computer sys-
tem 10 shown in FIG. 1C is. in a sense, recursive with the
use illustrated in FIG. 1B inasmuch as use of the computer
system 10 is also a management of it.

In the particular example illustrated, if the system admin-
istrator 12 needs to modify the attributes of a particular user,
for example, the user’s password, the client computer 14 is
accessed directly through the user interface as shown in FIG.
1B. The client computer 14 then makes a request of the
server computer 20, which then runs through the policies 22
maintained in its database 24 to determine which ones apply

5.797.128

S

to the specific request. The polices 22 that are thereafter
returned to the client computer 14 are the ones that the sentor
system administrator has previously and independently
determined were relevant to the particular request and were
input to the server computer 20 database 24 as shown in FIG.
1C. The policies 22 returned to the client computer 14 as
relevant to the request are then stored in the database 18 and
evaluated. If the password change proposed by the junior
systems administrator 12 passes all of the policies 22
returned from the server computer 20, the change may then
be made.

With reference now to FIG. 2. a representative class
diagram 30 ilustrating the inheritance in a possible class
hierarchy for a managed object which may include, for
example. a host computer 34 or a policy group 36 which
contains the managed objects 32. As depicted. a policy
group 36 has children which are managed objects 32. A
managed object 32 has parents which are policy groups 36.
As will be described more fully hereinafter with respect to
representative pseudocode for implementing the system and
method of the present invention and the corresponding
flowcharts of FIGS. 11A-B. 12A-B and 13. there is an
interrelationship between managed objects 32 and policy
groups 36 utilizing object oriented (“Q0”) programming
concepts.

Utilizing OO concepts. a number of classes may be
defined which may. in turn. relate to types of objects. These
classes are then refined into subclasses of classes. As an
example, a class could comprise *“persons” (a managed
object 32) with subclasses of “persons” being “employees”™
(a policy group 36). An “address” may be associated with
the class of “persons™ while “salary” may be associated with
“employees”. Utilizing a step-wise refinement, “employees”
(a policy group 36) inherit all the characteristics of “per-
sons” (a managed object 32) inclusive of names, addresses
and the like. Stated another way. a managed object 32 can
have subclasses such as host 34 and policy group 36 and a

policy group 36 can have superclasses such as managed
object 32.

With reference now to FIG. 3. an exemplary policy
arrangement 40 in accordance with the present invention is
shown. Policy arrangement 40 illustrates three policy
groups: Policy Group A 42. Policy Group B 46 and Policy
Group C 48. As has been previously mentioned, a policy is
defined by a managed object type and an attribute. In Policy
Group A 42 there are two policies. The first policy is for the
password attribute of the User type. This policy states that
the length of the password attribute must be greater than six
characters. This implies that the user managed object Jones
44, which is a member of Policy Group A 42. must have a
password which is greater than 6 characters. The second
policy is for the swap space attribute of a host type managed
object. This second policy states that the value of the swap
space attribute must be greater than 200.

It is also important to note that a given policy group can
contain policies for multiple types of managed objects. In
the example of FIG. 3. Policy Group A 42 is seen to contain
a policy for hosts as well as for users.

Policy Group B 46 and Policy Group C 48 are “children”
of Policy Group A. This means that Policy Groups B and C
46 48 must follow the policies in Policy Group A 42 in
addition to their locally defined policies. Therefore. user
type managed objects (such as user managed object Smith
52) which are members of Policy Group B 46 must follow
the user password length policy defined in Policy Group A
42 and the locally defined policy for the GID attribute of the

10

15

20

235

35

43

S50

33

65

6

user type (wherein GID must equal 41). In addition. the host
managed object Cheyenne 5¢ must also follow the host
policies inherited from Policy Group A 42. That is, the value
of Cheyenne 50’s swap space attribute must be greater than

200.

Policy Group C 48 has a policy defined for the same
managed object type and attribute as one of its parents (e.g.
user password). In this situation, a user managed object such
as user managed object Johnson 54, which is a member of
Policy Group C 48. must satisfy the parent’s (Policy Group
A 42) policies for user password as well as 1ts local policies
for user password. Thus the password atiribute for a user
managed object Johnson 54 which is a member of policy
group C 48 must have password length which is greater than
six characters (per Policy Group A 42) and the password
must contain a numeric character (per Policy Group 48). It
should be noted that while it is possible to create contradic-
tory policies in the parents and children which are unpos-
sible to satisfy, the assumption is made that the determina-
tion of policy conflicts and the correction of these conflicts
will be performed by the senior system administrators.

With reference now to FIG. 4 an example of a policy
mix-in 60 is shown. By way of background. there are a
number of “types” of policies that system administrators
may define. As an example. a system administrator may
define rules for performance optimization. These rules could
be based on the physical location relationships among
managed objects (a geographical basis) or these rules could
be based on the particular implementation of a particular
resource. A specific example may be insuring that the system
that maintains the mail spool for a given user resides on the
same LAN that connects the user’s office to the network

A system administrator may also define rules to help
insure the security or the accountability of a resource and
these rules may be based. for example. on a given managed
object’s relationships among enterprise organizations (an
organizational basis). Specific examples may include assign-
ing the same GID to all members of a given organization or
project or to ensure that the same rules for password
selection are followed by all members of a given group of
users (e.g. the length of the password must be greater than
6 characters).

A system administrator may further define rules to insure
the standardization of the system configuration (a standard-
ization of configuration basis). Many times these rules are
based on the type and the particular use of a given resource.
Examples include defining a common pattern for the loca-
tion of the mail file (e.g. /var/mail/<username>).

As is apparent from the foregoing examples. a given
managed object 68 may have some attributes governed by
performance considerations. some attributes governed by
security considerations and some attributes governed by
configuration standardization considerations. Moreover,
given the wide range of considerations or types of policies.
it is very unlikely that the system administrator would want
to combine these types of policies into a single hierarchy and
the system administrator may want to define specialized
hierarchies for different policy types.

Separate hierarchies based on the “type” of policy allow
a policy mix-in 60 approach to the assignment of policy to
a particular managed object 68. A system administrator can.
therefore, associate a given managed object with the spe-
cialized policy regions that provide the desired policies.
Thus. as shown in FIG. 4. a given user managed object 68
could be a member of a policy region which specializes in
security policies (such as an organizational based policy

5.797.128

7

group 64). a member of a policy region which specializes in
performance (such as a geographical based policy group 62)
and a member of a policy region that supports standardiza-
tion of configuration (such as standard configuration based
policy group 66).

With reference to FIGS. 5. 6 and 7 and the following text,
the concept of policies and policy groups may be better
understood. In this exemplary illustration. the assumption is
made that the user type of managed object (Jones 76. Smith
78. Johnson 80 and Jackson 82) might have the following
attributes: name, UID. GID. password, mail spooler and
home directory. The basic conditions and environment for
the Hlustration are that the user managed objects are part of
one organization which is managed by a given set of
administrators. that is Springs organization 70.

The Springs organization 70 is physically split on two
local area networks: South Wing LAN 90 and North Wing
LAN 92 and is also further divided into suborganizations
based on function: the HR group 74 and PUBs group 72. The
PUBs group 72 has users: Jones 76 and Smith 78 while the
HR group 74 has users Johnson 80 and Jackson 82. Offices
served by the North Wing LAN 92 include Johnson’s office
106 and Jackson’s office 108. Offices served by the South

wWing LAN 99 include Jones’office 102 and Smith’s office
104.

In the example illustrated. the following are assumed to be
policies of the Springs organization 70:

1) The location of the mail spooler and home directory
must be local to the LAN at which the user’s office
resides.

a) as to the North Wing LAN 92:
1. the mail spooler for users whose offices are serviced
by this LAN 92 must be the host Springs 98; and
ii. the home directory for users whose offices are
serviced by this LAN 92 must be on hosts Rocky 100
or Springs 98.

b) as to the South Wing LAN 90:

1. the mail spooler for users whose offices are serviced
by this LAN 90 must be the host Mastermind 94; and

ii. the home directory for users whose offices are
serviced by this LAN 90 must be on hosts Master-
mind 94 or Cheyenne 96.

2) All Users in the Springs organization 70 must have a
password which is greater than 6 characters in length.

3) Each of the subgroups of the Springs organization 70
must have a different GID and each member of a
subgroup must have the same GID.

4) All users in the HR group 74 in addition to having a
password greater than 6 characters in length must also
have a non-alphabetic character in their password.

The following sets of policies and policy groups satisfy

the foregoing constraints:

1. Springs Organization 70 Policy Group
a. Policies: User Password length>6 characters
b. Members: PUBs Policy Group 72. HR Policy Group
74
2. PUBs Policy Group 72

a. Policies: User GID=40
b. Members: Smith 78, Jones 76

3. HR Policy Group 74

a. Policies: User GID=41. User password must contain
a non-numeric character

b. Members: Johnson 88, Jackson 82

4. North Wing LLAN 92 Policy Group
a. Policies: User mal spooler=Springs 98, user home
directory must be either Rocky 100 or Springs 98.
b. Members: Jackson’s office 108, Johnson’s office 106.

>

10

15

20

25

30

35

43

50

35

65

8

5. South Wing LAN 90 Policy Group
a. Polictes: User mail spooler=Mastermind 94. user
home directory must be cither Mastermind 94 or
Cheyenne 96.
b. Members: Jones® office 102, Smith’s office 104

As noted previously, policy groups can be nested. That is.
a policy group can contain other policy groups. With specific
reference to FIG. 6. a policy group which is contained by
other policy groups inherits the policies defined by the
containing groups. In the example above, the members of
HR and PUBs policy groups 74. 72 inherit the policies from
the Springs organization 70 policy group (User password
length>6). In addition. the members of the HR group 74
must satisfy another constraint regarding user password,
wherein it must include at least one non-alphabetic charac-
ter. Finally, members of the HR group 74 must also have a
GID of 41 and the members of the PUBs group 72 must have
a GID of 40.

A managed object can be a member of multiple policy
groups. In the above example. and with particular reference
additionally to FIG. 8, the overall Springs Geography 1160 is
shown. As an example. the user Jackson 82 is a member of
the HR group 74 (FIGS. S and 6) and the North Wing LAN
92 policy groups (FIG. 7). Thus the user Jackson 82 has the
policies from the HR group 74 applied to it (User password
length>6, User password must also include a non-alphabetic
character, and User GID must equal 41) and the policies of
the North Wing LAN 92 applied to it (user mail spooler=
Springs 98, user home directory must be either Rocky 100
or Springs 98).

As shown in simplified format with respect to FIG. 9. the
user Johnson 106 is a member of the HR policy group 112
as well as the North Wing LAN policy group 114. Similar
ilustrations demonstrating which policies apply to users
Jones 76 and Smith 78 may be readily constructed to depict
their membership in multiple policy groups and the policies
of the respective policy groups.

The sentor system administrator can have mandatory and
advisory policies. A mandatory policy does not allow the
proposed change to be made if it violates policy. On the
other hand. an advisory policy would identify the policy
violation and allow the object to be saved.

When an attribute of a managed object is to be modified.
the proposed attribute value is checked to verify that the
proposed value follows the policies in all of the policy
groups of which the managed object is a member. If the
proposed value does not follow policy then the proposed

attribute modification is not allowed.

It should be noted that it is possible for a managed object
in a given group not to follow the policies of the group if the
policies of the group are changed after the managed object
has previously become a member of the group. These
members will not be removed from the policy group. These
members will be flagged as not following policy.

In this regard. it is important to emphasize that applica-
tions which manipulate the attributes of a managed object
should ideally be modified to call validation policy checking
routines. Nevertheless, ensuring that managed objects can
only be modified by applications that perform policy check-
ing may not be completely feasible. As a consequence. other
applications may need to be modified to periodically scan
the managed objects and return the set of managed objects
which do not follow policy.

With reference now to FIG. 10. a policy group 120 is
shown in conjunction with a pair of user templates 122, 124,
a host template 126 and a managed object 128. In accor-
dance with the system and method of the present invention,

5.797.128

9

both templates and clones may be used to provide initial
values for attributes when a managed object 128 is created.
Templates 122-126 are associated with policy groups and
the values for the attributes specified in the template must
follow the policies associated with the policy group 120. As
shown., the policy group 120 can be associated with multiple
templates 122—-126 for the same type of managed object 128.
A policy group can also be associated with multiple tem-
plates for different types of managed objects (e.g. user
templates 122, 124 and host template 126). Not all of the
attributes of a template need to have values specified.

In accordance with the present invention. templates can
also be used to simplify the policy group hierarchy for the
juptor system administrator. Templates can be used in a
manner akin to book marks to indicate to the junior system
administrator which policy groups he can create in new
instances. This functionality should be closely integrated
with the user interface technology of the computer system
10 (FIGS. 1B and 1().

The system and method of the present invention also
supports the cloning of managed objects. A clone has all of
the same attribute values of the master except for the
attributes used to identify the instance of the object. In
addition. the clone is a member of all of the same policy
groups as the master. The master must be a managed object
that follows all of the policies associated with its member-
ships.

Using the example above with reference to the preceding
figures, and assuming the system admunistrator wants to
create a new HR group 74 user which also has an office that
is serviced by the North Wing LAN 92. then the system
administrator might, for example, clone the user Jackson 82.
The clone would be a member of the HR policy group 74 and
the North Wing LAN 92 policy group.

Cloning and the use of templates saves the system admin-
istrator time because not all system administrators need to
learn the semantics and determine the appropriate values of
each attribute. In this regard. a senior system administrator
can define the “master” or template. for use by the junior
system administrators. Moreover, the system administrator
does not need to manually enter the values for any of the
attributes and he can merely accept the values of the clone
or template. This results in the system administrator becom-
ing more efficient and less prone to entry errors. Finally, the
disciplined use of clones and templates can go a long way
toward ensuring the standardization of managed object
configurations.

With reference additionally now to FIGS, 11A and 11B a
representative flowchart for implementing the function of
determining whether or not a proposed attribute for a
managed object follows policy is shown in conjunction with
the following pseudocode of Block 1 for implementing the
process. The pseudocode provided hereinafter parallels that
of known OO programming languages such as C4+4 and
Smalltalk™ for ease of understanding.

The process 130 begins at step 132 to assign result=true
and then, at step 134 a set named set_of _policies_ for__
eval is created. Step 136 then follows in which a parent
iterator 1s created and set to the beginning of the set__of__
parent_ PolicyGroup set.

At decision step 138. if the parent iterator is not at the end
of the set_of _parent PolicyGroup set. at step 140, the
policy group pointed to by the parent iterator calls the
function getPolicies and assigns the result to tmp_ set. At
steps 142 and 144 the members of the tmp__set are added to
the set_of policies__for__eval and the parent iterator is
moved to the next member of the set_of_ parent__

10

15

20

25

30

35

45

50

35

65

10

PolicyGroup set. On the other hand, if at decision step 138,
the parent iterator is now at the end of the set__of__parent__
PolicyGroup set. at step 140, the process 130 proceeds to
step 146 to set the policy iterator to the beginning of the
set__of__policies_for__eval set.

At decision step 148, the iterator is evaluated to determine
whether or not it points to the end of the set__of_policies__
for_ eval. If true. the process proceeds to step 156 to return
the result. If false. the process proceeds to decision step 150
to determine whether the policy pointed to by the iterator
validates (AttributeValue). or returns true (valid), for the
proposed value. If false. the process proceeds to step 152 to
assign result=false and then to step 154 to move the policy
iterator to the next member of the set_of policies__for
eval set. then back to decision step 148. If true. step 152 is
bypassed directly to step 154 for return to decision step 148.

Fundamentally, the program process 130 instructs the
server computer 20 (FIG. 1B) to retrieve all policies of the
parents of the managed object from its database 24 which
relate to a particular attribute of the managed object. The
policies returned are then evaluated with regard to the
proposed value and, if the value fails any of the policies, the
proposed value for the attribute fails. To determine which
policies of the various parents to return. the system relies on
the policy group to determine who the parents of the
managed object are and whether or not they have any
policies which relate to the proposed attribute value (i.e. user
passwords). In effect. a recursive search of the tree of policy
groups is undertaken by the server computer 20 and its
associated database 24 as previously input by the senior

system administrator (FIG. 1C).

Block 1:
Class ManagedObject

class ManagedObject
/* Atiributes */
nange;
set__of parent PolicyGroups;
/* functions */
validateProposedValue (AttributeName, Attrib
uteValue):
retum (boolean);
polymorphic class__of _self ():
returns (the namne of the class of the
caller);
end class ManagedObject
/* function definitions for ManagedObject */
validateProposedValue (AttributeName, Attribute Value)
create empty set__of__policies_ for_ eval;
passedPolicy = TRUE;
for each parent i set__of parent_PolicyGroups do
sei_ of policies =
Parent.getPolicies (class __ of __
self() ,AttributeName);
add set of policies to
set__of _policies__for__eval;
end for loop;
for each policy m set __ of __ policies__for__eval
do
iff (policy.validate(AtinbuteValue) ==
FALSE) then
passedPolicy=FAIL.SE,;
end 1f;
end for loop;
return passedPolicy;
end function validateProposedValue;

With reference additionally now to FIGS. 12A-12B a
representative process flow 160 is shown to enable the
retrieval of the applicable policies given the class name of
the managed object and the name of the managed object
attribute (i.e. password). The process flow 160 illustrated
parallels the pseudocode of Block 2 following.

3. 797.128

11

At step 162 a set named return__set__of__policies is cre-
ated and a policy iterator is created and set to begin
set__of__polices at step 164. At decision step 166 the policy
iterator is tested to determine if it is at the end of the
set__of__policies. If true. the parent iterator is set to the
beginning of the set_ of parent__PolicyGroup at step 174.
If false. the className and the name of the policy pointed
to by the iterator is tested at decision step 168 to determine
if it 1s the same as the ManagedObject class and the
attributeName is passed into this function.

It true. the policy pointed to by the iterator is added to the
return_set__of _policies at step 170 and the iterator is
moved to the next member of the set_of_policies at step
172. It false. step 170 is bypassed and the process 160
proceeds to step 172 and then returns to decision step 166.

Following step 174, decision step 176 determines whether
the parent iterator points to the end of set_of _parent__
PolicyGroup. If true, the process 160 then proceeds directly
to step 184 to return return__set__of__policies. If false. the
value returned from the call to the getPolicies {className__
of _MandagedObject, name_ of attribute) for the parent
pointed to by the parent iterator is assigned to set_of
policies at step 178. Thereafter at step 180, the set_ of
policies is added to the return_set_of policies and the
iterator is moved to the next member of the set_ of patent__
PolicyGroup at step 182. The process 160 then returns to
decision step 176.

In operation, a search is first done on all locally defined
policies, that is, policies that are local to the policy group.
They are analyzed to determine whether there is a match on
class name and attribute name. If a match is found, the
policy is placed in the set that will be returned. After the
local search. the parents are queried as to policies for the
particular class and attribute and the policies returned are
also added to the set to be returned. The completed set is
then returned and that is passed down to the managed object
making the request where the evaluation as to policy com-
pliance takes place.

Block 2:
Class PolicyGroup

class PolicyGroup subclass of ManagedObject
/* Attributes ¥/
set__of__children_ ManagedObjects;
set__of policies;
/* __functions ¥/
getPolicies(class__of ManagedObject,
name__of _attribute):
returns (a set of policies):
class__ of self ();
end class PolicyGroup
/* function definitions for PolicyGroup */
function getPolicies(className_of ManagedObject,
name__of __attribute)
create an empty return_set_ of _policies;
for each policy m set _ of __ policies do:
if (policy.classname —
className_ of ManagedObject AND
policy.atiributeName —
name__ofatiribute)
then
add policy to return__set__of__policies;
end if;
end for loop;
for each parent in set__of_ parent_PolicyGroups do:
set__of__policies =
Parent. getPolicies (className of ManagedObject,
name of__attribute);
add set__of__policies to
return__set_of _policies;

10

15

20

23

3C

35

45

50

33

65

12

~-continued

end for loop;

return return__set_ of__policies;

end function getPolicies

funchion ¢lass_ of _self()
return “PolicyGroup”

end function class__of__ self;

With respect to the pseudocode of Block 3 hereinafter, an
example of class policy is shown. It should be reiterated that
policy groups contain a list of policies, and each policy in
that list has a class name and attribute to indicate to what the
policy applies. The policy expression. in fact, may be the
policy itself. Each policy has a function called *“validate”
and the proposed value is placed in the policy to return a
“true” or “false” indication for the value.

Biock 3:
Class Policy

¢lass Policy
/* Attributes */
className; /* name of the class of Managed
Object this policy applies */
attributeName; /* name of the attribute of the
class className #/
policyExpression;
/* functions */
validate(aProposedAtiribute Value) return
(Boolean);
end class Policy
/* Function Definttions for Policy*/
vahidate{aProposedAttribute Value) /*
use aProposedAttributeValue i the system
administrator defined policy expression. The
result of the policy expression is returned.
end function valklate

With reference additionally now to FIG. 13 and the
following pseudocode of Block 4, an example of a class
which checks policy is shown. The process 199 begins at
decision step 192 to where the proposed value is tested as to
Userldentifier and newvalue to validate to true. If true, the
Userldentifer is assigned to newvalue at step 194 and the
process 190 is completed at return step 196. If false, step 194
1s bypassed directly to return step 196.

Block 4:
An Example of a class which checks Policy

class User subclass of Managed Object
/* attributes */
Userldentifier;
/* ftunctions */
class of self();
set_Userldentifier(new Value) returns error
code;
end class User
/* Function Defimitions for User */
function class of self()
return “User”;
end function: |
function set Userldentifier(new Value)
if
(validateProposed Value("Userldentifier”, newValue)
then
Userldentifier = newValue;
end if;
ernxd function set__Userldentifier;

The system and method for implementing a hierarchical
policy for computer system administration disclosed herein
is very flexible in assigning policies to managed objects. As

5.797.128

13

stated previously. policies are rules for the values of the
attributes of managed objects. Policy groups are the basic
butlding block of this model and they associate a set of
policies with a set of managed objects. Further. policy
groups can be members of other policy groups and a policy
group inherits the policies of its parent policy groups. This
feature can be used to support the hierarchical specification
of policy. Moreover. the system and method herein disclosed
allows a given policy group to have multiple parents which.
in turn, allows the “mix-in” of policies from the parents.

System administrators may use the standardization of the
managed object configuration as a means to reduce the
burden of administering large numbers of instances of a
given class of managed objects. Standardization reduces the
complexity of the day-to-day system administration function
because there is less information to maintain and understand
and because there are fewer special cases. Thus, the stan-
dardization herein proposed makes it easier to optimize and
troubleshoot particular configurations. Utilizing cloning and
templates provides a voluntary means for standardization
while validation policies and policy groups provide more of
a mandatory means of standardization.

Reduction or limiting the damage of non-malicious mis-
use is supported via policies. Specifically, polices can be
used to restrict the set of values for a given attribute to a
“sate” set of values and the policy group mechanism insures
that a managed object’s attributes can only assume safe
values.

While there have been described above the principles of
the present invention in conjunction with a specific client-
server computer architecture and programming examples, it
is to be clearly understood that the foregoing description is
made only by way of example and not as a limitation to the
scope of the invention. Particularly, while the system and

method of the present invention has been applied with
specificity to computer system administration and manage-
ment functions in the examples discussed, the same tech-
niques can be applied. for example. to software development
wherein rules for the values of attributes of managed objects
may be placed thereon.

What is claimed is:

1. A method for implementing a hierarchical policy for
administration of a computer system having at least one
computer. an associated database and a user interface for
inputting data to said database, said method comprising the
steps of:

providing for storing of a number of policies in said

database. said policies each having an associated policy
class name and policy attribute;

providing for organizing of said policies into policy

gLoups,

providing for inputting of characteristics of an input

managed object to said computer system. said input
managed object having an associated input object class

name and an associated input object attribute having a
proposed value;

providing for searching of certain of said policy groups
pertinent to said input managed object to determine
policies within said policy groups having a policy class
name and policy attribute corresponding to said input
object class name and input object attribute;

providing for returning of a matching subset of policies
from said policy groups which have a policy class name
and policy attribute corresponding to said input object
class name and input object attribute;

providing for analyzing of said proposed value of said
input object attribute of said input managed object with
respect to said matching subset of policies; and

14

providing for allowing of entry of said proposed value of
said input object attribute if said proposed value passes

each of said policies in said matching subset of policies.
2. The method of claim I wherein said step of providing

3 for searching further comprises the steps of:

10

13

20

25

30

35

45

30

55

65

providing for recursively searching of said policy groups
to determine parent policy groups of said input man-
aged object having a policy class name and policy
attribute corresponding to said input object class name
and input object attribute;

providing for additionally returning of an additional sub-
set of said policies from said parent policy groups
which have a policy class name and policy attribute
corresponding to said input object class name and input
object attribute; and

providing for adding of said additional subset of said
policies to said matching subset of policies prior to said
step of providing for returning.

3. The method of claim 2 wherein said step of providing

for recursive searching is carried out by the steps of:

providing for initially searching said certain policy groups
to identify said policies having a policy class name and
policy attribute corresponding to said input object class
name and input object attribute; and

providing for secondarily searching of policies of said
parent policy groups to identify policies of said parent
policy groups having a policy class name and policy
attribute cormresponding to said input object class name
and input object attribute.

4. The method of claim 1 wherein said step of providing
for storing is carried out by means of a computer mass
storage device operatively coupled to said computer system.

S. The method of claim 1 wherein said step of providing
for organizing is carried out by the steps of:

providing for determining of common applicabilities of
said policies to various of said managed object class
names and said object attributes;

providing for grouping of said policies in said policy

groups according to said common applicabilities.

6. The method of claim 1 wherein said step of providing
for inputting is carried out by providing for entry of said
input object class name and proposed value of said input
object attribute to said computer system.

7. The method of claim 1 further comprising the steps of:

providing an additional computer coupled to said com-
puter system. said additional computer functioning as a
server with respect to said at least one computer
functioning as a client. said additional computer opera-
tive for confrolling said database.

8. The method of claim 7 wherein said steps of providing
for storing. searching and returning are carried out by said
additional computer.

9. The method of claim 7 wherein said steps of providing
for analyzing and allowing are carried out by said at least
one computer.

10. The method of claim 1 further comprising the steps of:

providing for cloning of an associated object class name
and an associated object attribute of a previously input
managed object; and

providing for the utilization of said associated object class
name and said associated object attribute to produce a
modifiable initial representation of said input object
class name and said input object attribute of said input

managed object.

5.797.128

15
11. The method of claim 1 further comprising the step of:

providing for creating a template to establish an initial
value for said input object attribute of said input
managed object.

12. The method of ciaim 1 further comprising the step of:

providing for disallowing of entry of said proposed value
of said input object attribute if said proposed value fails
any one¢ of said policies in said matching subset of
policies.

13. The method of claim 1 further comprising the step of:

providing for conditionally allowing of entry of said
proposed value of said input object attribute if said
proposed value fails an advisory one of said policies in
said matching subset of policies.

14. A computer program product comprising:

a computer usable medium having computer readable
code embodied therein for implementing a hierarchical
policy for administration of a computer system having
at least one computer. an associated database and a user
interface for inputting data to said database, the com-
puter program product comprising:

computer readable program code devices configured to
cause a computer to effect storing a number of policies
in said database. said policies each having an associ-
ated policy class name and an associated policy
attribute;

computer readable program code devices configured to
cause a computer to effect organizing said policies 1nto
policy groups;

computer readable program code devices configured to
cause a computer to effect inputting characteristics of
an input managed object to said computer system., said
input managed object having an associated input object
class name and an associated input object attribute
having a proposed value;

computer readable program code devices configured to
cause a computer to effect searching certain of said
policy groups pertinent to said input managed object to
determine policies thereof having a policy class name
and policy attribute corresponding to said input object
class name and input object attribute;

computer readable program code devices configured to
cause a computer to effect returning a matching subset
of said policies from said policy groups which have a
policy class name and policy attribute corresponding to
said input object class name and input object attribute;

computer readable program code devices configured to
cause a computer to effect analyzing said proposed

value of said input object attribute with respect to said
matching subset of said policies; and

computer readable program code devices configured to
cause a computer to effect allowing entry of said
proposed value of said input object attribute if said
proposed value passes each of said policies in said
matching subset of said policies.

15. The computer program product of claim 14 further

comprising:

computer readable program code devices configured to
cause a computer to effect recursively searching said
policy groups to determine parent policy groups of said
input managed object having a policy class name and
policy attribute corresponding to said input object class
name and input object attribute;

computer readable program code devices configured to
cause a computer to effect additionally returning an

i)

15

20

25

30

35

45

S0

35

63

16

additional subset of said policies from said parent
policy groups which have a policy class name and
policy attribute corresponding to satd input object class
name and input object attribute; and

computer readable program code devices configured to
cause a computer to effect adding said additional subset
of said policies to said matching subset of policies prior
to said step of returning.

16. The computer program product of claim 15 wherein
said computer readable program code devices are configured
to cause a computer to effect said searching of said policies
is carried out by:

computer readable program code devices configured to
cause a computer to effect initially searching said
policies of said certain policy groups to identify said
policies having a policy class name and policy attribute
corresponding to said input object class name and input
object attribute; and

computer readable program code devices configured to
cause a computer to effect secondarily searching said
policies of said parent policy groups to identify policies
of said parent policy groups of said managed object
having a policy class name and policy attribute corre-
sponding to said input object class name and input
object attribute.

17. The computer program product of claim 14 wherein
said computer readable program code devices are configures
to cause a computer to effect said organizing of said policies
is carried out by:

computer readable program code devices configured to

cause a computer to effect determining common appli-
cabilities of said policies to various of said managed
object class names and said object attributes;

computer readable program code devices configured to
cause a computer to effect providing for grouping of
said policies in said policy groups according to said
common applicabilities.

18. The computer program product of claim 14 further

comprising:

computer readable program code devices configured to
cause a computer to effect cloning of an associated
object class name and an associated object attribute of
a previously input managed object; and

computer readable program code devices configured to
cause a compitter to effect utilization of said associated
object class name and said associated object attribute to
produce a modifiable initial representation of said input

object class name and said input object attribute.
19. The computer program product of claim 14 further
comprising:
computer readable program code devices configured to
cause a computer to effect creating a template to
establish an initial value for said input object attribute.
20. The computer program product of claim 14 further
comprising:
computer readable program code devices configured to
cause a computer to effect disallowing entry of said
proposed value of said input object attribute if said
proposed value fails any one of said policies in said
matching subset of said policies.
21. The computer program product of claim 14 further
comprising:
computer readable program code devices configured to
cause a computer to effect providing for conditionally
allowing of entry of said proposed value of said input

5.797.128

17

object attribute if said proposed value fails an advisory
one of said policies in said matching subset of said
policies.

22. A computer system capable of implementing a hier-
archical policy administration, said computer system com-
prising:

at least one computer;

at least one database retained within a computer mass
storage device operatively coupled to said computer.
said database being capable of storing a number of
policies having an associated policy class name and an
associated policy attribute;

a user interface operatively coupled to said at least one
computer, said user interface capable of allowing input
of characteristics of an input managed object to said
computer system, said input managed object having an
associated 1nput object class name and an associated
input object attribute having a proposed value;

an associator operable in conjunction with said at least
onc computer and said database for organizing said
policies into policy groups;

an iterator operable in conjunction with said at least one
computer and said database for searching certain of
said policy groups pertinent to said input managed
object to determine policies thereof having a policy
class name and policy attribute corresponding to said
input object class name and input object attribute;

a matching subset of said policies from said policy groups
returned by said iterator to said at Ieast one computer
which have a policy class name and policy attribute
corresponding to said input object class name and input
object attribute;

an analyzer operable in conjunction with said at least one
computer for testing said proposed value of said input
object attribute with respect to said matching subset of
said policies; and

an input validator operable in conjunction with said at
least one computer and said user interface and respon-
sive 1o said analyzer, said input validator allowing entry
of said proposed value of said input object attribute if
said proposed value passes each of said policies in said

matching subset of said policies.
23. The computer system of claim 22 further comprising:

a recursive iterator operable in conjunction with said at
least one computer and said database for searching said
policy groups to determine parent policy groups of said
input managed object having a policy class name and
policy attribute corresponding to said input object class
name and input object attribute;

an additional subset of said policies from said parent
policy groups which have a policy class name and
policy attribute corresponding to said input object class
name and input object attribute; and

a summer for adding said additional subset of said poli-

cies to said matching subset of said policies.

24. The computer system of claim 22 further comprising
an additional computer coupled to said computer system for
operatively controlling said database and functioning as a
server with respect to said at least one computer.

25. The computer system of claim 22 further comprising
a cloning implementor for utilizing an associated class name
and associated object attribute of an associated managed

object previously input to said computer system to produce
a modifiable initial representation of said input object class

name and said ioput object attribute.

10

15

20

25

30

35

45

50

35

635

18

26. The computer system of claim 22 further comprising
a template creator for establishing an instial value for said
input object attribute.

27. The computer system of claim 22 wherein said input
validator further comprises an input disallower for disallow-
ing entry of said proposed value of said input object attribute
if said proposed value fails any one of said policies in said
matching subset of policies.

28. The computer system of claim 22 wherein said input
validator further comprises a conditional input validator for
conditionally allowing entry of said proposed value of said
input object attribute if said proposed value fails an advisory
one of said policies in said matching subset of policies.

29. A method for implementing a hierarchical policy for
a computer system having at least one computer, an asso-
ciated database and a user interface for inputting data to said
computer system. said method comprising the steps of:

providing for organizing of a number of policies in said

database into policy groups. ecach of said policies
having an associated policy class name and an associ-
ated policy attribute;

providing for inputting of characteristics of an input

managed object to said computer system. said input
managed object having an associated input object class
name and an associated input object attribute having a
proposed value;

providing for analyzing of said proposed value of said
input object attribute with respect to policies in perti-
nent ones of said policy groups having a policy class
name and policy attribute corresponding to said input
object class name and input object attribute; and

providing for allowing of entry of said proposed value of
said input object attribute if said proposed value passes
ecach of said policies in said pertinent ones of said
policy groups.

30. The method of claim 29 wherein said step of analyzing

further comprises the steps of:

providing for searching of said database for certain of said
policy groups pertinent to said input managed object to
determine policies thereof having a policy class name
and policy attribute corresponding to said input object
class name and input object attribute; and

providing for returning of a matching subset of said
policies from said policy groups which have a policy
class name and policy atiribute comresponding to said
input object class name and input object attribute.

31. The method of claim 30 wherein said step of providing

for searching further comprises the steps of:

providing for recursively searching of said policy groups
to determine parent policy groups of said input man-
aged object having a policy class name and policy
attribute corresponding to said input object class name
and input object attribute;

providing for additionally returning of an additional sub-
set of said policies from said parent policy groups
which have a policy class name and policy attribute
corresponding to said input object class name and input
object attribute; and

providing for adding of said additional subset of said
policies to said policies from said pertinent ones of said
policy groups prior to said step of providing for return-
ing.

32. The method of claim 30 wherein said step of providing

for searching is carmried out by the steps of:

providing for initially searching of said policies of said
certain policy groups to identify said policies having a

3. 797,128

19

policy class name and policy attribute corresponding to
said input object class name and input object attribute;
and

providing for secondarily searching of said policies of
said parent policy groups to identify policies of said
parent policy groups of said input managed object
having a policy class name and policy attribute corre-
sponding to said input object class name and input
object attribute.

33. The method of claim 29 wherein said step of providing

for organizing is carried out by the steps of:

providing for determining of common applicabilities of
said policies to various of said managed object class
names and said object attributes; and

providing for grouping of said policies in said policy

groups according to said common applicabilities.

34. The method of claim 29 wherein said step of providing
for inputting is carried out by providing for entry of said
input object class name and proposed value of said input
object attribute to said computer system.

35. The method of claim 29 further comprising the steps
of:

providing an additional computer coupled to said com-
puter system. said additional computer functioning as a
server with respect to said at least one computer
functioning as a client. said additional computer opera-
tive for controlling said database.

36. The method of claim 35 wherein said steps of pro-
viding for searching and returning are carried out by said
additional computer.

37. The method of claim 35 wherein said steps of pro-
viding for apalyzing and allowing are carried out by said at
least one computer.

38. The method of claim 29 further comprising the steps
of:

providing for cloning of an associated object class name
and an associated object attribute of a previously input
managed object; and

providing for the utilization of said associated object class
name and said associated object attribute to produce a
modifiable initial representation of said input object
class name and said input object attribute.

39. The method of claim 29 further comprising the step of:

providing for creating a template to establish an initial
value for said input object attribute.
40. The method of claim 29 further comprising the step of:

providing for disallowing of entry of said proposed value
of said input object attribute if said proposed value fails
any one of said policies in said pertinent ones of said
policy groups.

41. The method of claim 29 further comprising the step of:

providing for conditionally allowing of entry of said
proposed value of said input object attribute if said
proposed value fails an advisory one of said policies in
said pertinent ones of said policy groups.

42. A computer program product comprising:

a computer usable medium having computer readable
code embodied thereon for implementing a hierarchical
policy for a computer system having at least one
computer, an associated database and a user interface
for inputting data to said computer system. the com-
puter program product comprising:
computer readable program code devices configured to

cause a computer to effect organizing of a number of
policies in said database into policy groups. each of

S

10

15

20

23

30

35

40

4

50

33

65

20

said policies having an associated policy class name
and an associated policy attribute;

computer readable program code devices configured to
causc a computer to effect inputting of characteristics
of an input managed object to said computer system.
said input managed object having an associated input
object class name and an associated input object
attribute having a proposed value:

computer readable program code devices configured to
cause a computer to effect analyzing of said pro-
posed value of said input object attribute with respect
to policies 1n pertinent ones of said policy groups
having a policy class name and policy attribute
corresponding to said input object class name and
input object attribute; and

computer readable program code devices configured to
cause a computer to effect allowing of entry of said
proposed value of said input object attribute if said
proposed value passes each of said policies in said
pertinent ones of said policy groups.

43. The computer program product of claim 42 wherein
said computer readable program code devices configured to
cause a computer to effect analyzing is further carried out

computer readable program code devices configured to

cause a computer to effect searching of said database
for certain of said policy groups pertinent to said input
managed object to determine policies thereof having a
policy class name and policy attribute corresponding to
said input object class name and input object attribute;
and

computer readable program code devices configured to

cause a computer to effect returning of a matching
subset of said policies from said policy groups which
have a policy class name and policy attribute corre-
sponding to said input object class name and input
object attribute.

44. The computer program product of claim 43 wherein
said computer readable program code devices configured to
cause a computer to effect analyzing is further carried out

computer readable program code devices configured to

cause a computer to effect recursively searching of said
policy groups to determine parent policy groups of said
input managed object having a policy class name and
policy attribute corresponding to said input object class
name and input object attribute;

computer readable program code devices configured to

cause a computer to effect additionally returning of an
additional subset of said policies from said parent
policy groups which have a policy class name and
policy attribute corresponding to said input object class
name and input object attribute; and

computer readable program code devices configured to

cause a computer to effect adding of said additional
subset of said policies to said policies in said pertinent
ones of said policy groups prior to said step of provid-
ing for returning.

45. The computer program product of claim 43 wherein
said computer readable program code devices configured to
cause a computer to effect searching is carried out by:

computer readable program code devices configured to

cause a computer to effect initially searching of said
policies of said certain policy groups to identify said
policies having a policy class name and policy attribute
corresponding to said input object class name and input
object attribute; and

5.797.128

21

computer readable program code devices configured to
cause a computer to effect secondarily searching of said

policies of said certain policy groups to identity poli-
cies of said parent policy groups of 1 said managed
object having a policy class name and policy attribute
corresponding to said input object class name and input
object attribute.
46. The computer program product of claim 42 wherein
said computer readable program code devices configured to
cause a computer to effect organizing is carried out by:

computer readable program code devices configured to
cause a computer to effect determining of common

applicabilities of said policies to various of said man-
aged object class names and said object attributes; and

computer readable program code devices configured to

cause a computer to effect grouping of said policies in

said policy groups according to said common applica-
bilities.

47. The computer program product of claim 42 wherein

said computer readable program code devices configured to

cause a computer to effect inputting is carried out by:

computer readable program code devices configured to
cause a computer to effect entry of said input object
class name and proposed value of said imput object
attribute to said computer system.

48. The computer program product of claim 42 further

comprising:

computer readable program code devices configured to

cause a computer to effect cloning of an associated

10

15

20

25

22

object class name and an associated object attribute of
a previously input managed object; and

computer readable program code devices configured to
cause a computer to effect utilization of said associated
object class npame and said associated object attribute to
produce a modifiable initial representation of said input
object class name and said input object attribute.
49. The computer program product of claim 42 further
comprising:
computer readable program code devices configured to
cause a computer to effect creating a template to
establish an initial value for said input object attribute.
50. The computer program product of claim 42 further
comprising:
computer readable program code devices configured to
cause a computer to effect disallowing of entry of said
proposed value of said input object attribute if said
proposed value fails any one of said policies 1n said
pertinent ones of said policy groups.
51. The computer program product of claim 42 further
comprising:
computer readable program code devices configured to
cause a computer to effect conditionally allowing of
entry of said proposed value of said input object
attribute if said proposed value fails an advisory one of
said policies in said pertinent ones of said policy
groups.

	Front Page
	Drawings
	Specification
	Claims

