US005764969A
United States Patent (9 (117 Patent Number: 5,764,969
Kahle et al. 451 Date of Patent: Jun. 9, 1998
[54] METHOD AND SYSTEM FOR ENHANCED IBM Technical Disclosure Bulletin, vol. 2. No. 8B. Jan.

[75]

[73]

[21]
[22]

[51]
[52]

[58]

[56]

MANAGEMENT OPERATION UTILIZING
INTERMIXED USER LEVEL AND
SUPERVISORY LEVEL INSTRUCTIONS
WITH PARTIAL CONCEPT

SYNCHRONIZATION
Inventors: James Allan Kahle. Austin; Albert J.
Loper, Cedar Park; Soummya Mallick,
Austin; Aubrey Deene Ogden. Round
Rock. all of Tex.; John Victor Sell. Los
Altos, Calif,
Assignee: International Business Machines
Corporation, Armonk, N.Y.
Appl. No.: 387,149
Filed: Feb. 10, 1995
Int. CLS .o esesss e s senssenn GOGF 9/44
US. CL .., 395/569; 395/568; 395/570;
395/500
Field of Searchiennnee 395/182.13. 375,
395/490, 800, 700, 726. 569. 570. 735,
568. 500; 364/138
References Cited
U.S. PATENT DOCUMENTS
3,828,327 8/1974 Berglund et al. ...c..ccovvcenninnne 395/737
4,500,952 2/1985 Heller et al. ...ccoveemrrmncccsccrcrnnns 7117206
4,787,031 11/1988 Kargeret al.ccoorcevicmscnrannes 395/800
4,809,160 2/1989 Mahon et al.ccvccvaerearenns 395/186
5,063,499 1171991 Garbercccveeemmmecmrrenererscsnionies 395/500

FOREIGN PATENT DOCUMENTS

0327 839 A2 1/1989 FEuropean Pat. Off. .
0602773 Al 8/1993 FEuropean Pat. Off. .

OTHER PUBLICATIONS

IBM Technical Disclosure Bulletin, vol. 16, No. 1, Jun.
1973, “Performance Evaluator for Operating System”.

IBM Technical Disclosure Bulletin, vol. 16, No. 4, Sep.
1973, “Program Channel Interrupt Chain Scheduling in a
Paging Environment”.

100

SYSTEM
SERVICE
ROUTINE *

104

OPERATING

SYSTEM YES
REQUIRED 7
NO

1980. “Problem Program Address Space Switching™.

IBM Technical Disclosure Bulletin. vol. 25, No.. 8, Jan.
1983. “Sharing of Devices Accessed With the Suspend/
Resume Facility”.

IBM Technical Disclosure Bulletin, vol. 30. No. 8. Jan.
1988, “Method to Control Client Processes During Remote
Pending Operations™.

IBM Technical Disclosure Bulletin, vol. 37, No. 8. Aug.
1994, “Enhanced System Manager”.

Primary Examiner—Kenneth S. Kim
Attorney, Agent, or Firm—Andrew J. Dillon

[57] ABSTRACT

A method and system for enhanced system management
operations in a superscalar data processing system. Those
supervisory level instructions which execute selected privi-
leged operations within protected memory space are first
identified as not requiring a full context synchronization.
Each time execution of such an instruction is initiated an
enable special access (ESA) instruction is executed as an
entry point to that instruction or group of instructions. A
portion of the machine state register for the data processing
system is stored and the machine state register is then
modified as follows: a problem bit is set, changing the
execution privilege state to “‘supervisor;” external interrupts
are disabled; and access privilege state bit is set; and. a
special access mode bit is set, allowing execution of special
instructions. The instructions which execute the selected
privileged operations within the protected memory space are
then executed. A disable special access (DSA) instruction is
then executed which restores the bits within the machine
state register which were modified during the ESA instruc-
tion. The ESA and DSA instructions are implemented with-
out modifying the instruction stream by utilizing user level
procedure calls, thereby reducing the overhead of the branch
table necessary to determine the desired execution path.

12 Claims, 2 Drawing Sheets

106
. S
FAST PATH
ESAIDSA

HIGH LATENCY
PATH - SYSTEM

108
CALL/RFI |

|

:]- 110

[RETURN) 3

U.S. Patent

Jun. 9, 1998 Sheet 1 of 2 5,764,969

64-8IT

ER

54 i
—]SEQUENTIAL BRANCH
FETCHER PROCESSING
- UNIT
°4-
55 INSTRUCTION
QUEUE LR
20
SYSTEM £ g 6§4-8B1T
REGISTER Dispatch Unit
h INSTRUCTION UNIT
64-BIT
18 62 14
64-B1T 64-BIT
LOAD/STORE FPR File
UNIT

FP
Renams
Registers

COMPLETION
UNIT

64-BIT
30 32
48 8-Kbyte 20
Tags D Cache 9 4
X T g

PROCESSOR BUS
44 INTERFACE

Touch Load Buffer

Copyback Buffer

40
32-BIT ADDRESS BUS

32-/64-B1T DATA BUS

Fig. 1

38

U.S. Patent Jun. 9, 1998 Sheet 2 of 2 5,764,969

80
0 APPLICATION
. 88
82 CIBRARY LIBRARY
86

OPERATING SYSTEM

90

Fig. 2

100

SYSTEM
SERVICE
ROUTINE ?

YES F'Lg 3

104

OPERATING vgs

< SYSTEM
REQUIRED ?

NO 108 cl108

FAST PATH HIGH LATENCY
ESA/DSA ' EM
CALL/RFI

110

5.764.969

1

METHOD AND SYSTEM FOR ENHANCED
MANAGEMENT OPERATION UTILIZING
INTERMIXED USER LEVEL AND
SUPERVISORY LEVEL INSTRUCTIONS
WITH PARTIAL CONCEPT
SYNCHRONIZATION

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to an improved
data processing system and in particular to a method and
system for enhanced system management operation in a data
processing system. Still more particularly. the present inven-
tion relates to a method and system for permitting execution
of privileged operations within protected memory space in a
data processing system without requiring a full context
synchronization.

2. Description of the Related Art

Modern data processing systems utilize various layers of
code to provide multiple levels of privilege and protection
within the system. At the highest level are user level
applications and data which are freely accessed and modi-
fied during execution of an application. Next are various
protected memory spaces which are utilized to store pro-
tected library data and other important data such as authen-
tication routines or the like. Generally a supervisory level of
authority is required to access this data. Finally, the operat-
ing system layer is the most protected layer within the
system. The operating system is responsible for controlling
the allocation and usage of hardware resources such as
memories, central processing unit time, disk space and
peripheral devices. The operating system provides the foun-
dation upon which all other applications are built.

In a superscalar data processing system in which multiple
instructions may be dispatched within a single clock cycle.
a call to the operating system can be quite time consuming.
In the PowerPC architecture jointly created by International
Business Machines Corporation and Motorola, the only
means for calling the operating system for system manage-
ment purposes is by means of a System Call (sc) and a return
by means of a Return From Interrupt (rfi). Each of these
instructions requires a full context synchronization. Depend-

ing upon the state of the processor and the various execution
units a call to the operating system kernel may take up to

twenty clock cycles. The return sequence may be just as time
consuming. Additionally, while in a system call routine it is
generally necessary to pass through a branch table or similar
structure to determine the intended activity of the operating
system kernel call.

In view of the above, it should be apparent that it would

be advantageous to provide a method and system for system
management operations which does not require the utiliza-

tion of the system call command and its concomitant com-
plexity and delay.

SUMMARY OF THE INVENTION

It is therefore one object of the present invention to
provide an improved data processing system.

It is another object of the present invention to provide an
improved method and system for enhanced system manage-
ment operation in a data processing system.

It is yet another object of the present invention to provide
an improved method and system for permitting execution of
privileged operations within protected memory space in a
data processing system without requiring a full context
synchronization.

10

15

20

23

30

35

45

30

33

635

2

The foregoing objects are achieved as is now described.
The method and system of the present invention may be
utilized to accomplish enhanced system management opera-

tions in a superscalar data processing system. Those super-
visory level instructions which execute selected privileged

operations within protected memory space are first identified
as not requiring a full context synchronization. Each time
execution of such an instruction is initiated an epable special
access (ESA) instruction is executed as an entry point to that
instruction or group of instructions. A portion of the machine
state register for the data processing system 1s stored and the
machine state register is then modified as follows: a problem

state bit is set., changing the execution privilege state to
“supervisor;” external interrupts are disabled; an access

privilege state bit is set; and. a special access mode bit is set,
allowing execution of special instructions. The instructions
which execute the selected privileged operations within the
protected memory space are then executed. A disable special
access (DSA) instruction is then executed which restores the
bits within the machine state register which were modified
during the ESA instruction. The ESA and DSA instructions
are implemented without modifying the instruction stream
by utilizing user level procedure calls, thereby reducing the
overhead of the branch table necessary to determine the
desired execution path.

The above as well as additional objectives. features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use. further objec-

tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus-

trative embodiment when read in conjunction with the
accompanying drawings. wherein:

FIG. 1 is a high level block diagram of a data processing
system which may be utilized to implement the method and
system of the present invention;

FIG. 2 is a schematic illustration of multiple layers within
a data processing system which may be traversed utilizing
the method and system of the present invention; and

FIG. 3 is a high level logic flowchart illustrating an
implementation of the method of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

FIG. 1 depicts a block diagram of a representative micro-
processor 10 upon which the present invention 1s imple-
mented. Microprocessor 10 may be selected from. for
example. the family of PowerPC RISC Processors. This
particular microprocessor 10 implements a 32-bit
architecture, which provides 32-bit effective addresses and
floating point data types of 32 bits. Significantly. the pro-
cessor can issue and retire as many as two instructions per
clock cycle, which instructions may be executed out-of-
order for increased performance, but with completion
appearing sequential for coherent and systematic operation.

Microprocessor 10 further includes five execution units,
integer unit (IU) 12, fioating point unit (FPU) 14, branch
processing unit (BPU) 16. load-store unit (LSU) 18, and
system register unit (SRU) 20 system register unit (SRU) 20
preferably includes a Machine State Register (MSR) which
is utilized to store the state of the system for system

),764.969

3

management purposes. Microprocessor 10 further includes
two physically addressed caches. one is an instruction cache
22 and the other is a data cache 24. Both caches are two-way
set associative caches. Two memory management units
(MMUSs) are further included and consist of instruction
MMU 26 and data MMU 28. Both MMUSs contain 64-entry
two-way set associative. data and instruction translation
look aside buffers (DTLB and ITLB), 30 and 32.
respectively. that provide support for demand-paged virtual
memory addressed translation and variable-sized block
translation. Microprocessor 1@ also supports block address
translation through the use of two independent instruction
and data block translation (IBAT and DBAT) arrays 34 and
36 of four entries each. Effective addresses are compared
simultaneously with all four entries in the BAT array 34 and
36 during block translation.

Microprocessor 10 also includes a selectable 32- or 64-bit
data bus 38 and a 32-bit address bus 40. The interface
protocol for microprocessor 10 allows multiple masters to
compete for system resources through a central external
arbiter. Both busses 38 and 4@ are connected to processor
bus interface 42, which includes a copy-back buffer 44 and
a touch load buffer 46. Processor bus interface 42 is further
connected to the instruction cache 22, data cache 24. and
tags unit 48 and 50, which are connected to data cache 24
and instruction cache 22, respectively. Instruction cache 22
is further connected to instruction unit S2 while data cache
24 is connected to the load/store unit 18. Both instruction
and data caches 22 and 24 are further connected to their
respective memory management units 3¢ and 28 via their
tags unit 48 and 50. Instruction fetching and issuing is
handled in instruction unit 52. Translation of address for

cache or external memory accesses is handled by the MMUs
28 and 30.

Instruction unit 52 also includes a sequential fetcher 54,
instruction queue 56, dispatch unit 58 and batch processing
unit 16, to provide centralized control of instruction flow to
the execution units. Instruction unit 52 determines the
address of the next instruction to be fetched based on
information from the sequential fetcher 54 and from BPU
16.

Instruction unit 52 fetches instructions from instruction
cache 22 into queue 56. BPU 16 cxtracts branch instructions
from sequential fetcher 54 and uses static branch prediction
on unresolved conditional branches to allow the instruction
unit to fetch instructions from a predicted target instruction
stream while a conditional branch is evaluated. Instruction
queuc 56 is designed to hold more than one instruction and
can load more than one instruction from instruction unit 52
during a single cycle. Fetcher 5S4 continuously loads as many
instructions as space in the instruction queue allows. Dis-
patch unit 58 performs source and destination register
dependency checking. determines dispatch serializations.
and inhibits subsequent instruction dispatching as required.

Branch processing unit 16 receives branch instructions
from fetcher S4 performs CR lookahead operations on
conditional branches to resolve those branches early, achiev-
ing the effect of a zero cycle branch in many cases.

Load/store unit 18 executes all load and store instructions
and provides the data transfer interface between general
purpose registers (GPRs) 60, floating point registers (FPRs)
62. and the cache/memory subsystem. Load/store unit 18
calculates effective addresses, performs data alignment and
provides sequencing for load/store string and multiple
instructions. Load and store instructions are issued and
translated in program order; however, the actual memory

10

15

20

25

30

35

45

50

55

65

4

accesses can occur out-of-order. Synchronizing instructions
are provided to enforce strict ordering.

Cacheable loads. when free of data dependencies. execute

in a speculative manner with a maximum throughput of once
per cycle and a two-cycle total latency. Data removed from
the cache is held in rename registers 64 and 66 until
completion unit 68 commits the value to a GPR or FPR.
Stores cannot be executed speculatively and are held in the
store queue until completion unit 68 signals that the store
operation is to be completed to memory. The time required
to perform the actual load or store operation varies depend-
ing on whether the operation involves the cache. system
memory, or an I/O device. |

MMUs 34 and 36 support both virtual memory and
physical memory for instruction and data. MMUs 34 and 36
also control access privileges for the spaces on block and
page granularities. LSU 18 calculates effective addresses for

data loads and stores, performs data alignment to and from
cache memory. and provides the sequencing for load and
store string and multiple word instructions. The instruction
unit 52 calculates the effective addresses for instruction
fetching.

After an address is generated, the higher-order bits of the
effective address are translated by the appropriate MMU into
physical address bits. Simultaneously, the lower-order
address bits are directed to the caches where they form the
index into the two-way set associative tag array. After
translating the address. the MMU passes the higher-order
bits of the physical address to the cache, and the cache
lookup completes.

Cache units 22 and 24 each have a line size of 32 bits in
length and provides a 64-bit interface to instruction fetcher
54 and load/store unit 18, respectively. The surrounding
logic or tags 48 and 50, select, organize, and forward the
pre-requested information to the requesting unit. Write
operation to the cache can be performed on a byte basis, and
a complete read-modify-write operation to the cache can
occur in each cycle. Both load/store unit 18 and instruction
fetcher 54 provide caches 24 and 22 with the address of the
data or instruction to be fetched. In the case of a cache hit,
the cache returns two words to the requesting unit.

The data cache tags 48 are single ported. and thus
simultaneous load or store and snoop accesses can cause
resource contention. Snoop accesses have the highest prior-
ity and are given first accesses to tags 48, unless the snoop
access coincides with a tag write, in which case the snoop is
retried and must be rearbitrated for access to the cache. Load
or stores that are deferred due to snoop accesses are executed
on the clock cycle following the snoop.

Referring now to FIG. 2. there is depicted a schematic
illustration of multiple layers within a data processing
system which may be traversed utilizing the method and
system of the present invention. As illustrated. the upper-
most layer within the system comprises user applications
and data, as indicated at reference numeral 80. This is the
uppermost level within the system and the least protected
code within the system. That is, instructions within appli-
cation 80 may be executed freely and data therein modified.

Below application layer 89 are certain protected memory
spaces such as protected library 82 and protected library 84.
Those having ordinary skill in the art will appreciate that
other protected data or routines may be present within this
layer including, for example, authentication routines. (en-
erally a supervisory privilege level is required in order to
modify data or execute instructions within this layer.

Finally, operating system 86 is depicted at the lowest level
within the system. Operating system 86 provides the foun-

5,764,969

<

dation upon which all other applications within the system
are built and comprises the controls for determining alloca-
tion of assets within the data processing system.
Consequently. a supervisory level of privilege is required in
order to access data or invoke routines within operating
system 86.

Still referring to FIG. 2. it may be seen that a normal call
to the operating system for system management purposes
within the system requires the invocation of a System Call
(sc) which requires full context synchronization. That is, the
statc of the system must be fully stored and machine
serialization accomplished. Context synchronization
requires that no higher priority exception exists, the instruc-
tion cannot complete until all previous instructions have
completed to a point where they can no longer cause an
exception. the instructions which precede this instruction
will complete in the context under which they were issued.
and the instruction following this instruction will execute in
the context established by this instruction. Depending upon
the state of the processor and execution units, a call to the
operating system may take up to twenty clock cycles. As
illustrated at reference numeral 88 the call to the operating
system and a return from the operating system are quite time
consuming. Once within operating system 86 an access to a
protected library space. such as library space 84 may be
accomplished from the operating system utilizing supervi-
sory privilege levels as indicated at reference numeral 99.

In accordance with an important feature of the present
invention, in order to reduce the performance and program-
ming overhead associated with such as system call an enable
special access (ESA) instruction has been created which
only partially alters the machine state. Utilizing this
technique, a system call for access to data within a protected
memory space, such as library 82 may be accomplished
without invoking the full complexity of an ordinary system
call, as graphically depicted at reference numeral 92.

The enable special access instruction is thus executed as
an entry point to an instruction or group of instructions
which requires supervisory authority to access a protected
memory space. In accordance with the present invention, a
portion of the machine state register for the data processing
system is stored and the machine state register is then
modified as follows: a problem state bit is first set, changing
the privilege state to “supervisory;” and external interrupts
are then disabled; prohibiting the nesting of multiple enable
special access instructions; an access privilege state bit is set
permitting data within a protected memory space to be
accessed and finally, a special access mode bit is set,
allowing execution of special instructions and prohibiting
the nesting of multiple special access instructions. In this
manner, no context synchronization is necessary and the
instruction stream and data stream are not altered.

With reference now to FIG. 3 there is depicted a high level
logic flowchart which illustrates an implementation of the
method of the present invention, and which may be imple-
mented utilizing the data processing system of FIG. 1. As
depicted, the process begins at block 100 and thereafter
passes to block 102. Block 102 illustrates a determination of
whether or not a system service routine has been invoked. If
not, the process merely iterates to await the invocation of a
system service routine.

Still referring to block 102, in the event a system service
routine has been invoked, the process passes to block 104.
Block 104 jllustrates a determination of whether or not an
access to the operating system kernel is required. That is. an
access in which full context synchronization will be neces-

10

15

20

25

30

a5

45

30

55

65

6

sary. If not, the process passes to block 106 which illustrates
the fast path enhanced system management method of the
present invention. As illustrated, this fast path is accom-
plished utilizing a branch and link call to the enable special
access instruction. As described above, a portion of the
machine state register is temporarily stored and the content
of the machine state register is then slightly altered in order
to permit the various privilege states required for this
invention. System management code is then invoked and the
disable special access instruction is then executed. which
results in the restoration of the machine state register. This
technique does not require context synchronization to enter
the system management functions and the instruction stream
is not altered as would be necessary with an ordinary call to
the operating system. The invocation of the ESA and DSA
instruction instructions and are implemented using user level
procedure calls and system management routines are not
required to pass through the interrupt vector space. thereby
reducing the machine bit traffic.

Referring again to block 104. in the event the operating
system is required, the process passes to block 108. Block
108 illustrates the normal high latency path which is imple-
mented utilizing a System Call (sc) which requires the
storage of the complete machine state and the passage of the
instruction through a branch table or similar structure in
order to determine the intended activity of the operating
system call. Thereafter, system management code 1s 1mple-
mented and a Return From Interrupt (rfi) 1s the executed.
resulting in a complete restoration of the machine state. As
described above, this path requires a full context synchro-
nization or machine serialization and thus is quite time
consuming.

After either implementing the fast path system manage-
ment operation or the high latency path the process passes to
block 110 which illustrates a return and the awaiting of a
subsequent system service routine invocation.

Upon reference to the foregoing those skilled in the art
will appreciate that the applicants herein have created a
technique whereby system management operation within a
data processing system may be enhanced by providing a
method and system whereby privileged operations within
protected memory space may be accomplished without

requiring a full context synchronization and a call to the
operating system. As modern data processing system invoke

the operating system frequently, the amount of time saved
utilizing this technique will result in a substantial enhance-
ment in system efficiency.

While the invention has been particularly shown and
described with reference to a preferred embodiment, it will
be understood by those skilled in the art that various changes

in form and detail may be made therein without departing
from the spirit and scope of the invention.

We claim:

1. A method of enhanced systern management in a super-
scalar processor system capable of executing an instruction
stream which includes various user level instructions and
supervisory level instructions, each of said supervisory level
instructions permitting execution of a privileged operation
within a routine within said system, said method comprising
the steps of:

identifying selected ones of said supervisory level instruc-

tions which do not require a full context synchroniza-
tion;

storing only a partial machine state for said system in

response to each attempted execution of an identified
supervisory level instruction;

5.764,969

7

executing said identified supervisory level instruction;

restoring said partial machine state for said system fol-
lowing execution of said identified supervisory level
instruction.

2. The method of enhanced system management in a
superscalar processor system according to claim 1. wherein
said step of identitying selected ones of said supervisory
level instructions which do not require a full context syn-
chronization comprises the step of identifying selected ones
of said supervisory level instructions which initiate routines
which perform an access to a protected memory space
within said superscalar processor system.

3. The method of enhanced system management in a
superscalar processor system according to claim 1, wherein
said step of storing only a partial machine state for said
system in response to each attempted execution of an
identified supervisory level instruction comprises the step of
setting a problem state bit in response to each attempted
execution of an identified supervisory level instruction, said
problem state bit indicative of a supervisory execution mode
of operation.

4. The method of enhanced system management in a
superscalar processor system according to claim 3, wherein
said step of storing only a partial machine state for said
system in respomnse to each attempted execution of an
identified supervisory level instruction comprises the step of
setting an access privilege bit in response to each attempted
execution of an identified supervisory level instruction, said
access privilege bit indicative of a supervisory mode of
storage access.

S. The method of enhanced system management in a
superscalar processor system according to claim 1, wherein
said step of storing only a partial machine state for said
system in response to cach attempted execution of an
identified supervisory level instruction comprises the step of
setting an external interrupt bit in response to each attempted
execution of an identified supervisory level instruction, said
external interrupt bit disabling all external interrupts.

6. The method of enhanced system management in a
superscalar processor system according to claim S, wherein
said step of restoring said partial machine state for said
system following execution of said identified supervisory
level instruction comprises the step of resetting said external
interrupt bit following execution of said identified supervi-
sory level instruction.

7. A system for enhanced system management in a super-
scalar processor system capable of executing an instruction
stream which includes various user level instructions and
supervisory level instructions, each of said supervisory level
instructions permitting execution of a privileged operation
within a routine within said system, said system comprising:

means for identifying selected ones of said supervisory

level instructions which do not require a full context
synchronization;

10

15

20

25

30

35

45

30

S

means for storing only a partial machine state for said
system in response to each attempted execution of an
identified supervisory level instruction;

means for executing said identified supervisory level
instruction;

means for restoring said partial machine state for said
system following execution of said identified supervi-
sory level instruction.

8. The system for enhanced system management in a
superscalar processor system according to claim 7, wherein
said means for identifying selected ones of said supervisory
level instructions which do not require a full context syn-
chronization comprises means for identifying selected ones
of said supervisory level instructions which initiate routines
which perform an access to a protected memory space
within said superscalar processor system.

9. The system for enhanced system management in a
superscalar processor system according to claim 7, wherein
the means for storing only a partial machine state for said
system in response to each attempted execution of an
identified supervisory level instruction comprises means for
setting a problem state bit in response to each attempted
execution of an identified supervisory level instruction, said
problem state bit indicative of a supervisory execution mode
of operation.

10. The system for enhanced system management in a
superscalar processor system according to claim 9, wherein
said means for storing only a partial machine state for said
system in response to each attempted execution of an
identified supervisory level instruction comprises means for

setting an access privilege bit in response to each attempted
execution of an identified supervisory level instruction. said
access privilege bit indicative of a supervisory mode of
storage access.

11. The system for enhanced system management in a
superscalar processor system according to claim 10, wherein

said means for storing only a partial machine state for said
system in response to each attempted execution of an
identified supervisory level instruction comprises means for
setting an external interrupt bit in response to each attempted
execution of an identified supervisory level instruction, said
external interrupt bit disabling all external interrupts.

12. The system for enhanced system management in a
superscalar processor system according to claim 11. wherein
said means for restoring said partial machine state for said
system following execution of said identified supervisory
level instruction comprises means for resetting said external
interrupt bit following execution of said identified supervi-
sory level instruction.

S * * *

	Front Page
	Drawings
	Specification
	Claims

