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[57] ABSTRACT

A convolutional interleaving process which utilizes an
addressing scheme that enables the amount of memory to be
used in the convolutional interleaving process to be reduced
is disclosed. A stream of data is convolutionally interleaved
at a designated interleaving depth and a designated inter-
leaving block length such that a first symbol in a designated
block has an associated predetermined delay and each
subsequent symbol in the designated block has a delay equal
to more than its predecessor symbol. A plurality of delay
related arrays. as well as an initial value array, a lower limit
array. and an upper limit array, are calculated in order to
define interleaving orbits. The convolutional interleaving
process is accomplished by a convolutional interleaver
which is arranged to take an incoming stream of data and
output an interleaved stream of bits which is conceptually
partitioned into blocks. A convolutional deinterleaving
process, which is similar to the convolutional interleaving
process is also disclosed.

24 Claims, 12 Drawing Sheets
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EFFICIENT ADDRESS GENERATION FOR

CONYOLUTIONAL INTERLEAVING USING
A MINIMAL AMOUNT OF MEMORY

BACKGROUND OF THE INVENTION

1. Field of Invention

The present invention relates generally to the use of
convolutional interleaving in digital communication systems
to improve transmission reliability. More particularly, a
method of efficiently generating addresses for convolutional

interleaving that utilizes a minimal amount of memory is
disclosed.

2. Description of Prior Art

Digital Communication Systems that are subject to Bursty
Channel Noise have frequently used the technique of “inter-
leaving” in connection with error correction to improve the
reliability of the system. By way of example, as illustrated
in FIG. 1. a typical interleaving system includes an encoder
S0 that encodes an incoming data strecam., an interleaver 52
which interleaves the encoded signal and a modulator 53
which modulates the interleaved signal in a manner suitable
for transmission over a channel 54. The encoding.
interleaving. and modulating of data occur as a part of the
data transmission process of the transmitter 87. The encoded
interleaved signal is then received by a receiver 60 which
includes a demodulator 85, a deinterleaver 62 that
unscrambles the interleaving, and a decoder 64 which
decodes the encoded signal. The decoded signal may then be
used in any suitable manner. In effect, the interleaver permits
the ordering of the sequence of symbols in a deterministic
manner while the deinterleaver applies an inverse permuta-
tion to restore the sequence to its original ordering.

When describing the type of permutation implemented by
an interleaver, it is convenient to divide the inputted symbol
stream into blocks of data having a designated length N. An
interleaving depth factor d is also defined. The most com-
mon and straight-forward interleaving scheme is known as
*block” interleaving. In a block interleaver, data is written
into a memory that is conceptually divided into a number of
rows equal to the designated number of symbols per block
N and a number of columns equal to the desired interleaving
depth factor d. The data is read into the interleaver in a
column-by-column fashion and is read out of the memory in
a row-by-row fashion. Thus, an amount of memory equiva-
lent to N*d is used for a single block of data. Typically. two
such blocks are used to permit data to be read from one
memory while the other is being written into. In the
deinterleaver, the inverse permutation is accomplished by
writing into the deinterleaver in a row-by-row manner and
reading out of the deinterleaver in a column-by-column
manner. Thus, as will be appreciated by those skilled in the
art, the total amount of memory necessary to implement
such a system is typically 4*N*d and the total latency
through the interleaver and deinterleaver is 2*¥N*d.

The concept of convolutional interleaving was first intro-
duced by J. L. Ramsey and G. D. Forney in around 1970.
See, for example. J. L. Ramsey “Realization of Optimum
Interleavers” IEEE Information Theory, Vol. IT-16, Number
3, May 1970, pp. 338-345; and G. D. Forney, “Burst-
Correcting Codes for the Classic Bursty Channel,” IEEE
Trans. Communication Technology, Vol. COM-19, Oct.
1971, pp. 772-781. When convolutional interleaving is
used, the total memory requirements can theoretically be
reduced to approximately N*d. The reduction in memory
results in a memory requirement which is one-fourth the
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requirement of block interleaving. At the same time. the
overall latency is reduced by up to approximately the same
level (i.e., N*d) . This is approximately half of the total

latency of a block interleaver.

The implementations of convolutional interleaving
described by Ramsey and Forney as well as others are
capable of achieving the reduction of required memory by
up to a factor of 4 through the use of 2*N separate delay
lines. Each of the delay lines can be implemented by a RAM
with its own address. However, when the number of symbols
in a block of data N is relatively large. a correspondingly
large number of separate RAMs are required in order to
implement the interleaver. In order to improve the efficiency
of the system. it would be desirable to consolidate these
memories into a relatively small number of RAM:s.

U.S. Pat. No. 4.559.625, entitled “Interleavers for Digital
Communications,” issued Dec. 17. 1985 to E. R. Berlekamp.
et al. describes an interleaving system that requires only one
RAM for the interleaver and one additional RAM for the
deinterleaver. However, in the described impiementation.
which is referred to as “helical” interleaving, the interleav-

ing depth d is restricted to a value that 1s one greater or one
less than the number of symbols in a block of data N. That

is, D=Nz%1. Although the “helical” interleaver disclosed by
Berlekamp. et al. works well in some applications, it is
limited in that it cannot be used in applications which require
different relationships between the interleaving depth and
the number of symbols in a block of data.

More recently. J. T. Aslanis, et al. described a convolu-
tional interleaving system that permits an arbitrary inter-
leaving depth d wherein the only restriction on the inter-
leaving depth d is that it must be coprimed with the number
of symbols in a block of data N. The described system uses
a single RAM implementation with a total memory require-
ment equivalent to 2*N*d. See generally. Aslanis et al. “An
ADSL Proposal for Selectable Forward Error Correction
with Convolutional Interleaving”, TIEL4/92-180. Aug. 20.
1992. It should be appreciated that although this system
requires just half of the memory required by the block
interleaver, it still requires an amount of memory which is
approximately twice as high as the theoretical minimum.

In view of the foregoing. an improved convolutional
interleaving scheme which further reduces the amount of
memory required in a single RAM interleaver/single RAM
deinterleaver application would be desirable. It would fur-
ther be desirable to provide an interleaving/deinterleaving
system which does not have unnecessarily stringent con-
straints on the permissible interleaving depths for a given
number of symbols in an interleaved block of data.

SUMMARY OF THE INVENTION

To achieve the foregoing and other objects and in accor-
dance with the purpose of the present invention, a convo-
lutional interleaving process utilizes an addressing scheme
which enables the amount of memory used to be reduced. In
order to reduce the amount of memory used in an interleav-
ing process, a stream of data is convolutionally interleaved
at a designated interleaving depth and a designated inter-
leaving block length such that a first symbol 1n a designated
block has an associated predetermined delay and each
subsequent symbol in the designated block has a delay equal
to more than its predecessor symbol. A plurality of delay
related arrays, which cooperate with the designated block
length to define the delay associated with each symbol in a
given block, as well as an initial value array, a lower limit
array, and an upper limit array, are calculated in order to
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define interleaving orbits. In some embodiments, the plu-
rality of delay related arrays includes two delay related
arrays which are set by iterating through the two delay
related arrays to sequentially set values for the elements in
the two delay related arrays. The initial value. lower limit,
and upper limit arrays are then used to generate a convolu-
tional interleaving addressing scheme.

Specifically, generating a convolutional interleaving
addressing scheme involves determining orbits. which
require initially determining the elements in the upper limit,
lower limit and initial value arrays corresponding to a first
element in the designated block. The difference between the
values in the upper limit and lower limit arrays which
correspond to the first element in the designated block define
a first orbit. If the first orbit is shared by additional elements
in the designated block, the upper limit and lower limit
arrays corresponding to each additional element in the
designated block that is determined to share the first orbit are
set such that identical values are stored in a corresponding
position in the upper limit array and identical values are
stored in a corresponding position in the lower limit array.
Any subsequent, or additional, orbits are defined in a similar
manner as the first orbit.

The initial value array defines the address at which each
symbol in a block of data is written into memory by first
determining whether an address for a corresponding element
in a preceeding block is equal to the corresponding value in

the lower limit array. Next, the address of the element in a
subsequent block of data is set to the corresponding value in

the upper limit array when it is determined that the address
for the corresponding element in the previous block is equal
to the corresponding value of the lower limit array. When it
is determined that the address of the corresponding element
in the previous block is not equal to the corresponding value
in the lower limit array., the address of the element in the
subsequent block of data is then set to a value that is indexed
from the address of the corresponding element in the pre-
vious block by a designated index amount.

The convolutional interleaving process is accomplished
by a convolutional interleaver which is arranged to take an
incoming stream of data and output an interleaved stream of
bits which is conceptually partitioned into blocks. The
convolutional interleaver includes memory arranged to tem-
porarily store received data bits during an interleaving
process, an address generator arranged to generate a
sequence of addresses used to write the incoming stream of
data into the memory and to read the interleaved stream of
bits from the memory using an upper limit array, a lower
limit array and an initial value array. The addresses are
generated using the steps of setting the addresses for a first
received block of data equal to addresses identified in the
initial value array, and for each element in each subsequent
block of data. determining whether an address for a corre-
sponding element in an immediately preceeding block is
equal to a corresponding value in the lower limit array,
setting the address of the element in the subsequent block of
data to the corresponding value in the upper limit array when
it is determined that the address for the corresponding
element in the previous block is equal to the corresponding
value of the lower limit array, and setting the address of the
element in the subsequent block of data to a value that is
indexed from the address of the corresponding element in
the previous block by a designated index amount when it is
determined that the address of the corresponding element in
the previous block is not equal to the corresponding value in
the lower limit array.

A convolutional deinterleaving process, which is similar
to the convolutional interleaving process, involves convo-
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4

lutionally deinterleaving a stream of data at a designated
interleaving depth and a designated interleaving block
length such that a first symbol in a designated block has an
associated predetermined delay and each subsequent symbol
in the designated block has a delay equal to more than its
predecessor symbol. Inverse delay related arrays, which
cooperate with the designated block length, are generated to
define a plurality of delay related arrays which determine the
delay associated with each symbol in a given block. In some
embodiments, the plurality of delay related arrays includes
two delay related arrays. An initial value array, a lower limit
array, and an upper limit armray, are calculated in order to
define interleaving orbits. The initial value, lower limit, and
upper limit arrays are then used to generate a convolutional
deinterleaving addressing scheme.

These and other features of the present invention will be
presented in more detail in the following detailed description
of the invention and in the associated figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention. together with further objects and advan-
tages thereof, may best be understood by reference to the
folowing description taken in conjunction with the accom-
panying drawings in which:

FIG. 1 is a block diagram illustrating a digital commu-
nication system that utilizes interleaving.

FIG. 2 is a flow diagram illustrating a method of gener-
ating data suitable for implementing a convolutional inter-
leaving addressing scheme in accordance with one preferred
embodiment of the present invention.

FIG. 3 is a flow diagram illustrating a method of filling a
pair of delay related arrays (Step 220 of FIG. 2) in accor-
dance with one preferred embodiment of the present inven-
tion. The delay related arrays arc helpful in generating
appropriate initial address, lower limit and upper limit
arrays.

FIG. 4 is a flow diagram illustrating a method of filling an
initial value array, an upper limit array and a lower limit
array (Step 230 of FIG. 2) in accordance with one preferred
embodiment of the present invention.

FIG. 5 is a flow chart illustrating a method of accom-
plishing step 420 of FIG. 4 (i.c. filling the initial value and
lower limit arrays) in accordance with one preferred
embodiment of the present invention.

FIG. 6 is a flow chart illustrating a method of accom-
plishing step 430 of FIG. 4 (i.e. filling the upper limit array)
in accordance with one preferred embodiment of the present
invention.

FIG. 7 is a flow diagram illustrating a method of gener-
ating data suitable for implementing a convolutional deinter-
leaving addressing scheme in accordance with one preferred

embodiment of the present invention.

FIG. 8 is a flow diagram illustrating a method of filling a
pair of delay related arrays (Step 260 of FIG. 7) in accor-
dance with one preferred embodiment of the present inven-
tion. The delay related arrays are helpful in generating
appropriate initial address. lower limit and upper limit
arrays.

FIG. 9 is a single RAM implementation model for both
the interleaver and the deinterleaver in accordance with one
preferred embodiment of the present invention.

FIG. 10 is a flow diagram illustrating a method of

transmitting data and generating an address sequence for the
RAM in accordance with one preferred embodiment of the
present invention.
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FIG. 11 is a chart representing the address generated by
interleaving a data set with N=13 and d=5 in accordance
with one preferred embodiment of the present invention.

FIG. 12 is a chart representing the address generated by
deinterleaving a data set with N=13 and d=35 in accordance
with one preferred embodiment of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention will now be described in detail with
reference to a preferred embodiment thereof as illustrated in
the accompanying drawings. As described above with ref-
erence to FIG. 1, a typical interleaving system includes an
encoder 50 that encodes an incoming data stream, an inter-
leaver 52 which interleaves the encoded signal and a modu-
lator 53 which modulates the interleaved signal in a manner
suitable for transmission over a channel 34. Thus, the
encoding, the interleaving, and the modulating occur before
the signal is transmitted by the transmitter S7. The encoded
interleaved signal is then received by a receiver 60 which
includes a demodulator 55, a deinterleaver 62 that
unscrambles the interleaving and passes the deinterleaved
signal to a decoder 64 which decodes the encoded signal.
The decoded signal may then be used in any suitable
manner. In effect, the interleaver permits the ordering of the
sequence of symbols in a deterministic manner while the
deinterleaver applies an inverse permutation to restore the
sequence to its original ordering. Specific transmitters and
receivers may include a number of other components and
may not require a specific encoder/decoder or modulator/
demodulator combination.

A representative single RAM interleaver or deinterleaver
architecture that is suitable for use in conjunction with the
present invention is schematically illustrated in FIG. 9. As
scen therein, the RAM 67 is arranged to receive data in and
write data out in accordance with a designated addressing
sequence that is dictated by the address controller 69. The
same addressing sequence is used for both writing into and
reading from the RAM 67. For each address, data is read
from the location specified by the address before additional
incoming data is written into that location. A symbol written
into a location with a specific address will be delayed until
the next occurrence of the specific address is determined. In
other words, given the delay and the specific write address
of an input symbol, it is possible to determine the next
occurrence of the specific address. By way of example. if an
input symbol I; is to be delayed by D symbols and has a
specific write address A . the next occurrence of address A,
will be exactly Dy symbols later. This principle may be used
to generate the periodic address sequence of incoming data.

A mechanism suitable for determining a suitable address-
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ing sequence that has general applicability to interleavers

and deinterleavers having a wide variety of desirable word
lengths N and interleaving depths d is described below with
reference to FIGS. 2-8. Once the addressing sequence has
been defined, any suitable processor, as for example a
microprocessor, may be used to generate the addressing
sequence.

The input symbols to the interleaver are separated, or
partitioned, into words, or blocks, of length N. The symbols
within a word are given indices 0, 1, 2, . . . , N-1 where
symbol 0 is the first symbol within a word, and symbol N-—1
is the last.

Each symbol is subjected to a different delay D through-
out the interleaver, with symbol i being delayed by:

Dii}=i*(d—1)+1.
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As previously mentioned, d is the interleaver depth. The
deinterleaver performs the inverse operation. as a symbol i
which is delayed throughout the interleaver 1*(d—1)+1 1is
delayed throughout the deinterleaver by:

D[i}=(N-1-i)*(d—1)}+1.

The overall delay D_, .., may therefore be expressed as
follows:

D, s=(N-1*(d=1)+2

In order to realize the overall delay D, it follows that
the minimal number of memory elements M, .. Fequired
may be expressed by the following relationship:

M a!mm‘a:(N —1) *(d—l )+2

It is possible to realize the overall delay using only a
minimal amount of memory. For a minimal amount of
memory, the number of memory elements M, ones
required by the interleaver and the deinterleaver may be
separately expressed by the following relationship:

M iemenes=(N-1)*(d-1)/2+1]

In order to achieve a significant savings in memory. that
is, in order to use only a minimal amount of memory 1n the
interleaving and deinterleaving process, a rather involved
addressing scheme is required. The addressing scheme
involves generating several arrays which characterize the
delays relating to each symbol. as well as the addresses for

both the interleaver and the deinterleaver.
Referring next to FIGS. 28, a method of generating an

initial value array. a lower limit array and an upper limit
array for both the interleaver and the deinterleaver which

require a minimal amount of memory will be described 1n
detail. Referring initially to FIG. 2. the array generating
process 210 for the interleaver begins with the initialization
of delay related arrays in step 220. In this embodiment, there
are two delay related arrays. In some embodiments,

however, there may be more than two delay related arrays.
The delay related arrays are respectively referred to herein

as the B and C arrays. The actual steps that are taken to
gencrate the delay related arrays will be described in more

detail below with reference to FIG. 3. However, as an
overview, the values in the B and C arrays are chosen such

that:
D{i)=B[i]*N+CTi)

where N is the designated number of symbols per inter-
leaved block and the array D, as previously described. is the
array which holds the delays through the inteleaver.

After the delay related arrays have been generated, the
logic moves to step 230 where the contents of the initial
value array [A], the lower limit array [L.]. and the upper limit
array [U] are generated. The actual steps that are taken to
generate these arrays will be described in more detail below
with reference to FIGS. 4-6. Once the initial value, lower
limit and upper limit arrays have been generated, all of the
numbers necessary to fully define a convolutional interleav-
ing based addressing scheme that permits the use of nearly
the theoretical minimal amount of memory are available.

Referring next to FIG. 3. step 220 from FIG. 2. the step
of initializing delay related arrays. will be described in more
detail. As pointed out above, the delay related arrays are
referred to as the B and C arrays. Initially, in step 310 a
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number of variables are initialized. The first element in the
B array (element B{@]) is set equal to zero, while the first
element in the C array (element C{0]) is set to one. A counter
i i1s also initialized to zero. It should be appreciated that the
element in position 9 in both the B and the C arrays
corresponds to the first symbol in the block of data to be
interleaved, S,. The proper delay D[0] for element S, always
has a value of one. Thus:

D[0]=B[0]*N+Cl0}0*N+1=1

After the initialization step. the logic proceeds to a loop
(steps 315-340) that fills the remainder of the B and C
arrays. Initially. in step 315. the counter i is re-initialized to
zero. Then the logic proceeds to step 320 where it is
determined whether the sum of the value of the previous
entry in the C array plus the interleaving depth minus one is
greater than or equal to N (i.e. is: C[i]l4+d—1>N). If so, the
logic proceeds to step 330 where the values for C[i+1] and
Bli+1] are set. If not. the logic proceeds to step 340 where
the values for C[iH+1] and B[i+1] are set using a different
formula than the formula used in step 330. Specifically, in
step 330 (which occurs when the determination in step 320
was affirmative) the values C[i+1] and B[i+1] are set such
that:

Cli+11=Cli]+d—1-N:

and

B{i+1]=B[i}+]

On the other hand, when the determination in step 320 is
negative. the values Cli+1] and B[i+1] are set such that:

Cli+1}=Cli}+d-1;
and
Bfi+1}=B{i]

After the values for Cli+1] and Bli+1] are set. the logic
returns to step 315 where the counter i is incremented and
the process is repeated until all of the symbols in the block
of data are processed and have corresponding entries in the
B and C arrays. In the embodiment shown, this is accom-
plished by comparing the value of counter i to N-1. As long
as the value of i is less than N—1, the delay based arrays have
not been filled. When counter i is equal to N—1, the arrays
have been completely filled and the logic proceeds to step
230 of FIG. 2 where the initial value. lower limit, and upper
limit arrays are filled.

Referring next to FIG. 4-6. a process suitable for filling
the initial value, lower limit and upper limit arrays as
described with respect to step 230 of FIG. 2 will be
described in more detail. Referring initially to FIG. 4. a
number of variables are initialized in step 410. Specifically.
all of the elements of an array I, as well as variables
initial__index, address, and lower__limit are all set equal to
ZETO.

Thereafter, in step 412 a determination is made as to
whether the value of initial__index is less than the number of

symbols per block N. If so, the logic proceeds to step 415
where the value of variable index is set equal to the value in

variable initial _index. This marks the beginning of process-
ing for an orbit, or a pattern. Next, in step 420 the initial
value array A and the lower limit array L are filled as will be
described in more detail below with reference to FIG. S.
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After the initial value and lower limit arrays have been filled
in step 420, the logic proceeds to step 430 where the upper
limit array U is filled as will be described in more detail
below with reference to FIG. 6. After all three arrays have
been filled in steps 420 and 4390, the value of the initial
index variable is incremented by one in step 435. Thereafter,
in step 450, a determination is made as to whether the value
stored in array I at the position corresponding to initial
index, 1.e. I[initial index]. is equal to one. If so, the logic
returns to step 435 where the initial index variable is
incremented by one and step 450 is repeated. It should be
appreciated that this step checks to determine if the elements
in the initial value array A. the lower limit array L. and the
upper limit array U corresponding to the position specified
by the initial index variable have been filled. If I[initial
index| is equal to one, then the elements in the initial value
array A, the lower limit array L. and the upper limit array U
have been filled; similarly, if I{initial_index] is equal to
zero, then the elements in the arrays have not been filled.
After the initial _index variable has been incremented in
step 435, and it is determined in step 450 that the value of

Ilinitial index] is not equal to one, the logic proceeds to step

460 where the lower_ limit variable is set equal to the
upper__limit variable plus one. The logic then returns to step
412 where it 1s determined whether the value stored in the
initial index variable is less than N. If so, the initial value,

lower limit, and upper limit arrays for the next symbol are
determined by repeating the aforementioned steps 415-450,

and the processing of another orbit begins. When the initial
value, upper limit and lower limit arrays have all been
completely filled, the determination in step 412 will be that
the variable initial _index is equal to the number of symbols
N. At this point, the initial value, lower limit, and upper limit
array filling step is completed.

Referring next to FIG. §. the step of filling the initial value
and lower limit arrays as depicted in step 420 of FIG. 4 will
be described in more detail. Initially, the value in array I
corresponding to the location specified by variable index,
denoted as I]index]. is set equal to one in step 505. The value
of I[index] equal to one serves as an indication that the
elements in the initial value array A and the lower limit array
L corresponding to variable index are filled. The value in the
initial value array A which corresponds to variable index. i.e.
Alindex], is set equal to the comresponding value of variable
address, and the value in the lower limit array L in the
position specified by variable index, denoted as L[index], is
set equal to the value of variable lower__ limit in step 50S.
Thereafter, in step 515, a determination is made as to
whether the sum of variable index and Clindex] is greater
than or equal to N. That is. is the following relationship
satisfied:

mdex+{[index]& N

If the result of step 515 is affirmative, the logic proceeds to
step 520 where the variable address is set equal to A[index]
plus B[index}], and the variable index is set equal to index+
Clindex|-N. Alternatively, if the result of step 515 is
negative, the logic proceeds to step 530 where the variable
address is set equal to Afindex}+B[index] and the variable
index is set equal to the sum of index+(C[index]. It should be
apprectated that steps 520 and 530 both set the values of the
variables address and index. The value to which the variable
index is set depends upon the determination of whether or
not the value of index+([index] is greater than or equal to
N in step S15. After the values of variables address and index
have been properly set in either step 520 or 530, the logic
proceeds to step 540 where it is determined whether or not
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the variable index is equal to the variable initial _index. If
the two variables are equal. the initial value array A and the
lower limit array L have been successfully filled for one
orbit, and the logic moves to step 430 as illustrated in FIG.
4. Alternatively, if the variable index is not equal to the
variable initial_ index, the logic returns to step 505 where
the value of the variables are reset as described above and
steps S05-540 are repeated. When it is eventually deter-
mined in step 540 that the current value of variable index is
equal to the current value of initial__index, an orbit is
considered to be complete. The logic then proceeds to the
upper limit array filling step 430.

Referring next to FIG. 6, the upper limit array filling step
430 of FIG. 4 will be described in more detail. Initially, the
variable upper_ limit is set equal to the variable address
minus 1 in step 610. Thereafter, the value of the upper limit
array U which corresponds to variable index. i.e. Ulindex],
is set equal to the value of variable upper__limit in step 615.
In step 620, a determination is made as to whether the value
of the sum of variable index added to Clindex]| is greater

than or equal to the number of symbols in a block of data N.
If so. the logic proceeds to step 630 where the variable index
is set equal to index+C[index ]-N. Alternatively. if the deter-
mination in block 620 is negative, the variable index is set
equal to the value of index+Clindex} in step 640. Thus, it
should be appreciated that steps 630 and 640 are merely
alternative mechanisms by which the value of the variable
index 1s set.

After the value of variable index has been set in either step
630 or 640, the logic proceeds to step 650 where the
determination is made as to whether the value of variable
index is equal to the value of variable initial__index. If it is
determined that the value of variable index does not equal
the value of variable initial__index, the logic returns to step
615 where Ulindex] is set equal to the value of variable
upper__limit. Thereafter, steps 620-650 are repeated until it
is determined in step 650 that the value of variable index
does equal the value of variable initial index, at which
point all entries for the upper limit array U for a given orbit
have been assigned. When such a determination is made, the
upper limit array filling step 430 for one orbit is compieted
and the logic proceeds to step 435 as illustrated in FIG. 4.

The description set forth with reference to FIGS. 2-6 has
described a method of generating the appropriate initial
value, lower limit, and upper limit arrays for the interleaver.
In order to deinterleave the interleaved system, a mirror

image of the interleaving must be accomplished by the
deinterleaver. This process will be described with reference
to FIGS. 7 and 8. Much like the method described above
with respect to the interleaver, values for the initial value,
lower limit, and upper limit arrays, A. L, and U, respectively,
must be determined. However, in the case of the
deinterleaver, determining the appropriate values for the
initial value, lower limit and upper limit arrays must be
preceded by the determination of the values for inverse
delay related arrays BI and CL In terms of the deinterleaver,
the inverse delay related arrays BI and Clrepresent the delay
of the interleaver. The values for the inverse delay related

arrays BI and CI are used to determine the values of the
delay related arrays B and C. In this embodiment, there are

two inverse delay related arrays and two delay related
arrays. In other embodiments, there may be any number of

inverse delay related arrays and delay related arrays. Here,
in the context of the deinterleaver, delay related arrays B and
C represent the delay of the deinterleaver. The values in the
B and C arrays are set such that:

Dl|=Bl1*N(T{]
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As previously discussed. D[i] is the value of the delay
associated with element i. and N is the designated number of
symbols per interleaved block. The actual steps that are
taken to generate the inverse delay related arrays BI and C1
as well as arrays B and C will be described in more detail
below with reference to FIG. 8.

After the inverse delay related arrays have been
generated. the logic moves to step 270 of FIG. 7 where the
initial value, lower limit and upper limit arrays are filled in
the manner previously described with respect to FIGS. 4-6.
Once the initial value, lower limit and upper limit arrays
have been generated, all of the numbers necessary to fully
define a convolutional deintericaver addressing scheme suit-
able for use with the above described interleaving address-
ing scheme are available. Like the interleaving based
addressing scheme, the described deinterleaving addressing
scheme permits the use of nearly the minimal amount of

memory.
Referring next to FIG. 8, the initialization of the delay

related arrays for the deinterleaver (step 260 from FIG. 7)
will be described in more detail. The inverse delay related
arrays for the deinterleaver are referred to herein as the BI
and CI arrays. Arrays BI and CI are eventually related to the
previously described delay related arrays B and C for the
deinterleaver. Initially, in step 260. the first elements of the
BI and CI arrays, that is. BI[0] and CI[0]. are initialized, as
is a counter i. BI|0} and the counter i are initialized to zero.
whereas CI[0] is set to one.

After the initialization step, the logic proceeds to a loop
(steps 706—712) which fills in the BI and CI arrays. The loop
is repeated until every element of the BI and CI arrays is
filled. Initially, in step 706, the counter i is reinitialized to
zero. Then. the logic proceeds to step 708 where the deter-
mination is rade as to whether the sum of the value of the
CI array corresponding to position i plus the interleaving
depth d minus one is greater than or equal to the word length
N. That is, is does the following relationship hold:

Cl[i}+d-1ZN

If the relationship holds, the logic proceeds to step 710
where the values for CIfi+1] and BI[i+1]} are set. K the
relationship does not hold, the logic proceeds to step 712

where the values for CI[i+1] and BI[i+]] are set using
formulas which differ from those used in step 710.
Specifically, in step 710. the values of CI[i+1] and BI{i+1}]
are set such that:

Clii+1=Cli]+d-1-N;

and.

Bl[i+1=8B1i}+1

In step 712, however, the values of CI[i+1] and BIli+1] are
set such that:

Cli+11=CI[i}+d-1;
and,
BI{i+11=BIi]

After the values of CI[i+1] and BIfi+1] are set, the logic
returns to step 708 where the counter i is incremented and
steps 708-712 are repeated until the BI and CI arrays are
full. In the embodiment shown, this is accomplished by
comparing the counter i to the word length N minus one. As
long as the counter i is less than the word length N minus
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one. arrays BI and (T have not been completely filled. When
counter i is exactly equal to N minus 1. the arrays have been
filled. and the logic proceeds to a loop which fills delay
related arrays B and C (steps 714-740).

The loop in steps 714-740 is repeated until each element
of the B and C arrays is filled. Initially. in step 714. the
counter 1 1s reinitialized to zero. Then, the logic proceeds to
step 715 where it is determined whether the following
relationship holds:

N=1+i+CIIN-1-i}2N

If the result of step 715 is affirmative. the logic proceeds to
step 725 where a variable index j is set. If the result of step
715 1s negative, the logic proceeds to step 735 where a
variable index j is set using a different formula than the one
used in step 725. Specifically. in step 725. the value of the
variable index j is set such that:

j=N-1-i+CI{N-1}-N

On the other hand. in step 7385, the value of the variable
index j is set such that:

JEN-1—+CI[N-1—i]

After the variable index j is set either in step 725 or step 735.
the logic proceeds to step 740, where the elements corre-
sponding to position j of arrays B and C are set. In step 740,
B[j] 1s set to equal BI[i}, and C[j] is set to equal CI[j]. The
logic then returns to step 714, where the counter i is
incremented and steps 714-740 are repeated until all of the
elements in arrays B and C are filled. Until the counter i is
greater than the word length N, arrays B and C have not been
completely filled. As soon as counter i is greater than word
length N. thereby signaling that arrays B and C have been
filled. the logic proceeds to step 270 of FIG. 7, which. as
previously described, sets the values of the initial value array
A, the lower limit array L. and the upper limit array U. The
specific steps required to set the values for arrays A, L, and
U for the deinterleaver are the same as those required by the
interleaver, and were described earlier with reference to
FIGS. 4-6.

Referring next to FIG. 10. the process of transmitting data
will be described in detail. Transmission begins at step 902.
The RAM address array ADR is initialized to equal the
initial value array A in step 904. A counter i is then set to zero
as shown in step 906. The first symbol S, is read in from the
first block and variable S is set equal to S, in step 908. The
value of the current symbol is set to equal S, in step 910.
Thereafter, in step 912, a determination is made as to
whether the value held in position i of the RAM address
array ADR is equal to the corresponding value held in the
lower limit array L. That is, is the following relationship
true:

ADR[1FL1]

It the result of step 912 is affirmative. the logic proceeds to
step 914 where the value held in position i of the RAM
address array ADR is set equal to the value held in position
i of the upper limit array U. Alternatively, if the result of step
912 is negative. the logic proceeds to step 916 where the
value held in position i of the RAM address array is reset to
equal the value held in position i of the RAM address array
minus one. That is:

ADR[i=ADRIi}-1
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It should be appreciated that steps 914 and 916 both set
values for the RAM address array ADR. The value to which
position i of the RAM address array ADR is set is dependent
upon the determination of whether address ADR[i] is equal
to L[i]. This determination is made in step 912. After the
value of address ADR{[i] has been properly set in either step
914 or 916, the logic proceeds to step 918 where the content
of the RAM corresponding to the location specified by the
address ADR[i] is output. Then, the value held in variable S
is written into position i of the RAM address array ADR in
step 920. Thereafter, in step 922, a determination is made as
to whether the counter i is equal to the designated number of
symbols per interleaved block N minus one. That is, is the
following statement satisfied:

=N—-1

If the result of step 922 is affirmative. the logic proceeds to
step 924 where the counter i is set equal to zero.
Alternatively, if the result of step 922 is negative, the logic
proceeds to step 926 where the counter i is incremented by
one. It should be appreciated that steps 924 and 926 both set
values for the counter i. The value to which counter i is set
is dependent upon the determination of whether counter i is
equal to N-1 in step 922. After the value of counter i has
been properly set in either step 924 or 926. the logic
proceeds to step 928 where the next symbol is received, and

variable § is set equal to the next symbol. The logic then
returns to step 912, and steps 912-928 are repeated.

ILLUSTRATTVE EXAMPLE

The method for interleaving and deinterleaving data as
described above will be applied to an illustrative example. In
the example, the interleaver input symbols are separated into
words of length N. where N is equal to thirteen. The

interleaving depth d is five.

With reference to FIG. 2. the first step in the interleaving
process is to generate the delay related arrays B and C, as
described in step 220. The actual generation of delay related
arrays B and C is shown in FIG. 3. For N=13 and d=5. the

values generated for delay related array B are:

B=[0001111222323 3]

The values generated for delay related array C are:

C=[159048123711 26 10]

The delay array D. which holds the overall delays for the
symbols, may be calculated as follows:

D[i}=Bli]*N+Cli]

D[i] represents the delay of symbol i, while B[i] and Cli} are
the values held in position i of arrays B and C, respectively.
B[i] may be understood to represent the number of rows to
pass over before another occurrence of the value of the
address corresponding to symbol i recurs. C[i] may be
understood to represent the number of columns to pass over
before another occurrence of the value of the address cor-
responding to symbol i occurs. Given the values in the delay
related arrays B and C as generated using the steps shown in
FIG. 3, the delay array D is as follows:

D=[159 13 17 21 25 29 33 37 41 45 49)

Dli] represents the total number of address locations to pass
over before another occurrence of the value of the address

corresponding to symbol i occurs.
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FIG. 11 is a chart which represents the address generated
by interleaving a data set with N=13 and d=3§. The first row
940 of the chart represents the place holders for the symbols
which make a word length N which is thirteen symbols long.
The second row 942 of the chart represents the delay array
D as generated from the delay related arrays B and C. The
remaining rows represent the address sequence 944 in the
form of a two-dimensional address array. The columns of the
two-dimensional address array represent a sub-sequence,
decimated by N. of the address sequence 944. Using this
terminology, the initial value array A described above is the
first address in the address sub-sequence, the lower limit
array L represents the lower limits for the sub-sequences,
and the upper limit array U represents the upper limits for
the sub-sequences.

The A, L, and U arrays are filled using the process
previously described with respect to FIG. 4. Step 410
initializes all variables necessary for the process of filling
the A. L, and U arrays. In this embodiment, the first address
value is zero. Accordingly, the first element 9464 in the
address array 944 is zero. The variable initial_index is
initialized to zero. Step 412 is the determination of whether
variable initial_ index is less than word length N. In this
case, variable initial__index is zero, and word length N 1is
thirteen, so the result of step 412 is affirmative. Accordingly,
the logic proceeds to step 415 in which variable index 1s set
to the value of variable initial index, which is zero. Next,
the logic proceeds to step 420, the step of filling in arrays A
and L.. which was previously described in detail with respect
to FIG. S.

Referring to FIG. S. several array elements are initialized
in step 505. Most notably, the element in position index of
array A is initialized to the value of variable address. which
was set to zero in step 410 of FIG. 4. The logic proceeds to
step 515, which is the determination of whether the value of
variable index-+C[index ] is greater than or equal to the value
of N. In this case, the value of index is zero and the element
in position index of delay related array C has a value of one
as shown above. Therefore, the result of step 513 is negative,
so the logic proceeds to step S30. where the values of
variables address and index are updated. Variable address 1s
set to equal Afindex] +B[index]. With variable index equal
to zero, and A[0] and B[0] both equal to zero as described
above. the new value of variable address is zero. Variable
index is set equal to index+C[index]. With variable index
equal to zero, and the value of C[@] equal to one, the updated
value of variable index is equal to one. The logic then
proceeds to step 540, which is the determination of whether
the value of variable index is equal to the value of vanable
initial _index. In this case, the values of variables index and
initial__index are not equal, so the logic returns to step S0S.
With variable index equal to one, the value of A[1] is set to
the value of variable address, which has a value of zero. L[ 1]
is set to the value of variable lower__limit which has a value
of zero. The logic then proceeds through the loop of steps
505 through 540 until the value of variable index is equal to
the value of variable initial _index, at which point the logic
proceeds to step 430 of FIG. 4. the step in which the upper
limit array U is filled.

Referring to FIG. 6. the process of filling the upper limit
array U begins at step 610 where the variable upper__limit
is initialized to a value of one less than the value of variable
address. Currently, with the value of variable address equal
to zero, the value of upper_limit is negative one. The
element of upper limit array U corresponding to position
index is set equal to the value of upper__limit in step 615.
Step 620 us the determination of whether one subtracted
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from the sum of Clindex] plus interleaving depth d is greater
than or equal to the word length N. In this case, the result is
negative, and the value of variable index is set equal to the
sum of the value of variable index added to Clindex|. With
the existing value of variable index equal to one and the
value of C[1] equal to five. the updated value of variable
index is equal to six. The logic proceeds to step 650 where
variable index is compared to variable initial__index. As the
two are not equal, the logic returns to step 618, and steps 615
through 650 are repeated until variable index is equal to
variable initial index. in which case the logic proceeds to
step 435 of FIG. 4. where variable initial__index is incre-
mented by one. |

The logic proceeds from step 435 of FIG. 4 to step 450,
in which the determination is made as to whether the
element located in the position identified by variable initial
index of array I is equal to one. Recall that array I 1s set in
the process of filling arrays A and L as shown in FIG. 5. The
value of variable initial__index is continually incremented
until the determination in step 450 is false, in which case the
value of variable lower_ limit is set to equal the value of
variable upper_limit incremented by one. The logic then
proceeds back to step 412, and steps 412 through 460 are
repeated until the determination in step 412, as previously
discussed. is negative. If the determination is negative, the
interleaving is completed.

In this embodiment. as previously discussed. the first
clement 943q in the address array is zero. The delay asso-
ciated with the first element is the delay associated with
column one, or symbol zero. is D|0]. which has a value of
one. Accordingly. the next occurrence of address value zero
is one column away from the first occurrence. Hence, the
first element in column two is the second occurrence 9435
of address value zero. The delay associated with column
two, i.e. D[1], is equal to five. This indicates that the next,
in this case third. occurrence 943¢ of address value zero is
five columns from the current, in this case second, occur-
rence of address value zero. The delay associated with
column seven, i.e. D[6], is twenty-five. indicating that the
next occurrence of the address value of zero will be asso-
ciated with symbol five. Recall that the B array indicates the
number of rows to skip and array C indicates the number of
columns to skip before placing an address value associated
with a given delay. In other words. D[6] is twenty-five,
indicating that the number of rows to pass over B[ 6] is one,
and the number of columns to pass over C[6] is twelve.
Hence, the fourth occurrence 943d of address value zero is
found in the third row of column six. The delay associated
with column six. D[5]. is twenty-one. and the associated
values for B[S] and C|5] are one and eight. respectively.

Therefore, the fifth occurrence 943¢ of address value zero is
found in the fifth row of the first column of address array
944.

Since there are two occurrences of the address value of
zero in column one, namely occurrences 943a and 943e. it
is said that an orbit. in this case a first orbit, has been
completed. The patiern of the address value of zero is
repeated at infinitum. The spaces in the columns which
contain the address value of zero, i.e. columns 1. 2, 5, and
6, are filled with the next available address values. In this
case, there are three spaces between occurences of the
address value of zero, so the next three available numbers
are one, two. and three. The numbers one, two. and three are
respectively referred to as 945a, 945b. and 945¢, and are
filled into the spaces in the columns. In this embodiment.
numbers 945a, 945b, and 945¢ are the next three sequential

numbers up from the number zero, and are filled into the
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spaces in the columns in descending order. However, num-
bers 9454, 945b. and 945¢ may be any numbers which are
as yet unused in address array 944.

The next available address value is four, and the next
available space in the first row 960 of address array 944 is
in column three. Hence. a first occurrence of address value
four (947a) is placed accordingly. The delay associated with
this location is D[2], which has a value of nine. Thus, the
next. or second, occurrence of address value four (9478) is
placed nine columns over from column three. In turn, the
next, or third, occurrence of address value four (947¢) is
placed forty-five columns over from column twelve. Given
that there are now two occurrences, 947a and 947c¢, of
address value four in a single column. the orbit associated
with the address value of four is complete. Spaces in the
orbit, in this case the second orbit, are filled with the next
availaible address values. The remainder of address array
944 may be filled using the same method as discussed with
reference to the first and second orbits.

Address array 944 for the interleaver is filled, through
following the method discussed above. as shown in FIG. 11.
The “dots™ 962 indicate that the pattern of numbers in a
column, or sub-sequence, is repeated. The first row 960 of
the address array 944 is the initial value array A. The lowest
values 948 in each sub-sequence correspond to the values
stored in the lower limit array L, and the highest values 949

in each column correspond to the values stored in the upper
limit array U. As such. the lower limit array L is as follows:

L=[00412400134 13134 13]
The upper limit array U is:
U=[33 111211 33 24 11 24 24 11 24]

Four distinct orbits may be identified from the address
array 944. A first orbit may be identified as consisting of
symbols 0, 1, 5, and 6. with delays of 1, §, 21, and 25. A
second orbit consists of symbols 2, 4, 8, and 11, with delays
of 9,17, 33. and 45. A third orbit consists of symbol 3 with
a delay of 13. A fourth orbit consists of symbols 7, 9, 10, and
12 with delays of 29, 37, 41, and 49.

Four memory locations are used to implement the delay
values associated with the first orbit. That is. the sum of
delays 1. S, 21. and 25. divided by the word length N is equal
to four. Similarly, eight memory locations are used to
implement delay values associated with the second orbit,
while only one memory location is necessary to implement
the delay value for the third orbit, and twelve memory
locations are used to implement the delay values associated
with the fourth orbit. The total amount of memory required
for the interleaver is twenty-five memory locations.

With reference to FIG. 7, the first step in the deinterleav-
ing process is to generate the inverse delay related arrays BI
and CI. as described in step 260. The generation of delay
related arrays B and C from inverse delay related arrays BI
and CI was previously described with reference to FIG. 8.
For N=13 and d=35, the values generated for delay related
array B are:

B=[2312013120130]}

The values generated for delay related array C are:

C=[31041151260718 29}

The delay array D, which holds the overall delays for the
symbols, may be calculated as follows:

D{i]=8[{]*N+CTi]
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D|1] represents the delay of symbol i, while B[i] and C|i]
are the values held in position i of arrays B and C. respec-
tively. Given the values in the delay related arrays B and C
as generated using the steps shown in FIG. 3. the delay array
D is as follows:

D=[29 49 17 37 5 2545 13 33 1 21 41 9]

FIG. 12 is a chart which represents the address generated
by deinterleaving a data set with N=13 and d=5. The first
row 970 of the chart represents the place holders for the
symbols which make a word length N which is thirteen
symbols long. The second row 972 of the chart represents
the delay array D as generated from the delay related arrays
B and C. The remaining rows represent the address array. or
sequence., 974 in the form of a two-dimensional address
array. The columns of the two-dimensional address array
represent sub-sequences of the address sequence 974. The
number of sub-sequences is equal to the number of symbols
N. Using this terminology. the initial value array A described
above is the first address in the address sequence. the lower
limit array L represents the lower limits for the sub-
sequences, and the upper limit array U represents the upper
limits for the sub-sequences.

The address array 974 for the deinterleaver, when filled
using the method discussed above with respect to FIGS. 4
through 8 and FIG. 11. is shown in FIG. 12. The “dots™ 992
indicate that the pattern of numbers in a column, or sub-
sequence, is repeated. The first row 990 of the address array
974 is the initial value array A. The lowest values 978 in
each sub-sequence correspond to the values stored in the
lower limit array L. and the highest values 979 in each
column correspond to the values stored in the upper limit
array U.

For the deinterleaver with N=13 and d=5, the lower limit
array L is as follows:

L={001202020 12 24 12 20 20 0 12]
The upper limit array U is:

U=[11 11 19 11 23 23 19 24 19 23 23 11 19]

Four distinct orbits may be identified from the address
array 974. A first orbit may be identified as consisting of
symbols 0. 1, 3, and 11, with delays of 29, 49, 37, and 41,
respectively. A second orbit consists of symbols 2, 6, 8, and
12, with delays of 17, 45, 33, and 9. respectively. A third
orbit consists of symbols 4. S, 9, and 10 with delays of §, 25,
1. and 21. respectively. A fourth orbit consists of symbol 7
with a delay of 13.

Twelve memory locations are necessary to implement the
delay values associated with the first orbit. That is, the sum
of delays 29, 49, 37. and 41. divided by the word length N
is equal to twelve. Similarly, eight memory locations are
used to implement delay values associated with the second
orbit, four memory locations are necessary to implement the
delay values for the third orbit, and one memory location is
used to implement the delay value associated with the fourth
orbit. The total amount of memory required for the deinter-
leaver is, therefore, twenty-five memory locations, the same
amount as required by the interleaver for N=13 and d=5.
Hence, the total number of memory clements, or RAM,
necessary to implement the interleaver and the deinterleaver
may be expressed as (N—1)*(d—-1)/2+1.

Although only one embodiment of the present invention
has been described, it should be understood that the present
invention may be embodied in many other specific forms
without departing from the spirit or scope of the invention.
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The interleaving scheme is independent of the encoding
and/or modulation schemes used in any particular commu-
nications system. One particular application is in conduction
with multi-carrier transmission schemes such as discrete

multi-tone (DMT) modulation. Such a modulation scheme
has been adoped as a standard for the transmission of digital
data over Asymmetric Digital Subscriber Lines (ADSL).
The ADSL standard is intended primarily for transmitting

video data over ordinary telephone lines, although it may be
used in a variety of other applications as well. The discrete

multi-tone transmission scheme is being considered for a
wide variety of other applications as well. However, as
described above, the convolutional interleaving technique
described herein is applicable in conjunction with any

encoding and/or modulation scheme. Therefore, the present
examples are to be considered as illustrative and not
restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope of the
appended claims.

What is claimed is:

1. A method of convolutionally interleaving a stream of
data, the convolutional interleaving being accomplished at a
designated interleaving depth (d) and a designated interleav-
ing block length (N), wherein a first symbol in a designated
block has a predetermined delay associated therewith and
each subsequent symbol in the designated block has a delay
equal to (d—1) more than its predecessor symbol, the method
comprising the steps of;

calculating a plurality of delay related arrays each includ-

ing a number of elements equal to the designated block
length, wherein the delay related arrays cooperate with
the designated block length to define the delay associ-
ated with each symbol in the designated block;

calculating an initial value array, a lower limit array and
an upper limit array based vopon the delay related
arrays, wherein each symbol in the designated block
has an associated interleaving orbit defined by corre-
sponding values in the initial value, lower limit and
upper limit arrays; and

generating a convolutional interleaving addressing

scheme utilizing the initial value, lower limit and upper
limit arrays.

2. A method as recited in claim 1 wherein an address at
which each symbol in a first block of data is written into
memory 1S defined in the initial value array.

3. A method as recited in claim 2 wherein the address at
which each symbol in a subsequent block of data is written
into memory is defined by:

(a) determining whether an address for a comresponding
element in an immediately preceeding block is equal to
the corresponding value in the lower limit array;

(b) setting the address of the element in the subsequent
block of data to the corresponding value in the upper
limit array when it is determined that the address for the
corresponding element in the previous block is equal to
the corresponding value of the lower limit array;

(c) setting the address of the element in the subsequent
block of data to a value that is indexed from the address
of the corresponding element in the previous block by
a designated index amount when it is determined that
the address of the corresponding element in the previ-
ous block is not equal to the corresponding value 1n the
lower limit array; and

(d) repeating steps (a)<c) for additional subsequent
blocks of data.

4. A method as recited in claim 3 wherein the designated

index amount is a decrement by one.
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5. A method as recited in claim 3 wherein the designated
index amount is an increment by one.
6. A method as recited in claim 1 wherein the predeter-

mined delay associated with the first symbol in the desig-

nated block 1s one.
7. A method as recited in claim 1 wherein the plurality of
delay related arrays includes a first delay related array and

a second delay related array.
8. A method as recited in claim 7 wherein the first delay

related array (B) and the second delay related array (C) are
calculated using the substeps of:

setting a first element B[0] in the first delay related array
eqgual to zero;

setting a first element C[0] in the second delay related
array equal to one; and,

iterating through the first and second delay related arrays
to sequentially set values for the remainder of the
elements in the first and second delay related arrays.
wherein when it is determined that a value equivalent
to ClijJ+d—1>N. then the values of the next elements in
the first and second delay related arrays are effectively
set according to the formulas:

Cli+1}=Clil-d—1-N
Bli+1]=Blip-1

and wherein when it is determined that the value equivalent
to C[i}j4+d-1<N., then the values of the next elements in the
first and second delay related arrays are effectively set
according to the formulas:

Cli+1}=Clitrd-1
Bli+1}=Bli}

9. A method as recited in claim 1 further comprising the
steps of:

determining the elements in the upper limit, lower limit
and initial value arrays corresponding to a first one of
elements in the block. wherein the difference between
the values in the upper limit and lower limit arrays
corresponding to the first element in the block define a
first orbit;

determining whether any other elements in the block
share the first orbit and setting the upper limit, lower
limit and initial value arrays corresponding to each
additional element in the block that is determined to
share the first orbit, wherein each element in the block
that is determined to share the first orbit have identical

values stored in a corresponding position in the upper
limit array and identical values stored in a correspond-

ing position in the lower limit array.

10. A method as recited in claim 9 further comprising
determining whether any additional elements in the upper
limit, lower limit and initial value arrays need to be filled in
and when it is determined that additional elements in the
upper limit, lower limit and initial value arrays need to be
filled in, the method further comprises the steps of:

(a) determining the elements in the upper limit, lower
limit and initial value arrays corresponding to a
selected unprocessed one of the elements in the block.
wherein the difference between the values in the upper
limit and lower limit arrays corresponding to the
selected unprocessed element in the block defines an

additional orbit;
(b) determining whether any other elements in the block
share the additional orbit and setting the upper limit,
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lower limit and initial value arrays corresponding to
each additional element in the block that is determined

to share the additional orbit. wherein each element in
the block that is determined to share the additional orbit

has identical values stored in the corresponding posi-
tion in the upper limit array and identical values stored
in the corresponding position in the lower limit array;
and.

repeating steps (a) and (b) until all of the elements in the

block are processed.
11. A method of convolutionally deinterleaving a stream
of data, the convolutional interleaving being accomplished
at a designated interleaving depth (d) and a designated
interleaving block length (N), wherein a first symbol in a
designated block has a predetermined delay associated
therewith and each subsequent symbol in the designated
block has a delay equal to (d—1) more than its predecessor
symbol, the method comprising the steps of:
calculating a plurality of delay related arrays each includ-
ing a number of elements equal to the designated block
length, wherein the delay related arrays cooperate with
the designated block length to define the delay associ-
ated with each symbol in the designated block;

calculating an initial value array. a lower limit array and
an upper limit array based upon the delay related
arrays. wherein each symbol in a designated block has
an associated interleaving orbit defined by correspond-
ing values in the initial value, lower limit and upper
limit arrays; and

generating a convolutional deinterleaving addressing

scheme utilizing the initial value, lower limit and upper
limit arrays.

12. A method as recited in claim 11 wherein an address at
which each symbol in a first block of data is written into
memory 1s defined in the initial value array.

13. A method as recited in claim 12 wherein the address
at which each symbol in a subsequent block of data is

written into memory is defined by:

(a) determining whether an address for a corresponding
element in an immediately preceeding block is equal to
the corresponding value in the lower limit array:

(b) setting the address of the element in the subsequent
block of data to the corresponding value in the upper
limit array when it is determined that the address for the
corresponding element in the previous block is equal to
the corresponding value of the lower limit array;

(c) setting the address of the element in the subsequent
block of data to a value that is indexed from the address

of the corresponding element in the previous block by
a designated index amount when it is determined that
the address of the corresponding element in the previ-
ous block is not equal to the corresponding value in the
lower limit array; and

(d) repeating steps (a)-(c) for additional subsequent

blocks of data.

14. A method as recited in claim 13 wherein the desig-
nated index amount is a decrement by one.

15. A method as recited in claim 13 wherein the desig-
nated index amount is an increment by one.

16. A method as recited in claim 11 wherein the prede-
termined delay associated with the first symbol in the
designated block is one.

17. A method as recited in claim 11 wherein the plurality
of delay related arrays includes a first delay related array and
a second delay related array.

18. A method as recited in claim 17 wherein the first delay
related array (B) and the second delay related array (C) are

calculated using the substeps of:
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setting a first element BI{ 0] in a first inverse delay related
array equal to zero;

setting a first clement CI[0] in a second inverse delay
related array equal to one;

iterating through the first and second inverse delay related
arrays to sequentially set values for remaining elements
in the first and second inverse delay related arrays,
wherein when it is determined that a value equivalent
to CIlij+d—1>N., then the values of the next elements in

the first and second inverse delay related arrays are
effectively set according to the formulas:

Cl[i+1}=Cli]+d~1~N
Bl[i+11=BI{i]+1

and wherein when it is determined that the value equivalent
to CI|ijJ+d-1<N, then the values of the next elements in the
first and second inverse delay related arrays are effectively
set according to the formulas:

Cli+1}=Cllil+d-1
Bi|i+1|=BI[:],

and.

iterating through the first and second delay related arrays
to sequentially set values for each element in the first
delay related array and each element in the second
delay related array, wherein when it is determined that
a value equivalent to N-1+i+CI[N-1-i]>N. then the
values of the elements in the first and second delay
related arrays are effectively set according to the for-
mulas:

CIN-1—i+CNN-1-i|-N|=Cili}
B|N-1-i+CI[N-1—i}-N}=BI[i]

and wherein when it is determined that the value equivalent
to N=1+i+CI[N—-1-i]

<N, then the values of the next elements in the first and
second delay related arrays are effectively set according to
the formulas:

C[N-1—i+CI N-1~i}}=CI[i]
B[N-1~-i+CI[N-1-i]|=BI{].

19. Amethod as recited in claim 11 further comprising the
steps of:

determining the elements in the upper limit, lower limit
and initial value arrays comresponding to a first one of
elements in the block, wherein the difference between
the values in the upper limit and lower limit arrays

corresponding to the first element in the block define a
first orbit;

determining whether any other elements in the block
share the first orbit and setting the upper limit, lower
limit and initial value arrays corresponding to each
additional element in the block that is determined to
share the first orbit, wherein each element in the block

that is determined to share the first orbit have identical
values stored in a corresponding position in the upper
limit array and identical values stored in a correspond-

ing position in the lower limit array.
20. A method as recited in claim 19 further comprising
determining whether any additional elements in the upper
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limit, lower limit and initial value arrays need to be filled in
and when it is determined that additional elements in the
upper limit, lower limit and initial value arrays need to be
filled in. the method further comprises the steps of:

(a) determining the elements in the upper limit, lower
limit and initial value arrays corresponding to a
selected unprocessed one of the elements in the block,
wherein the difference between the values in the upper
limit and lower limit arrays corresponding to the
selected unprocessed element in the block define an
additional orbit;

(b) determining whether any other elements in the block
share the additional orbit and setting the upper limit,
lower limit and initial value arrays corresponding to
each additional element in the block that is determined
to share the additional orbit, wherein each element in
the block that is determined to share the additional orbit
has identical values stored in the corresponding posi-
tion in the upper limit array and identical values stored
in the corresponding position in the lower limit array;
and,

repeating steps (a) and (b) until all of the elements in the

block are processed.

21. A convolutional interleaver arranged to convolution-
ally interleave an incoming stream of data and output an
interleaved stream of bits, the stream of bits being concep-
tually partitioned into blocks, the interleaver comprising:

memory arranged to temporarily store received data bits
during an interleaving process;

an address generator arranged to generate a sequence of
addresses used to write the incoming stream of data
into the memory and to read the interleaved stream of
bits from the memory using an upper limit array, a
lower limit array and an initial value array, wherein the
addresses are generated using the steps of setting the
addresses for a first received block of data equal to
addresses identified in the initial value array and for
each element in each subsequent block of data,

(a) determining whether an address for a corresponding
element in an immediately preceeding block is equal to
a corresponding value in the lower limit array;

(b) setting the address of the element in the subsequent
block of data to the corresponding value in the upper

limit array when it is determined that the address for the
corresponding element in the previous block is equal to

the corresponding value of the lower limit array;

(c) setting the address of the element in the subsequent
block of data to a value that is indexed from the address
of the corresponding element in the previous block by
a designated index amount when it is determined that
the address of the corresponding element in the previ-
ous block is not equal to the corresponding value in the

lower limit array; and

(d) repeating steps (a)—(c) for additional subsequent

blocks of data.

22. A method of convolutionally interleaving a stream of
data, the convolutional interleaving being accomplished at a
designated interleaving depth (d) and a designated interleay-
ing block Iength (N), wherein a first symbol in a designated
block has a predetermined delay associated therewith and
each subsequent symbol in the designated block has a delay
equal to (d—1) more than its predecessor symbol, the method
comprising the steps of:

calculating a plurality of delay related arrays each includ-

ing a number of elements equal to the designated block
length, wherein the delay related arrays cooperate with

22

the designated block length to define the delay associ-
ated with each symbol in the designated block;

calculating a plurality of orbit defining arrays that define
interleaving orbits, wherein the orbit defining arrays are
5 calculated based at least in part upon the delay related
arrays; and
generating a convolutional interleaving addressing
scheme utilizing the orbit defining arrays.
23. A method of convolutionally deinterleaving a stream
10 of data, the convolutional interleaving being accomplished
at a designated interleaving depth (d) and a designated
interleaving block length (N). wherein a first symbol in a
designated block has a predetermined delay associated
therewith and each subsequent symbol in the designated
15 block has a delay equal to (d—1) more than its predecessor
symbol, the method comprising the steps of:

calculating a plurality of delay related arrays each includ-

ing a number of elements equal to the designated block

length. wherein the delay related arrays cooperate with

20 the designated block length to define the delay associ-
ated with each symbol in a given block.

calculating a plurality of orbit defining arrays that define
interleaving orbits, wherein the orbit defining arrays are
calculated based at least in part upon the delay related
25 arrays; and

generating a convolutional deinterleaving addressing

scheme utilizing the orbit defining arrays.
24. A convolutional interleaver arranged to convolution-
ally interleave an incoming stream of data and output an

30 interleaved stream of bits, the stream of bits being concep-
tually partitioned into blocks. the interleaver comprising:

memory arranged to temporarily store received data bits
during an interleaving process;

an address generator arranged to generate a sequence of
33 addresses used to write the incoming stream of data
into the memory and to read the interleaved stream of
bits from the memory using a plurality of orbit defining
arrays, wherein the addresses are generated using the
steps of setting the addresses for a first received block
40 of data equal to addresses identified in the orbit defin-
ing arrays and for each element in each subsequent
block of data,

(a) determining whether an address for a corresponding

clement in an immediately preceeding block is equal to
45 a corresponding value defined by the orbit defining
arrays;

(b) setting the address of the element in the subsequent
block of data to the corresponding value defined at least
in part by a first orbit defining array selected from the

50 orbit defining arrays when it is determined that the
address for the corresponding element in the previous
block is equal to the comresponding value defined at
least in part by a second orbit defining array selected
from the orbit defining arrays;

ss  (c) setting the address of the element in the subsequent
block of data to a value that is indexed from the address

of the corresponding element in the previous block by
a designated index amount when it is determined that

the address of the corresponding element in the previ-
ous block is not equal to the corresponding value
defined at least in part by the second orbit defining
array, and

(d) repeating steps (a)-(c) for additional subsequent
blocks of data.
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