US005754757A
United States Patent 9 (111 Patent Number: S,754,757
Shrivastava et al. - 451 Date of Patent: May 19, 1998
[54] EFFICIENT SCHEMES FOR 4,914,657 4/1990 Walter et al.cccovrreerrenreenserees 364/200
CONSTRUCTING RELIABLE COMPUTING 5,023,779 6/1991 Federico et 4dl. ..uovreeeenrereresens 364/200
NODES IN DISTRIBUTED SYSTEMS 5,157,780 10/1992 Stewart et al.vorvvevrsrvunn, 395/183.17
S | 5,210,834 5/1993 Zurawski €t al. .oeeeeeeeerrerseenns 364/200
[75] Inventors: Santosh Kumar Sh['ivastava; Neil 5,285,381 2/1994 Tskarous et al.cceeveeeeesne 395/182.09
Alexander Speirs; Sha Tﬂﬂ, all of 5423024 6/1995 Chﬂllllg 305/182.09
Newcastle upon Tyne; Paul Devadoss 5,428,769 6/1995 Glaser et al. .cccvereereerereecsneennes 364/200
Ezhilchelvan, Cramlingtonn; Francisco
Vilar Brasileiro, Newcastle upon Tyne, FOREIGN PATENT DOCUMENTS
all of Great Britain
246218 11/1987 European Pat. Off. GO6F 11/18

[73] Assignee: The University of Newcastle Upon

Tyne, Great Britain Primary Examiner—Robert W, Beauso]iel, Jr.
[21] Appl. No.: 432,184 Assistant Examiner—Albert Decady
(221 PCT Filed: Oct. 28. 1993 Attorney, Agent, or Firm—QGalgano & Burke
. . |

86] PCT No. PCT/GB93/02225 [57] ABSTRACT
§ 371 Date: Jun. 23, 1995 _ This invention relates to a computing system, a fail-silent
node for use in a computing system and a method of
§ 102(e) Date: Jun. 23, 1995 organizing information so that a number of microprocessors
[87] PCT Pub. No.: W094/11820 | in a computing node, which are arranged to receive mes-
sages from other components in the computing system and
PCT Pub. Date: May 26, 1994 to process the received messages so as to transmit the results
130} Foreign Application Priority Data of this processing to other components in the system,
compare the results of their processing and send nothing out
Nov. 6, 1992 [GB] = United Kingdom 9223323 from the node unless either all the microprocessors in the
Sep. 15, 1993 [GB] United K]IlngIIl esessssenacanseas 0319058 mode PI'OdllCC identical results or more than half of the
[51] Int CLO e invcsssssassscrsenne. GO6F 11/34 microprocessors in the node produce identical results. This
[52] U.S. Cl oo eeseessees 395/182.09; 371/36 1s achieved by manipulating the order in which messages are
[58] Field of Searchoumeeeeeeeneeee 395/180, 181, ~ Processed by each microprocessor so as to ensure that each

395/182.09, 182.1, 184.01, 185.01, 182.08: microprocessor in the node receives the same messages,
371/36, 61; 364/268.1, 268.9, 269, 269.1 orders these same messages so that messages within each

microprocessor are processed in the same order, thus
[56] -~ References Cited ensuring, if all the microprocessors are functioning

correctly, that the same results are produced.
U.S. PATENT DOCUMENTS

4,356,546 10/1982 Whiteside et al.cove.. s 3641200 11 Claims, 5 Drawing Sheets

LR
'''''''''''''''''
-
lllllllllllllllllll

= H N
......................
llllllllllll
'''''''''
w0

iiiiiii
lllllllllll

- = L
''''''''''''''''''''''''''

Discard _ g i @

7
U.S. Patent May 19, 1998 Sheet 1 of S 5,754,75

—'
l "# -'\\
C Lock) L ovp)
/ \ j L ‘
{CLOCli}"'"--“ : S
\\-

-o

Fig. |
(PRIOR ART)

5,754,757

Sheet 2 of 5

May 19, 1998

U.S. Patent

L
JOVSS W
ONIH30UC

SIA

' ----“- ---------------

iiiiii

llllllllllllllllllllllllllll

iiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii

L

L LR
5

* 4
.....
......

iiiiiiiiii

lllllll

------------ HMENENERE, -4
& bk & & K B K B & & B | I

llllll

llllllllll
llllll

TEYE:

L LN B

]
|
-'l—l
]
[|
]

SIA

U.S. Patent ~ May 19, 1998 Sheet 3 of 5 5,754,757

- A

* u

4 & =
d w
[o »
L R w d N
& B L BN B
LN B
I) LI N
[4 B &
= = b -
L L B
T * %
a =
- 4 =
I =
T 5 4
- =
4 % o

[]
W
i
o
-
a'a'n
N
E P "N

FOLLOWER

li{lT

ol

T - -
1 oep . e .
(Y e w m
L "
.t e

[
[]
l
L
r

* = .
- I-Il.-l .'-.'.
L I B a n g
- w9 PR
Y als"s

.

*
LN
]
| B B

"""'III--‘.
lIi...,.

LEADER

Tk

EF Ny x NN
L N B

]

S,754,757

U.S. Patent May 19, 1998 Sheet 4 of 5

RELAYED TIMESTAMP

A
LOCAL TIME-A LOCALTIME

RELAYED TIMESTAMP

|

Tttt T . TIME
LOCAL TIME-A LOCAL TIME

STABLE TIMESTAMPS IN ACCORDANCE WITH
ORDER PROTOCOL TERMINATION PROPERTY.

BB STABLE TIMESTAMPS IN ACCORDANCE WITH
THE IMPROVED ORDER PRGTOCOL

NON-STABLE TIMESTAMPS

F1g. S

U.S. Patent May 19, 1998 Sheet 5 of 5 5,754,757

Various delays for trials of 1000 message requests.

3,754,757

1

EFFICIENT SCHEMES FOR

CONSTRUCTING RELIABLE COMPUTING
NODES IN DISTRIBUTED SYSTEMS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a computing node in or for use in
a computer processing system and particularly a fail-silent
computing node.

2. Description of the Prior Art

It is known that replicating computer processing on
different computer microprocessors provides a practical
means of constructing computer systems capable of toler-
ating arbitrary computer processor failures. A computing
node is composed of a number of conventional computer
processors on which applications are replicated to achieve
tolerance to failures. Computing nodes are connected via a
network.

Typically, individual hardware components do not inher-
ently fail by becoming silent rather their output is corrupted.
For some devices, simple models of their correct behaviour
exist and can thus be used as a checking means, eg, memory
devices should output exactly the data that was originally

input to them. In these cases, faults can easily be identified

by the addition to the data of redundant information, eg,
parity bits, which can be checked when the data is output.
However, for complex devices, for which there is no simple
correlation between their inputs and subsequent ouptputs,
eg, microprocessors, the easiest error detection method of
adding redundancy is to duplicate the device and compare
the outputs of the two devices.

In typical existing implementations of a fail-silent node,
a plurality of or duplicated microprocessors are closely
coupled and run in micro-synchronisation. Each micropro-
cessor is initialised to an identical state and then performs
identical actions on identical data for each tick of the system
clock. Hence on every clock cycle the data output by the
component is identical. The principles underlying the node
architectures can be explained by examining FIG. 1 which
is a diagrammatic representation of a conventional fail-silent
node. Since the data streams to be compared are in exact
lock-step, a simple hardware comparator (cmp) can be used
to check that the data streams are identical and to prevent
any outputs once a discrepancy is detected. Although two
replicas are actually running, because they are microsyn-
chronised and compared by the dedicated hardware
comparator, the application running is unaware of the rep-
- lication and the comparisons undertaken. When this fail-
silent technique is used, the correct and erroneous message
sets sent over the network are distinguished by the fact that
the only erroneous messages than can be sent are incomplete
correct messages, since the occurrence of a fault during the
transmission of a message can stop transmission within one
clock tick. Such incomplete messages are easily identified
by the receiver since they will contravene the lowest levels
of network protocols.

Fail-silent nodes have been used widely, for example, in

commercial transaction computer processing systems. Such

nodes have been designed with the assistance of specialised
comparator hardware and clock circuits. A common
(reliable) clock source is used for driving a pair of proces-
sors that execute in lock-step, with the outputs compared by
a (reliable) comparator; no output is produced, once a
disagreement is detected by the comparator. Note that since
only two microprocessors are used within a node to check on
each other, the fail silent characteristics of a node can be

10

15

20

25

30

35

45

50

2

guaranteed only if no more than one microprocessor within
a node is faulty.

Intuitively, fail silent behaviour ought to mean that a node
never generates an erroneous output, i.e., the node can only
either generate comrect outputs or remain silent. However,
this 1s imnpossible to implement in practice since output
messages take a finite time to transmit, and a fault may occur
leading to an error during the transmission of a message. A
defimtion of fail-silence must include the case where a
message receiver rejects such erroneous messages. Thus a
two-microprocessor node will be said to exhibit fail-silent
behaviour in the following sense: the outputs produced by it
(if any) are either valid messages or detectably invalid
messages; this behaviour 1s guaranteed so long as no more
than one microprocessor in the node fails.

The disadvantages of the above described fail-silent node
is as follows:

Firstly, with this type of node every new microprocessor
architecture is likely to require substantial design overheads.
Secondly, tightly synchronised processors may not be resil-
ient to transients which may affect the microprocessors in
identical manner, commonly known as common mode tran-
sient failures. Thirdly there may be market resistance from
customers to the use of these highly specialised and cust-
omised non-standard nodes and finally, lock-step synchro-
nisation at very high clock speeds (50-100 MHZ) may well
turn out to be difficult or impossible to achieve.

SUMMARY OF THE INVENTION

It follows from the above that there is a need to provide
a fail-silent node which does not require the microprocessors
to be synchronised in lock-step, rather, that the micropro-
cessors are synchronised with one another only when send-
ing or receiving information. The microprocessors of a node
function to execute synchronisation and order protocols “to
keep in step”. We have achieved this by providing fail-silent
nodes which have an ordering mechanism so that identical
messages in 1dentical order are selected for processing thus
providing identical outputs. A node implemented according
to the invention does not require dedicated clock or com-
parator circuits (the hardware signified by dotted lines in
FIG. 1 can thus de dispensed with). Further advantages of
the invention include the fact that technology upgrades are
easier. This is because the principles behind the invention do
not change thus the techniques can be easily ported to any
pair of microprocessors; secondly because the replicated
computations are loosely synchronised, the architecture is
likely to be capable of detecting common mode transient
failures. This is because transients are unlikely to affect the
computations on the microprocessor pairs in an identical

~ fashion.

55

65

According to a first aspect of the invention there is
therefore provided a computing system comprising a com-
puting node arranged to receive messages from other com-
ponents in the system, to process received messages, and to
transmit messages to other components in the system; the
computing node comprising:

a) a plurality of microprocessors linked together and

arranged to process received messages;

b) a means for ordering the messages to be processed such
that similar messages in identical order are selected for
processing such that similar messages in which then
produce identical outputs; and

¢) means for computing the outputs produced by the
microprocessors of the node and for controlling the
output of the node so that nothing is ocutput from the

5,754,757

3

node unless all the microprocessors in the node give
identical output, the node output then being the same as
the identical outputs.

In an alternative embodiment of the invention the said
means for comparing the outputs produced by the micro-
processors of the node and for controlling the output of the
node operates so that nothing is output from the node unless

more than haif of the number of microprocessors in the node

give identical output, the node output then being the same as
the identical outputs.

According to a second aspect of the invention there is
provided a fail-silent node in or for use in a processing
system comprising;

a plurality of microprocessors having interface means for
enabling communications with other components in the
system, such as for example, other nodes, and a link means
to enable communication between said processors in said
node, characterised in that; said microprocessors further
include;

a) authentication means so that each micmprocessor can
confirm the integrity of any message it receives;

b) signature means so that each microprocessor can label
a message with its own, preferably unique, signature;

c) ordering means so that each microprocessor can order
authenticated messages in time-stamped order;

d) diffusion means so that each microprocessor can send
messages to other microprocessors; and

e) comparison and control means so that the outputs
produced by each microprocessor can be compared;
whereby similar messages are processed in identical
order and the same outputs are produced by each
microprocessor, so that nothing is output from the
mode unless all the microprocessors in the node give an
identical output, the node output then being then being
the same as the identical outputs.

In an alternative embodiment of the invention the said
means for comparing and controlling the outputs produced
by the microprocessors of the node and for controlling the
output of the node operates so that nothing is output from the
node unless more than half of the number of microproces-
sors in the node give identical output, the node output then
being the same as the identical outputs.

According to either aspect of the invention, the ordering
means comprises the provisions of clock means within each
microprocessor which clock means are synchronised such
that a measurable difterence between readings of clocks at
any instant is represented by a maximum known constant.
Preferably the clock means is a logical clock.

Alternatively, the ordering means comprises the designa-
tion of at least one microprocessor as;

a Leader microprocessor and at least another of said
microprocessors is designated as a Follower microprocessor
whereby the Leader receives messages from outside the
node and sends said messages to the Follower such that the
order in which requests are processed is dictated by the
[eader microprocessor.

In this ideal embodiment the Leader processes the infor-
mation and then sends the result of this processing to the
Follower so that the Follower can compare this result with
its own generated result. In the event that the two results are
identical, the Follower is adapted to produce a multiple
signed message which is transmitted through the system. In
the event that the two outputs are not identical a multiple
signed message is not produced. In addition, the Follower is
provided with means which enables it to monitor messages
received from outside the node whereby faults can be
detected in the Leader.

10

15

20

23

30

335

40

45

50

33

65

4

Preferably still said comparison means of said computing
system or said comparison and control means of fail-silent
node compares incoming messages with those produced
locally so that successful messages can be countersigned by
the local microprocessor and the subsequently generated
multiple signed message can be transmitted through the
system. In the event that the comparison fails, multiple
signed messages are not produced and thus such messages
are not sent through the system.

- Preferably said computing system or said fail-silent node
includes receiving means which discards duplicate mes-
sages.

Preferably said computing system or said fail-silent node
includes microprocessors which are adapted to receive said
messages in parallel. This latter arrangement is not present
in the aforementioned Leader/Follower arrangement.

According to a yet further aspect of the invention there is
provided a method for ordering messages to be processed
within a fail-silent computer node comprising:

a) receiving messages at a microprocessor;

b) authenticating said messages so as to confirm the
integrity of same;
c) stamping said messages to be ordered with a time-

stamp corresponding to a local clock reading at said
INICTOPLrOCEsSor;

d) signing said messages;

e) diffusing either the signed, time-stamped message or a
copy of this signed, time-stamped message via a link
means to other microprocessors in the node;

t) ordering a plurality of signed, time-stamped messages
in time-stamped order;

g) processing the ordered messages according to their
time-stamped order; |

'h) signing the processed message output;

1) diffusing either this signed, processed output message
or a copy of this signed,

1) processed output message via a link means to other
microprocessors in the node; and comparing the output
messages in the node and, where a pre-determined
number of said output messages are identical, releasing
said output messages from said node.

In a preferred embodiment of the invention said pre-
determined number equals a number equal to all the number
of microprocessors in the node.

In an alternative embodiment of the invention said pre-
determined number equals a nurmber equal to more than half
of said microprocessors in said node.

Preferably said messages are received as said micropro-
cessors in a parallel manner.

The method of ordering involves a process of stabilisation
whereby incoming messages are delayed for a pre-
determined length of time before they are queuned in the
time-stamped order of messages.

In the Leader/Follower embodiment of the invention, the
pre-determined length of time for which incoming messages
are delayed in the Leader microprocessor equals 0.

In a preferred method, for a two microprocessor fail-silent
node, the process of ordering or stabilisation involves;

a) diffusing messages according to a First In First Out
policy;

b) receiving at time-stamped message with a time-stamp
equal to T; and

¢) where T 1s greater than the local clock value, advancing

the local clock to a time T+1 and stabilising all mes-
sages with a time-stamp less than or equal to T; or

S

d) where T is less than or equal to the local clock value,
stabilising all messages with a time-stamp less than or
equal to T.

This preferred method enhances the efficiency of the

computing system or node.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the invention will now be described by
way of example only with reference to the accompanying
Figures wherein;

- FIG. 1 represents a diagrammatic illustration of the prior
art showing in phantom those components made obsolete by
the present invention;

FIG. 2 represents a diagrammatic illustration of a fail-
silent node in accordance with the invention;

FIG. 3represents a diagrammatic illustration of the opera-
tion of a fail-silent node in accordance with the invention:
and

FIG. 4 represents a diagrammatic illustration of a pre-
ferred embodiment of a fail-silent node in accordance with
the invention and particularly a Leader/Follower fail-silent
node in accordance with the invention.

FIGS. S(A-B) represent a diagrammatic illustration of an
- improved time-based ordering means. |

FIG. 6 1s a table showing performance measures.

DETAILLED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In this detailed descﬁption it 1s assumed that computer -

systems have been structured to include a number of com-
puter microprocessors that interact only by way of mes-
sages. Messages are defined as data which is sent from one
microprocessor to another. Further, it is assumed that com-
putations performed by microprocessors are deterministic,
that is to say, if all the correctly functioning replicas of a
process have identical initial states then they will continue to
produce identical responses to incoming messages provided
the messages are processed in an identical order.

The overall node architecture is shown in FIG. 2. Each of
the two microprocessors (P;, P,) has network interfaces (n,,
n,) for inter-node communication over (redundant) net-
works; in addition, the microprocessors are internally con-
nected by a communication link, 1, or alternatively, the
microprocessor may be linked by external means, for
example by use of interfaces (n,, n,). Each non-faulty
microprocessor in a node is assumed to be able to sign a
- message it sends by affixing the message with its (the
microprocessor’s) unforgeable signature; it is also assumed
to be able to authenticate any received message, thereby
detect any attempts to corrupt the message. For example,
digital signature based techniques provide such functionality
with extremely high probability.

It is necessary that the replicas of computational processes
on microprocessors within a node select identical messages
for processing, to ensure that they produce identical outputs.
Identical message selection can be guaranteed by maintain-
ing identical ordering of messages at input ports and ensur-
ing that application processes pick up messages at the head
of their respective input ports. An ordering mechanism is
then required to ensure identical ordering if both the micro-
processors are non-faulty.

Each non-faulty microprocessor, as shown in the FIG. 2
arrangement, of a node has the following mechanisms;

a) Diffusion: this takes the messages produced by the

application process running on that microprocessor,

- 5,754,757

10

15

20

25

30

35

43

30

35

65

6

signs them and sends them to the other microprocessor
of the node for comparison.

b) Comparison: this authenticates all incoming messages
from the neighbouring microprocessor; an authenti-
cated message is compared with its counterpart pro-
duced locally. If the comparison succeeds, the authen-
ticated message is countersigned and this doubly signed
message is transmitted to destination nodes. A message

- that cannot be compared because its counterpart does

not arrive or a comparison that detects a disagreement
indicates a failure. Once a failure is indicated, the
comparison mechanism stops. No further double signed
messages are produced by the node.

c) Recelving: this accepts authentic messages for process-
ing from the network. discarding any duplicates; such
valid messages are sent to the local ordering mecha-
nism.

d) Ordering: this mechanism negotiates with its counter-
part in the other microprocessor and attempts to con-
struct identical queues of valid messages for processing
by the computation processes.

‘One known method of achieving ordering requires that
the physical clocks of both the microprocessors of a node are
synchronised such that the measurable difference between
readings of clocks at any instant is bounded by a known
constant, |

Essentially, in the known method for ordering, the order
process of a microprocessor stamps a message to be ordered
with its local clock reading. A copy of the time-stamped
message is signed and sent over the link to the order process
of the other microprocessor in the node. If T is the time-
stamp of the message received from or sent to the order
process of the other microprocessor, then the message
becomes stable at local clock time T4+d+e where d is the
maximum transmission time taken for a time-stamped mes-
sage to travel from one order process to another order
process over the link and ¢ is the maximum difference
between the clocks of the two microprocessors. A message
with time-stamp T will be designated stable, if no message
with another time-stamp <T will be received by an order
process. Stable messages are queued at the relevant input
ports in the increasing time-stamp order (with care taken not
to queue a stable message, if its replica has already been
queued).

The above operation ensures that the two following
properties are met;

- Agreement: all the non-faulty replicas of a process receive
the same input messages;

Order: all the non-faulty replicas have identical input
message queues or ordered message gueues.

So, if all the non-faulty replicas of a process of a node
have 1dentical initial states and replicas always pick mes-
sages at the head of queues for processing then identical
output messages will be produced by them.

We have developed a time-based ordering means for use
in a fail-silent node which will now be explained with
reference to FIG. 3. The detailed architecture of a node is

depicted in FIG. 3, where the major components of the
system within a microprocessor of a node and their inter-
action are summarised. The RX__INT and RX__EXT pro-
cesses are responsible for receiving and authenticating mes-
sages from inside and outside the node respectively. An
authentic message coming from outside a node will have
two distinct signatures (for simplicity, the authentication of
internal messages, received from the other microprocessor
in the node, is omitted from FIG. 3). Similarly, the TX_INT
and TX ENT processes must send messages inside and

3,754,757

7

outside the node respectively. The actual computing appli-
cation is represented in FIG. 3 by the Service process. For
the purpose of sending and receiving valid messages, each
microprocessor maintains several message queues:

(i) Received Message Queue (RMQ): Contains valid
received messages intended for ordering.

(i1) Processed Message Queue (PMQ): Contains unsigned
output messages produced by computational processes.
These messages must be validated: checked by the
comparator before transmission to the final destination.

(i11) External Candidate Message Queue (EMQ): Contains
singly signed messages that have been received for
validation.

(iv) Internal Candidate Message Queue (IMQ): Contains
unsigned messages, each waiting for a signal message

with identical content to arrive in EMQ.

(v) Delivered Message Quene (DMQ): Contains ordered,
signed messages to be delivered to the application
process for processing.

(vi) Neighbouring Message Queue (NMQ): Contains
signed messages to be relayed to the neighbouring
microprocessor of the node. Messages could either be
for ordering (from the order process) or for validation
(from the diffuse process).

(vil) Compared Message Queue (CMQ): Contains doubly
signed messages awaiting output.

(viil) Order Message Queue (OMQ): Contains messages

relayed by the neighbour microprocessor for ordering.

A message received by RX__INT process could either be
for validation, in which case it is deposited in EMQ, or for
ordering, in which case it is deposited in OMQ.

The time-based ordering means has been improved so as
to reduce the stability delay. It is of none that physical clocks
are replaced by counters (logical clocks) which are no longer
synchronised. The details are as follows.

The arrival of a relayed message in OMQ can be used to
reduce the stability delay, d+e, as defined previously,
imposed by ordering messages. As each microprocessor is
unable to generate a time-stamp smaller than any order that
it has previously generated, and messages are diffused
(relayed) according to a First In First Qut (FIFO) policy, the
time-stamp of a message received defines intervals of time
where messages can be stabilised earlier than the time d+e.
FIG. § illustrates this improvement.

For instance, a message with time-stamp smaller than the
local logical time is received. As no more messages will be
received with time-stamps smaller than the time-stamp of
this message (local time-stamps will be greater than the local
time and remote messages will necessarily have time-stamps
greater than that of the received message) all previously
received messages, local or remote, with time-stamps
smaller than or equal to the time-stamp of the diffused
message are designated stable.

Alternatively, a message with time-stamp greater than the
local time is received. In this case it is certain that no more
messages will be received with time-stamp smaller than the
local time, thus every previously received message with
time-stamp smaller than or equal to the local time is stable.
Further the local logical clock is advanced so as to exceed
the time-stamp of the received message.

In the above, ordering means the two microprocessors
operate symmetrically, that is to say, the microprocessors
execute the same method. However, considerable perfor-
mance improvements can be obtained by using an asym-
metrical approach. We assign different roles for each of the
microprocessors forming a node. We will term on the Leader
and the other the Follower.

10

15

20

23

30

35

45

50

335

65

8

The order in which the requests will be processed in the
node 1s dictated by the Leader microprocessor. The Leader
selects one of the input messages for processing and sends
a copy to the Follower. After transmission of this message to
the Follower, the Leader processes the message, signs it and
afterwards sends a copy of the output message to the
Follower. Meanwhile the Followers receives the message,
processes it and waits for the Leader’s output message. The
Follower then picks up the Leader’s output message and
compares it with its own. If the two messages agree, a
double signed message is output, otherwise, the Follower
microprocessor stops its activities and no double signed
messages will be output. It is necessary to have communi-
cation in the Follower-Leader direction so that the Leader
can detect faults 1n the Follower. Also, the Follower must
monitor the messages received from outside (omitted for
simplicity from FIG. 4) the node in order to detect faults
occurring in the Leader. FIG. 4 shows the architecture for the
Leader/Follower fail-silent node. The various processes and
queues perform the same functions as described earlier in
this section. In the Follower microprocessor, the number of
signatures appended to a message received from the Leader
determines its destination (EMQ or DMQ). Two signatures
indicate the message is to be processed.

The Service, Diffuse and Compare processes work in
almost the same way as in the normal fail-silent architecture.
The Rx__Int and TX_Int receive and transmit messages
within the node. The Rx__Ext and Timing processes on the
Follower are responsible for detecting omission and timing
faults occuiring in the Leader. In a correctly functioning
system, both microprocessors will receive the same request
messages from outside the node (although not necessarily in
the same order). The Follower’s Rx__Ext process receives
each request from outside the node and deposits it in the
External Received Message Queue (ERMQ) (if a copy of the
message is already there, having been deposited by the
Timing process, then the message time-out is reset) with an
associated time-out. The Timing process picks up each
message in the Internal Received Message Queue (IRMQ))
and resets the time-out associated with its counterpart in the
ERMQ (If its counterpart is not there, the message is placed
in ERMQ with an associated time-out). If a time-out ‘fires’,
the Follower assumed that the Leader has failed and ceases
its own activities. As a result, no more double signed
messages will be output. To solve the problem of detecting
omission and timing failures in the Follower, it suffices to
make the Follower end to the Leader the single signed
messages that are supported to be output. After comparing
this with its own output, the Leader will also output a double
signed message. It the expected message does not arrive in
a ‘reasonable’ time, the Leader will stop sending messages
to the Follower, and so no more double signed messages will
be output.

To calculate the time to process a request for this node, ti
1s necessary to analyse the activities in both microproces-
sors. As the activities in the Leader and Follower micropro-
cessors are executed in parallel, we cannot simply add the
times of the activities executed in each node. The Service
processes are executed in both microprocessors in parallel.
However, the Follower has to wait for the request message
sent by the Leader before service can begin (the wait time is
equal to T ,p,..)- The Compare process in the Follower
microprocessor has to wait for the local message produced
by the Service process (in the Follower) and for the Leader’s
counterpart of this message. In general, if request messages
and local response messages are sent by the Leader to the
Follower through independent channels, it is likely that the

3,754,757

9

Compare process will never have to wait for the neighbour’s
response message, as this message will be sent while the
Follower 1s executing Service. More formally, the time that
the Service process in the Follower will wait for the request
message plus the time that the Compare process will wait for
the neighbour’s response message is equal to T4, ... This
Trs118 given by the following expression:

Trs1F Tre et T aguset Lservicet Dcomparet T ing

and following the same approach of the previous section, we
conclude that:

T sy Inon-gept L digruse t L compare

Since microprocessors in a fail-silent node must exchange at

least one message per request (the message to be compared)
the Leader/Follower soft fail-silent node has near optimal
performance for a software implemented fail-silent node.,

When discussing the Leader-Follower mechanism
described above, it is necessary to examine the performance
of both Leader and Follower since they are executing
different protocols. The input delay in the Follower is
defined to be the time between remove(m,Rx_ Ext) at the
Leader and remove(m,DMQ) at the Follower. Hence it
reflects the time taken for the Leader to receive the message,
relay it to the Follower and have the Follower remove it
from DMQ. The output delays of Leader and Follower are
significantly different. In the Follower, the output delays are
smaller than in the Leader because the Leader begins to
service the request before the Follower so that when the
Follower is ready to compare its result, the Leader will have
already send (or be sending) its response. If the comparison
at the Follower is successful, the Follower outputs the
compared message before passing its response to the Leader.
Hence the output delay at the Leader reflects this additional
time.

The experimental figures given in Table 1 indicate that
adopting the Leader-Follower mechanism within a fail-silent
node leads to a significant improvement in performance. The
overhead of using soft fail-silent nodes is to produce a delay
in response of approximately 3.7 ms in a lightly loaded
system up to 6 ms when messages are constanfly queued
awaiting service. In either case, the performance of the
Leader/Follower fail-silent node is considerably better than
either of the fail-silent nodes employing an order protocol.
It the application services involve lengthy computations
then the percentage overhead involved in adding replication
i1s extremely small. It is only when communication time
between nodes outweighs computation time within nodes
that the cost of replication becomes significant.
Modification of the invention to accommodate a fail-silent
node including two or more microprocessors

Fail-silent nodes stop issuing valid messages as soon as a
fauit is detected in the node. However, it is possible to build
multi-microprocessor nodes which mask failures and con-
tinue to work in the presence of failures. An N failure
masking node contains N microprocessors and continues to
work provided not more than f=(IN-1)/2 of these processors
fail. Failure masking nodes also require an ordering mecha-
nism for incoming messages. However, the performance of
the ordering mechanism of failure masking nodes can be
enhanced by applying an extension of the logical clock
method as described above. The description of N failure
masking nodes is more complex since the nodes must
continue to work despite the presence of up to f arbitary
processor failures of a node. Below we describe the method:

1€

15

20

25

30

35

43

50

D3

65

10

Each non-faulty microprocessor P; in an N failure mask-
ing node maintains a logical clock C, which is first initialised
to 1 when the node is started, and whose value will only
increase with the passage of real time.

When microprocessor P; receives an authentic external
message M (that is to say, a message with f+1 signatures),
it composes an internal message comprising of the contents
of M, a local logical time-stamp and the identity of the
microprocessor (ie P;). This composed message is deposited
in a message pool called received; and C, is incremented by
1—this ensures that a non-faulty P, will prepare internal
messages with increasing time-stamps. The message is then
signed and sent to all other microprocessors in the node.

When microprocessor P, receives an authentic internal
message m with s distinct signatures, s=1, it deposits m in
a pool received,, if m is not already there; if m is a new
message, C; is set to max {C,m.T+1}. Because of this
operation a non-faulty P, will never prepare and send a
different message m' with a time-stamp less than the original
message after having received the original message. If the
number of signatures does not exceed f, the received mes-
sage is countersigned and sent to all other microprocessors
in the node who have not signed m. The messages in
received,;, which have time-stamps smaller than the smallest
logical clock value in the node are stable and can be ordered
according to their time-stamps. |

A non-faulty microprocessor P; detects late messages
using time-outs that are set-up as a result of receiving or
sending messages. The principles behind setting these time-
outs are as tollows:

(i) suppose P; prepared and sends a message m to every
other P; at its (physical) clock time t; after its clock
time+d, every P; should have C;2m.T (time-stamp of
m) and hence after its clock time t+2d, P, will not
accept any different message m', with m'" T=m.T;

(ii) suppose that P; receives a message m at its clock time
t; any non-faulty microprocessor P; that signed m, must
have its C>m.T at the time it sent m. Therefore,
allowing d for possible message take-over during
transmission, P, should not accept any single signed m’
from any P; after its clock time t+d; and

(iii) suppose that in case (ii), P, is a microprocessor that
‘has not signed m. P, may receive m as late as t+d
according to P;’s clock. So P; must accept any single
signed message m' from P, so long as its clock reads
less than t+2d.

Similar time-outs for multiple signed messages can be
derived, and careful analysis indicates that each additional
signature in a message will increase the time-out for accept-
ing that message by 2d. For example, (as in case (i)) P; after
having prepared and sent m at its clock time t, should accept
any new double-signed message m', with m' T=m.T, whilst
its clock reads less than t+4d. This complexity is necessary
to prevent faulty microprocessors corrupting the ordered
queues of correct microprocessors.

This scheme, unlike most ordering mechanisms, does not
require that microprocessors’ physical clocks are synchro-
nised within a known bound. It provides an efficient mecha-
nism for providing ordered message queues in an N failure
masking node. In particular, for the special case, N=3 and
f=1, the above technique can be optimised, resulting in a
reduced ordering delay. Further optimisation still is possible
when there are no microprocessor failures in the node and
the communication time between two non-faulty micropro-
cessors 1s much less than the estimated upper bound d. Since
these conditions generally hold in practical systems, these

‘optimisations give valuable performance enhancement to

the node.

5.754,757

11

We claim:

1. A computing systemn comprising a computing node
arranged to receive messages from other components in the
system, to process received messages, and to transmit mes-
sages to other components in the system; the computing
node comprising:

a) a plurality of microprocessors linked together and

arranged to process received messages;

b) means for ordering the messages such that similar
messages in identical order are selected for processing
by correctly functioning microprocessors which then
produce identical outputs, and further wherein said
ordering means comprises a designation of at least one
microprocessor as a Leader microprocessor and at least
another of said microprocessors as a Follower micro-
processor whereby the Leader receives messages from
outside the node and sends said messages to the Fol-
lower such that the order in which messages are pro-
cessed is dictated by the Leader microprocessor; and

¢) means for comparing the outputs produced by the
microprocessors of the node for controlling the output
of the node so that nothing is output from the node
unless all the microprocessors in the node give identical
output, the node output then being the same as the
identical outputs.

2. A computing system according to claim 1 wherein said
means for comparing the outputs produced by the micro-
processors of the node and for controlling the output of the
node operates so that nothing is output from the node unless
more than half of the number of microprocessors in the node
give identical output, the node output then being the same as
the identical outputs.

3. A computing system according to claim 1 wherein the
Leader is adapted to process the information and then sends
the result of this processing to the Follower so that the
Follower can compare this result with its own generated
result and in the event that the two results are identical, the
Follower 1s adapted to produce a multiple signed message
which is transmitted through the system.

4. A computing system according to claim 1 wherein the
Follower is provided with means which enables it to monitor
messages received from outside the node whereby faults can
be detected in the Leader. |

S. A computing system according to claim 1 wherein said
comparison means is adapted to compare incoming mes-
sages with those produced locally so that successtul mes-
sages can be countersigned by the local microprocessor and
a subsequently generated multiple signhed message can be
transmitted through the system. |

6. A computing system according to claim 1 wherein said
computing system includes receiving means which discard
duplicate messages.

7. Amethod for ordering messages to be processed within
a fail-silent computer node comprising:

a) receiving messages at a miCroprocessor;

10

15

20

25

30

35

40

43

30

12

b) authenticating said messages so as to confirm the
integrity of same;

c) stamping said messages to be ordered with a time-
stamp corresponding to a local clock reading at said
MiCrOpProcessor;

d) signing said messages;

e) diffusing either the signed, time-stamped message or a
copy of this signed, time-stamped message via a link
means to other microprocessors in the node;

f) ordering a plurality of signed, time-stamped messages
in time-stamped order by designating one of said
microprocessors as a Leader microprocessor and des-
ignating at least one other of said microprocessors as a
Follower microprocessor, and arranging for the Leader
to receive messages from outside the node and send
said messages to the Follower such that the order in
which messages are processed is dictated by the Leader
MiCroprocessor;

g) processing the ordered messages according to their
time-stamped order;
h) signing the processed message output;

i) diffusing either this signed, processed message output
or a copy of this signed, processed message output via
a link means to other microprocessors in the node; and

j) comparing the message outputs in the node and, where
a pre-determined number of said message outputs are
the same, releasing said same message outputs from
said node.

8. A method according to claim 7 wherein said predeter-
mined number equals a number equal to all the number of
microprocessors in the node.

9. A method according to claim 7 wherein said predeter-
mined number equals a number equal to more than half of
said microprocessors in said node.

10. A method according to claim 7 wherein the method of
ordering involves a process of stabilization whereby incom-
ing messages are delayed for a pre-determined length of
time before they are queued in the time-stamped order of
messages.

11. A method according to claim 10 wherein two micro-
processors are provided in said node and the process of
ordering or stabilization involves:

a) diffusing messages according to a First In First Out
policy;

b) receiving a time-stamped message with a time-stamp
equal to T; and

c) where T is greater than the local clock value, advancing
the local clock to a time T+1 and stabilizing all mes-

sages with a time-stamp less than or equal to T; or

d) where T is less than or equal to the local clock value,
stabilizing all messages with a time-stamp less than or
equal to T.

	Front Page
	Drawings
	Specification
	Claims

