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METHOD OF GENERATION CORRECTION
TABLES FOR MISFIRE DETECTION USING
NEURAL NETWORKS

TECHNICAL FIELD

This invention relates generally to misfire detection in
internal combustion engines and, more particularly, to a
method of generating cylinder specific torsional correction
values to be used 1n an on-board engine misfire detection
system to correct systematic 1rregularities in measured
engine acceleration caused by torsional flexing of the crank-
shaft during rotation to thereby provide a more accurate
discrimination between misfire and normal firing of the
engine.

BACKGROUND ART

One way to detect misfires in 1internal combustion engines
1s to measure crankshait speed and observe fluctuations in
speed. Detection of deviations in crankshaft velocities (as
manifested by abnormal acceleration values) from expected
normal crankshaft velocities 1s an indication of muisfire.
Deviations 1n acceleration are determined over nominally
equal successive 1ntervals of crankshaft rotation, referred to
as Profile-Ignition-Pick-Up itervals (PIP intervals). A PIP
signal 1s a digital signal received from a sensor, that detects
specified positions of rotation of a crankshaft mounted
wheel during engine rotation. PIP intervals are also known
as combustion intervals, which are equal in length (but not
necessarily phase) to the angular rotation between top dead
centers of adjacent cylinders in the firing order.

Ideally, during normal operation, an engine will produce
a series of PIP transition signals with periods that indicate
the average crankshaft velocity during a substantial portion
of the power stroke for each of the cylinders 1n the engine.
The crankshaft velocity will either remain constant (zero
acceleration), increase (positive acceleration) or decrease
(negative acceleration) depending on whether the engine is
operating at steady state, accelerating or decelerating,
respectively. For example, 1f a normal engine 1s operating
under steady-state operation (no acceleration), then it is
expected to produce an acceleration value of near zero over
successive PIP intervals. However, 1f a particular cylinder in
an engine produces a sufficiently negative acceleration value
during steady-state operation, then this occurrence will be
interpreted as a mislire condition, since a zero value 1is
expected as an output for all cylinders 1n a normal engine
during steady state operation.

Accordingly, misfire detectors in general look for indi-
vidual cylinders yielding acceleration values different from
the local norm of all cylinders, where the local norm
depends upon the operating condition (i.e., steady state,
acceleration, or deceleration, etc.). The problem 1s that
individual cylinders in normal engines tend to yield values
of acceleration, which differ slightly from the local norm of
all cylinders 1n a systematic manner according to cylinder
number. In a normally operating engine, this will interfere
with the misfire detection system’s ability to detect abnor-
mal behavior due to misfire.

There are at least two sources of such cylinder-specific
irregularities. The first 1s discussed 1n Dosdall et al. 5,117,
681, assigned to present assignee, and deals with systematic
irregularity arising from PIP spacing of the wheel. If the
wheel which serves as the position encoder on the crankshaft
is even slightly irregular in PIP-interval spacing (e.g., a few
tenths of a degree difference), then a normal engine oper-
ating at constant true PIP-to-PIP velocity (steady state) will
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2

appear to be experiencing subtle velocity changes (hence,
non-zero acceleration values). The velocity changes will
appear to coincide with the particular cylinders associated
with the wrregular PIP intervals. Although the degree of
impact that a given wheel error has on the acceleration
calculation 1s strongly rpm-dependent, the error itself is
fixed, and so 1t can be empirically determined at any
operating condition, even deceleration.

The second problem 1is that even under normal operating,
conditions, the crankshaft will produce different amounts of
speed-up and slow-down because of the non-rigid (torsional)
behavior of the crankshaft. Since the crankshaft 1s not rigid,
it produces subtle oscillations (due to crankshaft flexing) in
the PIP signal (systematic noise). This noise tends to cam-
ouflage true misfires and can cause an erroneous indication
of one or more cylinders as having misfired even when
engine operation 1s 1n fact normal. For example, cylinders at
the front of a crankshaft might affect the speed of the
crankshaft at the measuring point slightly differently than
cylinders at the rear. The effects of crankshaft-torsional
flexing can occur when the power is cut off (as in the Dosdall
et al. patent), because inertial torques produce uneven
motions (acceleration). In general, the effects of such tor-
sional variations on the calculated acceleration values are
most pronounced at higher engine speeds as manifested in
typical engine data.

Proposals to reduce these torsional etffects include hard-
ware changes and/or algorithm modifications. Hardware
changes (such as relocating the encoder wheel and sensor to
the rear of the engine) have the greatest beneficial impact,
but are considered more 1mnvasive and costly than algorithmic
improvements. The goal of algorithmic torsional compen-
sation 1s to reduce or eliminate the small variations in the
acceleration parameter attributable to flexing of the
crankshaft, while retaining the signal due to loss of com-
bustion power (misfire). One approach to torsional compen-
sation 1s to modily each measured acceleration value 1n such
a way as to eliminate differences among cylinders for normal
engine operation. For instance, a set of cylinderspeciiic
correction values can be subtracted from the raw crankshaft
acceleration (ACCEL) values, which yields the improve-
ments seen 1n some high-speed data. This 1s illustrated in
FIGS. 1 and 2 which plot the deviant acceleration values
(DACCEL) versus cylinder number (listed in firing order,
denoted SEQ) for many engine cycles under nearly steady-
state conditions. DACCEL 1s ACCEL minus a running
median average. It can be seen 1n the first plot that the
misfires (spread among all cylinders) consistently lie below
the normals, but follow a similar pattern with respect to
cylinder firing sequence. Thus, 1f all data are adjusted so that
the normals have similar means regardless of cylinder
number (FIG. 2), the misfire points also line up nearly
straight.

While this agreement i1n the pattern of normals and
misfires across the cylinders i1s rarely exact (nor is it
expected to be, based on the nonlinear characteristics of the
engine dynamics), the two patterns are usually sufficiently
similar to yield substantial signal improvement by this
method.

One 1ssue associated with this approach is that of deter-
mining the appropriate cylinder-speciiic correction values,
which vary with engine speed and load. One method 1s to
determined correction factors during development, and stor-
ing them as calibration values for later recall. See, for
example, James U.S. Pat. No. 5,377,537, assigned to the
assignee of the present invention. However, each of these
factors 1s a function of speed and load, which must be
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represented on-board as a lookup table, polynomial, or 1n
some other form. Tables are simple to interpolate, but
require much space in ROM (read only memory); closed-
form functional representations require fewer parameters
but more time to compute. In the present invention, tables
are utilized, though other forms of functional representation
may easily be substituted.

It 1s well known that neural networks are very capable of
learning representations of complex functions in multidi-
mensional space. A network which produces an output
vector based only on the current input vector 1s known as a
feedforward neural network (or static neural network—
SNN). This SNN differs from the more complex recurrent
neural network (RNN) which has internal feedback between
layers, creating “memory” of recent past input vectors which
affects the transformation of the current input vector.

SUMMARY OF THE INVENTION

In accordance with the present invention speed/load
dependent torsional correction can be applied over the full
range of engine operation and the procedure for calibrating
the lookup tables used 1n this correction 1s greatly sumplified
by the use of a neural network trained off-line. The use of
this network does not involve any real-time or on-board
execution. It 1s simply a highly efficient way of calibrating
the torsional correction algorithm.

Calibration of complex tables 1s facilitated in the present
invention by training a feedforward neural network to esti-
mate the effect of crankshaft torsional oscillations on the
measured angular acceleration under normal engine opera-
tion. Because small deviations 1n acceleration caused by
engine misfire can be obscured by these oscillations under
some conditions, characterizing the latter as functions of
speed and load allows for their correction 1n signal process-
ing for misfire detection.

Training a neural network off-line to emulate the torsional
characteristics of normal engine signals provides at least two
advantages:

1) The network can be trained with any data set which
reasonably covers the operating region of the engine,
cgathered on the road under steady-state as well as tran-
sient conditions. This eliminates the need to precisely
control engine operation to a predefined set of points on
a dynamometer.

2) After the network has been trained and tested on a body
of data, 1t can be used to easily generate a set of cylinder-
specific correction tables (one speed/load table per
cylinder) for inclusion in on-board strategy. If subsequent
testing indicates the need for more dense (or less dense,
to conserve space) tables, these can be regenerated from
the same neural network without any additional data.
This method does not require on-board 1implementation of

a neural network, as do more sophisticated (and inherently

more powerful) methods of torsional mitigation for misfire

detection. Also, this approach may easily be applied to
automate calibration of other engine control and diagnostic
parameters as well.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
may be had from the following detailed description which
should be read in conjunction with the drawings 1n which:

FIGS. 1 and 2 plot the deviant acceleration values versus
cylinder number for many engine cycles under nearly
steady-state conditions with induced misfires;

FIG. 3 shows the acceleration values for a normal (non-
misfiring) engine operated over varied conditions;
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FIG. 4 shows the deviant acceleration values calculated
from the data by subtracting the running mean from the data

of FIG. 3;

FIG. 5 1s a map of speed/load trajectory for data shown 1n
FIGS. 3 and 4;

FIG. 6 shows a static network used in the present mnven-
tion;

FIGS. 7a—7d show plots of cylinder speciiic torsional
correction tables as functions of speed and load; and

FIGS. 8 and 9 demonstrate the effectiveness of the tor-
sional correction tables.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

In accordance with the present invention, a static neural
network 1s trained to produce the cylinder-specific ACCEL
correction values according to the speed/load operating
point of the engine. While the output of a static neural
network does-vary as the engine speed or load varies, the
output depends only on the current speed/load point, not the
temporal order of their presentation to the network (as would
be the case for a recurrent neural network). Thus, the
network represents a function of two variables analogous to
a two-dimensional lookup table. Actually, the network rep-
resents a set of N tables, N being the number of cylinders,
since the output of the network 1s an N-dimensional vector
describing cylinder-specific correction values.

Once trained, a network can produce the torsional cor-
rection values for any speed/load point within the range
covered 1n the tramning data. Although this trained network
could be deployed directly in the engine controller as a
background calculation, preferably the trained network 1s
used to generate a set of tables for on-board inclusion. The
latter task 1s accomplished by generating a set of 1nput
vectors for each of the speed/load points desired 1n the table,
and recording the network output vector at each point, thus
orving the values to be stored 1n all N tables at each point.

While the final result 1s a set of traditional tables, there are
advantages to training the network representation of the
function rather than generating the tables in the conventional
manner. For example:

1) Contrary to the traditional approach, the data for training
the network 1s not gathered at a discrete set of steady-state
conditions. Rather, the training data 1s gathered by tra-
versing all speed/load operating points of the engine 1n a
continuously variable manner. Since a static map 1s being
generated, 1t 1s recommended that the engine conditions
be varied somewhat gradually, throughout the test(s), but
even this condition may be violated with little cause for
concern. The engine data should fully cover the speed/
load range of the engine (or the range over which torsional
correction and misfire detection are to be applied), includ-
ing many intermediate points. The data may be entirely
cgathered on the road, without the need for careful dyna-
mometer control used in traditional calibration.

2) After the network is trained and tested to verify adequate
representation of the torsional correction factors, tables
may be generated at any desired point spacing. If inter-
polation from the tabulated values subsequently indicates
a need for denser tables (smaller ARPM or ALOAD), they
may be generated from the same network without return-
ing to gather new empirical data. This 1s potentially a
significant advantage, for 1t allows different table densi-
ties to be tested with little effort.

The procedure for generating torsional correction factors

in accordance with the present invention 1s best illustrated
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with a specific example using data obtained from a four-
cylinder engine having limited misfire detection capability at
high speed because of the effects of torsional flexing of the

crankshaft.

FIG. 3 shows the ACCEL signal calculated from PIP-
interval times collected from a vehicle with manual trans-
mission using standard data collection equipment well
known 1n the art. ACCEL signals measured over a wide
range of engine conditions show considerable spread during
high speed operation. This variability contains both random
and systematic (i.e. cylinder-specific) components. FIG. §
shows a map of the speed/load trajectory for the data of
FIGS. 3 and 4.

This file contains no mnduced misfires; it 1s one of several
such files used to train the network to characterize torsional
cffects under normal operation. The target signal, DEV__
ACCEL, during traiming 1s a modified form of ACCEL,
obtained by subtracting a running mean (AVE__ACCEL) as
indicated by the following equation.

DEV _ACCEL=ACCEL-AVE_ACCEL (1)

Although either ACCEL or DACCEL may be used 1n
place of DEV__ ACCEL, somewhat better performance 1s
obtained with the latter as network target. FIG. 4 shows the
DEV__ACCEL signal as computed for the same file shown
in FIG. 3. Both ACCEL and DEV__ACCEL are quite
similar; the latter has a zero baseline throughout the file as
expected.

Each cycle of data (four firings) in the training files, an
input vector 1s formed with the cycle-averaged (mean) RPM
and LOAD as mputs to the network, and a target vector 1s
created with the DEV__ ACCEL for the four cylinders in
firing order.

During training, the network, shown in FIG. 6, 1s pre-
sented with the input/output vectors for cycles chosen in
random order from the data set. The internal weights of the
network are adjusted gradually during training so as to
minimize the error between network output and target
vectors, using any of several common training algorithms.
See for example, Puskorius, G. V. and L. A. Feldkamp
(1994) Neurocontrol of Nonlinear Dynamical Systems with
Kalman Filter-Trained Recurrent Networks. IEEE Transac-
tions on Neural Networks Vol. 5, pp. 279-297.

Thus, over a data set covering all operating conditions of
a normal engine, the neural network 1s trained to output the
mean value of deviant acceleration of each of the cylinders
individually for each speed and load. The network tends
toward this result during training because ecach deviant
acceleration value 1s used as the target toward which the
learning process drives the network output for that particular
cylinder at a given speed/load point. Of course, the noise or
“spread” 1n a cylinder’s acceleration values for points rep-
resenting the same operating condition causes slight contra-
dictions 1n the network as it trains. Nevertheless, the net-
work responds as best it can by tending to output the average
(approximately) of these slightly contradictory targets, as
intended.

The trained neural network 1itself may be used to correct
data for normal torsional effects to verily the value of this
approach. This 1s accomplished by inputting the engine
speed and load of each point in the test file to the network,
and utilizing the correction factor from the component of the
network output vector associated with the current cylinder
number. Having verified that the network itself performs
torsional correction adequately, one can then proceed to
translate the torsional correction function from a neural
network description into a set of correction tables. For the
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example given here, tables are generated using a grid of
equally spaced points (ARPM=500 ALOAD=0.1), but other

orid spacings may be used, including unequal ones.

FIGS. 7a—7d show plots of four torsional correction tables
TCO-TC3, one per cylinder, as functions of speed and load
using the aforementioned grid spacing. They each show
clearly that at low speeds and loads, the torsional correction
1s virtually zero, as expected. In fact, based on a realization
that torsional correction 1s primarily an i1ssue with high-
speed data, the table could easily be thrifted by eliminating
low-speed areas, or at least making the grid coarser 1n arecas
of little change 1n correction factors. As mentioned earlier,
this 1s trivially accomplished by querying the same neural
network using mput points based on a different grid.

There are several parameters affecting network architec-
ture and training which must be chosen a priori. The network
for the current example employed two input nodes (speed
and load), 2 hidden layers consisting of 10 and 20 nodes,
respectively, and four output nodes producing torsional
correction values. A sigmoid transfer function was used 1n

all but the output layer, which contains a linear transfer
function 1nstead.

FIGS. 8 and 9 demonstrate the effectiveness of these
torsional correction tables. FIG. 8 shows the ACCEL signal
of a test car with misfire induced (denoted by circles). The
uncorrected torsional effects cause the misfire signal to be
blurred with that of the normal events. FIG. 9 shows the

same data after applying the torsional correction from these
table. The separation between misfiring and normal events 1s
orcatly enhanced, thus facilitating accurate misfire detec-
tion.

Feedforward neural networks are a particularly versatile
means ol capturing complex functional relationships from
empirical data. Even when the desired end result 1s a
traditional lookup table, a network greatly facilitates its
generation by removing the restriction that the engine be
operated over a predetermined set of steady-state points. By
first training a neural network, the calibration of tables is
automated for any table size or grid spacing.

This method of automated calibration via neural networks
could be extended to many other functions in existing
strategies.

While the best mode for carrying out the present invention
has been described in detail, those familiar with the art to
which this invention relates will recognize various alterna-
five designs and embodiments for practicing the invention as
defined by the following claims.

What 1s claimed 1s:

1. A method of automating the calibration of a parameter
alfecting the operation of a vehicle engine, comprising the
steps of:

training a neural network to model engine behavior, using,
a data set obtained from operating a representative
engine over 1ts full operating range;

exercising the network to generate the calibration param-
cter by mputting values of engine operating condition
variables; and

storing the parameter 1n a memory device.

2. The method defined 1n claim 1 wherein two of said
engine operating condition variables are engine speed and
engine load.

3. The method defined in claim 1 wherein said parameter
1s one of a plurality of parameters.

4. The method defined in claim 3 wherein each of said
plurality of parameters are associated with one of the
cylinders of the engine.

5. The method defined 1n claim 4 wherein the parameter
1s an acceleration correction value that 1s used to compensate
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for the variation in crankshaft acceleration attributable to
flexing of the crankshaft of an engine.

6. The method defined in claim § wherein said engine
operating condition variables are engine speed and engine
load.

7. The method defined in claim 6 wherein said parameter
1s used 1n a vehicle on-board diagnostic system.

8. The method defined i claim 1 wherein the network 1s
a feedforward network.

9. The method defined 1n claim 1 wherein said training
step 1s performed off vehicle using a data set previously
gathered on the road under steadystate and transient condi-
tions.

10. A method of automating the calibration of lookup
tables containing correction values to be used 1 an on-board
vehicle system, comprising the steps of:

tramning a neural network, off-board said vehicle, using a
data set obtained from operating a representative
engine under normal operating conditions, to model
engine behavior by outputting cylinder specific crank-
shaft acceleration correction values 1n response to any
engine speed and load 1nput conditions;

exercising the network to generate the correction values
by mputting values of engine speed and load; and
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storing the correction values 1in a memory device.

11. The method defined in claim 10 wherein said system
1s an engine misfire detection system.

12. The method defined 1n claim 11 wherein the correction
data 1s used to compensate for the variation in crankshaft
acceleration attributable to flexing of the crankshaft of an
engine.

13. The method defined 1n claim 12 wherein the network
comprises an input layer having two mnput nodes for receiv-
ing engine speed and load values respectively, a plurality of
hidden layers and an output layer comprising a plurality of

output nodes for producing the correction values for indi-
vidual engine cylinders.

14. The method defined 1n claim 12 wherein a non-linear
transfer function 1s used in the hidden layers and a linear
transfer function 1s used 1n the output layer.

15. The method defined 1n claim 14 wherein the plurality
of hidden layers includes at least two layers each 1mple-
menting a sigmoid transfer function.

16. The method defined in claim 15 wherein the first of
said two hidden layers comprises ten nodes and the second
of said two hidden layers comprises twenty nodes.
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