U O A A

United States Patent s

Hagersten et al.

[54] HYBRID NUMA COMA CACHING SYSTEM
AND METHODS FOR SELECTING
BETWEEN THE CACHING MODES

[75] Inventors: Erik Hagersten, Palo Alto, Calif.;
Robert C. Zak, Jr., Lexington, Mass.

[73] Assignee: Sun Microsystems, Inc., Mountain

View, Calif.

[21] Appl. No.: 577,283

[22] Filed: Dec. 22, 1995

[51] It CLE oo esammeceeeenmsnesesnsssessasenss GOGF 13/14
[52] U.S. Cl .ot J95/4775; 395/474, 395/448;
- 395/457
[58] Field of Searchccecreeemmseemeanes 395/446, 447,
395/448, 457, 474, 475

[56] References Cited

PUBLICATIONS

Kal Li, et al., Memory Coherence In Shared Virtual Memory
Systems, Department of Computer Science, Yale University,
pp- 229-239.

Ashley Saulsbury, et al., An Argument for Slmple Coma,
Swedish Institute of Computcr Science.

D. Lenosky, PhD, The Design and Analysis at Dash: A
Scalable Directory-Based Multiprocessor, PhD Thesis, Dec.
1991, pp. 36-56.

Erik Hagersten, et al., Simple Coma Node hnplementahons
Sun Microsystems Computer Corp.

Frik Hagersten, et al., Simple Coma, Swedish Institute of
Computer Science, Jul 1993, pp. 233-259.

Joe, T. et al., “Evaluating the Memory Overhead Required.

for Coma Architectures,“ Proceedings of the Annual Inter-
national Symposium on Computer Architecture, Chicago,
Apr. 18-21, 1994, No. SYMP. 21, Apr. 18, 1994, Institute of
Electrical and Electronics Engineers, pp. 82-93.
Stenstrom, P. et al., “Comparative Performance Evaluation
of Cache—Coherent NUMA and COMA Architectures,”
Computer Architecture News, vol. 20, No. 2, May 1, 1992,
pp. 80-91.

US005710907A
(111 Patent Number:
1451 Date of Patent:

5,710,907
Jan. 20, 1998

LaRowe, Jr., R.P. et al., “The Robustness of NUMA Memory
Management,” Proceedings of the Symposium on Operating
Systems Principles, Pacific Grove, Oct. 13-16, 1991, No.
SYMP. 13, Oct. 13, 1991, Association for Computing
Machinery, pp. 137-151.

Reinhardt, S.K. et al., “Tempest and Typhoon: User—Level
Shared Memory,” Computer Architecture News, vol. 22, No.
2, Apr. 1, 1994, pp. 325-336.

Krishnamoorthy et al., A Scalable Distributed Shared
Memory Architecture; Journal of Parallel and Distributed
Computing, vol. 22 No. 3, pp. 547-554, Sep. 1994.

Primary Examiner—David L. Robertson

Attorney, Agent, or an—Conley, Rose & Tayon PC; B.
Noel Kivlin

[57] ABSTRACT

The present invention provides a hybrid Non-Uniform
Memory Architecture (NUMA) and Cache-Only Memory
Architecture (COMA) caching architecture together with a
cache-coherent protocol for a computer system having a
plurality of sub-systems coupled to each other via a system
interconnect. In one implementation, each sub-system
includes at least one processor, a page-oriented COMA
cache and a line-oriented hybrid NUMA/COMA cache.
Such a hybrid system provides flexibility and efficiency in
caching both large and small, and/or sparse and packed data
structures. Each sub-system is able to independently store
data in COMA mode or in NUMA mode. When caching in
COMA mode, a sub-system allocates a page of memory
space and then stores the data within the allocated page in its
COMA cache. Depending on the implementation, while
caching in COMA mode, the sub-system may also store the
same data in its hybrid cache for faster access. Conversely,
when caching in NUMA mode, the sub-system stores the
data, typically a line of data, in its hybrid cache.

21 Claims, 17 Drawing Sheets

390
-
\ GLOBAL INTERCONNECT ‘
| D l 320 380
_________________ “{:*'3'1‘“'*-‘11-_&?—"‘_—""" *“"*"f:-""'l |—"-—""'_-""""'"'""" '——'1':'"——""'1

387

! 1] | | |
' { AEJDHESSTFIAN:SLATGH 1 anmﬁssmausmon i : | _ADDRESS TRANSLATOR | !
1 11
! 314 r,':115 316 | 325 3261 : ~384 986 386
}
| cnm CACHE] | GLOBAL | - 1 COMACACHE| GLOEIAL | 1|COMA CACHE]] GLOBAL :
: MEMOR‘!’] IINTEHFACE 1] MEMORY ||INTERFACE ! | MEMORY |INTERFACE Dif :
|] |
: 313 :: j t 732 | | 11' f" 383)
N LDCAL mTEﬂcmNEcT) 149 LOCALINTERCONNECT _) | 1§ LOCALINTERCONNE :
I .
313 11 3233 323p 323 1 v 4383 {38 i1
S T T T e i :
1 i |
HYBRID HYBRID HYBRID s @ »] ,
H ond LEVEL | | 2nd LEVEL Jee | 20dLEVEL |] HTEH’U H‘fﬂﬂ'“ “ne ! | !
H [CACHE {L28){ [CACHE (L.28) CACHE (L28) | 1} i i |
] 312a 3120 312i t1 322a K | :
: £ < H i | l
' wemony | | memoRy MEMORY | ! , , :
I MGEMT MGMT 1eessel MGMY 1l MMU [» & ») I :
|| UNIT (MMU) | | UNIT (MU} | | UNIT (MMU) :: } i '
i il
| am 31b 31t 32ta | 32ib 321 | ! |
: / L { { / : : i
:‘PHDEESSU'HI 'FHWESSGH'I-1|FHDCESSDH| :: FROG l PROC l » » #| PROC j :
1 i !L _________________

-———--—--—li—h—-—--.—pﬂ.—“—--—n—“l-l-—'n—_

5,710,907

Jan. 20, 1998

U.S. Patent

Sheet 1 of 17

O0Hd |4 o o | O0Hd] | OOHd

qigi Eigl

181

181 Qési 4]

!
]
]
|
i
_
|
|
|
\
}
]
|
|
|
$21 |® @ o] $27 $2] “
| |
|
I
i
|
|
i
|
!
|
|
j
|
}
]

L8} qesl eLgl

103INNODHILNI W00

681

3OV4HILNI | | AHOW3N

<_. M.V_H_ \\co—
([— ' m.- - .
| 1 00Hd |4 o o | O0Hd | | O0Hd : HOSSIO0Hd|® ® # |40SSIV0Hd | |HOSSFIOUd
| | _ _
i |
12k mzt] wmarl roun Qi A
!
| H T (NN LINN | | (NIW) LIND
Ul o (o @ o nw | | naw (11] LWON |eee]l LWOW LNDW
. '1 | AdOnaw AHOWAW | | AHOW3W
| -
| |
| 122 aczt| ea] 4 il 0zl ezl
| §
| . 1§ }($27) IHOVO ($271) IHOVO | [($27) IHOVD
1] $21 |o e o] $27 $e1 (V1] 1E3Am1 feee] WA 13A37
: ' | anooss aNoo3s || anodas
| | | _
| 1621 qee) gzl 11 el ag egll
{
' (103INNOOHILNI WO ¥ L1O3NNOOHIINI VD01
| 621” ! 611
!
! I
| 0VAHILNI | | AHOWAN | | | 30V443LNI
| Wva019 NIV |)1 WE019
921/ el el 1 e
_ | | |
e o e e o = e e o G e e e = - el b e e o g s o —— — - - o —— V— - aaa —
0z _ 0Ll

1D3INNOOHIALNI TVEO 10

— iy A — e e

U.S. Patent Jan. 20, 1998 Sheet 2 of 17 5,710,907
nA
O ©

(n-1)A
TOTAL

PHYSICAL 24
ADDRESS
SPACE

A

SUB-SYSTEM SUB-SYSTEM SUB-SYSTEM
110 120 180

FIG. 1B

U.S. Patent Jan. 20, 1998 Sheet 3 of 17 5,710,907

1110

1120

opy of data lin&
in Local Second
Level cache

Yes
_ 1125

Local L2$ provides data line
to Requesting Processor

"No

2% presents GA to Global interconnect of Requesting @
Sub-System '

1130

Is GA 1140

within address
space of Requesting
Sub-system?

No

1145

-

Requesting Sub-system forwards
GA to Home Sub-system

FIG. 1C

U.S. Patent Jan. 20, 1998 Sheet 4 of 17 - 5,710,907

GEa

Home Sub-system updates Home Directory to reflect the

response to the Read Request, i.e., the new status of the 1148
Reguesting Sub-system
| 1150
Does '
rome Sub-system No
have a valid cop 1155
of data?
Home Sub-system provides
Yes | GA to Owner Sub-system

- 1164

_ Home Sub-system provides Owner Sub-system provides
1162 data to Requesting Sub-system data to Requesting
Sub-system

Requesting Global Interface forwards data line to Requesting 1180
Processor
Data line stored in Local L2$ for subsequent use 1190

Y

FIG. 1D

5.710,907

Sheet 5 of 17

Jan. 20, 1998

U.S. Patent

06¢

aLie -1
AN LINN | T (NN LINN
LWOW LWON
AHOW3N
aiz | egie

$21) IHIVO

13A3]
(NOO3S

($27) IHOVD
ELER
ONOD3S

gl Qtlc

JOV4AHIINI [| AHOWINW
a0 1o FHOVI

JOV4H3INI

vdo1®

91¢ Gl bic
J12 HOLYISNVYH1 SS3HAaY
0l¢

L1DINNCIHIINI WEOTD

U.S. Patent Jan. 20, 1998 Sheet 6 of 17 5,710,907

nA
e © »
(n-1)A
cloaL A
ADDRESS
RANGE
(GA)
A
0 _
SUB-SYSTEM SUB-SYSTEM SUB-SYSTEM
210 220 280
nA
3 A
LOCAL
PHYSICAL . o o
ADDRESS
RANGE (LPA)
' 0
SUB-SYSTEM SUB-SYSTEM - SUB-SYSTEM
210 220 ' 280

FIG. 2C

U.S. Patent Jan. 20, 1998 Sheet 7 of 17 5,710,907

Requesting Processor presents Virtual Address (VA)} of data
ine to Local Memory Management Unit (MMU). Local MMU
converts VA to Locat Physical Address {(LFA)

9110

2120

Vaiid
copy of data
line in Local Second
| evel cache

Yes

2125

Local L.2$ provides data ling
to Requesting Processor

| 78 presents LPA to Global interface gf Reque ting Sub-System 2130

Reguesting Global Interface accesses Directory 10 determine if
data line exist in Local Cache Memo 2132

2134

Valid
copy of data line
in Local Cache
Memory’

No

Yes
2136

Local Cache Memory
provides data line 1o

Reguesting Address Translator converts LPA from Requesting Requesting Processor

Global Interface to Global Address (GA) and then forwards datapF™ 2142

{11] L) UL I B i =11

Home Address Transiator converts GA into a LPA

2144

FIG. 2D

"U.S. Patent Jan. 20, 1998 Sheet 8 of 17 5,710,907

Home Sub-system updates Home Directory to reflect the
response to the Read Request, i.e., the new status of the 2148

Home Cache
Memory have a

valid copy of

NO

Home Sub-system provides

GA to Owner Sub-system
Yes

Home Sub-system provides data to 2162 Owner Address Translator
Requesting Sub-system ~ converts GA to LPA

| Owner Sub-system
provides data to
Requesting Sub-svstem

Requesting Global Interface forwards data line to Reguesting 2180
Proce Or

Data line stored in Local L2$ for subsequent use 2180

FIG. 2E

Sheet 9 of 17

Jan. 20, 1998

U.S. Patent

5,710,907

1116 aLig Bl g
(N LINN (NWN) LINN

INOW |eee LWOW

AHOW3IW AHOW3NW

21€ qzi€ BZIE

($271) IHOVD ($271) IHOVD| 1{$21) IHOVD
13ATIpuz |e e o] T3ATTPUZ | | T3ATTPUE
aiaAH | QIHAAH
IE1E qgle egig
[DINNOJHILINI W20 LH3NNODHILINI IO

!
|
|
|
|
!
]
j
|
]
i
_
!
!
|
{
QIHEAH |,
|
|
i
|
i
|
|
i
|
|
|
_
i
|
onad

oze” § } 616 !
JOV4HILNI J9v4H3INI] | AHOW3N
m_wum%wz_ i wgo1o |13HovD YOO wao1e | 1aHovo vwoo
9ze’ S8 pge 91€ GIE biE
HOLVISNYH1 SS3Haay HOLVISNVHL SS3Haav
- /88 128
— o ma — e e e e e he s EEm e e s o - L s —- e e e e e e omn B e — —
ose— 02E
~ 19INNOJHILNI V8019
06E -

U.S. Patent Jan. 20, 1998 Sheet 10 of 17 5,710,907

nA A e e ———
r R
| GLOBAL |
| COMA/NUMA |
| ADDR |
1A _ : SPACE |
N+ :________[
® @ ©
- GLOBAL
ADDRESS
roTAL RANGE
pHysicaL (GA) an
ADDRESS _ ettt 3
RANGE | GLOBAL |
(PA) t COMA/NUMA :
l I ADDR
: SPACE
2A - -.i S —J
! GLOBAL |
|COMNNUMA:
| ADDR
: SPACE i
; A
LOCAL
PHYSICAL
ADDRESS e
RANGE (LPA)
0
SUB-SYSTEM SUB-SYSTEM SUB-SYSTEM

310 320 _ 380

FIG. 3B

U.S. Patent

Jan. 20,1998 Sheet 11 of 17 5,710,907

Requesting Processor presents Virtual Address (VA) of data
line to Local Memory Management Unit (MMU). Local MMU
converts VA to Physical Address (PA)

3110

Yes
3125

Local [.2$ provides data line
to Requesting Processor

|.2% presents PA to Global interface
of Requesting Sub-System 3130

Non-Uniform
Memory Architecture 3300
(NUMA)

Cache-Only 73200
Memory Architecture
(COMA} mode access of
data line

Maode access of data line

@ 3CD FiG. 3C

Jan. 20, 1998 Sheet 12 of 17 5,710,907

U.S. Patent

Home Sub-system updates Home Directory to refiect the

response to the Read Request, i.e., the new status of the 3148
Requesting Sub-System
3150
Home Cache NO

Memory have a
valid copy of

Home Sub-system provides
GA to Owner Sub-system
Yes

Home Sub-system provides data o 3162 Owner Address Translator
Requesting Sub-system converts GA to LPA

Owner Sub-system
provides data to
Requesting Sub-system

Requesting Global Interface forwards data line to Requesting 3180

Data line stored in Local L2$ for subseguent use 3190

FIG. 3D

U.S. Patent Jan. 20, 1998 Sheet 13 of 17 5,710,907

3200

Requesting Global Interface accesses Local Directory 10
determine if data line exist in Local COMA Cache Memory,
i.e., in the COMA Cache Memory of Requesting Sub-system

3232

3234
Yes

copy of qata
line in Local COMA

Cache Memo

3236

Local COMA Cache
Memory provides data line
to Requesting Processor

3242

No

Requesting Address Translator converts LPA from Requesting
Global Interface to Globai Address (GA) and then forwards datz

-~ Bthls aRBuibiidi- 4™ tl=183

Home Address Translator converts GA to LPA

3244

FIG. 3E

U.S. Patent 5,710,907

Jan. 20, 1998 Sheet 14 of 17

3300
START
— — Y —
| Requesting Global Interface forwards data request with GA
3340
B to Home Sub-system

_
o)

FIG. 3F

U.S. Patent Jan. 20, 1998 Sheet 15 of 17 5,710,907

4100

Requesting Sub-system sends a Read-to-Share (R13) or a 4110
Read -to-Own (RTO) to Home Sub-system

4120

Correspondn

entry in Home Yes
Uirectory
No
4140
Yes

entry in Home
Directory marked
Shared ("S")
and read reguest is

4120

Home Sub-system generates an
Avoidable NUMA_miss message
to Reguesting Sub-systern which
increments a NUMA_miss counter

a
RTS?

No

Home Sub-system marks corresponding entry in Home
Directory “S” {if TS} or "0 {if RTO) respectively

4160

Home Sub-system initiates transfer of data to Requesting 4170

ub-svystem

Requesting Sub-system caches the data
FIG. 4A

4180

Jan. 20, 1998 Sheet 16 of 17 5,710,907

U.S. Patent

4200

Requesting Sub-system sends a Write-Back (“WB”) to Home L~ 454
Sub-system

4240
(

Home Sub-system marks
Corresponding entry in
Home Directory
Last_to_Own (“L°)

Home Sub-system stores data in Home Cache Memory 4230

U.S. Patent Sheet 17 of 17

Jan. 20, 1998

Requesting Sub-System (operating in COMA mode) requests
gata 5110

| 2120 |
Yes
Data
in 2L.87
No

S130

Data
in COMA Cache
Memory of Re-

questing
ub-system

No
increment COMA_miss counter 5140
Reguesting Sub-System {orwards data
request 1o Home Sub-system.
Requesting Sub-System stores retuming)
data in its COMA Cache Memory 5164

3162

S170

5,710,907

2150

Increment COMA_hit
Counter

Ratio
of COMA mis Yes
versus COMA_hit
exceed 5180
threshold?
Requesting Sub-System
switches from COMA mode
to NUMA maode
No
Cache data in 2L% of
Requesting Sub-System
FiIG.5

5,710,907

1

HYBRID NUMA COMA CACHING SYSTEM
AND METHODS FOR SELECTING
BETWEEN THE CACHING MODES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of caches. More
particularly, the invention relates to hybrid caching archi-

tectures and protocols for multi-processor computer Sys-
tems.

2. Description of the Related Art

Multi-processor multi-cache computer systems with
cache-coherent memories can be based on several cache
architectures such as Non-Uniform Memory Architecture
(NUMA) and Cache-Only Memory Architecture (COMA).
In both examples, cache-coherence protocols are also
needed if coherency is to be maintained between the respec-
tive caches.

FIGS. 1A,1B, and 1C~1D are a block diagram, an address
map and two flowcharts, respectively, illustrating a cache-
coherent NUMA (CC-NUMA) computer system 100. As

10

15

20

shown in FIG. 1A, CC-NUMA system 100 includes a

plurality of sub-systems 110, 120, . . . 180 coupled to each
other by a global interconnect 199. Each sub-system
includes at least one processor, a corresponding memory
management unit (MMU), a corresponding second level
cache (L2$), a main memory, a global interface, a directory
and a local interconnect. For example, sub-system 110
includes processors 111a, 1115, . . . 111;, MMUs 1124, 1122,
... 112i 12%s 113a, 1135, . . . 113, main memory 114,
global interface 115, directory 116 and local interconnect
119. Note that since sub-systems 110, 120, . . . 180 arc
similar in structure, the following description of sub-system
110 is also applicable to sub-systems 120, . . . 180.

Processors 111a, 1115, . . . 111i are coupled to MMUs
112a, 1126, . . . 112i, respectively. In turn, MMUs 1124,
1125, . . . 112i are coupled to 1.2%s 113a, 1135, . . . 113,
respectively. L2$s 113a, 1135, . . . 113i, main memory 114
and global interface 115 are coupled to each other via local

interconnect 119. Directory 116 is coupled to global inter-
face 115.

Referring now to the memory map of FIG. IB, the total
physical address space of CC-NUMA computer system 100
is distributed among main memories 114, 124, . . . 184. Thus,

partitioning of the (global) addressable space (GA) is static -

and is determined before system configuration time, i.ec.,
before the execution of application software. Accordingly,
the first time a sub-system 110 needs to read or write fo an
address location outside its pre-assigned address space, the
data has to be fetched from one of sub-systems 120, . . . 180.

In this example, global interface 115 is responsible for
tracking the status of data associated with the address space

of main memory 114. The status information of each
memory location is stored as a memory tag (MTAG) in

directory 116. In addition, since global interface 115 is also
responsible for maintaining global cache coherency, global
interface 115 includes hardware and/or software imple-
mented cache coherency mechanism for maintain coherency

between the respective caches and main memories of sub-
systems 110, 120, . . . 180.

A typical read request, e.g., a Read_ To_ Share (KT'S), by
processor 111a of sub-system 110 occurs in the following
manner as illustrated by the flowcharts of FIGS. 1C and 1D.
First, processor 11la presents a virtual address (VA) to
MMU 112z which converts the VA into a global address

23

30

35

40

45

S50

33

63

2

(GA) and presents the GA to L2$ 113a (step 1110). If there
is a valid copy of the data line of interest in L.2$% 113a, e.g.,

a shared (S) or owned (O) copy, then L2$ 113a provides the
data to processor 111a via MMU 1124, thereby completing

- the read request {steps 1120, 1125).

Conversely, if L2$ 113a does not have a valid copy, then
1.2$ 113a presents the GA to the local interconnect 119 of
the requesting sub-system 110 (step 1130). If the GA is not
part of the requesting sub-system 110°s local address space,
i.e., the requesting sub-system is not the home sub-system,
then the request is forwarded to the appropriate home
sub-system, e.g., sub-system 120 (step 1145).

Referring now to FIG. 1D, in the above cases where the -
data cannot be found in the 1.2$ of the requesting sub-system
119, the home directory (116 or 126) is updated to reflect this
response, for example by marking requesting sub-system
110 as a sharer of the data (step 1148).

Next, if requesting sub-system 110 is also the home
sub-system, the corresponding MTAG in directory 116 is
checked for an appropriate MTAG state, e.g., modified (M),

owned (O) or shared (S) for a read (step 1150). If the MTAG

state is inappropriate for the read request, or if requesting
sub-system 110 is not home sub-system, directory 126 is
checked for an appropriate MTAG state. The directory of the
home sub-system has information about which sub-system
(s) have valid copies of the data line and which sub-system
is the owner of the data line. Note also that home sub-system
may or may not be the owner sub-system. Note further that
if the requesting sub-system is also the home sub-system,
then the MTAG states will provide an indication of whether
the transaction is permitted, i.e., the home directory does not
need to be involved in the particular transaction.

If the home sub-system (110 or 120) is determined to have

- a valid copy of the data line, then the home sub-system

provides the data to requesting sub-system 110 (step 1162).
In the case where requesting sub-system 110 is also the
home sub-system, only an internal data transfer is required.
Alternatively, where home sub-system 120 is not the
requesting sub-system, then global interface 120 of home
sub-system 120 responds by retrieving the data line from
main memory 124 and sending the requested data line to
global interface 115 of requesting sub-system 110 via global
interconnect 199.

Conversely, if the home sub-system (110 or 120) does not
have a valid copy of the data line, i.e., the home sub-system
is not the owner sub-system, then the read request with the
GA is forwarded to the global interface of the sub-system
who is the owner of the data line of interest, e.g., global
interface 185 of owner sub-system 180 (step 1155). Global

~ interface 185 responds by retrieving the data line from one

of the L.23$s of owner sub-system 180, e.g., owner 1.2% 183a,
and sending the requested data line to global interface 115 of

requesting sub-system 110 via global interconnect 190 (steps
1164). ‘

Upon receiving the data line, global interface 115 for-
wards the data line to 1.2$ 113¢ which provides the data
requesting processor 111a (step 1180). The data line can be
cached in L.2$ off the critical path for subsequent retrieval by
processor 11la (1190).

When a location in an 1.2%, e.g., L2% 113qa, is needed for
storing another data value, the old cache line needs to be
replaced. In this implementation, cache lines having an S
state are replaced “silently”, i.e., they do not generate any
new transactions in computer system 100. In other words, a
sub-system remains marked in the home directory of the
cache line as a sharer of the replaced cache line with respect

5,710,907

3

to the rest of system 100. Conversely, replacement of cache
lines having either O or M state will generate a WB
transaction to the main memory of the sub-system respon-
sible for this GA. As such, the directory associated with the
responsible sub-system is updated to reflect this change.

In sum, the architecture of CC-NUMA system 100 is
better-suited for executing software programs using small
data structures which requires a small number of the avail-
able cache lines in 1.2$ 113a. This is because the small data
structures can remain entirely in L2$ 113 while they may
be repeatedly accessed. Unfortunately, CC-NUMA system
100 is unable to cache large data structures which are too
large to be stored entirely in L.2$ 1134, causing a thrashing
problem whereby portions of large data structures are
repeatedly cached and discarded.

FIGS. 2A. 2B, 2C, 2D and 2E illustrate a simple COMA
(S-COMA) computer system 200 which is capable of cach-
ing large data structures in their entirety since S-COMA
system 200 allocates its cache memory space a page at a
time. As shown in the block diagram of FIG. 2A, S-COMA
system 200 includes a plurality of sub-systems 210, 220, . .
. 280 coupled to each other by a global interconnect 2990.
Each sub-system includes at least one processor, a CoOIre-
sponding memory management unit (MMU), a correspond-
ing second level cache (L2$), a cache memory, a global
interface, an address translator, a directory and a local
interconnect. For example, sub-system 210 includes proces-
sors 211a, 2115, . .. 211i, MMUs 212a, 212b, . . . 212i, L.2%s
213a, 213b, . . 213i cache memory 214, global interface 213,
directory 216, address translator 217 and local interconnect
219. Note that since sub-systems 210, 220, . . . 280 are
similar in structure, the following description of sub-system
210 is also applicable to sub-systems 220, . . . 280.

Processors 211a, 2115, . . . 211i are coupled to MMUs
212a, 212b, . . . 212i, respectively. In turn, MMUs 2124,
2124, . . . 212i are coupled to L2%s 213a, 2135, . . . 213,
respectively. L2$s 213a, 213b, . . . 213i, main memory 214
and global interface 215 are coupled to each other via local
interconnect 219. Directory 216 is coupled to global inter-
face 215. Address translator 217 is located between global
interface 215 and global interconnect 299.

Referring now to the memory maps of FIGS. 2B and 2C,
responsibility for tracking the status of total addressable
space of S-COMA system 200 is distributed among the
respective home directories of sub-systems 210, 220, . . .
280. Partitioning of the cache memories of S-COMA com-
puter system 200 is dynamic, i.e., cache memories 214, 224,
.. . 284 function as attraction memory (AM) wherein cache
memory space is allocated in page-sized portions during
execution of software as the need arises. Note that cache
lines within each (allocated) page are individually acces-
sible.

Hence, by allocating memory space in entire pages in
cache memories 214, 224, . . . 284, S-COMA computer
system 200 avoids the above-described capacity and asso-
ciativity problem associated with caching large data struc-
tures. By simply replacing main memories 114, 124, . . . 184
with similarly-sized page-oriented cache memories 214,
224, . . . 284, large data structures can now be cached
entirely in sub-system 210.

In this example, global interface 215 is responsible for
tracking the status of data stored in cache memory 214 of
sub-system 210, with the status information stored as
memory tags (MTAGs) in a corresponding location within
directory 216. In addition, since global interface 215 is also
responsible for maintaining global cache coherency, giobal

10

15

20

25

30

35

40

45

30

35

65

4

interface 215 includes hardware and/or software imple-
mented cache coherence mechanism for maintaining coher-
ency between cache 214 of sub-system 210 and the caches
of other sub-systems 220, . . . 280. Address translator 217 1s
responsible for translating local physical addresses (LPAs)
into global addresses (GAs) for outbound data accesses and
GAs to LPAs for incoming data accesses.

In this implementation, the first time a sub-system, e.g.,
sub-system 210, accesses a particular page, address trans-
lator 217 is unable to provide a valid translation from VA to
PA for sub-system 210, resulting in a software trap. A trap
handler of sub-system 210 selects an unused page in cache
memory 214 to hold data lines of the page. MTAGs of
directory 216 associated with the page are initialized to an
“invalid” state, and address translator 217 is also initialized
to provide translations to/ffrom this page’s local physical
address (LPA) from/to the unique global address (GA)
which is used to refer to this page throughout system 200.

A typical read request, e.g., a read-to-share (RT'S) request,
by processor 211a of sub-system 210 occurs in the following
manner as illustrated by the flowcharts of FIGS. 2D and 2E.
First, processor 211a presents a virtual address (VA) to
MMU 212a which converts the VA into a LPA and presents
the LPA to L2$ 213a (step 2110). If there is a valid copy of
the data line of interest in 1L.2$ 213a, e.g., a shared (S),
owned (Q) or modified (M) copy, then 1.2 213a provides
the data to processor 211a, and the read request is completed
(steps 2120, 2125).

Conversely, if 1.2$ 213a does not have a valid copy, then
1.2$ 213q presents the LPA to global interface 215 (step
2130). Global interface 215 accesses MTAGs of directory
216 to determine if a valid copy of the data line can be found
in cache memory 214 (step 2132).

If such a valid copy exist, the data line is retrieved from
cache memory 214 (step 2134). The data line is then
provided to L2$ 2134 which provides the data to processor
211a via MMU 2124, thereby completing the read request
(step 2136).

However, if a valid copy of the data line of interest cannot
be located in either L2$ 213a or cache memory 214, then
requesting address translator 217 converts the LPA to a GA,
before sending the data request via global interconnect 290
to the home sub-system whose address space includes the
GA of the data line of interest, e.g., sub-system 220 (step
2142). Next, address translator 227 of home sub-system 220
converts the GA into a LPA (step 2144), and looks up the
appropriate directory entry to determine if there is a valid
copy of the data line in home cache memory 224 (step 2150).
This GA to LPA translation in home sub-system 220 can be
a trivial function such as stripping an appropriate number of
most significant bits (MSBs).

Referring now to FIG. 2E, in each of the above cases
where the data line is not found in requesting sub-system
210, home sub-system 220 updates home directory 226, e.g.,
to reflect a new sharer of the data line (step 2148).

If a valid copy exist in home sub-system 220, global
interface 225 responds by retrieving the data line from cache
memory 224 or L.2$ 223a, before sending the requested data
line to global interface 215 of requesting sub-system 210 via
global interconnect 290 (step 2162).

Conversely, if home sub-system 220 does not have a valid
copy of the data line, then the read request with the GA 1is
forwarded to the address translator of the owner sub-system,
e.g., translator 287 (step 2152). Upon receiving the GA from
home sub-system 220, address translator 287 of sub-system
280 converts the GA into an LPA for global interface 285

<

(step 2154). This GA to LPA translation in owner sub-system
280 is a non-trivial function. Next, global interface 285 of
owner sub-system 280 responds by retrieving the data line

from either cache memory 284 or one of 2L.$s 283a, 2835,
. . . 283i, and sending the requested data line to global

interface 215 of requesting sub-system 210 via global inter-
connect 290 (step 2164).

When the data line arrives at global interface 215,, global

interface 215 forwards the data line to 1.2$ 213a which then

provides the data to requesting processor 211a (step 2189).
The data line can be cached in 1.2$ 2134 off the critical path
for subsequent retrieval by processor 211a thereby complet-
ing the read transaction (2190). Note that a GA to LPA

translation is not required for returning data.

Occasionally, replacement of (entire) pages stored in
cache memory 214 may be needed when cache memory 214
becomes full or is nearly full, in order to make room for
allocating new page(s) on aread request. Ideally, sub-system
210 maintains an optimal amount of free pages in cache
memory 214 as a background task, i.e., off the critical timing
path, ensuring that the attraction memory, i.e., cache
memory 214, does not run out of storage space. Upon
replacement, a determination of which cache lines of the
to-be-replaced page contains valid data (either M, O or S
state) is made by accessing the MTAGs stored in directory
216. A message is then sent to the responsible home direc-
tory informing the home directory that the cache line is to be
replaced.

If the cache line has an M or O state, this transaction is
similar to an owner sub-system’s Write__Back (WB) trans-
action in CC-NUMA mode, which writes the data value to
the home cache memory of home sub-system. If the cache
line has an S state, the replacement transaction does not
transfer any data, but updates the corresponding directory to
reflect the fact that the to-be-replaced node, i.e., sub-system,
no longer has a shared copy of the data line. Hence, in
S-COMA system 200, replacement is not “silent” since the
respective directory is continually updated to reflect any
replacement(s) of the data line.

Although S-COMA system 200 is more efficient at cach-
ing larger data structures than CC-NUMA system 100,
allocating entire pages of cache memory at a time in order

to be able to accommodate large data structures is not a cost.

effective solution for all access patterns. This is because
caching entire pages to accommodate large data structures is
inefficient when the data structures are sparse or when only
a few elements of the structure are actually accessed.

Hence there is a need to provide a hybrid caching archi-
tecture together with a cache-coherent protocol for a multi-
processor computer system that is flexible and efficient in
caching both large and smaller, sparse and packed data
structures. |

Further, in order to fully exploit the capability of such a
hybrid caching architecture, there is also the need for static
and/or dynamic algorithms to efficiently select appropriate
caching modes while executing programs with a wide vari-
ety of data structures and access patterns. Although special-
ized hardware event tracer for capturing class(es) of events,

c.g., bus operations, over time, can be used to optimize
caching mode selection, they are expensive and difficult to
implement. This is because event ordering and timing cap-
ture based on in-circuit emulation (ICE) technology typi-
cally involve complicated high-speed analog circuitry and
probes. Accordingly, any cache mode selection algorithm(s)
should be simple and yet effective event-based histograms
which captures some of the same event information, e.g.,

5,710,907

10

15

20

25

30

35

45

S50

35

635

6

cache miss, to give some indication of the appropriateness of
COMA versus NUMA cache optimization.

SUMMARY OF THE INVENTION

The present invention provides a hybrid Non-Uniform
Memory Architecture (NUMA) and Cache-Only Memory
Architecture (COMA) caching architecture together with a
cache-coherent protocol for a computer system having a
plurality of sub-systems coupled to-each other via a system
interconnect. In one implementation, each sub-system
includes at least one processor, a page-allocating COMA
cache and a line-allocating hybrid NUMA/COMA. cache.
Such a hybrid system provides flexibility and efficiency in

caching both large and small, and/or sparse and packed data
structures.

In accordance with the invention, each sub-system is able
to independently store data in COMA mode or in NUMA

mode. When caching in COMA mode, a sub-system alio-
cates a page of memory space and then stores the data within
the allocated page in its COMA cache. Depending on the
implementation, while caching in COMA mode, the sub-
system may also store the same data in its hybrid cache for
faster access. Conversely, when caching in NUMA mode,
the sub-system stores the data, typically a line of data, in its
hybrid cache.

In one implementation, the memory address space 1is
divided into a local physical address (LPA) space and a
global address (GA) space for use in COMA and NUMA
mode, respectively. Accordingly, the address of the data
provides a quick indication as to whether the data had been
cached previously in a particular mode.

When a processor of a requesting sub-system needs to
access data, e.g., a read request, an attempt is made to
retrieve the data from the hybrid cache of the requesting
sub-system which supports both COMA and NUMA modes.
If the data is not found in the hybrid cache of the requesting
sub-system, and the address of the data indicates that
memory space has been allocated for the data in COMA
mode, then an attempt is made to retrieve the data from the
COMA cache of the requesting sub-system. If the data is not
found in either the hybrid or COMA cache of the requesting
sub-system, then the request is forwarded to the home
sub-system and the home directory is updated to reflect the
new status of the requesting sub-system, e.g., as a new
“sharer” of the data.

As discussed above, each sub-system can independently
select an appropriate cache mode (e.g., per page) suitable for
its pattern of access. Thus, when a read request is forwarded
to the home sub-system, the data may be found in the COMA
cache and/or the hybrid cache of the home sub-system. If the
data is found in either caches, i.e., the home sub-system is
also the owner sub-system, then the home sub-system pro-
vides the data to the requesting sub-system.

Conversely, if the data is not found in the home sub-
system, then the request is forwarded to an owner sub-

system identified by the home directory. Again, since the
data may have been cached in the COMA cache and/or the
hybrid cache of the owner sub-system, a search is made in

both the COMA cache and the hybrid cache of the owner
sub-system. If a valid copy of the data is found in the owner

sub-system, the data is provided to the requesting sub-

system. -

Note that, although a read request sequence is illustrated
in the example above, a write request sequence is similar,
except that with a write request, the requesting sub-system
is also responsible for ensuring that all cached copies of the
data throughout the entire system is coherent, i.e., consis-
tent.

5,710,907

7

In one embodiment, the default cache mode is COMA
until the data access pattern of the software program execut-
ing in a particular sub-system provides an indication that
caching in NUMA mode, i.e, caching in the hybrid cache
only, is more efficient. Accordingly, each sub-system
attempts to keep track of the instances where storing the data
from a particular page of memory in COMA mode is not cost
effective.

Two counters are employed per page in this implemen-
tation. A COMA__miss counter and a COMA_ hit counter
are assigned to each page of memory space. Each time data
from a particular page cannot be found in the hybrid cache
of a requesting sub-system but is found in the COMA cache
of the requesting sub-system, the COMA _hit counter is
incremented. Conversely, each time data from the same page
is not found in either the hybrid cache or the COMA cache
of the requesting sub-system, the COMA__miss counter is
incremented.

Thus, the ratio of COMA_ hit against COMA_ miss
counters provides the requesting sub-system with a good
indication of the usefulness of caching a particular page in
the local COMA cache, i.e., using the COMA caching mode
for the particular page. For example, if the number of
COMA_ hit(s) far outweighs the number of COMA_miss
(es), then the page should remain in the COMA cache of the
requesting sub-system. Conversely, if the number of
COMA__hits(s) are a lot lower than the number of COMA
misses, then caching the particular page in the COMA cache
of the requesting sub-system is not cost effective. Note that
a low COMA_ hit value indicates that the associated page 1s
not accessed frequently, and hence replacing the page will
have a small impact on the performance of the computer
system.

DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the system of the
present invention will be apparent from the following
description in which:

FIGS. 1A, 1B and 1C-1D are a block diagram, an address
map and two flowcharts, respectively, illustrating a conven-

tional cache-coherent non-uniform-memory-architecture
(CC-NUMA) computer system.

FIGS. 2A-2E illustrate a conventional simple cache-only-
memory-architecture (S-COMA) computer system.

FIGS. 3A-J3F illustrate one embodiment of the COMA/
NUMA hybrid computer system of the present invention.

FIGS. 4A and 4B are flow diagrams illustrating one

selection algorithm for the hybrid computer system wherein
the default is the NUMA caching mode.

FIG. 5 is a flow diagram illustrating another selection
algorithm for the hybrid computer system wherein the
default is the COMA caching mode.

NOTATIONS AND NOMENCLATURE

Classes of Caches Misses

i) Compulsory miss or Cold Start miss:

Occurs the first time the data is accessed. Not affected by
cache organization. Unavoidable without some other
mechanism like “pre-fetching.”

ii) Coherence miss:

Occurs when data, previously in cache memory but later
invalidated by a processor at another sub-system, is
requested again, i.e., the previously valid copy is invali-
dated by a write request, e.g., a read-to-own (RTO)

10

15

20

23

30

335

45

50

55

65

3

request, from another sub-system. Not affected by
cache organization. Unavoidable in an invalidation-
based coherence protocol.

iii) Capacity miss:

Occurs when data, previously in cache memory but later
replaced due to the limited cache memory size, 1S
requested again, i.e., data had to be “bumped” (written-
back) because cache ran out of space. This class of
cache miss still occurs in a fully associative memory of
the same size, but can be avoided in an infinitely large
fully-associative cache.

iv) Conflict miss:

Occurs when data, previously in cache memory but later
replaced due to an access conflict to the same set, is
requested again, ie., old data had to be replaced
because of the low level of associativity (i.e., not
enough “ways”). This class of cache miss will not occur

if the cache is fully associative, i.e., avoidable.
v) Combining miss:

Occurs when a first processor of a sub-system has a local
copy of the data but is unable to share the data with a
second processor of the same sub-system sending a
read-to-share (RTS) request, thereby causing the sec-
ond processor to fetch the data from the owner sub-
system. Avoidable.

Cache Line State |

A “last-owner” state indicates that a node/sub-system was

the previous owner of the data before it had to be written-
back and replaced, i.e., bumped because of a capacity miss
or a conflict miss. |

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following description, numerous details provide a
thorough understanding of the invention. These details
include functional blocks and exemplary algorithms to assist
a designer in implementing a hybrid Non-Unitorm Memory
Architecture (NUMA) and Cache-Only Memory Architec-
ture (COMA) computer system. In addition, while the
present invention is described with reference to a specific
hybrid COMA/NUMA cache architecture and algorithms for
exploiting the hybrid COMA/NUMA architecture, the
invention is applicable to a wide range of computer systems.
In other instances, well-known circuits and structures are not
described in detail so as not to obscure the invention
unnecessarily.

a) Architecture and Operation of a NUMA/COMA Com-
puter System

In accordance with the present invention, a hybrid
COMA/NUMA cache architecture provides a cost-effective
mechanism for efficiently executing a wide variety of soft-
ware programs having large and/or small, and sparse and/or
packed data structures. In addition, the hybrid COMA/
NUMA architecture of the invention is able to efficiently
execute software programs having code that are re-executed
in large and/or small portions.

FIGS. 3A. 3B, 3C, 3D, 3E and 3F illustrate one embodi-
ment of a COMA/NUMA hybrid computer system 300 of
the present invention. Referring first to the block diagram of
FIG. 3A, COMA system 300 includes a plurality of sub-
systems 310, 320, . . . 380 coupled to each other by a global
interconnect 390. Each sub-system includes one or more
processors, corresponding memory management units
(MMUs), corresponding hybrid second level cache (1.2%s),
a COMA cache memory, a global interface, an address
translator, a directory table and a local interconnect. For

9
example, sub-system 310 includes processors 311a, 3115, .
.. 311i, MMUs 312a, 312b, . . . 312i, hybrid 1L.2%s 313a,
3135, . .. 313i{, COMA cache memory 314, global interface
315, directory 316, address translator 317 and local inter-
connect 319. Note that since sub-systems 310, 320, . . . 380
are similar in structure, the following description of sub-
system 310 is also applicable to sub-systems 320, . . . 380.

Processors 311a, 3115, . . . 311i are coupled to MMUs
3124, 3125, . . . 312i, respectively. In turn, MMUs 3124,
312b, . . . 312i are coupled to 1.2%s 313a, 313b, . . . 3134,
respectively. Hybrid L2$s 313a, 3135, . . . 313i, main
memory 314 and global interface 315 are coupled to each
other via local interconnect 319. Directory 316 is coupled to
global interface 315. In this embodiment, address translator
317 is located between global interface 315 and global
interconnect 399.

Referring now to the exemplary memory map of FIG. 3B,
the total addressable physical address {(PA) space is divided
into a local physical address (LPA) space and a global
address (GA) space, for use in COMA end NUMA modes,
respectively. Addresses in the GA space may be generated
either by the S-COMA address translation (in COMA mode)
or directly by MMUs 312a, 3125, . . . 312/ (in NUMA
mode). Note that COMA cache memory 314 supports
COMA mode data accesses while 1.2%s 3134, 31354, ... 313
support both NUMA and COMA mode data accesses. Alter-
native implementation of the division between LPA and GA
address spaces are possible. For example, an LPA may be the
pre-assigned address space associated with a particular
sub-system. Several exemplary algorithms for selecting
between COMA and NUMA modes are described in detail
below.

Responsibility for tracking the status of both NUMA and
COMA address spaces is distributed among the respective
home directories 316, 326, . . . 386 associated with and
coupled to global interfaces 315, 325, . . . 383 of sub-systems
310, 320, . . . 380, respectively. Accordingly, the first time
sub-system 310 first accesses an address location outside its
pre-assigned address space resulting in a compulsory miss,
the data has to be fetched from one of the other sub-systems
320, ... 380.

Partitioning of COMA. cache memories of computer sys-
tem 300 is dynamic, i.e., COMA cache memories 314, 324,
.. . 384 function as attraction memory (AM) wherein cache
memory space is allocated in page-sized portions during
execution of software as the need arises. Note that although
memory in COMA cache is allocated in page-sized portions,
cache lines within each page are individually accessible.

In addition, since global interface 315 is also responsible
for maintaining global cache coherency, global interface 315
includes a hardware and/or software implemented cache
coherence protocol for maintain coherency between the
cache of sub-system 310 and the caches of other sub-
systems 320, . . . 380.

FIGS. 3C, 3D, 3E and 3F are flowcharts illustrating an
exemplary read request, e.g., a Read__To_ Share (RTS), by
processor 311a of one embodiment of the present invention.

Referring first to FIGS. 3C and 3D, processor 3114 presents
a virtual address (VA) to MMU 3124 which converts the VA

into a physical address (PA), for example by referencing a
VAZPA table (step 3110). If there is a valid copy of the data
line of interest in 1.2$ 3134, e.g., a shared (S) or owned (O)
copy, then L.2$ 313a provides the data to processor 3lla,
and the read access is completed (steps 3120, 3125). As
discussed above, the data line may be successfully retrieved
from 1.2$ 313a regardless of whether the data line was
previously cached in COMA or NUMA mode. |

10

15

20

23

30

35

5,710,907

10

Conversely, if the data line is not in L2$ 3134, since the
PA provides an indication of whether the data line of interest
may have been cached in COMA mode or NUMA mode,
MMU 312a presents the PA to global interface 315 (step
3130). Accordingly, by simply comparing the PA against the
local physical address (LPA) and global address (GA)

ranges, L2$ 313a or global interface 315 can easily deter-

mine if further access should be attempted in COMA mode
or NUMA mode (step 3131).

If the PA is within the LPA range, then a COMA mode
access of the data line is attempted (step 3200).
Alternatively, if the PA is within the GA range, then a
NUMA mode access of the data line is attempted (step
3300). Note that a NUMA mode access may initiate a global
read request tramsaction without the need to perform a
lookup of MTAG state in the requesting directory 316 or the
need to perform a LPA to GA translation in requesting
translator 317, thereby reducing remote (inter sub-system)
access latency and also reduce the overall utilization of
hardware resources of system 300.

Referring now to FIG. 3E, in the case of the COMA mode
access, the requesting global interface 315 accesses its
MTAG in local directory 316 to determine if a valid copy of
the data line can be found in COMA cache memory 314
(step 3232). If a valid copy of the data line is located in
COMA cache memory 314 (step 3234), then the data is
provided to processor 311a, and the read request is com-
pleted (step 3236). |

However, if a valid copy of the data line cannot be found
in COMA cache memory 314, then global interface 315
presents the LPA to address translator 317 where the LPA is
translated into a GA before being sent to the home sub-
system whose address space includes the data line of
interest, e.g., sub-system 320, via global interconnect 390
(step 3242). Upon receiving the GA from sub-system 310,
address translator 327 of home sub-system 320 converts the
GA into a recognizable LPA, for example by simply drop-

- ping the most significant bit(s) since the read request already

45

S0

33

65

includes the necessary portion of the GA address (step
3244).

Alternatively, as shown in FIG. 3F, in the case of the
NUMA mode access, no LPA2GA address translation is
needed. Instead, the GA, i.e., the unmodified PA, is sent by
global interface 315 to the home sub-system whose address
space includes the data line of interest, e.g., sub-system 320,
via global interconnect 390 (step 3340).

Returning to FIG. 3D, in both COMA and NUMA mode
cases, where the data line is not found in requesting sub-
system 310, home sub-system 320 updates home directory
326 to reflect the response to the read request, e.g., the new
status of requesting sub-system 310 (step 3148). Next, home
sub-system 320 checks directory 326 to determine if a valid
copy of the data line exist in the home sub-system 320, i.e.,
to determine if the home sub-system is aiso the owner
sub-system (step 3150).

If a valid copy exist in home sub-system 320, global
interface 325 responds by retrieving the data line from cache
memory 324 (if previously cached in COMA mode) or from
one of 2L.%s 323a, 323b, . . . 323i (if previously cached in
NUMA mode), and sending the requested data line to global
interface 315 of requesting sub-system 310 via giobal inter-
connect 390 (sicp 3162).

Conversely, if home sub-system 320 does not have a valid
copy of the data line, then the read request with the GA is
forwarded to the address translator of the owner sub-system,
e.g., translator 287 of owner sub-system 280 (step 3152).
Upon receiving the GA from home sub-system 320, address

5,710,907

11

translator 387 of sub-system 380 converts the GA into a LPA
for global interface 385 (step 3154). Next, global interface

385 responds by retrieving the data line from either cache
memory 384 (if previously cached in COMA mode) or one

12

share the data with a second processor of the same
sub-system, causing the second processor to fetch the
data from the owner sub-system.

Note that while types i and ii are unavoidable, types iii. 1v,

of 21.$ 383q, 383b, . . . 383i (if previously cached in NUMA 5 and v are avoidable depending on the implementation.

mode), and sending the requested data line to global inter-
face 315 of requesting sub-system 319 via global intercon-
nect 390 (step 3164).

Note that the data line of interest may be cached in either
COMA or NUMA mode in one or more of sub-systems 310,
320, . . . 380, independently of each other. As such, the
respective caching modes of the home sub-system and the
owner sub-system is transparent to the requesting sub-
system. For example, the data line may be cached in cache
memory 324 (COMA mode) in home sub-system 320 and
cached in 2L$ 3836 (NUMA mode) in owner sub-system
380.

When the requesting global interface 315 receives the
requested data line, global interface 315 forwards the data
line to L.2$ 313a which then provides the requested data line
to requesting processor 311a. Note that a GA2LPA transla-
tion of requested data line need not be performed by MMU
312a (step 3180). The data line can be cached in 1.2% 3134
and/or COMA cache memory 314 off the critical path for
subsequent retrieval by processor 311a thereby completing
the read request (3190).

In sum, by providing the ability to dynamically cache in
both COMA and NUMA modes, computer system 300 is
able to efficiently cache small or sparse data structures in
NUMA mode, computer system 300 avoids wasting large
COMA pages, and to efficiently cache large data structures
in COMA mode when the need arises. Generally, NUMA
mode is more efficient if the data is not likely to be accessed
again.

b) Definitions of Classes of Caches Misses

Thus, in order to better understand the underlying criteria
for optimizing the selection between COMA and NUMA
modes, it is useful to briefly define the general types of cache
misses and the underlying causes for these misses as fol-
lows:

i) Compulsory cache misses or cold start cache misses
occur the first time a data line of interest is accessed.
These misses are unavoidable without resorting to
techniques such as pretetching.

ii) Coherence cache misses resulting from the invalidation
of a shared (*‘S”) copy of the data line of interest. For
example, when the S copy of a first sub-system 1s
invalidated by a write request of a second sub-system.
Subsequently, a read request for the data line by the first
sub-system will result in a cache miss. The occurrence
of these misses are independent of the size or depth of
the cache, i.e., cannot be reduced by increasing the size
of the cache.

iii) Capacity cache misses are the result of the data line
being bumped (and written-back or discarded) when
the cache is full to make room for a mew data line.
These misses can be reduced by increasing the overall
size of the cache, but will still occur even if the cache
is fully associative.

iv) Conflict cache misses occur when a data line cannot be
cached because the set-associative cache is not deep
enough, i.e., not enough “ways” in the structure of the
cache. These misses can be reduced by increasing the
number of ways, i.e., by increasing the associativity.

v) Combining miss: occurs when a first processor of a
sub-system has a local copy of the data but is unable to

10

15

20

25

30

35

43

50

335

63

c) Exemplary Algorithms for Selecting Between NUMA and
COMA Caching Modes

Having provided the hybrid COMA/NUMA cache archi-
tecture for supporting both COMA and NUMA cache
accesses during the execution of software programs, exem-
plary methods for selecting between the COMA and NUMA
caching modes for computer system 300 are described
below.

In accordance with one selecting algorithm of the present
invention, the default cache mode is the NUMA mode until
the data access pattern of the software program provides an
indication that caching in COMA mode is more efficient.
This method of detection is based on the observation that in
NUMA mode, capacity and conflict misses occur when data
is discarded because the cache is either not associative
enough or too small causing data to be discarded and
unavailable when reaccessed at a later time.

FIGS. 4A and 4B are flow diagrams illustrating an exem-
plary method for counting the number of conflict/capacity
cache misses (avoidable NUMA mode misses) experienced
by a requesting sub-system 310 with respect to a data line of
a home sub-system 320. In this example, for each data line
of home sub-system 320 there is a entry in home directory
326 corresponding to each sub-system of computer system
300.

First, consider avoidable NUMA mode misses resulting
from an initial Read_To__Share (RT'S) request followed by
requesting sub-system 310 sending either another RTS
request to home sub-system 320. Note that prior to sub-
system 310°s first access of a data line of home sub-system
320, the corresponding entry of home directory 326 is
marked invalid (“T’), i.e., neither Last__To_ Own (L") nor
shared (*S”). Accordingly, as shown in FIG. 4A, when
requesting sub-system 310 sent the initial RTS request for
the data line of home sub-system 320 (step 4110), the
corresponding entry of home directory 326 is marked “S”
(steps 4120, 4140, 4160). Home sub-system 320 then ini-
tiates a transfer of the requested data line to requesting
sub-system 310 (step 4170). Upon receiving the requested
data, requesting sub-system 310 stores the data in a cache

-line of 2L$ 313a for subsequent retricval (step 4180).

Subsequently, since the cached data line has an “'S™ state
resulting from the initial RT'S request, when sub-system 310
needs to reuse the same cache line of 2L$ 3134, i.e., replace
the cache line, sub-system 310 simply discards the content
of the cache line by overwriting the same location, i.e., the
cache line of 2L$ 313a. The data line is discarded from 2L.$
3132 of sub-system 310 without informing home sub-
system 320, i.e., the corresponding entry in home directory
326 remains in the “S™ state.

Hence, referring again to the top of FIG. 4A, having
discarded the data line, when requesting sub-system 310
needs to access the same data line of home sub-system 320,
another RTS request is sent to sub-system 320 (step 4110).
Since the corresponding directory entry is still marked *S”
and the read request is a RTS request (steps 4120, 4140),
home sub-system 320 recognizes the event as a cache miss
and generates an Avoidable NUMA_ miss message to
requesting sub-system 310, causing requesting sub-system
310 to increment a hardware or software NUMA__miss
counter (step 4150). Note that the Avoidable. NUMA__miss

‘message is sent since conflict/capacity (non-avoidable)

L ' -)

5,710,907

13

misses have occurred but are undetectable by this algorithm
in COMA mode. Depending on the implementation, the
Avoidable_ NUMA __miss message can be piggy-backed on
another message or sent as a separate message. Next, home
sub-system 320 updates directory 326 by marking the cache
line as “S” (step 4160). Home sub-system 320 also initiates
the transfer of the requested data to requesting sub-system
310 (step 4170), which then stores the data in a cache line
of 2L.$ 313a for subsequent retrieval (step 4180).

Referring now to both FIGS. 4A and 4B, consider the

avoidable NUMA mode misses resulting from a RTS or a
Read To__Own (RTO) request after requesting sub-system
310 was the last owner of a data line of home sub-system
320, i.c., after a RTO request followed by a Write__Back
(WB) from sub-system 310 to home sub-system 320.

As discussed above, prior to sub-system 310’s first usage
of a data line of home sub-system 320, the corresponding
entry of home directory 326 is neither “L” nor “S”.
Accordingly, as shown in FIG. 4A, when sub-system 310
sends an initial RTO request to sub-system 320 (step 4110),
sub-system 320 responds by marking the corresponding
entry “O” in directory 326 (steps 4120, 4140, 4160). Home
sub-system 320 also initiates a transfer of the requested data
to requesting sub-system 310 (step 4170). Sub-system 310
can now store the data line in a cache line of 2L$ 3134 for
subsequent retrieval (step 4180).

Referring now to FIG. 4B, when sub-system 310 needs to
reuse, i.e., replace the cache line of 2L$ 3134, sub-system
310 sends a write-back (“WB”) request to home sub-system
320 together with the modified data line from 2L$ 313a (step

4210). Home sub-system 320 responds by marking the
corresponding entry in directory 326 as “L”, indicating that
sub-system 310 was the last owner of the data line before the
cache line was replaced, i.e., bumped because of a conflict/
capacity miss (step 4240). In this example, the “L” is
implemented as a single bit in directory 326, indicating that
the owner sub-system’s information is old and that home
sub-system 320 is now the new “owner” of the data line.
Home sub-system 320 then write the data line back to home
cache memory 324 (step 4250).

Referring back to FIG. 4A, subsequently, when sub-
system 310 needs to access the same data line of home
sub-system 320, a RTS_req or a RTO_req is sent to
sub-system 320 (step 4110). Since the corresponding direc-
tory entry is marked as “L” (step 4120), home sub-system
recognizes the event as an avoidable NUMA cache miss and
generates an Avoidable_ NUMA _miss message to request-
ing sub-system 310, causing requesting sub-system 310 to
increment its NUMA__miss counter (step 4150). Next, home
sub-system 320 updates directory 326 by marking the cache
line as shared (“S”) or as owned (“O”), respectively (step
41690). Home sub-system 320 also initiates the transfer of the
requested data to requesting sub-system 310 (step 4170),
which then stores the data in a cache line of 21.$ 313a for
subsequent retrieval (step 4180). -

Note that the two NUMA cache miss preconditions
described above, corresponding to the “S” and “L” states,
can be used independently or together as illustrated in the
example above. Hence, separate S__miss and L_ miss
counters may be used.

In this implementation, a requesting sub-system has a set
of n page counters. Each counter has a page address asso-
ciated with it. A counter in state “idle” stores the page
address of the first NUMA__miss in its page address portion.
New NUMA_ miss replies which match its page address
will cause the respective counter to increment. The request-
ing sub-system can access, via software, the counter value
and address value before resetting the counter state back to
“idle .

10

15

20

25

30

35

45

50

53

65

14

Other variations are possible. For example, instead of
dedicating a counter to a page, conflict counters are associ-
ated with multiple pages since associating a counter with
each page of a GA address space may be prohibitively
expensive, Alternatively, an associative management of a
limited pool of counters can ensure that NUMA__misses to
the most frequently missed pages (or set of pages) are
tracked. |

In yet another variation of this embodiment, each page’s
corresponding entry in the GA2LPA table has a small
counter field, specifying which counter, if any, is associated
with the accessed page. The value of the counter field can be
initiated by software executing in processor 321a. Such an
arrangement permits multiple pages to share the same

counter so that, for example, a data structure spanning
several pages can be tracked with the same counter.

By tracking the behavior of a specific data structure,
processor 321a will be able to select the appropriate NUMA

COMA strategy, thereby maximizing the benefit from the
hybrid NUMA/COMA caching scheme of the present inven-
tion. Counters can also be used by the operating system
executed by processor 321a to dynamically change the
NUMA/COMA mode based on the current behavior of the
data structure. Depending on the particular implementation,
cache mode conversion thresholds can be selected statically
or dynamically, either by the operating system or under
hardware control, in response to parameters such as chang-
ing system load/behavior, memory utilization, and global
message traffic density.

Hence, by attempting to differentiate between coherent/
compulsory misses and capacity/conflict misses, it 1s pos-
sible to optimize the use of the hybrid COMA/NUMA cache
system by entering the COMA page-oriented mode when the
conflict counter exceeds a preset number.

FIG. 5 is a flowchart illustrating another selection algo-
rithm of the present invention, wherein the default mode for
system 300 is the COMA mode. Subsequently, the NUMA
mode is attempted under the following conditions. A pair of
counters, a COMA_ miss counter and a COMA_hit
counter, are provided for each COMA page. The respective
COMA__miss counters and COMA_ hit counters may be
incorporated in, for example, directories 316, 326, . . . 386.

Using sub-system 310 as the exemplary requesting sub-
system, first, while operating in the default COMA mode,
requesting sub-system 310 makes a request for a data line
(step 5110). If the data is found in 2L.$ 3134, then the read
request is completed (step 5120). Else if the data cannot be
found in 2L$ 313g, then a requesting sub-system 310
determines if the data is stored in COMA cache memory 314
(step 5130).

If the data is found in COMA cache memory 314, the
COMA_ hit counter corresponding to the page associated
with the data line is incremented (step 5150).

Else if the data is not found in COMA cache memory 314,
the COMA_ miss counter corresponding to the page asso-
ciated with the data line is incremented (step 5140). Next,
requesting sub-system 310 forwards the read request to the
home sub-system 320 (step 5162). Upon the return of the
requested data from the home sub-system or the owner
sub-system (if the data is not owned by the home sub-
system), the data is stored in COMA cache memory 314 of
requesting sub-system 310 (step 5164). In this embodiment,
if the corresponding page has not been previously allocated,
a new page is allocated in COMA cache memory 314 and the
data line is then written into the page allocated in COMA
cache memory 314. |

In one implementation, requesting sub-system 310 then
compares the ratio of the COMA__miss counter against the

5,710,907

15

COMA_ hit counter to determine if the ratio exceeds a
selectable threshold (step 5170). Depending on the particu-
lar implementation, cache mode conversion thresholds can
be selected statically or dynamically, either by the operating
system or under hardware control, in response to parameters
such as changing system load/behavior, memory utilization,
and global message traffic density.

If the ratio has not exceeded the threshold, then requesting
sub-system 310 simply caches the data in 2% 313¢ and the
read request is complete (step S170). Conversely, the ratio
exceeds the threshold, then requesting sub-system 310
switches from the default COMA mode to the NUMA mode
(step 1580), and caches the data line in 2L$ 313a of
requesting sub-system 310 (step 1590).

In sum, for each page in COMA cache memory 314, 324,
. . . 384, every time there is a COMA mode cache miss
associated with the page, the corresponding COMA__miss
counter is incremented. Conversely, for every cache hit in
COMA cache memories 314, 324, . . . 384 associated with
the page, the corresponding COMA__hit counter is incre-
mented. Eventually, when the COMA__miss counter asso-
ciated with the page exceeds the corresponding COMA__hit
counter by a pre-determined threshold, the cache lines
corresponding to the page of interest is cached in NUMA
mode for subsequent accesses.

Variations of the above-described algorithms are possible.
For example, instead of dedicating a counter {o a page,
conflict counters are associated with multiple pages since
associating a counter with each page of an LPA address
space may be prohibitively expensive. Alternatively, an
associative management of a limited pool of counters can
ensure that NUMA_ misses to the most frequently missed
pages (or set of pages) are tracked. It is also possible to
associate each counter with one or more entries of an
LPA2GA table.

Note that the above-described selection algorithms is also
useful for optimizing COMA-only or NUMA-only cache
architectures and also useful for diagnostic applications such
as instrumenting software. Further, the two disclosed selec-
tion algorithms can be used independently or together. Other
selection algorithms are also possible.

Modifications to the COMA/NUMA architecture and
selection algorithms of the present invention are possible
without departing from the spirit of the invention. These
include static methods for selecting between COMA and
NUMA modes. For example, kernel software can be
executed in NUMA mode while application software can be
executed in COMA mode or vice versa. Alternatively, both
kernel and application software can be executed in COMA,
i.e., “waste” pages of cache memory 314 until it is full
before switching to the NUMA mode. Accordingly, the
scope of the invention should only be limited by the claims.

What is claimed is:

1. A hybrid non-uniform-memory-architecture/cache-
only-memory-architecture (NUMA/COMA) caching system
useful in association with a computer system having a
plurality of sub-systems coupled to each other by a system
interconnect, and wherein data is stored in said hybrid
NUMA/COMA caching system as a plurality of pages, each

said page including a plurality of data lines, said hybrid.

NUMA/COMA caching system comprising:

a plurality of hybrid NUMA/COMA caches configured to
store at least one of said plurality of data lines; and

a plurality of COMA caches configured to store at least
one of said plurality of pages.

2. The hybrid NUMA/COMA caching system of claim 1

wherein one said COMA cache is associated with one said

5

10

15

20

23

30

35

45

50

33

65

16

sub-system, and wherein data stored in said one COMA
cache is accessed by said one sub-system using a local
physical address (LPA).

3. The hybrid NUMA/COMA caching system of claim 1
wherein one said hybrid cache is associated with one said
sub-system, and wherein data stored in said ome hybrid
cache is accessed by said one sub-system using a global
address (GA).

4. The hybrid NUMA/COMA caching system of claim 2
wherein said one sub-system further comprising an address
translator for translating said LPA into a global address
(GA).

5. A method of storing data in a computer system having
a plurality of sub-systems coupled to each other by a system
interconnect, each said sub-system including a processor, a
hybrid non-uniform-memory-architecture/cache-only-
memory-architecture (NUMA/COMA) cache, a COMA
cache and a directory, said method including the steps of:

determining whether data should be stored in a hybrid
NUMA/COMA cache of one said sub-system; and

determining whether the data should also be stored in a
COMA cache of said one sub-systerm.

6. A method of storing data in a computer system having
a plurality of sub-systems coupled to each other by a system
interconnect, each said sub-system including a processor, a
hybrid non-uniform-memory-architecture/cache-only-
memory-architecture (NUMA/COMA) cache, a COMA
cache and a directory, said method including the steps of:

storing data associated with a data line in a hybrid
NUMA/COMA cache of one said sub-system; and

if the computer system determines that said data should be
stored in a COMA mode, then storing said data in a
COMA cache of said one sub-system.
7. The method of claim 6 wherein the step of storing said
data in said COMA cache of said one sub-system includes
the steps of:

allocating a page of memory space in said COMA cache
of said one sub-system; and

storing said data within said allocated page of said COMA

cache of said one sub-system.

8. The method of claim 5 further comprising the step of
determining whether the data should remain stored in said
COMA cache of said one-sub-system.

9. The method of claim 8 wherein said determining step
includes the steps of:

incrementing a COMA __hit counter each time data from
a page cannot be found in a hybrid cache of a request-
ing sub-system of said sub-systems but 1s found in a
COMA cache of the requesting sub-system;

incrementing a COMA__miss counter each time data from
the said page cannot be found in either the hybrid cache
or the COMA cache of the requesting sub-system; and

comparing the content of the COMA__hit counter against
the content of the COMA_miss counter to determine if
the ratio of the COMA__hit counter exceeds the
COMA_ miss counter by a threshold.

10. A method of accessing data in a computer system.
having a plurality of sub-systems coupled to each other by
a system interconnect, each said sub-system inciuding a
processor, a hybrid non-uniform-memory-architecture/
cache-only-memory-architecture (NUMA/COMA) cache, a
COMA cache and a directory, said method including th
steps of: | |

determining whether data is stored in a hybrid NUMA/
COMA cache of a requesting sub-system of said sub-
systems; and

.....
.....

5,710,907

17

if said data is stored in said NUMA/COMA hybrid cache
of said requesting sub-system, then:
retrieving said data from said hybrid NUMA/COMA
cache; else:
determining if said data has been stored in a COMA
mode in a COMA cache of said requesting sub-
system.

11. The method of claim 10 wherein if it is determined
that said data is not stored in either the hybrid NUMA/
COMA cache or the COMA cache of said requesting sub-
system, then a read request is sent to a home sub-system of
said sub-systems.

12. The method of claim 11 wherein if it is determined
that said data is stored in said home sub-system, then the
method further includes the step of retrieving said data from
said home sub-system. |

13. The method of claim 12 wherein if it is determined
that said data was not stored in said home sub-system, then
the method further comprises the steps of retrieving said
data from a owner sub-system of said sub-systems.

14. A method of accessing data in a computer systcm
having a plurality of sub-systems coupled to each other by
a system interconnect, each sub-system including a
processor, a hybrid non-uniform-memory-architecture/
cache-only-memory-architecture (NUMA/COMA) cache, a
COMA cache and a directory, said method including the step
of:

determining if data has been stored in either a COMA
mode or a NUMA mode by a requesting sub-system of
said sub-systems.

15. The method of claim 14 wherein said COMA/NUMA
mode determining step includes the step of comparing an
address of said data with a COMA range of memory
addresses and a NUMA range of memory addresses.

16. The method of claim 15 wherein said COMA range is
a local physical address (LPA) range associated with said
requesting sub-system and said NUMA range is a global
address (GA) range.

17. The method of claim 16 wherein if said determining
step determines that the address of the data is a LPA
associated with said requesting sub-system, then the method
further includes the step of determining if the data is stored
in either the hybrid NUMA/COMA cache or the COMA
cache of the requesting sub-system.

18. The method of claim 17 wherein if said data cannot be
found in either the hybrid NUMA/COMA cache or the
COMA cache of said requesting sub-system, then the
method further includes the steps of:

translating the LPA of said data associated with said
requesting sub-system into a GA;

forwarding a read request with the GA to a home sub-
system of said sub-systems;

S5

10

15

20

23

30

35

45

S0

translating the GA into an LPA of said home sub-system;

determining whether data was stored in either a hybrid
NUMA/COMA cache or a COMA cache of said home
sub-system; and

35

18

if said data was stored in said home sub-system, retrieving
said data from said home sub-system.
19. The method of claim 18 wherein if said home sub-

system determines that said data is not stored in said home
system, then the method further comprises the steps of:

forwarding the read request with the GA to an owner
sub-system of said sub-systems;

translating the GA into an LPA of said owner sub-system;

determining whether data was stored in either a hybrid
NUMA/COMA cache or a COMA cache of said owner
sub-system; and

if said data was stored in said owner sub-system, retriev-

ing said data from said owner sub-system.

20. A computer program product including a computer-
usable medium having computer-readable code embodied
therein configured to cause a computer system to select
between a non-uniform-memory-architecture (NUMA)
mode and a cache-only-memory-architecture (COMA)
mode, the computer system having a plurality of sub-
systems coupled to each other by a system interconnect,
each said sub-system including a processor, a hybrid
NUMA/COMA cache, a COMA cache and a directory, the
computer-readable code comprising:

code instructions configured to cause one said sub-system
to determine whether data should be stored in a hybrid

NUMA/COMA cache of said one sub-system; and

code instructions configured to cause said one sub-system
to determine whether the data should also be stored in
a COMA cache of said one sub-system.

21. A computer program product including a computer-
usable medium having computer-readable code embodied
therein configured to cause a computer system to select
between a non-uniform-memory-architecture (NUMA)
mode and a cache-only-memory-architecture (COMA)
mode, the computer system having a plurality of sub-
systems coupled to each other by a system interconnect,
each said sub-system including a processor, a hybrid
NUMA/COMA cache, a COMA cache and a directory, the
computer-readable code comprising:

code instructions configured to cause a requesting sub-
system of said sub-systems to determine whether data
is stored in a hybrid NUMA/COMA cache of said
requesting sub-system;

code instructions configured to cause said requesting

sub-system to retrieve said data from said hybrid
NUMA/COMA cache; and

code instructions configured to cause said requesting
sub-system to determine if said data has been stored in

a COMA mode in a COMA cache of said requesting
sub-system.

	Front Page
	Drawings
	Specification
	Claims

