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[57] ABSTRACT

A distributed confrol system (14) receives on the i1nput
thereof the control inputs and then outputs control signals to
a plant (10) for the operation thereof. The measured vari-
ables of the plant and the control inputs are input to a

predictive model (34) that operates in conjunction with an
inverse model (36) to generate predicted control inputs. The
predicted control inputs are processed through a filter (46) to
apply hard constraints. the values of which are received from
a control parameter block (22). During operatton. predeter-
mined criterion stored in the control parameter block (22)
are utilized by a cost minimization block {42) to generate an
error control signal which is minimized by the inverse model

(36) to generate the control signals. The system works i two
modes. an analyze mode and a runtime mode. In the analyze

mode, the predictive model (34) and the inverse model (36)
are connected to either training data or simulated data from
the analyzer (30) and the operation of the plant (10) evalu-
ated. The values of the hard constraints in filter (46) and the
criterton utilized for the cost minimization (42) can then be
varied to change the constraints on the control signals input
to the control network, the predicted output of the predictive
model (34) and the hard constraints stored in the filter (46).
Cost coeflicients can be utilized as the criterion to set the
input values in accordance with predetermined cost con-

straints.

37 Claims, 14 Drawing Sheets
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METHOD AND APPARATUS FOR
ANALYZING A NEURAL NETWORK
WITHIN DESIRED OPERATING
PARAMETER CONSTRAINTS

This application is a Continuation of application Ser. No.
08/025.184. filed Mar. 2. 1993 now abandoned.

TECHNICAL FIELD OF THE INVENTION

The present invention pertains in general to neural
networks. and more particularly. to analyzing the operation
of a neural network that operates in a runtime mode and in
a separate analyze mode with a parallel model such that
simulated constraints can be associated therewith 1n accoi-
dance with user-defined criterion. these simulated con-
straints then applied to the runtime system.

BACKGROUND OF THE INVENTION

Neural networks have been utilized in an ever increasing
manner to predict system operation in the future such that
adjustments to the system can be anticipated and also to
provide control inputs to a manufacturing control system.
These networks provide a non-linear representation of a
plant. which non-linear representation was learned through
the use of historical training data. Once the system is
running, it is often desirable to change any of the operating
parameters of the system through the use of either the
control operation of the neural network or to determine how
changes in the inputs to the neural network will affect the
predicted output. These changes are often constrained by
physical limitations of the plant. or by user-defined con-
straints supplied to achieve desired behavior. The present
invention provides a novel mechanism for achieving such
desired behavior while simultaneously satisfying con-
straints.

When utilizing neural networks as predictive tools, a
system designer may be locked into the overall operating
system. For example. control networks typically receive a
desired output and then generate control inputs to force the
control inputs to a state that will yield the desired input by
minimizing the error value between a predictive output and
a desired output. However, these control networks provide
as an output a control input to the system, which then
responds accordingly. However, the way in which the mput
is applied is not controlled. For example, a user may change
the desired output to increase impurity concentration from a
given process. This could entail changing the flowrate of two
valves. changing the heater control, etc. Unfortunately, the
operation of the plant during this change to achieve the
desired output is unknown. and it was not until the entire
system had settled down and the desired output had been
reached that the system is operated as desired. As such, the
present control networks and predictive networks provide no

method to determine how the system will work under
various inputs and then control the operation of the control

network to effect changes in the way in which control signals
are applied.

SUMMARY OF THE INVENTION

The present invention disclosed and claimed herein com-
prises a method and apparatus for controlling the operation
of a plant. The system includes a control system that has
associated therewith a predictive system model that has an
input layer for receiving control inputs or plant, an output
layer for outputting predicted outputs representing a predic-
tion of the output of the plant and a mapping layer for
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2
mapping the input layer to the output layer through a stored
representation of the plant. An optimality device is operable
to receive at least two of the predicted outputs for the control
inputs as input properties. An optimality function ts then
applied to each of the input properties. the sum of the
optimality function is defining a system optimality value.
Each of the optimality functions operates such that the
extremum thereof corresponds to a user-defined desired

behavior of the associated input property. The user-defined
behavior for each of the optimality functions is not the same.

A predictive system is then operable to generate updated
control inputs that extremize the system optimality value.

In another aspect of the present invention. the predictive
system for generating the updated control inputs comprises
an inverted system model. The inverted system model is
comprised of an input layer. an output layer and a hidden
layer for mapping the input layer to the output layer through
a stored representation of the plant, The inverse model
operates in the inverse mode to receive on the output layer
the system optimality value and backpropagate this value
through the hidden layer to the input layer in accordance
with a search techmigque to generate the updated control
inputs.

In yet another aspect of the present invention, a filter
device is provided for constraining the control inputs in
accordance with the user-defined constraints. The user-
defined constraints can comprise hard limits that Limit the
values of the updated control inputs from exceeding a
predetermined value. They can also incorporate rate-of-
change constraints that define the maximum incremental
change that can be applied to the difference between the
received inputs and the updated ¢ontrol inputs. Additionally.,
the user-defined constraints can comprise combinatorial
constraints. These constraints have a value that is defined as
the combination of selected ones of the control inputs. The
selected ones of the control inputs then have the associated
value thereof limited so as not to violate the combinatorial

constraints.

In a further aspect of the present invention, an analysis
system is provided for determining the desired plant behav-
ior. The analysis system includes a simulated predictive
control system that is a substantial representation of the
predictive system model. Analysis control inputs are gener-
ated by the analysis system in addition to simulated desired
plant behavior. The analysis system allows the user to
manipulate the simulated desired plant behavior and the

geperated analysis control inputs in order to generate
updated control inputs to cause the simulated predictive
control system to operate in accordance with the desired

behavior. The analysis system is also operable to allow the
user to observe the desired behavior. The manipulated

desired plant behavior is then applied to the predictive
control system model as the predetermined desired plant
behavior in the form of the various optimality functions.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof. reference is now made to
the following description taken in comjunction with the
accompanying Drawings in which:

FIG. 1 illustrates a block diagram of the overall system of
the present invention to provide the analyzer function;

FIG. la illustrates a detailed diagram of a conventional
neural network;

FIG. 2 illustrates a detail of the analyzer;

FIG. 3 illustrates a detailed block diagram of the control
network:
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FIG. 3a illustrates a block diagram of the iterate block in
FIG. 3:

FIG. 4 illustrates a flowchart for the operation of the
analyzer at the top level;

FIG. § illustrates a flowchart for generating the display of
predicted versus actual output:

FIG. 6 illustrates a flowchart for determining the sensi-
tivity;

FIG. 7 illustrates a flowchart for displaying setpoints and
“what ifs”;

FIG. 8 illustrates the computer display for setpoints and
“what ifs”;

FIG. 9 illustrates a flowchart for changing the predict-
outputs mode of setpoints and “what ifs™;

FIG. 10 illustrates a flowchart for changing input param-
eters,

FIG. 11 illustrates a display for changing the input param-
eters;

FIG. 12 illustrates a lowchart tor the operation of chang-
ing the view in the analyzer;
FIG. 13 illustrates a flowchart for predicting the inputs;

FIG. 14 illustrates a flowchart for changing the output
parameters;

FIG. 15 illustrates a display for changing the output
parameter screen; and

FIG. 16 illustrates plots of input and output variables with
different cost-constraints: and

FIG. 17 illustrates a plot of the fuzzy-constraint function.

DETAILED DESCRIPTION OF THE
INVENTION

Referring now to FIG. 1. there 1s illustrated a block
diagram of the overall system and analyzer. In general. a
plant 10 is provided that can be any type of physical,
chemical. biological. electronic or economic process with
inputs and outputs. The plant has an output y(t) and control
inputs x(t). the control inputs x(t) provided on an input 12.
In addition. the plant 10 has external inputs E(t). which
comprise such things as the ambient temperature, the
humidity. etc. These are typically parameters that cannot be
controlled. The plant also has associated therewith measured
state variables s(t). such as flowrates. temperature
measurements, etc. These are typically measured variables.
It should be understood that the flowrate or the temperature
may be directly associated with one of the control inputs x(t)
such as. for example, flowrate. Typically. a valve constitutes
a control input and the flowrate merely represents the setting
on that valve. Theretore. a setting of the valve would

constitute a filowrate. However, it i1s a measure of this
flowrate that constitutes a measured state variables in s(t).

The control inputs x(t) are generated by a distributed
control system 14. The output of the distributed control
system., comprising the control inputs x(t). and the state
variables s(t); are input to a runtime control network 16,
which generates control inputs x(t+1) that are utilized to
provide the settings for the distributed control system 14.
The runtime control net 16, as will be described
hereinbelow, incorporates a predictive model of the plant 10.
in the form of a neural network or any other type of
non-linear network. An inverse network is also provided for
generating the predictive inputs to the distributed control

system 14.
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The runtime control network 16 operates in accordance

with control parameters stored in a memory block 22. As

4

will be described hereinbelow. the runtime control net will
operate the distributed control system 14 in accordance with
various criteria such as a desired target output and desired
“cost factors™ for the input parameters of the network and for
the predictive output from the network, and also as to
limitations that may be placed upon the control inputs. such
as rate-of-change and maximum and minimum constraints
on the range of the input values, or combinatorial constraints
such as constraints on the ratio or sum of constituents of a
mixture.

A paralle]l system is provided to the runttme control net
16. which utilizes a system model 24. The system model 24
is operable to receive on the input thereof either training data
from a memory 26. or simulated data on a line 28. The
output of the system model 24 is input to an analyzer 30
which is operable to analyze the overall operation of the
network. With this configuration. the plant 10 can be mod-
eled in a system model 24, which system model 24 also
incorporates the features of the runtime control net 16. in
order to analyze the operation of the plant as a function of
constraints that may be placed on the input or on the control
inputs to the plant 10. and also on the output of the plant, as
indicated by the internal prediction of the output. By pro-
viding a paraliel system. this operation can be accomplished
completely independent of the runtime control net 16.
However, once the analysis has been performed by the
analyzer 30. new control parameters can be generated. and
downloaded to the control parameter block 22 for use by the
runtime control net 16 in real time. The analyzer is operated
through use of an input/output device 32 such that an
operator can input information to the analyzer 30 and this
information can be displayed. The analyzer 30 is operable (o
generate the simulated data on the line 28.

Referring now to FIG. 1la. there is illustrated a detailed
diagram of a conventional neural network comprised of

input nodes 15, hidden nodes 17 and output nodes 18. The

input nodes 15 are comprised of N nodes labelled x,.
X,. ... X5 Which are operable to receive an input vector x(t)
comprised of a plurality of inputs, INPI(t).
INP2(t). . . . INPN(t). Similarly. the output nodes 18 are
labelled o4, 0,. . . . 0x. Which are operable to generate an
output vector o(t), which is comprised of the output OUTI
(t), OUT2(t). . . . OUTK(t). The input nodes 14 are inter-
connected with the hidden nodes 17, hidden nodes 17 being
labelled a,. a,. ... a,, through an interconnection network

where each input node 13 is interconnected with each of the
hidden nodes 17. However, some interconnection schemes

do not require full interconnect. Each of the interconnects
has a weight W,.*. Each of the hidden nodes 17 has an output
o; with a function g. the output of each of the hidden nodes
defined as follows:

" N (1)
ﬂj=3( I W+ )

i—=]

Similarly, the output of each of the hidden nodes 17 is
interconnected with substantially all of the output nodes 18

through an interconnect network. each of the interconnects
having a weight ij associated therewith. The output of

cach of the output nodes is defined as follows:

‘ ! (2)
Ok:g( _E Wﬁaj+b¢2 )

=1
This neural network is then trained to learn the function f(x)
that is embedded in the neural network from the input space
to the output space as examples or input patterns are
presented to it. and a Total-Sum-Square-Error function is

minimized through use of a gradient descent on the param-
eters W, 2. W_1. b, b,
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The neural network described above is just one example.
Other types of neural networks that may be utilized are those
using multiple hidden layers. radial basis functions. gaussian
bars (as described in U.S. Pat. No. 5.113.483. 1ssued May
12. 1992, which is incorporated herein by reference). and
any other type of general neural network. In the preferred
embodiment. the neural network utilized is of the type
referred to as a multi-layer perception network.

Referring now to FIG. 2, there is illustrated a more
detailed diagram of the system of FIG. 1. wherein the overall
system model 24 and runtime control net 16 are multiplexed
in operation with the distributed control system 14. The
runtime control net 16 and system model 24 are each
comprised of a predictive model 34 and an inverse model 36.
The predictive model 34 is represented by the system of
FIG. 1a. in that it is operable to receive the control input x(t)
and state variables s(t) and output a predictive output o°(t).
which represents the predictive output of the plant 10. The
predictive model 34 has therein a stored representation of
the plant 10. which stored representation is a learned rep-
resentation which was learned on the training data stored in
the memory 26. This is a separate training operation that will
not be described herein. however. these are stored or fixed
weights which determine how the predictive model 34
operates. To the extent that the predictive model 34 is an
accurate model. the actual output of the plant 10 and the
predicted output of the predictive model 34 will be essen-
tially identical. However. whenever the actual output of the
plant has to be varied. the plant control inputs must also be
varied. this effected through the runtime control net 16 and
the distributed control system 14. The predictive model 34
receives the input therefor from the multiplexer 38. The
multiplexer 38 is operable to receive the simulated control
inputs from the line 28, passing through filter 46'. the actual
control inputs to the plant 10 as the variable x(t) and the state
variables s(t) from the distributed control system 14, or the
training data from the memory 26. With regards to the input.
the predictive model 34 can generate a predicted output that
is a non-linear function of the inputs provided thereto. This
predictive output 0o°(t) is input to the analyzer 30.

In order to provide the control network function, an error
is generated so as to minimize the cost in a cost minimiza-
tion block 42. which is operable to receive the predictive
output o°(t) of the predictive model 34 and the inputs to the
predictive model 34. The cost minimization block 42 also
receives control parameters from the control block 22, which
are utilized to calculate an error E. which in the preferred

embodiment is then processed by the inverse model 36 in
accordance with the general operation of a control network

to minimize the cost and generate on an output 44 new

control inputs. These updated control inputs are input to a
block 46 that is labelled “filter”. This block 46 functions to
satisfy any “hard” constraints that have been placed on the
system before they are input to the plant 10, or the predictive
model 34. These constraints are of the following three types:
1) range constraints; 2) rate-of-change constraints, or 3)
combinatorial constraints. Range constraints are of the form:

xS xS PP (3}

where x.°*“" is the lower hard-limit or hard-constraint, and
x “"P¢" is the corresponding upper hard-constraint. meaning

!

that a particular control cannot be varied outside of these
limits. Rate-of-change constraints are of the form:

(4)

where: Ax=x(t+1)—x(t) meaning, e.g.. that a particular con-
trol cannot be changed faster than the prescribed rate.

< A=
Axy, wer; Ax= mupper,-
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Combinatorial constraints are used to satisfy Limits on the

combinations of variables. For example. it is quite common

that the sum of all of the flows into a system must equal
100% of the flow out. This is known as a mass-balance

constraint. and can be expressed as:

(5)

- ¥ xi=constant
reflow

More generally. we can have any function of the inputs:
F(x)=constant, such as the ratio of two ingredients must be
constant. i.e.. x/x=C,.

The contents of filter 46 are controlled by information
received from the control parameter block 22. As will be
described hereinbelow, the filter 46 is operable to place hard
constraints on the inputs and/or other constraints such as rate
of change. etc.. that may be required when applying new
inputs to the plant 10. As will be appreciated, the predicted
inputs generated by the inverse model 36 are generated as a
function of the manner in which the overall control net
minimizes the error function output by the minimization
block 42. This will be described in more detail hereinbelow.

The output of the filter 46 is input to a latch 48. the output
of which is input as the control inputs x(t+1) to the DCS 14.
The latch 48 is operable to only pass through new control
inputs during the runtime mode. During the analysis mode.
the latch 48 prevents new data from being updated to the
DCS 14. The output of filter 46 is also input back to the
analyzer. The analyzer 30 is operable to control the overall
operation of the system through either placing it in a runtime
mode or placing it in an analysis mode. In the analysis mode.
information is displayed on a display 50 with input received
from an input device 51. Further. a filter 46’ is incorporated
on the line 28 to apply the hard constraints to the simulated
inputs. Another filter, filter 47. is incorporated on the input
to the predictive model 34 to allow constraints to be applied
directly to the inputs to the model. Both filter 46" and filter
47 are controlled by block 22.

Referring now to FIG. 3. there is illustrated a block
diagram of a control system for optimization/control of a
plant’s operation in accordance with predetermined weights.
A plant is generally shown as a block 10 having an input for
receiving the control inputs x(t) and an output for providing
the actual output y(t). A plant predictive model 54 is
developed with a neural network to accurately model the
plant 10 to provide an output o°(t). which represents the
predicted output of plant predictive model 54. The inputs to
the plant model 84 are the control inputs x(t) and the state
variables s(t). For purposes of optimization/control. the plant
model 54 is deemed to be a relatively accurate model of the
operation of the plant 10. In an optimization/control
procedure, various generated parameters stored 1n parameter
blocks 49. 51 and 53 are input to the cost minimizer 42. The
parameters are cost coefficients stored in the parameter
block 49. fuzzy constraints stored in the parameter block 31
and desired values stored in the block 53. The operation of
each of these will be described hereinbelow. These param-
eters from the parameter blocks 49. 51 and 53 are utilized by
the cost minimization block 42, which also recelves the
output of the plant model o”(t) cost and a mechanism for
generating new control inputs that satisfy the constraints in
filter block 46 so as to minimize the cost. In the preferred
embodiment. these new inputs are found through a plant-
inverse model where the cost is translated into an error so
that the error is input to the plant inverse model to generate
new control inputs minimizing cost and satistying con-
straints. The error E is input to an inverse plant model 56
which is identical to the neural network representing the
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plant predictive model 34, with the exception that it is
operated by back propagating the error through the original
plant model with the weights of the predictive model frozen.
This back propagation of the error through the network is
stmilar to an inversion of the network with the output of the
inverse plant model 56 representing a Ax(t+1) utilized in a
gradient descent operation illustrated by an iterate block 57.
In operation. as illustrated in detail in FIG. 3a. the value
Ax(t+1) 1s added initially to the input value x(t) and this sum
then processed through the filter 46 and the plant predictive
model 54 to provide a new predictive output 0”(t) and a new
error. This iteration continues until the error is reduced
below a predetermined value. The final value is then output
as the new predictive control variables x(t+1).

This new x(t+1) values comprise the control inputs that
are required to achieve the desired operation of the plant 10.
This is input to the plant control system 14. wherein a new
value is presented to the system for input as the control
variables x(t). The control system 14 is operable to receive
a generalized control input which can be varied by the
distributed control system 14. The general terminology for
the back propagation of error for control purposes is “Back
Propagation-to-Activation” (BPA).

In the preferred embodiment, the method utilized to back
propagate the error through the inverse plant model 56 is to
utilize a local gradient descent through the network from the
output to the input with the weights frozen. The first step is
to apply the present inputs for both the control variables x(t)
and the state variables s(t) into the plant model 54 to
generate the predictive output 0°(t). A local gradient descent
is then performed on the neural network from the output to
the 1nput with the weights frozen by inputting the error E in
accordance with the following equation:

Ax(r) = - 25
ox

(6}

subject to the constraints F(x). and where E is the error input
to the network, described in more detail hereinbelow, and
where 1] 1s an adjustable “step size” parameter. The output
is then regenerated from the new x(t). and the gradient
descent procedure is iterated. In an alternate embodiment,
input values of X are chosen at random. subject to the
constraints F(X) and the value of x that minimizes E is the
given as the new control 1nput.

Referring now to FIG. 4. there is illustrated a flowchart for
the overall operation of the analysis routine by the analyzer
30. The program is initiated at a start block 66 and then
proceeds to a decision block 68 to determine whether the
analysis operation is to be performed. If not. the program
flows back along the “N” path tc the input of the decision
block 68 and, if so, the program flows along a “Y”" path to
a decision block 76 to determine if a sensitivity operation is
performed. If 50, the program flcws along a “Y” path to a
“Go To” block 78. If the sensitivity operation is not to be
performed, the program flows to a decision block along the
“N” path to determine if the predictive versus actual opera-
tion is to be performed. If so. the program flows along a “Y™
path to a “Go To” function block 82. If not. the program
flows along an “IN” path to a decision block 84 to determine
if the Setpoints operation is to be performed. If so. the
program flows a *“Y” path to a “Go To” block 86. If not, the
program flows along an “N” path to a return block 88.

Predictive versus actual tests are designed to run through
data from the plant to determine how accurate the model is
when it is presented with the training patterns and novel
testing patterns. Sensitivity is designed to determine which
variables are the most sensitive for affecting the output
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variables. The Setpoints operation is designed to allow the
user to perform “software designed-experiments” by chang-
ing input and output parameters of the models, i.e.. manipu-
late the operating conditions of the models.

Reterring now to FIG. 5. there is illustrated a flowchart
depicting the operation of comparing the predicted output to
the actual output, which is initiated at a block 99. and then
the program flows to a decision block 92 to determine if the
data set is loaded from memory 26. If so. the program flows
along an “N” path to a function block 94 to load the data set
and, if it is not to be loaded. the program flows through a Y™
path. both output paths flowing to the input of a decision
block 96 that determines whether the model is loaded. If not.
the program flows an “N” path to a function block 98 to foad
the model and then to the input of a function block 100 to

run the model. After the model is loaded. the program flows
directly to the function block 100 along a “Y” path. The
program then flows to a function block 102 to determine
which of the outputs in the output vector 0°(t) is to be
displayed. When selected. the program flows to a function
block 104 to display the predicted output versus the actual
output and then to the input of a decision block 106 to
determine if the operation is done. If not. the program flows
back to the input of function block 102 to select another
display along the “N” path and, if not. the program flows
along the “Y” path to a decision block 108 to determine if
the accuracy of the prediction is satisfactory. If the accuracy
is not satisfactory, this indicates that the model is not
accurately trained and the program will then flow along an
“N” path to a function block 110 to perform a model training
operation, which 1s not described in this disclosure. The
program will then flow to an exit block 112. If the accuracy
is satisfactory, the program will flow directly to the Exit
block 112 along a “Y” path from decision block 108.

There are two types of sensitivity determinations that can
be performed, sensitivity versus rank and sensitivity versus
percent change. In the sensitivity versus rank., the sensitivity
of the input variables versus the output variables is calcu-
lated by taking the distribution-averaged partial derivatives
of the output variables with respect to the inputs. Three
scparate sensitivity measurements can then be computed.
These can be the absolute average total sensitivity. the
average total sensitivity and the peak sensitivity. The aver-
age is over the distribution of patterns specified by the user.
and is computed in each of the cases by the following
formulas. The average sensitivity is as follows:

Npats doy;
Average = Tsens;; = G o
J

(73

where. N__,. is the number of patterns in the data set for
which the determination is to be computed over. and o, ; is
the i output for the kK pattern. Similarly. the average total
sensitivity, ATsens,; is the sum of the absolute values of the
partial derivatives as follows:

dog,; (8)

-

Npats
AverageAbsolute = ATsense; = %1
k=1
Finally, the peak sensitivity is the maximum of the partials
over all patterns as follows:
004 ; (9)
5

The sensitivities associated with the average. average abso-
lute and peak are collective for all of the input/output pairs
into a table. and they can be viewed in a plot of the
sensitivity versus the input variables. It is convenient to sort

Peak =PkSens;; = max ( Jkel, 2. .. Npats )
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the variables according to rank and to plot the variables so
that the most sensitive variables are to the left. the least to
the right. This sorting is for each view, average. average
absolute or peak sensitivity. This information. by way of
example. is illustrated in Table 1.

TABLE |

Rank Name Tune-Delay Alsen Tsen

1 flow1 —4 1.40 1.40
2 pressi J 0.469 0.469
3 templ —4 0.403 0.408
4 flow?2 0 (0.349 0.051
5 leveil { 0.281 0,260
6 press2 0 0.178 -0.178
7 antifoam 0 0.156 —0.080
8 termp3 ¥ 0.135 —{).051
9 press3 0 0.045 0.002
1O pumpspeed 0, 0.026 0.005

The calculations of Table 1 are averaged over distributions.
but if the input/output relationships are quite non-linear, then
this non-linearity is often not fully displayed in the average
or peak relationship computed in Table 1; thus, it i1s very
useful to compute the sensitivity as a function of the range
of the input data. For this computation, the sensitivity is
computed for several different input values in the range of
each input variable. For each input variable. several inputs
are created as a function of the range of the input, ranging
from 0% to 100%. This step is performed holding the values
of the other variables constant. For each variable “x”. twenty
different ranges are computed and the partials at each of the
k input values would be as follows:

J _d _ _ {10}
E:— o{x) I"’b = ?; o(x) ""‘t’ XLy X2, Xjei - » - Xnin = CODStant

where N, is the number of input variables.
Referring now to FIG. 6. there is illustrated a flowchart

depicting the sensitivity operation. which is initiated at a
function block 114. The program then flows to a function
block 116 that selects rank or percent. If rank is selected, the
program flows along a branch to a function block 118 to
perform the Sensitivity versus Rank operation. Then, the
program flows to a function block 120 to run the model and
calculate the Sensitivities. The program then flows to a
function block 122 to select the type of display, Average
Absolute., Average or Peak. If the Average Absolute is
selected, the program flows to a function block 124. If the
Average Sensitivity is to be displayed. the program flows
along a branch to a function block 126 and. if the Peak
Sensitivity is to be displayed, the program flows along a
branch to a function block 128. After the display has been
selected. the output of all the blocks 124-128 flow to the
input of a decision block 130 to determine if the Sensitivities
have been displayed. If not, the program flows along an “N”
path back to the input of block 122 and. if so, the program
flows along a “Y”" path to an Exit block 132.

If percent has been selected in the block 116, the program
flows along a branch to a function block 134 to initiate the
program for the Sensitivity versus Percent operation. The
program then flows to a function block 136 to select the
desired output from among the outputs associated with the
output vector. which output is the predictive output o7(t).
The program then flows to a function block 138 to generate
the inputs and then to a function block 140 to calculate the
Sensitivity. The program then flows to a decision block 142
to determine if all the inputs have been processed. If not, the
program flows back to the input of function block 138 along
an “N” path. After completion. the program flows from
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decision block 142 along the Y path to the input of
function block 144 to select the inputs to display and then to
the input of a decision block 146 to determine if the
operation is completed. Once completed. the program flows
from decision block 146 along the *Y™ path to the input of
the Exit block 132.

In addition to determining how sensitive the variables are.
the analyzer 30 also has the ability to determine how these
variables will affect the output of the plant 10 as their values
change. This is facilitated by the “Setpoints™ and “What Ifs”
tool. wherein the outputs are determined as a function of the
user-supplied and modified inputs given certain constraints.
Once a trained system model is loaded. the user can then
change input values to predict outputs as a function of
changing inputs. This can be done under different constraint
conditions. In this mode. the user can constrain values to not
range outside given conditions, clamp inputs to certain
values. and compute the predicted output value along with
an estimate of its prediction error for a given set of inputs.
This error function is referred to as the “confidence value™.
which is not the subject of the present application. but was
disclosed in U.S. patent application Ser. No. 980.604. filed
Nov. 24, 1992, and entitled “Method and Apparatus for
Operating and Neural Network with Missing or Incomplete
Data”.

The inputs are assumed to be independent variables 1n a
standard model. and can be set and constrained according to
the user’s discretion. In this case. the output of a model.
o”(x) is a function. f(x). that is learned by the neural network
model. The input values of x(t) are given by the user, as well
as the constraints on x(t). The constraints are of three types:
constraints on the absolute range of the values, constraints
on the time rate-of-change of the values. and combinatorial
constraints on the variables. However, other constraints
could be implemented. The absolute constraints are imple-
mented simply as:

(11)

xiﬂmr‘-; xX; < Jlomri

Xj

Xupper; X > Xupper,

where. X, and X,,.., are the lower and upper hard-
constraints on the ith input value Xx,. respectively. This
relation says to replace x; with its lower or upper constraint
value if it ranges outside the constraint.

Similarly. for time-dependent values, the time-rate-of-
change on the values can be viewed as the difference, or
“delta” of the values. A(X)=x(t)-x(t—1), where x(t) is the
value of x sampled at time t and x(t—1) is the value of x
sampled at one time-step in the past. where all of the data is
on a constant, predetermined time interval. For these delta

values. the delta constraints can be implemented as follows:

- )< OD

X(1)

-;(t_]-)‘l“ﬁ;:pper; ;{f)—.l-'-r(!— lj}ﬁ;upper
This equation says that the time-rate-of-change. or delta-
values of the inputs can never exceed the delta constraints.

Combinatorial constraints are used to satisfy limits on the
combinations of variables. These constraints are “hard” in
the sense that they reflect physical constraints in the opera-
tion of the plant. For example. just as it is required that the
sum of the currents into a node of a circuit is equal to the

sum of the currents out of the node. so it 15 in a plant. The
sum of the flows into a section of the plant must be equal to

the sum of flows out of that same section. This type of

.y e
.l:(r — 1) + Axiaveer:
x(f) =
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constraint is often referred to as “mass balance™ or “material
balance™ requirements, and can be expressed as F(x)=C.,
meaning that some function F(X) of the inputs x is equal to
a constant, C,. Other common requirements are “heat
balance”. meaning the energy in equals the energy out. etc.
These also can be expressed as F(x)=C..

To implement combinatorial constraints as a filter on the
inputs, it can implement it in a manner very similar to the
range constraints. pulling the variables back into their con-
strained values any time they stray outside of the specified
constraint. For example. solve the equation:

Fixy, X300 v« Kpo o .. X 0=C, (13)

for a particular X, lL.e.:

XimGCpxy o . . . X,) (14)

and set all of the x; for ik to the values output by the inverse
model and then set:

Ap=GACxy X o0 o Xy) (135)

This will satisfy the constraint F(x)=C, and provide most of
the values (except for the kth one) so as to minimize the cost.

Referring now to FIG. 7. there is illustrated a flowchart
depicting the operation of initiating the Setpoints and What-
Its operation. which is initiated at a start block 150 and then
proceeds to a decision block 152 to determine if the data set
is loaded. If not, the program flows along an “N” path to a
function block 154 to load the data set and then to the input
of a decision block 156. If the data set is already loaded., the
program flows directly to the decision block 156. The
decision block 156 determines whether the model is loaded.
If not. the program flows to a function block 158 to load the
model and then to the input of a decision block 160. If the
mode] 1s already loaded. the program flows directly to the
decision block 160. Decision block 160 determines whether
the view needs to be changed. If yes, the program flows to
a function block 162 to change the view and then the input
of a decision block 164. If the view does not need to be
changed. the program flows directly to the input of a
decision block 164. The decision block 164 determines
which mode 1s selected. the Predict Inputs mode or the
Predict Outputs Mode. If it is the Predict Inputs mode is
chosen, the program flows to a function block 166 to predict
the tnputs and then to a decision block 168 to enter a loop
until the inputs are predicted. After prediction of the inputs,
the program flows along a “Y ™ path to the input of a decision
block 170 to determine if more analysis is required. If so, the
program flows along a *“Y ™ path back to the input of decision
block 160.

It the Predict Outputs path is chosen from decision block
164. the program flows to a decision block 172 to perform
the output prediction. The program then flows to a decision
block 174 to enter a Do loop until the output prediction is
complete, after which it flows frorn decision block 174 along
the Y™ path to the input of decision block 170.

After the analysis 1s complete, the program flows from
decision block 170 along the “NN” path to the input of a
decision block 176 to determine if the model parameters are
to be saved. If so. the program flows to a function block 178
to save the model and then to a Done block 180. However.
it it is not to be saved. it flows directly to the Done block
180.

Referring now to FIG. 8. there is illustrated a diagram of
the display depicting the results after selecting the various
constraints on the inputs and outputs. There are illustrated
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five input variables. FLOW1, TEMP |. PRESS |. FLOW?2.
PRESS2 and ANTIFOAM . . . . each of which comprises an
input to the predictive model. This is illustrated in a box 184,
the output being displayed in a block 186. as the output
PPM. which stands for parts per million. Each of the input
variables and the output variable have associated therewith
a display “bar’. The display bar has represented thereon a
vertical line which represents the current value for the inputs
and. for the output, there is a current value vertical bar 188
and a desired value vertical bar 190. The current value
vertical bar 188 has a horizontal bar with terminal indicators
192 and 194 representing an error function that represents
the predicted error of the current value of vertical bar 188.
This generally indicates what the error of the prediction is.
Each of the bars for both the input variables and the
predicted output value has the variable name on the left and
the actual value of the current value on the right.

Various graphic buttons are available in association with
the display. At the bottom of the display. there are three
graphic buttons in a group 196. representing a “STOP”
function. a “STEP” function and a “RUN” function. The
“STOP” function generally stops processing. whereas the
“STEP” function allows any changes that the user may make
to the variables to be applied to the network to generate the
predicted outputs or, in the case of predicting inputs from a
common desired output. processing the network for one

pattern through the inverse model. as described above. The
“RUN" graphics button is utilized whenever the training

data is utilized as inputs. such that the predicted output can
be viewed as a function of the input data, and also as a
function of time.

Each of the display bars associated with each of the
variables has associated therewith the ability to apply con-
straints. In the input, these are hard constraints. and in the
output, they are fuzzy constraints. In the input, these are
illustrated with respect to the display bar FLOW 1, as a lower
hard constraint 198 and an upper hard constraint 200. With
respect to the output, a lower fuzzy constraint 202 is set and
an upper fuzzy constraint 204 is set. These will be described
in more detail hereinbelow. However, depending upon the
mode chosen, it is only necessary to utilize a conventional
computer pointing device, such as a mouse, to grab a left
vertical line in any one of the bars and pull this to the right
to create the lower constraint, and conversely, to point at and
hold the right vertical bar and pull it to the left to create the
upper constraint.

Referring now to FIG. 9. there is illustrated a flowchart for
the operation wherein the outputs are predicted. which is
initiated at a block 206 and then flows to a decision block
208 to determine which of three branches is selected to
determine the source. These can be either the data set, the
averages of the dataset. or the screen. If the data set branch
is chosen, the program flows to a decision block 210 to
determine if new parameters are required. If not. the pro-
gram flows to the input of a function block 212 and. if so.
the program flows to a function block 214 to set the input
parameters and then to the input of function block 212.
Function block 212 is the operation wherein the values are
retrieved from the data set which, after retrieval. the pro-
gram will then flow to a decision block 216 to determine
whether the program is to be run. If not, the program will
flow to the input of a decision block 218. However, if the
outputs are to be predicted using the data set. the program
flows to a function block 220 to run the model in a forward
pass and then to a decision block 222 to determine if the
forward pass is to be stopped. If not. more values are fetched
from the database and then the program proceeds back to the
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input of function block 220. However, after the model has
been run in the forward pass with all the data. the program

flows from the decision block 222 to the input of decision
block 218. Decision block 218 determines whether the step
function has been selected from the graphics buttons 196. It
s0. the program flows to a tunction block 224 to run the
model in a forward pass and then to a function block 226 to
get additional values from the data set and then back to the
input of decision block 218 to wait for the next step. Once
this is completed. the program flows to a return block 228.

If the Averages path has been selected from decision block
108, the program flows 10 a decision block 230 to determine

if new parameters are required. If so. these parameters are
set. as indicated by a function block 214. and then the

program flows to a function block 234. If no constraints are
required, the program flows directly to the function block
234. which function block 234 then fetches the value from
the dataset averages., which were determined in the training
operation. The program then flows to the input of a decision
block 236 to determine if the Step button in the graphics
buttons group 196 has been selected. If not. the program
flows to the input of the return block 228 and. if so. the
program flows to a function block 238 to run the model in
the forward pass, i.e., to perform a prediction, and then to the
return block 228.

It the Screen source had been selected at decision block
208. the program would flow to the input of a decision block
240 to determine if new values are required. If yes, the
program flows to a function block 242 to receive the values
from the screen. these input by the user. The program would
continue in a loop back to the input of decision block 240
until all values were entered and then would flow to a
decision block 244 to determine if new parameters are
required. If so, the program flows to a function block 214 to
set the constraints and then to the input of function block
248. It no new parameters are required, the program fows
directly to function block 248, wherein the values input by
the screen are then retrieved and the program flows to the
input of decision block 236 to run the model.

Referring now to FIG. 10, there is illustrated a lowchart
depicting the operation wherein the input parameters are
changed. which is initiated at a function block 214 and then
flows to a function block 252 to select the input variables.

The program then flows to a decision block 256 to determine
if new input parameters are required. If so, the program

flows 1o a function block 238 to change the input parameters
and then back to the input of block 256. If no constraints are
required, the program flows to the input of a decision block
260 to determine if a new delta constraint is required. If so.
the program flows to a function block 262 to change the
delta constraints (rate-of-change constraints) and then back
to the input of block 260. If no new delta constraints are
required. the program flows to the input of a decision block
264 to determine if the inputs should be clamped. This
operation indicates that the input values should not change.
If so. the program flows to a function block 266 to perform
the clamping operation and back to decision block 264. If
the inputs are not t0 be clamped. the program flows to the
input of a decision block 268 to determine if the Scroll Plot
should be Hlustrated. If so, the program flows to a function
block 270 to turn on this feature and then back to the input
of function block 268. If the Scroll Plot is not to be
displayed. the program flows to the input of a decision block
272 to determine if the Confidence Interval is to be changed.
As described above, this is associated with the error of the
predicted value. which is the subject of another and pending

application. However, if the Confidence Interval is to be
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changed. the program flows to a function block 274 to
change the Confidence Interval and then back to block 274.

If the Confidence Interval is not to be changed. the program
flows to a return block 276.

Referring now to FIG. 11, there is (llustrated an illustra-
tion of the display for the input parameters. This display
illustrates the variable TEMPI changes have been made the
input parameter, In this example, there is dlustrated a display
bar 278 with a current input value 280. The initial staring
value is represented by a dotted line 281 that is not
displayed., but which would represent the status of the
display bar 278 prior to any change. The display bar 278 has
a minimum value of 65. a maximum value of 124 and a
mean value of 93.2746. The current value of the vertical bar
280 is illustrated in box 282 as being 99.1536. whereas. the
initial starting value was at a value of 93.27435. It can be seen
that the current value of the input. represented by the bar
280. is illustrated in box 282 below the bar 278.

To change the value from the initial value 281 to the
current value 280. it is only necessary to point at the current
value and pull it to the right. This will result in a change 1n
value in the box 282. Additionally, a minimum constraint
can be placed on the input value. which represents a lower
boundary by pointing to the left vertical bar of the bar 278
and pulling it to the right to create a shaded area 284.

Similarly. an upper constraint can be created by pulling the
right vertical bar of the bar 278 to the left. creating a shaded

arca 286. The minimum constraint is represented in a box
288 as a value of 78.1111, and a maximum constraint is
represented in a box 290 as a value 112,1838.
Additionally, rate-of-change constraints (delta
constraints) can be provided by inputting two values. a
max-decrement and max-increment. The max-decrement 1s
set at a value of 12.3017 and the max-increment is set at a
value of 10.0357. The decrements are set in accordance with
the following equations:
(16)

< -
Ao = X = Xy

Acty & xft + 1) — x{8) 2 A

where:

A, =Max—Decrement

A~ ,FMax—-Increment

As can be seen from the above equations for the rate of
change constraints, the amount that the input variable can

change for each “Step” through the network will be set. This
provides for an additional level of control over the predicted
control variables. For example. if it is desirable to change a
flow setting. the control input device, such as a valve, is not
immediately changed to a new setting but, rather, it is
incrementally changed.

Referring now to FIG. 12, there is illustrated a flowchart
depicting the operation to change the view, which is initiated
at a function block 292. and then proceeds to a decision
block 294. which determines whether an input branch or an
output branch is selected. If an input branch is seiected, the
program flows to a decision block 296 to determine if
constraints are to be illustrated. If so. the program flows to
a function block 298 to turn on that feature, and then to a
decision block 300. If the constraints are not to be illustrated.
the program flows directly to a decision block 300, which
decision block 300 determines whether the initial value is to
be illustrated. If so. the program flows to a function block
302 to turn on this feature and then to the input of a decision
block 304. If not. the program flows directly to a decision
block 304. Decision block 304 determines whether the delta

constraints are displayed. If so. the program flows to a
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function block 306 to turn on this feature, and then to a
decision block 308, If the feature is not to be displayed. the
program flows directly to a decision block 308, which
decision block determines whether the Confidence Interval
is to be illustrated. If it is to be illustrated. the program flows
to a decision block 310 to determine whether it is to be
calculated. If so, the program flows to a function block 312
to calculate this interval. and then to a function block 314 to
display the interval. If the interval is not to be calculated. the
program flows directly to the function block 314. After this
has been illustrated, the program flows to a return block 316.
If the Confidence Interval is not to be illustrated. the
program will flow directly to the Return block 316.

If the outputs are to be viewed, the program will flow to
a decision block 318 to determine if the constraints are to be
illustrated. I so, the program flows to a function block 320).
which will illustrate the constraints. and then the program
flows to a decision block 322. If the constraints are not to be
illustrated. the program flows directly to the system block
322. which decision block determines whether the desired
values are to be illustrated. It so. the program flows to a
function block 324 to display the desired value, and then to
a decision block 326. If the desired value is not to be
displayed. the program will flow from a decision block 322
to a decision block 326. which decision block 326 deter-
mines whether the desired range is to be displayed. If so. the

program flows to a function block 328 to display the desired
range and then to a decision block 330. If the desired range

is not to be displayed. the program flows directly to the
decision block 330. The decision block 330 determines
whether the confidence interval is to be illustrated. if so. the
program flows to the input of decision block 310 and, if not.
the program fiows to the Return Block 316.

Referring now to FIG. 13. there is illustrated a flowchart
for the operation wherein the inputs are predicted, which is
initiated at a function block 332 and then flows to a decision
block 334 to determine one of three branches from which to
select the source. the data set. the averages or the screen. If
the data set is chosen, the program flows to a decision block
336 to determine if new parameters are to be applied. and if
s0, the program flows to a function block 214 to set the
constraints and then to a decision block 340. If not, the
program flows directly to the decision block 340, decision
block 340 determining whether the output parameters are to
be set. If so, the program flows to a function block 342 to set

the output parameters and then to a function block 344. If the
output parameters are not to be set. the program flows

directly to the function block 344, the function block 344
denoting the operation wherein the values are obtained from
the data set in the memory 26. The program then fiows to a
decision block 346 to determine whether the run operation
has been activated. If so, the program flows along a Y™~ path
to a function block 348 to run the inverse model (run model
in a backward pass) and then to a function block 350 to
determine if the step operation has been selected. If not. the
program flows to a function block 352 to get additional
values from the data set and then back to the input of the
function block 348 to continue the Run operation. This will
continue until a Stop function has been indicated. after
which the program will flow to a decision block 354 to
determine if the Step operation has been selected. I so. the
nrogram will flow to a function block 356 to run the model
in a backward pass and then to a function block 358 to obtain
additional values and back to the input of the decision block
354 to wait for the next step. If another Step is not selected
and the program is halted. the program flows to a Return

block 369.
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If the source is the averages database, which is determined
in the sensitivity operation. the program will flow to a
decision block 362 to determine if new parameters are to be
selected. If s0. the program flows to a function block 214 to
set the input parameters. and then to a decision block 366.
If not. the program flows directly to the decision block 366.
which decision block 366 determines if the output param-
eters are to be set. If so. the program flows to a function
block 342 to set the output parameters and then to a function
block 370 to get the values from the area in storage wherein
the values are stored after processing through the training
operation. If the output parameters are not to be selected. the
program will flow directly to the function block 370. After
the values have been retrieved, the program flows to the
input of a decision block 372 to determine if the Step
function has been selected. If not. the program flows to the
Return block 360. However, if the Step operation is to be
utilized, the program will flow to a function block 374 to run
the model in a backward pass and then to the Return block
360.

If the source is the screen. the program flows from
decision block 334 along the “SCREEN" path to a decision
block 373 to determine if new values are required. If yes, the
program flows through a loop including a function block 3735
to enter values from the screen and then back to the 1nput of
decision block 373. If no new values are required. the

program flows to a decision block 377 to determine if new
parameters are required. If not, the program flows to the

input of a decision block 379 and. if so, the program flows
through a function block 214 to set the input parameters and
then to the input of the decision block 379. The decision
block 379 determines whether output parameters are to be
entered. The program then flows to a function block 383 to
get the value from the screen. If output parameters are to be
input, the program flows to a function block 379 to set the
output parameters and then to the function block 383. After

the values are obtained from the screen. the program flows
to the decision block 372.

Referring now to FIG. 14. there is illustrated a flowchart
depicting the operation wherein the output parameters are
changed. which is initiated at the block 342 and then flows
to a block 378 to select the output variable and then to a
decision block 380 to determine whether the fuzzy-
constraints are required. If so. the program flows to a
function block 382 to change the fuzzy-constraints and then
back to the input of decision block 386 until all fuzzy-
constraints are changed and then the program flows to a
decision block 384, where it is determined whether new cost
coefficients are required. If so. the program flows to a
function block 386 to change the cost coeflicients and then
back to the decision block 384 until all cost coeflicients have
been changed. The program then flows to a decision block
388 to determine if new desired values are required. If so.
the program flows to a function block 390 to change the
desired values and then back to the input of decision block
388 until all desired values are changed. The program will
then flow to a decision block 392 to determine if new desired
ranges are required. If so. the program flows to a function
block 394 to change the desired ranges and then back to the
input of decision block 392 until all desired ranges have
been set. The program will then flow through a decision
block 396 to determine if the Scroll Plot is to be illustrated.
The Scroll Plot is a plot wherein the predicted output is
displayed against the actual target value or the predicted
values without the constraints on the various output param-
eters. If so, the program flows to a function block 398 to
display the Scroll Plot and then back to the input of decision
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block 396. After it has been displayed. the program tlows to
a decision block 400 to determine if the Confidence Interval

should be changed. If so. the program flows to a function
block 402 to change the Confidence Interval and then back
to the decision block 400 until it has been changed. after
which the program flows to a return block 404.

Referring now to FIG. 15, there is illustrated the display
screen for the output wherein the output parameters can be
changed. The output. as described above. is labelled PPM.
this being one output variable. The display consists of a
display bar 406 that has displayed thereon a current value
vertical bar 408 and a desired value vertical bar 419. The
value of the current value bar 408 is illustrated in a box 412
as being a value of 394.3540. A minimum scale box 414
illustrates the minimum scale value at the far left vertical bar
of the display bar 406 as being a value of 1[406.9762.
Similarly, a maximum scale box 416 displays the maximum
value of the display bar 406 at the far right vertical bar as
being a value of 1070.3344. The desired value associated
with the vertical bar 410 is illustrated in a desired value box
418, this value being 671.3524. The desired value associated
with the desired value vertical bar 410 has a minimum range
and a maximum range illustrated by a left shaded portion
420 and a right shaded portion 422. respectively. associated
with vertical bar 410. These are illustrated respectively in a
minimum range block 424 and a maximum range block 426.
The values illustrated allow the desired value to range from
values that are 40.00 below the desired value in box 418 and
57.00 above the value in the desired value box 418.

The fuzzy constraints are defined in a minimum constraint
box 428 and a maximum constraint box 430. The value in
the minimum constraint box is a value of 260.9709, and is
associated with a shaded portion 432 on the left side of the
display bar 406. Similarly. the maximum constraint in the
box 430 is represented by a shaded portion 434 in the far
right side of the display bar 406. As described above. these
constraints are set either by entering the value or by using a
pointing device and pointing it to the associated vertical bar,
cither the left vertical bar or the right vertical bar. and
pulling it inward to the display bar 406.

A cost coefficient bar 436 is provided that defines the cost
coefficient. this coefficient defining the weight given to a
particular output value. This will be described in more detail
hercinbelow. A sliding indicator 438 is provided within the
cost coefficient bar 436 to define the cost coefhcient, the
value extending from a value of zero at the far left side of
the cost coefficient bar 436 and a value of 1.0 at the far right
of the cost efficient bar 436. the cost coefficient in FIG. 15
being a value of 0.677.

When setting the parameters of the output variable. the
screen of FIG. 16 is first pulled up which will illustrate the
current value of the display bar 408. This current value will
have error limits associated therewith, represented by a left
error value indicator 440 and a right error indicator 442. The
error indicators 440 and 442 represent the confidence in the
output; that is, they provide a measure of “goodness™ of the
output value. If the indicators 440 and 442 are separated by
a relatively large amount. this indicates that the error value
associated with the current value vertical bar 408 is high;
i.e.. there is arelatively low confidence in that value. On the
other hand. if there is little distance between the two
indicators 440 and 442. this indicates a high confidence level
in the predicted output. As noted above, the confidence is not
the subject of the present application.

The input. as described above. determines how the manu-
facturing process is to operate. Often. in a manufacturing

process, it is useful to determine the appropriate inputs to
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achieve a desired output criterion. This is to be distinguished
from forcing the plant to a desired output. By achieving a
desired output criterion. one can determine how the plant
operates within these certain criterion. For example. a user
may wish to increase the yield of a certain production.
decrease the energy consumption, decrease the pollutants or
impurities. etc. To achieve these targets. or desired opera-
tional properties. the user must provide information as to
what the desired behavior of the plant is. The model of the
plant is then “inverted” to predict the inputs that would
achieve the desired output. In a sense. this provides a
determination of the proper “recipe” for the process. For a
steady-state solution, this is referred to as process optimii-
zation. If this optimality condition is satisfied in an on-line
manner. then this determination and implementation s
referred to as Process Control.

In general. the desired behavior can be an arbitrarily
complicated function of the inputs and outputs. That is. one
can write an optimality function or a costfunction that
describes the desired behavior of the plant in terms of the
actual output of the plant y,(t). the inputs of the plant x(t)
and the cost-function parameters C,. This is referred to as a
cost function. which can generally be stated as follows:

(17)

N%ﬂt&' ror b 2
Ecost = =1 F(J’['r}f-":;c)

Where E__, is the total cost, F() is the cost function and N,
is the number of patterns the total cost is evaluated over.
Since the actual outputs of the plants are not available during
the analysis run. they must be predicted with the model. Le..

it is assumed that the model realized with the neural network
is an accurate model. y(x)=0(x). With this predicted output
value. the cost function can be written as follows:

(18)

> » » ¥

Eq'."ﬂ' % J EIT.I.; -

In the preferred embodiment, an explicit cost function can
be written to satisfy different criterion. However. it should
be understood that multiple criteria could be utilized to
modify or modulate the process. In the preferred

embodiment. the cost function is divided into different
pieces for each criteria as follows:

Ecosi=Erattnyt . - By (19)
where, each of the terms E,_ , 1s the mth error function term

for the mth cost criterion associated with the mth property of
the plant, for the kth pattern.

Explicitly, to achieve the desired value d, on an output or
predicted state variable o;, the first cost criterion can be
written as the following:

Nout Nout ) (20)
E)= ,21 Eyi= 'Ei Afi(o)) (o x) — i)
i= =

Where the sum is over the number of outputs N_,,.. This term
has a cost-coefficient A, so that each output can be weighted
differently for different desired properties. and a “fuzzy-
cost-coefficient”. £{0,). described below, that allows the use
of the desired-ranges. This function E, will be minimum if
all of the output variables equal their desired values. Note
that additional desired values can be associated with the
input variable as well. In this case. another term would exist

as follows:
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Nm N
Era=F Ey;= Y Af{x)(x —di)?

=1 =1

(21)

where. in this case, the sum is over the input patterns. Again,
this cost would be minimized if all the values are equal to the
desired values. If this is not possible. as is often the case in
real-world situations with conflicting desires. an attempt is
made to minimize the cost function such that the total
sum-square-error is minimized over all patterns. It is also the
case that the user does not have strict, exact values for the
desired properties of the process, yet a desired range of
values exist. To achieve the behavior in a “fuzzy-range”. the
fuzzy-cost-coeflicient £(z.) can be used. This term functions
totally analogously to the overall cost-coefficient A,. but. for
the fuzzy coefficient, the cost varies as a function of the
output parameter, decreasing to zero at the exact desired
value. and increasing to one at the edges of the desired
ranges. That is. the fuzzy-cost-coefficient is calculated as
function of range as:

I, Zi < ower (22)
Lower,
- -— » {: g < d'
ST Tiower, (Zower < Ii i)
flzy= p
i
. — o T
4 7 — di di<z Zupper

This provides a fuzzy-range value with the cost increasing as
the value gets further away from the desired-value, where z;
can be any one of the inputs or the outputs, or predicted state
variables.

The system can also implement “soft constraints™ or
“fuzzy-constraints™ that allow the user to specify a range of
values which he desires the process to avoid. The cost terms
of choice for this are as follows:

Nout Nout y » (23)
Ez= X E3;= _E oz x) — Cﬁpwr.i}e{zd{x} — Cup-pfr.i)
=1 =1
Where, C,,...; is the upper fuzzy-constraint limit on the

variable, and 6(z,) is the Heavyside Step Function, 0(z;)=1
for z, non-negative, 6(z,)=0 otherwise. Similarly. there is
fourth term to implement the lower constraints:

Nout Nout > . (24)
Es= X Eyi= X Bictoweri— ZX)P(Cloweri — 2i(X))
=1 =1
Where, C,,,.., ; is the lower fuzzy-constraint value and [ is

a cost-coefficient. Thus. the total cost function is written in
the present embodiment as:

E

cosi— E 1 +E 2+E3+E4 (25 )

This cost function can be minimized via any one of the
standard function-minimization techniques such as gradient-
descent, simulated annealing, random-search. etc. In the
preferred embodiment. the gradient-descent is utilized. In
this process, the gradients of this cost function are calculated
and the inputs x(i) are changed incrementally so as to
minimize the total cost. This set of values will then be the
new “recipe” to optimize the plant operation to achieve a
desired set of properties.

With further reference to FIG. 3. it can be seen that the
hard constraints placed on the input values are associated
with the filter 46. The filter 46 allows the user to download
parameters that will prevent the input parameters from
exceeding certain values, and will also place constraints
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such as rate of change on the input variables. As described.
these are “hard” constraints. which should be differentiated
from “soft constraints™ or “fuzzy-constraints”. The soft
consiraints are constraints that can be violated. whereas the
hard constraints are constraints that cannot be violated. For
example. the system should never provide a setpoint with a
value that is physically impossible. Therefore. this would be
a hard constraint. However, a plant operator may determine
that the operation of the valve above or below certain levels
is questionable or unreliable and it would therefore be
desirable to maintain the valve settings within certain “soft
constraints”. Additionally, there may be certain constraints
that need to be placed on the output of the plant 10. These
can be incorporated to the control net operation by placing
these constraints onto the predicted output. These soft con-
straints on the input variables and the predicted output
variables are effected by the cost minimization block 42.
which performs the various calculations described above.

These constraints are determined by the user during the
analysis procedure and stored in the storage areas 49, 51 and

53 associated with the cost coefficients, fuzzy constraints
and desired values, respectively.

As an example of a situation wherein cost coefhicients
would be utilized, suppose that the system consisted of a
process that operated to output such things as impurity
concentrations with input variables such as temperature,
flow rates and pump speeds. Additionally. 1t is known that
certain of the input variables. when varied from initial
setting. have higher costs associated therewith. For example,
it might be known that varying the pump speed would be
extremely expensive due to the overall logistics associated
therewith, as compared to varying a flow rate. Further,
varying a temperature may also be expensive due to the
efficiency with which a heater control could deliver a certain
amount of heat to the process. As such. these could be
identified and various cost coeflicients associated therewith.
For example, if it were known that varying a flow rate had
no bearing on overall costs. then this could have a low high
cost coefficient of, for example 0.05. On the other hand.
varying the pump speed may be a very cost inethicient
operation and this could have a relatively high cost coeffi-
cient associated therewith of. for example. 0.95. It may also
be known that the flow rate is efficient only within certain
regions, and above or below these regions, the expense goes
very high. These would be the fuzzy constraints and could
be set as such. Although illustrated in the above equations as
being step functions. they could be any type of linear or
non-linear function.

With respect to the output variables, it might be known
that the impurity concentration of a given product. which
impurity concentration is the measured value of the product.
has a cost factor associated therewith. For a high impurity
concentration, the impact of the change may be relatively
high. whereas. for a low impurity concentration, the impact
may be the opposite. By way of example. in semiconductor
processing. it is always. of course. desirable to have a 100%
yield. However, this is not practical and a more realistic
vield percentage would exist. Since real world constraints
require the yield to be above a defined minimum, which is
a “break even” yield. Therefore, although it is desirable to
have a 100% yield. a yield of 45%. for example, may be
acceptable, especially if it relieves some of the constraints
on the other processing parameters of process. It would not.
for example. be cost efficient to increase the yield from 45%
to 75% if this required an increase in the use of an expensive
initial processing gas of. for example, Argon. These are
relatively expensive gases and it would be desirable to
minimize the use of this gas. even though the percent yield
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would go down. since the overall cost would be improved.
Therefore. it can be seen that the desired values of the output

and the inputs are not hard constraints.
Referring now to FIG. 16, there is illustrated the plot of

two output variables o,(t) and 0,(t) and a plot of two input
variables x,(t) and x,(t). The cost coefficient A, for the first
output variable o,(t) is set equal to 1.0. whereas the cost
coefficient A, for the second output variable is set equal to
0.4, There are two plots. a solid line and a dotted line. the
solid line representing the desired output for the plant and

the dotted line representing the predicted output with the
cost coefficient applied. It can be seen that for the case where

A is set equal to 1.0. the predicted output and desired output
were essentially the same. However. for the case where A is
set equal to 0.4, the predicted output deviates from the
desired output or the error therebetween (s considerably
higher with respect to the output variable o,(t). This is the
same situation with the input variables x,(t) and x,(t). where
the cost coefficients are set equal to 0.6 and 0.8, respectively.
It can therefore be seen that by providing some type of cost

constraint on the input variables and the output variable
during the prediction operation that predicts the control
inputs. the actual predicted control inputs may vary from an
actual desired imput or output. For example. in a conven-
tional control net, a desired output is input to the net and the
input variables forced to values that will result in the
predicted output equalling the desired output. However, this
may not be the most cost effective way to run the process.
Therefore. it can be seen that the control net of the present
invention will predict input variables in accordance with
user defined criteria that will yield predicted input variables
that will operate the plant under this criterion.

Referring now to FIG. 17. there is illustrated a plot of the
fuzzy constraint function £{(0,) as a function of the value of
0,. It can be seen that the value of this function is minimum
at the desired value d; and increases in value as the value of
o, deviates from d.. At the lower constraint. f, ~. and at the
upper constraint f,, ., the value maintains a constant value.

In summary, there has been provided a control net system
for predicting control inputs to a distributed control system
that controls a plant. The control net has associated there-
with a parallel analysis network that allows the operation of
the plant to be analyzed. The parallel analysis network has
a representation of the plant provided in the form of a neural
network which is operable to receive the control inputs and
the state inputs from the plant and generate a predicted
output. The predicted output and the control inputs are then
processed in accordance with error control equations and
predetermined criterion generated by the user to0 manipulate
an inverse model of the network to generate new control
variables in accordance with the criterion. These criterion
can be varied to determine how the plant will function.
These criterion are in the form of hard constraints on the
input variables such as the rate of change. upper and lower
limits, etc. The operation of the network can then be
evaluated in accordance with these criterion to determine the
optimum operation of the system. These criterion can then
be downloaded to the runtime network for the operation
thereof.

What is claimed is:

1. A control system for controlling the operation of a
plant, comprising:

a predictive network having an input layer for receiving
control inputs for the plant. an output layer for output-
ting predicted outputs representing a prediction of the
output of the plant and a mapping layer for mapping
said input layer to said output layer through a stored
representation of the plant;
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an optimality device for receiving at least two of said
predicted outputs or said control inputs as input prop-

ertics as either the combination of at least one of said
predicted outputs and one of said control inputs or the

combination of at least two of said predicted outputs
and operable to apply an optimality function to each of

said input properties. the combination of said optimal-
ity functions defining a system optimality value. each
of said optimality functions operating such that extrem-
ization thereof corresponds to a user-defined desired

behavior of said associated input property. said user-
defined behavior not the same for each of said optl-
mality functions. said optimality function for each of
said input properties having a user-defined behavior
that is comprised of an associated weighting factor and
a desired value. wherein said weighting factor is
applied to a function of the difference between the
predicted value of said associated input property and
said desired value and said weighting factor is a vari-
able value that is a function of predetermined limits,

such that when said actual value of said input property
exceeds said limit, the value of sald weighting factor

changes; and

a predictive system for generating updated controf inputs
that extremize said system optimality value in accor-
dance with said optimality function.

2. The control network of claim 1. wherein said optimality
device is operable to receive said predicted outputs as said
input properties such that an associated optimality function
can be applied to each of the received control inputs and
predicted output.

3. The control network of claim 1, wherein said predictive
system is an iterative system that is operable to iteratively
change said received inputs to said optimality device to
provide a new updated value of said control inputs in
accordance with a predetermined procedure for extremizing
said system optimality value.

4. The control network of claim 1. wherein said predictive
system comprises an inverse model of the plant and sub-
stantially corresponding to said predictive network. and
having:

an input layer;

an output layer;

a plurality of hidden layers for mapping said input layer
and said output layer through a stored representation of
said plant; and

said inverse model operable to operate in an inverse mode
to receive on said output layer said system optimality
value and back propagate said system optimality value
through said plurality of hidden layers to said input
layer in accordance with a search technique to generate
said updated control inputs.

5. The control network of claim 1. and further comprising

a filter device for constraining said control inputs in accor-
dance with user-defined constraints. such that limits are
placed on the values that can constitute said control inputs.

6. The control network of claim 5. wherein said user-
defined constraints comprise hard limits that limit the value
of said updated control inputs from exceeding a predeter-
mined value.

7. The control network of claim S. wherein said user-
defined constraints comprise rate-of-change constraints that
define the maximum incremental range that can be applied
to the difference between said received inputs and said
updated control inputs.

8. The control network of claim §. wherein said user-
defined constraints comprise combinatorial constraints.
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wherein a predetermined value is defined as the combination
of selected ones of said control inputs. such that said
selected ones of said control inputs have the values thereof
limited so as not to violate said combinatorial constraints.

9. A control system for controlling the operation of a plant
that receives control inputs and provides measurements of
state variables associated with the operation of the plant and
provides an output. comprising:

a distributed control system for distributing generated
control inputs to the plant as the received control
inputs;

a runtime predictive control system for receiving said
generated control inputs and predicting updated control

inputs in accordance with a predetermined desired plant
behavior; and

a filter for placing predeterrnined constraints on said
updated control inputs to provide constrained control
inputs, such that limits are piaced on the values that can
constitute said control inputs, said constrained control
inputs provided to said distributed control system for
distribution to the plant as said received control inputs
and also for distribution of said constrained inputs to
said runtime predictive control network. wherein said
predetermined constraints comprise combinatorial
constraints, wherein a predetermined relationship or
range of values is defined as the combination of
selected ones of said constrained control inputs, such
that said selected ones of said constrained control
inputs have the values thereof limited so as not to
violate said predetermined relationship.

10. The control system of claim 9. and further comprising
an analysis system for determining said desired plant behav-
ior and having:

a simulated predictive control system that is a substantial
representation of said runtime predictive control sys-
tem;

a system for generating analysis control inputs;

a behavior generation device for generating simulated
desired plant behavior;

said analysis system for allowing a user to manipulate
said simulated desired plant behavior and controlling

said system for generating analysis control inputs to
generate updated control inputs to cause said simulated
predictive control system to operate in accordance with
said desired behavior. said analysis system operable to
allow the user to observe said desired behavior; and

a system for applying said manipulated desired plant
behavior after manipulation thereof to said runtime
predictive control system as said predetermined desired
plant behavior.

11. The control system of claim 10, wherein said analysis
system includes a predictive system model having an input
layer for receiving said generated control inputs, an output
layer for providing a predictive output representing a pre-
diction of the output of the plant and a plurality of mapping
layers for mapping said input layer to said output layer
through a stored representation of the plant.

12. The control system of claim 9. wherein said runtime
predictive control system comprises:

a predictive system model having an input layer for
receiving said control inputs that are input to the plant,
an output layer for outputting a predicted output rep-
resenting a prediction of the output of the plant and a
plurality of mapping layers for mapping said input
layer to said output layer through a stored representa-
tion of the plant;
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an optimality device for receiving at least two of said
predicted outputs or said control inputs as input prop-
erties as either the combination of at least one of said
predicted outputs and one of said control inputs or the
combination of at least two of said predicted outputs
and operable to apply an optimality function to each of
said input properties. the combination of said optimal-
ity functions defining a system optimality value, each
of said optimality functions operating such that extrem-
ization thereof corresponds to a user-defined desired
behavior of said associated input property; and

a predictive system for generating updated control inputs
that extremize said system optimality value.

13. The control system of claim 12. wherein said predic-
tive system is an iterative system that is operable to itera-
tively change said received inputs to said optimality device
to provide a new updated value of said control i1nputs in
accordance with a predetermined procedure for extremizing
said system optimality value.

14. The control system of claim 12. wherein said predic-
tive system model comprises an inverse model of the plant
and substantially corresponding to said predictive system
model, and having:

an input layer;

an output layer;

a plurality of hidden layers for mapping said input layer
and said output layer through a stored representation of
said plant; and

said inverse model operable to operate in an inverse mode
to receive on said output layer said system optimality
value and back propagate said system optimality value
through said hidden layer to said input layer in accor-
dance with a search technique to generate said updated
inputs.

15. The control system of claim 9, wherein said runtime
predictive neural network is operable to receive as inputs the
measured state variables of the plant in addition to said
control inputs.

16. The control system of claim 13, wherein said runtime
predictive control system comprises:

a predictive systemm model having an input layer for
receiving said control inputs that are input to the plant
and said measured state variables, an output layer for
outputting a predicted output representing a prediction
of the output of the plant and a plurality of mapping
layers for mapping said input layer to said output layer
through a stored representation of the plant;

an optimality device for receiving at least two of said
predicted outputs as input properties and operable to
apply an optimality function to each of said input
propertics. the combination of said optimality functions
defining a system optimality value. each of said opti-
mality functions operating such that the extremum
thereof corresponds to a user-defined desired behavior
of said associated input property,; and

a predictive system for generating updated control inputs
that extremize said system optimality value.
17. The control system of claim 9. wherein said prede-

termined constraints are hard constraints such that said
constrained inputs have values that are limited relative to the

value of said updated control inputs. said constrained inputs
prevented from exceeding a predetermined value.
18. The control system of claim 9. wherein said prede-

termined constraints comprise rate-of-change constraints
that define the maximum incremental change that can be

applied to the difference between said constrained input and
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said received inputs received by said runtime predictive
control network.

19. A control system for controlling the operation of a
plant that receilves control inputs and provides measure-
ments of state variables associated with the operation of the
plant and provides an output. comprising:

a distributed control system for distributing generated
control 1nputs to the plant as the received control
inputs;

a storage device for storing control system operating
parameters;

a runtime predictive control system for receiving said
control 1nputs and predicting updated control inputs for
distribution by said distributed control system to the
plant in accordance with said stored control system
operating parameters to achieve a predetermined
desired plant behavior:

an analysis system having a stored representation of said
predictive control system and operable to simulate the
operation of said runtime predictive control system
with said stored representation thereof with internally
generated simulated control inputs to determine a
desired set of control system operating parameters; and

said analysis system having an output device for down-
loading said determined desired set of control system
operating parameters to said storage device for storage
as said stored control system operating parameters.
20. The control system of claim 19. wherein said analysis
system Comprises:

a simulated predictive control system that is a substantial
representation of said runtime predictive control sys-
tem;

a system for generating analysis control inputs;

a control system operating parameter generation device
for generating simulated control system operating
parameters; and

a manipulation device for allowing a user to manipuiate
said simulated predictive control network and said
system for generating analysis control inputs to gener-
ate updated control inputs to cause said simulated
predictive control system to operate in accordance with
said simulated control system operating parameters.
said manipulation device operable to allow the user to
observe the desired plant behavior.

21. The control system of claim 20. wherein said manipu-
lation device includes a predictive system model having an
input layer for receiving said generated control inputs, an
output layer for providing a predictive output representing a
prediction of the output of the plant and a mapping layer for
mapping said input layer to said output layer through a
stored representation of the plant.

22. The control system of claim 19. wherein said runtime
predictive control system comprises:

a predictive system model having an input layer for
recetving said control inputs that are input to the plant,
an output layer for outputting a predicted output rep-
resenting a prediction of the output of the plant and a
plurality of mapping layers for mapping said input
layer to said output layer through a stored representa-
tion of the plant,;

an optimality device for receiving at least two of said
predicted outputs or said control inputs as input prop-
erties as either the combination of at least one of said

predicted outputs and one of said control inputs or the
combmation of at least two of said predicted outputs
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and operable to apply an optimality function to each of
said input properties, the combination of said optimal-
ity functions defining a system optimality value. each
of said optimality functions operating such that the
extremum thereof corresponds to a user-defined desired
behavior of said associated input property: and

a predictive system for generating updated control inputs
that extremize said system optimality value.

23. The control system of claim 19. wherein said predic-
tive system model is an iterative system that is operable to
iteratively change said received inputs to said optimality
device to provide a new updated value of said control inputs
in accordance with a predetermined procedure for extrem-
izing said system optimality value.

24. The control system of claim 23. wherein said predic-
tive system comprises an inverse model of the plant and
substantially corresponding to said predictive network. and
having:

an input layer;

an output layer:

a plurality of hidden layers for mapping said input layer
and said output layer through a stored representation of
said plant; and

said inverse model operable to operate in an inverse mode
to receive on said output layer said system optimality
value and back propagate said system optimality value
through said hidden layers to said input layer in accor-
dance with a search technique to generate said updated
control inputs.

25. The control network of claim 19. and further com-
prising a filter device for constraining said control inputs in
accordance with user-defined constraints, such that limits
are placed on the values that can constitute said conftrol
1nputs.

26. The control network of claim 25, wherein said user-
defined constraints comprise hard limits that limit the value
of said updated control inputs from exceeding a predeter-
mined value.

27. The control system of claim 25, wherein said user-
defined constraints comprise rate-of-change constraints that
define the maximum incremental range that can be applied
to the difference between said received inputs and said

updated control inputs.
28. The control system of claim 25, wherein said user-

defined constraints comprise combinatorial constraints,
wherein a predetermined value is defined as the combination
of selected ones of said control inputs. such that said
selected ones of said control inputs have the values thereot
limited so as not to violate said combinatorial constraints.

29. A method for generating updated control inputs for
controlling the operation of a plant, comprising the steps of:

receiving control inputs for the plant, which control inputs
are operable to control the plant;

processing the received control inputs through a predic-
tive system model having a stored representation of the
plant and providing predicted outputs;

receiving at least two of the predicted outputs or the
control inputs as input properties as either the combi-
nation of at least onc of the predicted outputs and one
of the control inputs or the combination of at least two
of the predicted outputs;

applying a separate optimality function to each of the
input properties, the combination of the optimality
functions defining a system optimality value, each of

the optimality functions operating such that extremiza-
tion thereof corresponds to a user-defined desired
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behavior of the associated input property. the user-
defined behavior not the same for each of the optimality

functions. which user-defined behavior is comprised of
an associated weighting factor and a desired value,

28

36. A method for generating updated control inputs for
controlling the operation of a plant that receives control

inputs and provides measurements of state variables asso-
ciated with the operation of the plant and provides an output,

wherein the weighting factor is applied to a function of 5 comprising the steps of:

the difference between the predicted value of the asso-

ciated input property and desired value; and

predicting the updated control inputs that extremize the

system optimality value.

30. The method of claim 29. wherein the step of predict- 10
ing the updated control inputs comprises iteratively chang-
ing the received control inputs to which the optimality
function is applied to provide a new updated value of the
control inputs in accordance with a predetermined procedure

for extremizing the system optimality value.

15

31. The method of claim 29, wherein the step of predict-

ing the updated control 1nputs comprises:

providing a predictive model having an input layer, an
output layer and a plurality of hidden layers for map-

ping the input layer to the output layer through a stored

representation of the plant;
operating the predictive model in an inverse mode;

20

receiving on the output layer the system optimality value
when the system model is in the inverse mode; and s

backpropagating the system optimality value through the
hidden layer to the input layer in accordance with a
search technique to generate the updated control inputs.

32. The method of claim 29. and further comprising
constraining the control inputs in accordance with user- 30

defined constraints.

33. The method of claim 32, wherein the step of con-
straining the control inputs comprises hard-limiting the
control inputs to a predetermined value such that the updated

control inputs do not exceed the predetermined value.

35

34. The method of claim 32. wherein the step of con-
straining the control inputs comprises limiting the rate of
change of the updated control inputs to define the maximum

incremental change that can be applied to the difference
between the received inputs that are received by the plant 40

and the updated control inputs.

35. The method of claim 32. wherein the step of con-
straining the control inputs comprises applying combinato-
rial constraints to the updated control inputs, wherein a
predetermined value is defined as the combination of 45

selected ones of the updated control inputs, such

that

selected ones of the updated control inputs have the value
thereof limited so as not to violate the combinatorial con-

straints.

providing a distributed control system that i1s operable to
distribute generated control inputs to the plant as the
received control inputs;

processing the generated control inputs through a runtime
predictive control system to predict updated control
inputs in accordance with a predetermined desired plant
behavior; and

placing predetermined constraints on the updated control
inputs to provide constrained control inputs. such that
limits are placed on the values that can constitute the
control inputs. the constrained control inputs provided

to the distributed control system for distribution to the
plant as the received control inputs and also for distri-

bution of the constrained inputs to the runtime predic-
tive control network. wherein the predetermined con-
straints comprise combinatorial constraints. wherein a
predetermined relationship or range of values is defined
as the combination of selected ones of the constrained
control inputs. such that the selected ones of the con-
strained control inputs have the values thereof limited

so as not to violate the predetermined relationship.
37. The method of claim 36. and further comprising the
step of determining the desired plant behavior by the steps

of:
providing a simulated predictive control system that is a
substantial representation of the runtime predictive
control system;
generating analysis control inputs;

processing the analysis control inputs through the simu-
lated predictive control system;

generating simulated desired behavior;

manipulating the simulated desired behavior and control-
ling the step of generating analysis control inpiuts to
generate updated control inputs to cause the simulated
predictive control system to operate in accordance with
the simulated desired behavior. the step of manipulat-
ing allowing a user to observe the simulated desired
behavior; and

applying a manipulated desired behavior after manipula-
tion to the runtime predictive control system as the
predetermined desired plant behavior.
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