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op =10 , op3 =110110

“opeode | ops | operauon
Hevlate sddress o fiseliencd
o0 T P

Exemplary Assembly Language Syntax

L

alignaddr  T€8rg], T€Eys2, T€8rd

alignaddrl regyg], regrs9, regrd

faligndata fregrg], fregrgo, fregeg

Figure 7a
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op =10 , op3 = 110110

“opeods | op3 | operation _
FPACK16 |000111001| 4 16-bit add

FPACK32 | 000111010| 2 32-bit add
FPACKFIX 4 16-bit subtract

Exemplary Assembly Language Syntax

fpackl6 fr €grs2, fregrq

fpack3Z2 fregyrc), fregpq9, fregyed
fregrso, fregeg

1064
106b
106¢

fpackfix

Figure 8a
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op =10, op3 =110110

opcode | opf |  operaton
138 ~ PDIST |000111110} distance between 8 8-bit components

Exemplary Assembly Language Syntax
pdist  fregrs1, fregrsg, fregrd

Figure 9a
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EDGESL [000000010{8 8-bit edge boundary processing, little endian

EDGE16

EDGE16

EDGE32
EDGE32

00000010C

00000011(
00000100(
00000101C

Exemplary Assembly Language Syntax
edge8 T€Brs1, T€Brs2, T'€€rd

edge8]  regrgl, regrs2, regrd
edgel6 Te€grg]. reBrs2; regrd
edgel6l T€Brsl: T€Ers2: T€Erd
edge32 regrgl, régrg2, regrd
edge32] Tegrg]l, régrg2, regrd

Figure 10a

4 16-bit edge boundary processing
4 16-bit edge boundary processing, little endian
2 32-bit edge boundary processing

2 32-bit edge boundary processing, little endian
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op = 10, op3 - 110110
operation

142a convert 8-bit 3-D address to blocked byte address
142b m convert 16-bit 3-D address to blocked byte address

142¢ ~JARRAY32! 000010010 |convert 32-bit 3-D address to blocked byte address
npmber of
0 64 3 512
1 128 4 1024
2 256 5 2048

63

55 54 44 43 33 32 22 21 1110 0

I T
o LD
20 17 17 17 13 S S5 4 2 0

+21r52 4+ 2rs2 +rs2

I N
16 bits

oz |y [ x |z |v|x|z|¥Y][x_

18 18 14 10 6 5 3 1

21 18
+2rS2 + 27182 <+ T1S2

o [ B
22 19 19 19 15 11 1 6 4 2

+ 2182 +2rs82 <+1rs82

Exemplary Assembly La"nguage Syntax
array8 regrs1s r€8yrs2: regrd
arraylé regreils I€Erg2, regyd

array32 r€grs1» reBrs2, re8rd

8 bits:

32 bits

0

Figure 11a
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CENTRAL PROCESSING UNIT WITH
INTEGRATED GRAPHICS FUNCTIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
systems. More specifically, the present invention relates to a
cost effective, high performance central processing unit
(CPU) having integrated graphics capabilities.

2. Background

There are three major barriers to achieving high perfor-
mance in graphics computer systems. The first barrier is in
floating point processing throughput. Graphics applications
typically perform large amount of figure manipulation
operations such as transformations and clippings using float-
ing point data. The second barrier is in integer or fixed point
processing throughput. Graphics applications also typically
perform large amount of display operations such as scan
conversion and color interpolation using integer or fixed
point data. The third barrier is in memory references. The
above described operations typically require large amount of
memory references for reading from and writing into for
example the frame and Z-bufters.

Historically, the CPUs in early prior art computer systems
are responsible for both graphics as well as non-graphics
functions. No special hardware are provided to assist these
carly CPUs in performing the large amount of floating and
fixed point processing, nor memory references. While the

designs of these carly prior art computer systems are simple,
their performance are typically slow.

Some later prior art computer systems provide auxiliary
display processors. The auxiliary display processors would
off load these later CPUs from some of the display related
operations. However, these later CPUs would still be respon-
sible for most of the graphics processing. Typically, the
bandwidth of the system buses of these later prior art
computer systems are increased correspondingly to accom-
modate the increased amount of communications between
the processors over the buses. The auxiliary dispiay proces-
sors may even be provided with their own memory to reduce
the amount of memory contentions between the processors.
While generally performance will increase, however, the
approach is costly and complex. |

Other later prior art computer systems would provide
auxiliary graphics processors with even richer graphics
functions. The auxiliary graphics processors would off load
the CPUs of these later prior art computer systems from
most of the graphics processing. Under this approach exten-
sive dedicated hardware as well as sophisticated software
interface between the CPUs and the auxiliary graphics
processors will have to be provided. While performance will
increase even more, however, the approach is even more
costly and more complex than the display processor

approach.

In the case of microprocessors, as the technology contin-
ues to allow more and more circuitry to be packaged in a
small area, it is increasingly more desirable to integrate the
general purpose CPU with built-in graphics capabilities
instead. Some modern prior art computer systems have
begun to do that. However, the amount and nature of
graphics functions integrated in these modern prior art
computer systems typically are still very limited. Particular
graphics functions known to have been integrated include
only frame buffer checks, add with pixel merge, and add

>

10

135

20

23

30

35

45

30

33

65

2

with z-buffer merge. Much of the graphics processing on
these modern prior art systems remain being processed by
the general purpose CPU without additional built-in graph-
ics capabilities, or by the auxiliary display/graphics proces-
SOTS.

As will be disclosed, the present invention provides a cost
effective, high performance CPU with integrated native
graphics capabilities that advantageously overcomes much

of these performance barriers and achieves the above
described and other desired results.

SUMMARY OF THE INVENTION

Under the present invention, the desired results are advan-
tageously achicved by providing a graphics execution unit
(GRU) to the central processing unit (CPU). The GRU
comprises a graphics status register (GSR) and at least one
partitioned execution path. The GSR is used to store a
graphics data scaling factor and a graphics data alignment
address offset. The at least one partitioned execution path 1s
used to execute a number of graphics operations on graphics
data having a number of graphics data formats. Some of
these graphic operations are partitioned operations operating
simultancously on multiple components of graphics data,
including graphics operations operating in accordance to the
graphics data scaling factor and alignment address offset.

In one embodiment, the GRU comprises a first and a
second partitioned execution path. The two execution paths
are independent of each other. The first partitioned execution
path is used to independently execute a number of parti-
tioned addition and subtraction, expansion. merge, and logi-
cal operations on graphics data, and a number of alignment
operations on graphics data using the alignment address
offset. The second partitioned execution path is used to
independently execute a number of partitioned
multiplication, a number of pixel distance computation. and
compare operations on graphics data, and 2 number of data
packing operations on graphics data using the scaling factor.

Additionally, under this embodiment, the integer execu-
tion unit (IEU) of the CPU is used to execute a number of

edge handling opecrations on graphics data addresses, and
enhanced with additional circuitry for 3-D array address
conversions, while the load and store unit (LSU) of the CPU
is also used to execute a number of graphics data load and
store operations. including partial conditional store opera-
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the CFU of an exemplary graphics
computer system incorporating the teachings of the present
invention.

FIG. 2 illustrates the relevant portions of one embodiment
of the Graphics Execution Unit (GRU) in further detail.

FIG. 3 illustrates the Graphics Status Register {GSR) of
the GRU in further detail.

FIG. 4 illustrates the first partitioned execution path of the
GRU in further detail.

FIG. § illustrates the second partitioned execution path of
the GRU in further detail.

FIGS. 6a—6¢ illustrate the graphics data formats, the
graphics instruction formats. and the graphic instruction
groups in further detail.

FIGS. 7a-7c¢ illustrate the graphics data alignment
instructions and circuitry in further detail.

FIGS. 8a—8g illustrate the graphics data packing instruc-
tions and circuitry in further detail.
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FIGS. 9a-9b illustrate the graphics data pixel distance
computation instruction and circuitry in further detail.

FIGS. 10a-10b illustrate the graphics data edge handling
instructions in further detail.

FIGS. 1la-11b illustrate the graphics data 3-D array
addressing instructions and circuitry in further detail.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
specific numbers. materials and configurations are set forth
in order to provide a thorough understanding of the present
invention. However, it will be apparent to one skilled in the
art that the present invention may be practiced without the
specific details. In other instances. well known systems are
shown in diagrammatic or block diagram form in order not
to obscure the present invention.

Referring now to FIG. 1, a block diagram illustrating the
CPU of an exemplary graphics computer system incorpo-
rating the teachings of the present invention is shown. As
illustrated, the CPU 24 comyprises a prefetch and dispatch
unit (PDU) 46 including an instruction cache 40, an integer
execution unit (IEU) 30, an integer register file 36, a floating
point unit (FPU) 26. a floating point register file 38, and a
graphics execution unit (GRU) 28, coupled to each other as
shown. Additionally, the CPU 24 comprises two memory
management units (IMMU & DMMU) 44a-44b, and a load
and store unit (LLSU) 48 including a data cache 42, coupled
to each other and the previously described elements as
shown. Together they fetch, dispatch, execute, and save
execution results of instructions, including graphics
instructions. in a pipelined manner.

The PDU 46 fetches instructions from memory and dis-
patches them to the IEU 30, the FPU 26, the GRU 28, and
the LSU 48 accordingly. Prefetched instructions are stored in
the instruction cache 40. The IEU 30, the FPU 26, and the
GRU 28 perform integer, fioating point, and graphics opera-
tions respectively. In general, the integer operands/results
are stored in the integer register file 36, whereas the floating
point and graphics operands/results are stored in the floating
point register file 38. Additionally, the IEU 30 also performs
a number of graphics operations, and appends address space
identifiers (ASI) to addresses of load/store instructions for
the LSU 48. identifying the address spaces being accessed.
The LSU 48 generates addresses for all load and store
operations, The LSU 48 also supports a number of load and
store operations, specifically designed for graphics data.
Memory references are made in virtual addresses. The
MMUs 44a-44b map virtual addresses to physical
addresses.

There are many variations to how the PDU 46, the IEU
30. the FPU 26. the integer and floating point register files
36 and 38, the MM Us 44a—-44b, and the L.SU 48, are coupled
to each other. In some variations, some of these elements 46,
30. 26. 36. 38. 44a-44b, and 48, may be combined, while in
other variations, some of these elements 46, 30, 26, 36. 38,
44a-44b, and 48. may perform other functions. Thus. except
for the incorporated teachings of the present invention, these
elements 46, 30, 26, 36, 38, 44a-44b, and 48, are intended
to represent a broad category of PDUs, IEUs, FPUs, integer
and floating point register files, MMUs, and LSUs, found in
many graphics and nongraphics CPUs. Their constitutions
and functions are well known and will not be otherwise
described further. The teachings of the present invention
incorporated in these elements 46, 30, 26, 36, 38, 440—44b.
and 48, and the GRU 28 will be described in further detail
below.
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Referring now to FIG. 2, a block diagram illustrating the
relevant portions of one embodiment of the GRU in further
detail is shown. In this embodiment, the GRU 28 comprises
a graphics status register (GSR) 50, a first and a second
partitioned execution path 32 and 34. The two execution
paths 32 and 34 are independent of each other. In other
words, two graphics instructions can be independently
issued into the two execution paths 32 and 34 at the same
time. Together, they independently execute the graphics
instructions, operating on graphics data. The functions and
constitutions of these elements 50, 32 and 3 will be
described in further detail below with additional references

to the remaining figures.

Referring now to FIG. 3. a diagram illustrating the
relevant portions of one embodiment of the graphics status
register (GSR) is shown. In this embodiment, the GSR 50 is
used to store the least significant three bits of a pixel address
before alignment (alignaddr_ offset) 54, and a scaling factor
to be used for pixel formatting (scale_factor) 52. The
alignaddr_ offset 54 is stored in bits GSR[2:0], and the
scale_factor 52 is stored in bits GSR[6:3]. As will be
described in more detail below, two special instructions
RDASR and WRASR are provided for reading from and
writing into the GSR 50. The RDASR and WRASR
instructions, and the usage of alignaddr_ offset 54 and
scale_factor 52 will be described in further detail below.

Referring now to FIG. 4, a block diagram illustrating the
relevant portions of one embodiment of the first partitioned
execution path is shown. The first partitioned execution path
32 comprises a partitioned carry adder 37, a graphics data
alignment circuit 39. a graphics data expand/merge circuit
60. and a graphics data logical operation circuitry 62.
coupled to each other as shown. Additionally, the fhrst
partitioned execution path 32 further comprises a number of
registers 354-35b, and a 4:1 muitiplexor 43, coupled to each
other and the previously described elements as shown. At
each dispatch, the PDU 46 may dispatch either a graphics
data partitioned add/subtract instruction, a graphics data
alignment instruction, a graphics data expand/merge instruc-
tion or a graphics data logical operation to the first parti-
tioned execution path 32. The partitioned carry adder 37
executes the partitioned graphics data add/subtract
instructions, and the graphics data alignment circuit 39
executes the graphics data alignment instruction using the
alignaddr__ offset stored in the GSR 50. The graphics data
expand/merge circuit 60 executes the graphics data merge/
expand instructions. The graphics data logical operation
circuit 62 executes the graphics data logical operations.

The functions and constitutions of the partitioned carry
adder 37 are similar to simple carry adders found in many
integer execution units known in the art, except the hardware
are replicated multiple times to allow multiple additions/
subtractions to be performed simultaneously on different
partitioned portions of the operands. Additionally. the carry
chain can be broken into two 16-bit chains. Thus, the
partitioned carry adder 37 will not be further described.

Similarly, the functions and constitutions of the graphics
data expand/merge circuit 60, and the graphics data logical
operation circuit 62 are similar to expand/merge and logical
operation circuits found in many integer execution units
known in the art, except the hardware are replicated multiple
times to allow multiple expand/merge and logical operations
to be performed simultaneously on different partitioned
portions of the operands. Thus, the graphics data expand/
merge circuit 60, and the graphics data logical operation
circuit 62 will also not be further described.

The graphics data partitioned add/subtract and the graph-
ics data alignment instructions, and the graphics data align-
ment circuit 39 will be described in further detail below.
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Referring now to FIG. §, a block diagram illustrating the
relevant portion of one embodiment of the second parti-
tioned execution path in further detail is shown. In this
embodiment, the second partitioned execution path 34 com-
prises a pixel distance computation circuit 36, a partitioned
multiplier 58, a graphics data packing circuit 59, and a
graphics data compare circuit 64, coupled to each other as
shown. Additionally, the second partitioned execution path

33 further comprises a number of registers 58¢-55¢, a 4:1
multiplexor 33, coupled to each other and the previously
described elements as shown. At each dispatch, the PDU 46
may dispatch either a pixel distance computation instruction,
a graphics data partitioned multiplication instruction, a
graphics data packing instruction, or a graphics data com-
pare instruction to the second partitioned execution path 34.
The pixel distance computation circuit 56 executes the pixel
distance computation instruction. The partitioned multiplier
58 executes the graphics data partitioned multiplication
instructions. The graphics data packing circuit 59 executes
the graphics data packing instructions. The graphics data
compare circuit 64 executes the graphics data compare
instructions.

The functions and constitutions of the partitioned multi-
plier 58, and the graphics data compare circuit 64 are similar
to simple multipliers. and compare circuits found in many
integer execution units known in the art, except the hardware
are replicated multiple times to allow multiple multiplica-
tions and comparison operations to be performed simulta-
neously on different partitioned portions of the operands.
Additionally, multiple multiplexors are provided to the par-
titioned multiplier for rounding, and comparison masks are
generated by the comparison circuit 64. Thus, the partitioned
multiplier 58, and the graphics data compare circuit 64 will
not be further described.

The pixel distance computation, graphics data partitioned
multiplication, graphics data pack/expand/merge, graphics
data logical operation, and graphics data compare
instructions, the pixel distance circuit 56, and the graphics
data pack circuit 89 will be described in further detail below.

While the present invention is being described with an
embodiment of the GRU 28 having two independent parti-
tioned execution paths, and a particular allocation of graph-
ics instruction execution responsibilitics among the execu-
tion paths. based on the descriptions to follow, it will be
appreciated that the present invention may be practiced with
one or more independent partitioned execution paths, and
the graphics instruction execution responsibilities allocated
in any number of manners.

Referring now to FIGS. 6a—6c¢. three diagrams illustrating
the graphics data formats, the graphics instruction formats,
and the graphics instructions are shown. As illustrated in
FIG. 6a, the exemplary CPU 24 supports three graphics data
formats, an eight bit format (Pixel) 66a, a 16 bit format
(Fixed16) 664, and a 32 bit format (Fixed32) 66¢. Thus, four
pixel formatted graphics data are stored in a 32-bit word.
66a whereas either four Fixed16 or two Fixed32 formatted
graphics data are stored in a 64-bit word 66 or 66¢. Image
components are stored in either the Pixel or the Fixedl6
format 66a or 665. Intermediate results are stored in either
the Fixed16 or the Fixed32 format 66b or 66¢. Typically, the
intensity values of a pixel of an image, e.g. the alpha, green,
blue. and red values (o, G, B, R), are stored in the Pixel
format 66a. These intensity values may be stored in band
interleaved where the various color components of a point in
the image are stored together, or band sequential where all
of the values for one component are stored together. The

Fixed16 and Fixed32 formats 66b-66¢ provide enough
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precision and dynamic range for storing intermediate data
computed during filtering and other simple image manipu-
lation operations performed on pixel data. Graphics data
format conversions are performed using the graphics data
pack, expand, merge, and multiply instructions described
below.

As illustrated in FIG. 65, the CPU 24 supports three
graphics instruction formats 68a—68c. Regardless of the
instruction format 68a-68c, the two most significant bits
[31:30) 704-70¢ provide the primary instruction format
identification, and bits[24:19] 7da-74c¢ provide the second-
ary instruction format identification for the graphics instruc-
tions. Additionally, bits[29:25] (rd) 72a-72¢ identify the
destination (third source) register of a graphics (block/partial
conditional store) instruction, whereas, bits [18:14] (rs1)
76a-76¢ identify the first source register of the graphics
instruction. For the first graphics instruction format 68a.
bits{13:5] (opf) and bits[4:0] (rs2) 80 and 824 identify the op
codes and the second source registers for a graphics instruc-
tion of the format. For the second and third graphics
instruction formats 68b—68c¢, bits{13:5] (imm__asi) and bits
[13:0] (simm__13) may optionally identify the ASI. Lastly,
for the second graphics instruction format 685, bits[4:0]
(rs2) further provide the second source register for a graph-
ics instruction of the format (or a mask for a partial condi-
tional store).

As illustrated in FIG. 6c¢, the CPU 24 supports a number
of GSR related instructions 200, a number of partitioned
add/subtract/multiplication instructions 202 and 208, a num-
ber of graphics data alignment instructions 204, a pumber of
pixel distance computation instructions 206, a number of
graphics data pack/expand/merge instructions 210 and 212,
a number of graphics data logical and compare instructions
214 and 216. a number of edge handling and 3-D array
access instructions 218 and 220, and a number of memory
access instructions 222.

The GSR related instructions 200 include a RDASR and
a WRASR instruction for reading and writing the
alignaddr__offset and the scale_ factor from and into the
GSR 50. The RDASR and WRASR instructions are
executed by the IEU 30. The RDASR and WRASR instruc-
tions are similar to other CPU control register read/write
instructions. thus will not be further described.

The graphics data partitioned add/subtract instructions
202 include four partitioned graphics data addition instruc-
tions and four partitioned graphics data subtraction instruc-
tions for simultancously adding and subtracting four 16-bit,
two 16-bit, two 32-bit, and one 32-bit graphics data respec-
tively. These instructions add or subtract the corresponding
fixed point values in the rsl1 and rs2 registers, and corre-
spondingly place the results in the rd register. As described
earlier, the graphics data partitioned add/subtract instruc-

tions 202 are executed by the partitioned carry adder 37 in

the first independent execution path 32 of the GRU 28.

The graphics data partitioned multiplication instructions
208 include seven partitioned graphics data multiplication
instructions for simultaneously multiplying either two or
four 8-bit graphics data with another two or four correspond-
ing 16-bit graphics data. A FMULS8x16 instruction multi-
plies four 8-bit graphics data in the rsl register by four
corresponding 16-bit graphics data in the rs2 register. For
each product. the upper 16 bits are stored in the correspond-
ing positions of the rd register. A FMUL8Sx16AU and a
FMULS8x16AL instruction multiplies the four 8-bit graphics
data in the rsl register by the upper and the lower halves of
the 32-bit graphics data in the rs2 register respectively.
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Similarly, for each product, the upper 16 bits are stored in
the corresponding positions of the rd register.

A FMULS8SUx16 instruction multiplies the four upper
8-bits of the four 16-bit graphics data in the rs1 register by
the four corresponding 16-bit graphics data in the rs2
register. Likewise. for each product, the upper 16 bits are
stored in the corresponding positions of the rd register. A
FMULSULX16 instruction multiplies the four lower 8-bits
of the four 16-bit graphics data in the rs1 register by the four
corresponding 16-bit graphics data in the rs2 register. For
each product, the sign extended upper 8 bits are stored in the
corresponding positions of the rd register.

A FMULDS8SUx16 instruction multiplies the two upper
8-bits of the two 16-bit graphics data in the rs] register by
the two corresponding 16-bit graphics data in the rs2 reg-
ister. For each product, the 24 bits are appended with 8-bit
of zeroes and stored in the corresponding positions of the rd
register. A FMULD8ULx16 instruction multiplies the two
lower 8-bits of the two 16-bit graphics data in the rsl register
by the two comesponding 16-bit graphics data in the rs2
register. For each product, the 24 bits are sign extended and
stored in the corresponding positions of the rd register.

As described earlier, the graphics data partitioned multi-
plication instructions 208 are executed by the partitioned

multiplier 58 in the second independent execution path 34 of
the GRU 28.

The graphics data expand and merge instructions 210
include a graphics data expansion instruction, and a graphics
data merge instruction, for simultaneously expanding four
8-bit graphics data into four 16-bit graphics data, and
interleavingly merging eight 8-bit graphics data into four
16-bit graphics data respectively. A FEXPAND instruction
takes four 8-bit graphics data in the rs2 register, left shifts
each 8-bit graphics data by 4 bits, and then zero-extend each
left shifted graphics data to 16-bits. The results are corre-
spondingly placed in the rd register. A FPMERGE instruc-
tion interleavingly merges four 8-bit graphics data from the
rs1 register and four 8-bit graphics data from the rs2 register,
into a 64 bit graphics datum in the rd register. As described
earlier, the graphics data expand and merge instructions 210
are executed by the expand/merge portions of the graphics
data expand/merge circuit 60 in the first independent execu-
tion path 32 of the GRU 28.

The graphics data logical operation instructions 214
include thirty-two logical operation instructions for per-
forming logical operations on graphics data. Four logical
operations are provided for zeroes filling or ones filling the
rd register in either single or double precision. Four logical
operation instructions are provided for copying the content
of either the rs1 or rs2 register into the rd register in cither
single or double precision. Four logical operation instruc-
tions are provided for negating the content of either the rsl
or rs2 register and storing the result into the rd register in
either single or double precision. Some logical operations
are provided to perform a number of Boolean operations
against the content of the rs1 and rs2 registers in either single
or double precision, and storing the Boolean results into the
rd register. Some of these Boolean operations are performed
after having either the content of the rsl or the rs2 register
negated first. As described earlier, these graphics data logical
operation instructions 214 are executed by the graphics data
logical operation circuit 62 in the first independent execution
path 32 of the GRU 28.

The graphics data compare instructions 216 include eight
graphics data compare instructions for simultaneously com-
paring four pairs of 16-bit graphics data or two pairs of
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32-bit graphics data. The comparisons between the graphics
data in the rs1 and rs2 registers include greater than, less
than, not equal, and equal. Four or two result bits are stored
in the least significant bits in the rd register. Each result bit
is set if the corresponding comparison is true. Complimen-
tary comparisons between the graphics data, i.e.. less than or
equal to, and greater than or equal to, are performed by
swapping the graphics data in the rsl and rs2 registers. As
described earlier, these graphics data compare instructions
216 are executed by the graphics data compare circuit 62 in
the first independent execution path 32 of the GRU 28.

The graphics data memory reference instructions 222
include a partial (conditional) store. a short load. a short
store, a block load and a block store instruction. The
graphics data load and store instructions are qualified by the
imm_ asi and asi values to determine whether the graphics
data load and store instructions 144 and 146 are to be
performed simultaneously on 8-bit graphics data, 16-bit
graphics data, and whether the operations are directed
towards the primary or secondary address spaces in big or
little endian format. For the store operations. the imm__asi
and asi values further serve to determine whether the graph-
ics data store operations are conditional.

A partial (conditional) store operation stores the appro-
priate number of values from the rd register to the addresses
specified by the rs1 register using the mask specified (in the
rs2 bit location). Mask has the same format as the results

generated by the pixel compare instructions. The most
significant bit of the mask corresponds to the most signifi-

cant part of the rsl register. A short 8-bit load operation may
be performed against arbitrary byte addresses. For a short
16-bit load operation, the least significant bit of the address
must be zero. Short loads are zero extended to fill the entire
floating point destination register. Short stores access either
the low order 8 or 16 bits of the floating point source register.
A block load/store operation transfers data between 8 con-
tiguous 64-bit floating point registers and an aligned 64-byte
block in memory.

As described earlier, these graphics data memory refer-
ence instructions 222 are executed by the LSU 48 of the
CPU 24.

The graphics data alignment instructions 264, the pixel
distance computation instructions 206, the graphics data
pack instructions 212, the edge handling instructions 218,
and the 3-D array accessing instructions 220 will be
described in further detail below in conjunction with the
pixel distance computation circuit 56 and the graphics data
pack circuit 59 in the second independent execution path 34
of the GRU 28.

Referring now to FIGS. 7a-7c¢, the graphics data align-
ment instructions, and the relevant portions of one embodi-
ment of the graphics data alignment circuit are illustrated. As
shown in FIG. 7a, there are two graphics data address
calculation instructions 98q-98b. and one graphics data
alignment instruction 100 for calculating addresses of mis-
aligned graphics data, and aligning misaligned graphics
data.

The ALIGNADDR instruction 984 adds the content of the
rsl and rs2 registers, and stores the result, except the least
significant 3 bits are forced to zeroes, in the rd register. The
least significant 3 bits of the result are stored in the
alignaddr__offset field of GSR 50. The ALIGNADDRL
instruction 98% is the same as the alignaddr instruction 98a,
except twos complement of the least significant 3 bits of the
result is stored in the alignaddr_ offset field of GSR 30.

The FALIGNDATA instruction 100 concatenates two
64-bit floating point values in the rs1 and rs2 registers to
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form a 16-byte value. The floating point value in the rsl
register is used as the upper half of the concatenated value,
whereas the floating point value in the rs2 register is used as
the lower half of the concatenated value. Byies in the
concatenated value are numbered from the most significant
byte to the least significant byte, with the most significant
byte being byte 0. Eight bytes are extracted from the
concatenated value, where the most significant byte of the
extracted value is the byte whose number is specified by the
alignaddr__offset field of GSR 50. The result is stored as a

64 bit floating point value in the rd register.

Thus, as illustrated in FIG. 76, by using the ALIGNAD-
DRESS {_LITTLE;} instruction to generate and store the
alignaddr__offset in the GSR S0 (step a), copying the two
portions of a misaligned graphics data block 994995 from
memory into the rs1 and rs2 registers, aligning and storing
the aligned graphics data block into the rd register using the
FALIGNDATA instruction, and then copying the aligned
graphics data block 101 from the rd register into a new
memory location, a misaligned graphics data block 994-99b
can be aligned in a quick and efficient manner.

As shown in FIG. 7c, in this embodiment, the graphics
data alignment circuit 39 comprises a 64-bit multiplexors
31, coupled to each other and the floating point register file
as shown. The multiplexor 51 aligns misaligned graphics
data as described above.

Referring now to FIGS. 8a-8g, the graphics data packing
instructions, and the relevant portions of the packing portion
of the graphics data pack/expand/merge circuit are illus-
trated. As illustrated in FIGS. 8a—84, there are three graphics
data packing instructions 106a—-106c, for simultaneously
packing four 16-bit graphics data into four 8-bit graphics
data, two 32-bit graphics data into two 8-bit graphics data,
and two 32-bit graphics data into two 16-bit graphics data.

The FPACK16 instruction 106a takes four 16-bit fixed
values in the rs2 register, left shifts them in accordance to the
scale_ factor in GSR 350 and maintaining the clipping
information, then extracts and clips 8-bit values starting at
the comresponding immediate bits left of the implicit binary
positions (between bit 7 and bit 6 of each 16-bit value). If the
extracted value is negative (i.e.. msb is set), zerois delivered
as the clipped value. If the extracted value is greater than
255, 255 is delivered. Otherwise, the extracted value is the
final result. The clipped values are correspondingly placed in
the rd register.

The FPACK32 instruction 1065 takes two 32-bit fixed
values in the rs2 register, lefts shifts them in accordance to
the scale_ factor in GSR 50 and maintaining the clipping
information. then extracts and clips 8-bit values starting at
the immediate bits left of the implicit binary positions (i.e.,
between bit 23 and bit 22 of a 32-bit value). For each
extracted value, dipping is performed in the same manner as
described earlier. Additionally, the FPACK32 instruction
1065 left shifts each 32-bit value in the rs1 register by 8 bits.
Finally, the FPACK32 instruction 106, correspondingly
merges the clipped values from the rs2 register with the
shifted values from the rs2 register, with the clipped values
occupying the least significant byte positions. The resulting
values are correspondingly placed in the rd register.

The FPACKFIX instruction 106¢ takes two 32-bit fixed
values in the rs2 register, left shifts each 32-bit value in
accordance to the scale_ factor in GSR 50 maintaining the
clipping information, then extracts and clips 16-bit values
starting at the immediate bits left of the implicit binary
positions (i.e., between bit 16 and bit 15 of a 32-bit value).
If the extracted value is less than —32768., -32768 is
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delivered as the clipped value. If the extracted value is
greater than 32767, 32767 is delivered. Otherwise. the
extracted value is the final result. The clipped values are
correspondingly placed in the rd register.

As illustrated 1n FIGS. 8¢-8g. in this embodiment, the
graphics data packing circuit 89 comprises circuitry 248,
258 and 268 for executing the FPACK16, FPACK32, and
FPACKFIX instructions respectively.

The circuitry 248 for executing the FPACK16 instruction
comprises four identical portions 2404-2404. one for each
of the four corresponding 16-bit fixed values in the rs2
register. Each portion 240a or 2404 comprises a shifter 42a,
... or 2424, an OR gate 244q, . . . or 2444, and a multiplexor
246a. . . . or 2464, coupled to each other as shown. The
shifter 242a, . . . or 2424 shifts the corresponding 16-bit
fixed value (excluding the sign bit) according to the scale

factor stored in the GSR §0. The sign bit and the logical OR
of bits [29:15] of each of the shift results are used to control

the corresponding multiplexor 2464, . . . or 246d. Either bits
[14:7] of the shift result, the value OxFF or the value 0x00

are output,

The circuitry 288 for executing the FPACK32 instruction
comprises two identical portions 250a—-250b. one for each of
the two corresponding 32-bit fixed values in the rs2 register.
Each portion 250a or 250b also comprises a shifter 2524 or
252d, an OR gate 2544 or 254b, and a multiplexor 256a or
2560, coupled to each other as shown. The shifter 2524 or
2524 shifts the corresponding 32-bit fixed value (excluding
the sign bit) according to the scale factor stored in the GSR
50. The sign bit and the logical OR of bits [45:31] of each
of the shift results are used to control the corresponding
multiplexor 256a or 256b. Either bits [30:23] of the shift
result, the value OxXFF or the value 0x00 are output. The
output is further combined with either bits [55:32] or bits
[23:0] of the rsl register.

The circuitry 268 for executing the FPACKFIX instruc-
tion also comprises two identical portions 260a-26056. one
for each of the two corresponding 32-bit fixed values in the
rs2 register. Each portion 260a or 2606 also comprises a
shifter 262a or 2624, a NAND gate 263a or 2636, a NOR
gate 264a or 264b., two AND gates 265a-265bH or
265¢-2635d, and a multiplexor 2664 or 2665, coupled to each
other as shown. The shifter 262a or 262d shifts the corre-
sponding 32-bit fixed value (excluding the sign bit) accord-
ing to the scale factor stored in the GSR 50. The logical
AND of the sign bit and the logical NAND of bits [45:32]
of each of the shift results, and the logical AND of the
inverted sign bit and the logical NOR of bits [45:32] of each
of the shift results, are used to control the corresponding
multiplexor 266a or 266b. Either bits [31:16] of the shift
result, the value OXEFFF or the value 0x8000 are output.

Referring now to FIGS. 9a-9b, the pixel distance com-
putation instructions, and the pixel distance computation
circuit are illustrated. As shown in FIG. 9a, there is one
graphics data distance computation instruction 138 for
simultaneously accumulating the absolute differences
between graphics data, eight pairs at a time. The PDIST
instruction 138 subtracts eight 8-bit graphics data in the rsl
register from eight corresponding 8-bit graphics data in the
rs2 register. The sum of the absolute values of the differences
is added to the content of the rd register. The PDIST
instruction is typically used for motion estimation in video
compression algorithms.

As shown in FIG. 95, in this embodiment, the pixel
distance computation circuit S6 comprises eight pairs of 8
bit subtractors 87a-57h. Additionally, the pixel distance
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computation circuit 56 further comprises three 4:2 carry
save adders 61a—61c, a 3:2 carry save adder 62, two registers
63a—63b. and a 11-bit carry propagate adder 65, coupled to
each other as shown. The eight pairs of & bit subtractors
57a-57h. the three 4:2 carry save adders 6la—61c, the 3:2
carry save adder 62, the two registers 63a-63b. and the
11-bit carry propagate adder 65, cooperate to compute the
absolute differences between eight pairs of 8-bit values. and
aggregate the absolute differences into a 64-bit sum.

Referring now to FIG. 10a-10b, the graphics data edge
handling instructions are illustrated. As illustrated. there are
six graphics edge handling instructions 140e-140f, for
simultaneously generating eight 8-bit edge masks. four
16-bit edge masks, and two 32-bit edge masks in big or little
endian format.

The masks are generated in accordance to the graphics
data addresses in the rs1 and rs2 registers, where the
addresses of the next series of pixels to render and the
addresses of the last pixels of the scan line are stored
respectively. The generated masks are stored in the least
significant bits of the rd register.

Each mask is computed from the left and right edge masks
as follows:

a) The left edge mask is computed from the 3 least
significant bits (LSBs) of the rs1 register, and the right
edge mask is computed from the 3 (LSBs) of the rs2
register in accordance to FIG. 10b.

b) If 32-bit address masking is disabled, i.c. 64-bit
addressing. and the upper 61 bits of the rs1 register are
equal to the corresponding bits of the rs2 register, then
rd is set equal to the right edge mask ANDed with the
left edge mask.

c¢) if 32-bit address masking is enabled, i.e. 32-bit
addressing. and the upper 29 bits ([26:2]) the rsl
register are equal to the corresponding bits of the rs2

register, then the rd register is set to the right edge mask
ANDed with the left edge mask.

d) Otherwise, rd is set to the left edge mask.
Additionally, a number of conditions codes are modified
as follows:

a) a 32-bit overflow condition code is set if bit 31 (the
sign) of rs1 and rs2 registers differ and bit 31 (the sign)
of the difference differs from bit 31 (the sign) of rs1; a
64-bit overflow condition code is set if bit 63 (the sign)
of rs1 and rs2 registers differ and bit 63 (the sign) of the
difference differs from bit 63 (the sign) of rsl.

b) a 32-bit negative condition code is set if bit 31 (the
sign) of the difference is set; a 64-bit negative condition
code is set if bit 63 (the sign) of the difference is set.

¢) a 32-bit zero condition code is set if the 32-bit differ-
ence is zero, a 64-bit zero condition code is set if the
64-bit difference is zero.

As described earlier, the graphics edge handling instruc-
tions 140a—-140f are executed by the IEU 30. No additional
hardware is required by IEU 30.

Referring now to FIGS. 11a-11b, the 3-D array address-
ing instructions and circuitry are illustrated. As illustrated in
FIG. 1la, there are three 3-D array addressing instructions
142a-142¢ for converting 8-bit. 16-bit. and 32-bit 3-D
addresses to blocked byte addresses.

Each of these instructions 142a-142¢ converts 3-D fixed
point addresses in the rs1 register to a blocked byte address.
and store the resulting blocked byte address in the rd
register. These instructions 142a—142c¢ are typically used for
address interpolation for planar reformatting operations.
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Blocking is performed at the 64-byte level to maximize
external cache block reuse, and at the 64 k-byte level to

maximize the data cache’s translation lookaside buffer
(TLB) entry reuse, regardless of the orientation of the
address interpolation. The element size, i.e.. 8-bits, 16-bits,
or 32-bit, is implied by the instruction. The value of the rs2
register specifies the power of two sizes of the X and Y
dimension of a 3D image array. In the embodiment
illustrated. the legal values are from zero to five. A value of
zero specifies 64 elements, a value of one specifies 128
elements. and so on up to 2048 elements for the external
cache block size specified through the value of five. The
integer parts of X, Y, and Z (rs1) are converted to either the
8-bit, the 16-bit, or the 32-bit format. The bits above Z upper
are set to zero. The number of zeros in the least significant
bits is determined by the element size. An element size of
eight bits has no zero, an element size of 16-bits has one
zero. and an element size of 32-bits has two zeroes. Bits in
X and Y above the size specified by the rs2 register is
ignored.

As described earlier, the 3-D array addressing instructions
142a-140¢ are also executed by the IEU 30. FIG. 115
illustrates one embodiment of the additional circuitry pro-
vided to the IEU 30. The additional circuitry 300 comprises
two shift registers 308 and 310, and a number of multiplex-
ors 304a-304b and 306, coupled to each other as shown. The
appropriate bits from the lower and middle integer portions
of X. Y, and Z (i.e. bits <12:11>, <34:33>, <55>, <16:13>,
<38:35>, and <59:56>) are first stored into shift register A
308. Similarly, the appropriate bits of the upper integer
portion of Z (i.e. <63:60>) are stored into shift register B
310. Then. selected bits of the upper integer portions of Y
and X are shifted into shift register B 310 in order, depend-
ing on the value of rs2. Finally. zero, one. or two zero bits
are shifted into shift register A 308, with the shift out bits
shifted into shift register B 310, depending on the array
element size (i.e. 8, 16, or 32 bits).

While the present invention has been described in terms
of presently preferred and alternate embodiments, those
skilled in the art will recognize that the invention is not
limited to the embodiments described. The method and
apparatus of the present invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description is thus to be regarded as
illustrative of, and not limiting the scope of the present
invention.

What is claimed is:

1. An apparatus, comprising:

a register file including a first and a second register for
storing a first and a second plurality of graphics data.
and a third register for storing a pixel distance value;
and

pixel distance computation circuitry coupled to the reg-
ister file. including a plurality of subtractor assemblies
coupled in parallel to an hierarchy of carry save adders,
for executing a pixel distance computation instruction,
said pixel distance computation instruction simulta-
neously computing absolute differences of the first and
second plurality of graphic data using the subtractor
assemblies, and accumulating their absolute differences
into the third register to form the pixel distance value
using the carry save adders.

2. The apparatus as set forth in claim 1, wherein said pixel
distance computation circuitry is disposed in a graphics
execution unit (GRU).

3. The apparatus as set forth in claim 2, wherein said
apparatus further comprises:
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a floating pointer register file (FPRF) coupled to said
GRU for storing floating point and graphics data; and

a floating point execution unit (FPU) coupled to said
FPRF for executing a plurality of non-graphics floating
point instructions.

4. An apparatus, comprising:

a register file including a first and a second register for
storing a first and a second plurality of graphics data
addresses respectively, and a third register for storing a
plurality of edge masks; and

an integer execution unit (IEU) coupled to the register file
for executing a graphics data edge handling instruction
the graphics data edge handling instruction simulta-
neously generating and storing the edge masks in the
third register, using the contents of the first and second
registers, each mask being generated by conditionally
performing a logical AND operation against a first and
a second intermediate edge mask, depending on how a
first and a second plurality of corresponding higher
order bits of the first and second registers compare to
each other, the first and second intermediate edge
masks being generated in accordance to a first and a
second plurality of corresponding lower order bits of
the first and second registers.

5. The apparatus as set forth in claim 4, wherein, said IEU
further executes a plurality of graphics data three-
dimensional (3-D) array addressing instructions, each of
said graphics data 3-D array addressing instructions converts
multiple 3-D graphics data array fixed point addresses to a
blocked byte address.

6. The apparatus as set forth in claimm 4, wherein said
apparatus further comprises:

a 1nteger register file (IRF) coupled to said IEU for storing
integer and graphics data addresses.
7. An apparatus, comprising:

a register file including a first register for storing an
encoded value, a second register for storing a plurality
of 3-D fixed point addresses, and a third register for
storing a blocked byte address; and

an integer execution unit (IEU) coupled to the register file
for executing a graphics data three-dimensional (3-D)
array addressing instruction the graphics data 3-D array
addressing instruction generating and storing the
blocked byte address in the third register using the
encoded value and the 3-D fixed point addresses in the
first and second registers, the blocked byte address
being generated by concatenating a first and a second
intermediate value, which are generated from various
predetermined portions of the 3-D fixed point
addresses.

8. An apparatus, comprising:

a floating pointer register file (FPRF) for storing floating
point and graphics data;

a integer register file (IRF) for storing integer and graph-
ics data addresses;

a floating point execution unit (FPU) coupled to said
FPREF for executing a plurality of non-graphics floating
point instructions;

an integer execution unit (IEU) coupled to said IRF for
executing a plurality of non-graphics integer
instructions, a plurality of graphics data edge handling
instructions, and a plurality of graphics data three-
dimensional (3-D) array addressing instructions, each
of said graphics data edge handling instructions simul-
taneously generating multiple edge masks for multiple
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pairs of graphics data addresses, and each of said
graphics data 3-D array addressing instructions con-
verts multiple 3-D graphics data array fixed point
addresses to a blocked byte address; and

a graphics execution unit (GRU) coupled to said FPRF for

executing a plurality of graphics data conversion
instructions, a plurality of graphics data misaligned
address calculation instructions. a plurality of graphics
data alignment instructions, and a pixel distance com-
putation instruction, each of said graphics data conver-
sion instructions simultaneously packing multiple
graphics data from a first partitioned graphics data
format to a second partitioned graphics data format.
scaling shifting and clipping operations in accordance
to a scaling factor, each of said graphics data mis-
aligned address calculation instructions calculating an
address of a block of misaligned graphics data and an
address alignment offset, each of said graphics data
alignment instructions aligning a block of misaligned
graphics data in accordance to an address aligmnent
offset. and said pixel distance computation instruction
simultaneously computing absolute differences of mul-
tiple pairs of graphic data and accumulating their
absolute differences.

9. A method of executing graphics instructions by a
central processing unit (CPU). comprising the step of:

executing a graphics data edge handling instruction by

simultaneously generate multiple edge masks for mul-
tiple pairs of graphics data addresses, using a register
file and an integer execution unit (IEU) coupled to each
other, and disposed on said CPU, the register file
including a first and a second register for storing the
graphics data addresses, and a third register for storing
the edge masks, each mask being generated by condi-
tionally performing a logical AND operation against a
first and a second intermediate edge mask, depending
on how a first and a second plurality of comresponding
higher order bits of the first and second registers
compare to each other, the first and second intermediate
edge masks being generated in accordance to a first and
a second plurality of corresponding lower order bits of
the first and second registers.

10. The method as set forth in claim 9, wherein, said
method further comprises the step of executing a plurality of
graphics data three-dimensional (3-D) array addressing
instructions to convert multiple 3-D graphics data array
fixed point addresses to a blocked byte address using said
IEU.

11. A method of executing graphics instructions by a
central processing unit (CPU), comprising the step of
executing a graphics data three-dimensional (3-D) array
addressing instruction to convert multiple 3-D graphics data
array fixed point addresses to a blocked byte address using
a register file and an integer execution unit (IEU) coupled to
e¢ach other and disposed on said CPU, the register file
including a first register for storing an encoded value, a
second register for storing the fixed point addresses. and a
third register for storing the blocked byte address. the
blocked byte address being generated by concatenating a
first and a second intermediate value, which are generated
from various predetermined portions of the fixed point
addresses.

12. A method of executing graphics instructions by a
central processing unit (CPU), comprising the steps of:

storing a scaling factor for graphics data in a graphics

status register (GSR) disposed in said CPU;
executing a plurality of graphics data packing instructions
to pack multiple graphics data from a first partitioned
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graphics data format to a second partitioned graphics
data format, scaling shifting and clipping operations in
accordance to said stored scaling factor using dedicated
graphics data conversion circuitry disposed in said
CPU;

executing a plurality of graphics data misaligned address
calculation instructions to calculate an address of a
block of misaligned graphics data and an address
alignment offset using dedicated graphics data align-
ment circuitry disposed in said CPU, said address
alignment offset being stored into said GSR;

executing a plurality of graphics data alignment instruc-
tions to align a block of misaligned graphics data in
accordance to said stored address alignment offset
using said dedicated graphics data alignment circuitry;

executing a pixel distance computation instruction to
simultaneously compute absolute differences of mul-
tiple pairs of graphics data and accumulate their abso-
lute differences using dedicated pixel distance compu-
tation circuitry disposed in said CPU;

executing a plurality of graphics data edge handling
instructions to simultaneously generate multiple edge
masks for multiple pairs of graphics data addresses
using an integer execution unit (IEU) disposed on said
CPU; and

executing a plurality of graphics data three-dimensional
(3-D) array addressing instructions to convert multiple
3-D graphics data array fixed point addresses to a
blocked byte address using said IEU.

13. A method of providing native graphics capabilities o

a central processing unit (CPU), comprising the steps of:

providing a graphics status register (GSR) in said CPU for
storing a scaling factor for graphics data;

providing dedicated graphics data conversion circuitry in
said CPU for executing a plurality of graphics data
packing instructions to pack multiple graphics data
from a first partitioned graphics data format to a second
partitioned graphics data format, scaling shifting and
clipping operations in accordance to said stored scaling
factor;

providing dedicated graphics data alignment circuitry in
said CPU for executing a plurality of graphics data
misaligned address calculation instructions to calculate
an address of a block of misaligned graphics data and
an address alignment offset. said address alignment
offset being stored into said GSR;

providing circuitry to said dedicated graphics data align-
ment circuitry for executing a plurality of graphics data
alignment instructions to align a block of misaligned
graphics data in accordance to said stored address
alignment offset;

providing dedicated pixel distance computation circuitry
disposed in said CPU for executing a pixel distance
computation instruction to simultancously compute
absolute differences of multiple pairs of graphics data
and accumulate their absolute differences;

providing circuitry to an integer execution unit (IEU) in
said CPU for executing a plurality of graphics data
edge handling instructions to simultancously gencrate
multiple edge masks for multiple pairs of graphics data
addresses; and
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providing circuitry to said IEU for executing a plurality of
graphics data three-dimensional (3-D) array addressing
instructions to convert multiple 3-D graphics data array
fixed point addresses to a blocked byte address.

14. In a computer system comprising a memory unit for
storing nongraphics and graphics instructions and data, and
a central processing unit (CPU) coupled to said memory unit
having a floating point register file (FPRF) for storing
floating point and graphics data, a floating point execution
unit (FPU) for executing floating point operations of said
non-graphics instructions, and a load and store unit (LSU)
for loading and storing graphics data to and from said FPRF
and said memory unit, an apparatus for aligning a block of
misaligned graphics data, said apparatus comprising:

a) graphics status register (GSR) means integrated with
said CPU for storing an address alignment offset for
graphics data, said graphics data being organized and
stored in said FPRF and said memory unit in a plurality
of partitioned formats; and

(b) graphics data alignment means integrated with said
CPU and coupled to said FPRF, and said GSR means
for executing a plurality of graphics data misaligned
address calculation instructions, and a plurality of
eraphics data alignment instructions of said graphics
instructions,

each of said graphics data misaligned address calculation
instructions calculating an address of a block of mis-
aligned graphics data and an address alignment offset.

said block of misaligned graphics data being loaded
into said FPRF from said memory unit using said LSU,

each of said graphics data alignment instructions aligning
a block of misaligned graphics data stored in said FPRF
in accordance to said stored address alignment offset,
said aligned block of graphics data being stored back
into said memory unit from said FPRF using said LSU.
15. In a computer system comprising a memory unit for
storing non-graphics and graphics instructions and data. and
a central processing unit (CPU) coupled to said memory umit
having a floating point register file (FPRF) for storing
floating point and graphics data, a floating point execution
unit (FPU) for executing floating point operations of said
non-graphics instructions, and a load and store unit (LSU)
for loading and storing graphics data to and from said FPRF
and said memory unit. a method for aligning a block of
misaligned graphics data. said method comprising the steps
of:
a) loading a block of misaligned graphics data into said
FPRF from said memory unit using said LSU;

b) calculating alignment address and alignment address
offset of said block of misaligned graphics data. and
storing said calculated alignment address offset into a
graphics status register (GSR) independent of said
FPRF, using graphics data alignment means integrated
with said CPU but independent of said FPU;

c) aligning said block of misaligned graphics data in
accordance to said calculated alignment address and
said stored alignment address offset using said graphics
data alignment means independent of said FPU;

d) storing said aligned block of graphics data back into
said memory unit from said FPRF using said LSU.
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