| US005706479A _
United States Patent [19] 111 Patent Number: 5,706,479
Winner et al. . , . 451 Date of Patent: Jan. 6, 1998
[54] METHOD AND APPARATUS FOR ~ OTHER PUBLICATIONS
DYNAMICALLY DETECTING OVERFLOW Patmesil & Hoffert, Computer Graphics “The Pixel
OF A MULTI-LAYER BUFFER Machine: A Parallel Image Computer”, 1989, pp. 69-78.
- Foley, Computer Graphics “Principles and Practice” Second
[75] Inventors: Stephanie Winner, Santa Clara; Edition, pp. 92-99.
Mi‘fha‘?l Kelley, San Mateo, both of Mammen, IEEE “Transparency and Antialiasing Algorithms
Calif. Implemented with the Virtual Pixel Maps Technique”, 1989,
- pp. 43-55.
73] Assi . Apple C ter, Inc., Cupertino,
L5l Assignee CE]JP}E OMPEIED T &0 Primary Examiner—Kee M. Tung
' ' Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
21 1 537,384 ’
[21] Appl. No.:
. PP ¢ 571 _ ABSTRACT

[22] Filed: Oct. 2, 1995 In a computer graphic system a method and apparatus tor

[51] Nt CLO e ceercsrrenene s sanassenesanaes GO6T 1/60 dynamically maintaining an overflow flag in a muiti-layer
buffer. A circuit for maintaining an overflow signal is

2] US.CL e, 395/509; 395/122; 395/511 Hing , g
>]. U 5. € | provided. This circuit is provided new pixel data from the
[5 8] Field of Searchvevevenrennneee. 395/ 122, 507, camputer'system and old piXE:l data from a mMemory and in

395/511, 509, 501, 119, 135; 345/1835, response dynamically asserts or de-asserts the overflow
189 signal. An increment and decrement generator, which is
coupled to the new overflow generator, is provided a new
overflow signal and an old overflow signal and in response
generates an increment signal and a decrement signal. An
overflow tracking circuit, which is coupled to the increment
U.S. PATENT DOCUMENTS - and decrement generator, is provided. The overflow tracking
~circuit uses the increment and decrement signals to maintain

[56] References Cited

4924414 51990 Tl voveerreeeeesseeseesseesensenssesnnes 305/122

5218670 6/1993 Sodek, Jr. et al. oeveeeesernensees 395/511 an overflow count value.

5345541 9/1994 Kelley €t al. oocrrerrerersernssssenes 395/126 | |

5,583,974 12/1996 Winner et al.oeeeemsevrernee .. 395/122 21 Claims, 11 Drawing Sheets
FRCM THE

LOCAL PABRAMETER INTERPOLATOR
(E.G., A SCAN CONVERTER)

v

NEW PIXEL DATA ~ 117
PIXEL HAM - 123
*Z NEW ~ 118

. EW ~ 121 | PIXEL_INFO (X,Y) ~ 124
OPRAER « OVERFLOW_OLD~125

o Z OLD ~ 127
« OPAQUE_DLD ~ 129

MEMORY
PIXEL LQCATION ADDR —— ~oNTROLLER

131

PIXEL_INFO
Z QLD

OPAQUE_OLD |

Z-NEW
OVERFLOW_NEW
OPAQUE NEW.] ™ GENERATOR

115

OVEHFLOW_NEW ~ 133

N

INCREMENT AND DECREMENT
GENERATOH

1

INCREMENT DECREMENT
136 38

Y Y

OVERFLOW_OLD ~ 137

OVERFLOW TRACKING
ET FORINITIALIZATION
CIRCUIT RESETF

139

Y
OVERFLOW COUNT VALUE ~ 140

U.S. Patent ~ Jan.6,1998 Sheet 1 of 11 5,706,479

INCOMING OBJECT LAYERG LAYERT LAYERZ2 -~ LAYERS

TN
Inim B

INEW = 2.1 Z2=0.0 Z=1.0 =20 Z=2.1

INCOMING OBJECT LAYERG LAYERT LAYERZ2 LAYERS

TS
.
X

’""
%
&

¥
\ A

X
X
X

F i

>
&

*'
#:-t
*.-

F i

:"
@
bl

g OVERFLOW

A

F" W,
o,
| Ei'

L

ZNEW = 2.2 7=0.0 7=1.0 7=0.0 7=0 1

INCOMING OBJECT [AYERO LAYER1 LAYER2 LAYER3

OVERFLOW

ZNEW = 1.2 Z=0.0 Z=1.0 Z7=1.2

FIG. 1 (PRIOR ART)

. U.S. Patent Jan. 6,1998 Sheet 2 of 11 5,706,479

SEPARATE AND GROUP
OPAQUE AND
TRANSPARENT OBJECTS

3

SORT OPAQUE OBJECTS VIA
HIDDEN SURF REMOVAL
ALGORITHM AND SELECT
THE OPAQUE PIXEL
WITH SMALLEST Z
5

COMPOSITE BACK-TO-FRONT
TRANSPARENT PIXEL AND
OPAQUE PIXEL FORMING
COMPOGITED PIXEL
7

ARE
THERE TRANSPARENT
PIXELS LEFT?

N

. RETURN

FIG. 2 (PRIOR ART)

5,706,479

Sheet 3 of 11

Jan. 6, 1998

U.S. Patent

MHOMLIN
H3LNdWOD

J0IA0

JOVHOLS SSVYIN

Ok

d0554004dd

AHOWSN
JLLYLS

JOIAIC
ONId3dN4d

AHOWINW
NIVIA

S

GG _ _

H334ngH Y3 TI0HLINOD
AVIdSI

&€ DId

Gy
J0IA3d
AdQO QUVH

Ot
H3TIOH1INQD
HOSHNO

Ge
~0IA3Q LNdNI
OlIINNNYHATY

0t

30IA30
AV1dSId

US. Patent jan. 6, 1998 Sheet 4 of 11 5,706,479

ef
| PROCESSOR

67 . 000 67 ...

67

v

CLIST# LsT# | | LIST#N

RENDERING
PIPELINE #N

RENDERING
PIPELINE #1

RENDERING
PIPELINE #2

FIG. 4

U.S. Patent Jan. 6,1998 Sheet 5 of 11 5,706,479

FIG.5

U.S. Patent Jan. 6, 1998 Sheet 6 of 11 5,706,479

GEOMETRIC ENTITY DATA

LOCAL COORDINATE
GENERATOR
70

(GLOBAL PARAMETER

EQUATION FUNCTION TRANSFORMATION

MODULE
3

LOCAL PARAMETER
INTERPOLATOR
75

PARTITION BUFFER

17

SCAN OUT MODULE
L2

FIG. 6

US. Patent Jan.6,1998 Sheet 7 of 11 5,706,479

START SUBMITTING PIXEL
| DATA FOR OBJECTS IN A REGION
81

INITIALIZE REGION OVERFLOW COUNTER FOR COUNTING THE NUMBER
OF PIXEL STORAGE LOCATIONS IN THE Z-BUFFER THAT HAVE OVERFLOWED
83 |

[RECEIVE A SUBMITTED OBJECTS PIXEL DATA
ﬁ |

ATTEMPT TQ STORE THE OBJECT PIXEL DATA IN THE MULTI-LAYERED
| Z-BUFFER AT THE PIXEL STORAGE LOCATION FOR THE PIXEL IDENTIFIED
BY THE OBJECT'S PIXEL DATA

8/

IS THE PIXEL STORAGE LOCATION OVERFLOWED AFTER ATTEMPTING
TO STORE THE OBJECT PIXEL DATA IN IT?
' 93

NO

WAS THE PIXEL STORAGE LOCATION
OVERFLOWED PRIOR TO ATTEMPTING TO
STORE THE OBJECT PIXEL DATAINIT? IF
YES, THEN DECREMENT COUNTER BY 1
97

WAS THE PIXEL STORAGE LOCATION
OVERFLOWED PRIOR TO ATTEMPTING TO
| | STORE THE OBJECT PIXEL DATAIN IT? IF
NO, THEN INCREMENT COUNTER BY 1

o5 _

* |HAS THE LAST PIXEL DATA OF LAST OBJECT
FOR THE REGION BEEN SUBMITTED
101

NO

ES
S COUNTER VALUE 07
103
NO - YES
o | [composE INFINITE CURTAIN
o FOR OVERFLOWED PIXELS

FIG. 7

U.S. Patent Jan. 6, 1998 Sheet 8 of 11 - 5,706,479

FROM THE -
LOCAL PARAMETER INTERPOLATOR
(E.G., A SCAN CONVERTER)

NEW PIXEL DATA ~ 117 _
PIXEL RAM - 123

o7 NEW ~ 119
e OPAQUE NEW ~ 121 R PIXEL_INFO (X,Y) ~ 124
- . o - o OVERFLOW _OLD~125
o7 OLD ~ 127 -
* QPAQUE _OLD ~ 129

MEMORY

CONTROLLER

PIXEL LOCATION ADDR
' 131

PIXEL_INFO

o 1 Z_0LD
OVERFLOW_NEW OPAQUE OLD

GENERATOR
‘

| OVERFLOW_NEW ~ 133

F

Z-NEW '
OPAQUE NEW

INCREMENT AND DECREMENT
GENERATOR OVERFLOW_OLD - 137

135

INCREMENT DECREMENT
136 138

OVERFLOW TRACKING
CIRCUIT

.HESET FOR INITIALIZATION

139

OVERFLOW COUNT VALUE ~ 140

FIG. 8

U.S. Patent _ Jan. 6, 1998 " Sheet 9 of 11 - 5,706,479

INCREMENT AND DECREMENT 135
GENERATOR '

|
|
|
| OVERFLOW_OLD

137~ _ _ 136
INCREMENT

OVERFLOW_NEW

OVERFLOW_NEW

133~ {
|
a COUNTER
| | '
| |
137~ _ 438
E OVERELOW OLD | DECREMENT
| |
133 C | =
l
|

OVERFLOW
COUNT VALUE
140

FIG. 9

U.S. Patent Jan. 6, 1998 Sheet 10 of 11 5,706,479

GENEHATE OVERFLOW_NEW ~ 115

FROM BLOCK 87

Z_OLD AND Z_NEW

|

|

|

|

|

| | COMPARE
: 161

|

|

|

_ OVERFLOW _NEW=0
OVERFLOW_NEW=1 ' 173

SET) ey '
_ -_ | |OVERFLOW_NEW=1
_ - - 175

TOBLOCK95 OR 97

. il P T] []] . 3] T A ————— ———— " ———— sgle— el I

FIG. 10

‘US. Patent ~ Jan. 6, 1998 Sheet 11 of 11 5,706,479

| ' TRIANGLES 1

OVERFLOW LIST TRAVERSAL
191

|
|
|

" PLANE EQUATION
| " SETUP
|
l

|
|
|
|
|
193 |
|

I
|
|
|
|
|
|
|
\

ENHANCED
Cg\h{"g'll'JETI‘EH PCI EDGE TRAVERSAL

188 _ INTERFACE _ 195

130

PIXELS

PLANE EQUATION
EVALUATION
197

201
RHIDDEN SURFACE 16 X 16

- REMOVAL PIXEL
190 | RAM

VIDEO

| CSG AND SHADOW
213 _

L 203

OFF-CHIP

' . | .

MEMORY
(LOCAL OR
SYSTEM)
211

TEXTURE MAPPING
205 -

16 X16 e
TRANSPARENCY PIXEL

219 RAM

PIXEL SCAN OUT 219 TO
IMAGE BUFFER

5,706,479

1

METHOD AND APPARATUS FOR
DYNAMICALLY DETECTING OVERFLOW
OF A MULTI-LAYER BUFFER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computer
graphics, and particularly to a method and apparatus for
dynamically detecting overflow of a multi-layer buffer.

2. Description of the Related Art

10

Typically, computer graphic systems interactively repre-

sent a three-dimensional scene as a collection of three-
dimensional graphical primitives (i.e., three-dimensional
objects), which are defined in a three-dimensional world
coordinate system. These systems then transform, project,
and clip these three-dimensional graphical primitives from
their three-dimensional object database, in order to generate
a collection of two-dimensional geometric entities, which
are defined with respect to a display device coordinate
system (such as a two-dimensional screen space coordinate
system).
- Common two-dimensional geometric entities are charac-
ter strings, points, straight lines, curved lines, and filled
areas (such as polygons, circles, etc.). For instance, graphi-
cal primitives are commonly represented by polygon
meshes, which are sets of connected, polygonally bounded

planar surfaces (such as triangles or quadrilaterals). In

addition, for each geometric entity, the computer system
stores comresponding attributes that describe how the par-
ticular entity is to be displayed. Common attributes that are
stored by the computer system include color specifications,
line styles, and text styles.

Moreover, often a processor represents a two-dimensional
geometric entity by boundary and attribute defining data
(e.g., by a data structure which contains the coordinate and
attribute information for the vertices of the geometric
entity). The processor then supplies the boundary and
attribute defining data of a geometric entity to a rendering
pipeline, which generates the pixel data for all of the pixels
of a display device that are covered by the geometric entity.
The rendering pipeline then stores the generated pixel data
- in a frame buffer, where it resides until it is rasterized to
produce the two-dimensional geometric entity on a display
device (i.e., the two-dimensional geometric entity is formed
by using the stored pixel data in the frame buiier to manipu-
late pixels of the display device). This process of transform-
ing a collection of three-dimensional graphical objects into
two-dimensional displayed images is called rendering.
Literally, the rendering process takes three-dimensional
object information and converts it to two-dimensional pixel
representation of the object.

One attribute that computer graphic systems often store is
the depth (Z) value for each point of the geometric entities.
The Z-values represent the distance between the viewer and
the particular point of the geometric entity. For example,
small Z-values indicate that the geometric entity is close to
the observer, whereas large Z-values indicate that the geo-
metric entity is further away. Thus, Z-value data allows the
computer graphics system to determine if a first geometric
entity appears in front of or behind of a second geometric
entity.

There are four approaches in the prior art for storing
Z-values. The most common approach assumes that all of
the geometric entities are opaque, and theretore uses (1) a

single layer Z-buffer which stores one depth value for each

15

20

2D

30

33

45

S0

35

65

2

pixel of the display device, and (2) a frame buffer which
stores pixel color values. Under this approach, the Z-buffer
is initialized to the background, which represents the
Z-value at the back clipping plane, and the frame buffer is
initialized to the background color. The largest value that can
be stored in the Z-buffer represents the Z of the front
clipping plane. Also, under this approach, geometric entities
are scan-converted into the frame buffer in an arbitrary
order. Consequently, during the scan conversion process, if
the geometric entity point being scanned converted at (X,y)
is no farther (i.e., being at a distance which is less than or
equal to the distances of the other points) from the viewer
than is the point whose color and depth are cturently in the
buffers, then the new points’ color and depth replaces the old

values.

In other words, in these conventional Z-buffers, a Z-sort
operation is performed by comparing the Z-value of the
incoming data with the Z-value of the pre-existing data
stored in the frame buffer. If the incoming geometric entity
data is closer, the incoming color data replaces the pre-
existing data in the frame buffer, and the old Z-value in
Z-buffer is replaced by the new Z-value. Otherwise, the
incoming data is discarded. When there is no more incoming

data, the Z-sort is complete, and the contents of each frame

buffer location represents the ﬁnal color for that particular
pixel.

The second prior art approach does not assume that the
rendered geometric entities are all opaque and therefore
retains information about background entities that fall
behind a non-opaque front entity. More specifically, to avoid
the loss of data, some prior art Z-value storing systems
require that all of the non-opaque data be rendered after all
opaque data has been rendered and that the non-opaque data
be rendered in Z-sorted ordered (e.g., furthest to closest).

Any non-opaque geometric entity which is behind opaque
geometric entities in the frame buffer is discarded. The
remaining non-opaque geometric entities are composited
with the data in the frame buffer and the composite result is
stored in the frame buffer so that no requisite information is
lost. The composite result represents a combination of the
data from non-opaque geometric entities. For example, if a
non-opaque blue entity’s pixel data is composited with a
non-opaque red entity’s pixel data, the resulting composite
entity pixel data may appear mostly blue, mostly red, or
purple Since the compositing operation must be performed

-in a specific Z order, the non-opaque entities must be

arranged by Z-Depth (i.e., either closest to furthest or
furthest to closest) before being compared with the Z-value
of the data in the buffer.

Unfortunately, this method of rendering non-opaque enti-
ties has a number of shortcomings. Sorting the non-opaque
entities by Z-value is computationally expensive. Also, this
method does not render interpenetrating non-opaque entities
correctly; these must be explicitly tested for, and specially
processed, which further increases computation.
Consequently, performing the Z-sort process reduces the
amount of time left to actually draw the images which
detrimentally impacts the overall display process.

Like the second prior art approach, the third prior art

approach does not assume that the rendered geometric
entities are all opaque and therefore retains information
about background entities that fall behind non-opaque front
entitics. However, unlike the second prior art approach, the
third prior art approach uses a multi-layer buffer that accepts
non-sorted non-opaque data. |

These prior art multi-layer buffers have a pixel storage
location for each pixel of the display device. In addition, at

3,706,479

3

each pixel storage location, these buffers store up to N
Z-values and N color values for their corresponding pixels
(prior to compositing non-opaque data and performing the
scan conversion) in order to allow some number of the
closest non-opaque entities to be saved and then composited
later. Moreover, some of these multi-layer buffers utilize
only one buffer circuitry to store both the Z and the color
values for ecach pixel, whereas others utilize one buffer
circuitry to store the Z values and another to store the color
values per pixel.

Examples of computer graphics systems that utilize multi-
layer buffers are disclosed in the U.S. patent application for
a “Computer Graphics System Having High Performance
Multiple Layer Z-buffer,” Ser. No. 08/237,639, filed May 4,
1994 now U.S. Pat. No. 5,583,974 and assigned to Apple
Computer, Inc.; *Computer Graphics System Having High
Performance Multiple Layer Z-buffer,” Ser. No. 08/060,299,
filed May 10, 1993 now abandoned and assigned to Apple
Computer, Inc. As referenced in the above-noted
applications, these N-layer buffers are sometimes referred to
as multi-layer Z-buffers.

The third prior art approach is advantageous over the
second prior art approach in that it defers the compositing
operation until after all of the geometric entities’ data are
submitted to the Z-buffer for sorting, which in turn improves
performance by avoiding unnecessary compositing of enti-
ties’ pixel data which are later obscured by closer objects.
However, the manner by which this prior art approach
manages overflows is problematic. An overflow occurs
when a particular pixel storage location in the multi-layer
buffer cannot store all of the pixel data that it receives.

Several prior art schemes have been developed for man-
aging an overflowed multi-layer buffer. Under one approach,
after an overflow condition is detected, the N-stored pixel
data at the pixel storage locations that have overflowed are
composited. The composited results are then stored in the
first layer of the overflowed pixel storage locations of the
multi-layer buffer. Some prior art multi-layer buffer schemes
refer to the composited results as infinite curtains. These
prior art schemes refer to the composite results as infinite
curtains, because the composite operation theoretically
enables pixel data from infinite number of geometric entities
to be stored at a particular pixel storage location. This is
because a prior-composite result can always later be com-
posited again with the pixel data of other non-opaque
“entities that are stored in the particular pixel storage location
after the earlier composite operations. |

For example, it a second overflow is detected at a par-
ticular pixel storage location after a first overflow has caused
a first composite result to be generated and stored, a second
composite operation is performed in which the first com-
posite result and the pixel data of the later stored entities are
composited. Thus, this compositing scheme can be used to
store an infinite number of non-opaque objects in the multi-
layer buffer. After this compositing operation, all the objects
are re-submitted to the multi-layer buffer for storing.

This method of managing an overflow (by compositing an
infinite curtain and then re-submitting the geometric entities
to the buffer) is time consuming and therefore reduces the
overall system performance. Consequently, there is a need
for an overflow management method and apparatus, which
improves the overall system performance by reducing the
number of infinite curtain compositions and resubmissions.

More specifically, under the prior art approach, once an
overflow signal is asserted for the buffer, it is not negated

until (1) infinite curtains have been generated for the over-

5

10

15

20

25

30

35

40

45

50

33

65

4

flowed pixel storage locations, and (2) all the geometric
entities are resubmitted to the multi-layer buffer. After the
infinite curtain is generated the overflow signal is then
negated. FIGg. 1 shows an example of a prior art overflow
detection scheme for a four layer buffer. The first row of this
figure, depicts a pixel storage location that stores pixel data
for three non-opaque geometric entities, at 7Z=0.0, 1.0, and
2.0. This pixel storage location receives pixel data for a
geometric entity with Z=2.1, and places this pixel data in its
fourth layer. At this point all of the layers of the pixel storage
location are populated. The second row of FIG. 1 shows the
pixel storage location receiving pixel data for a new non-
opaque geometric entity with Z=2.2. This pixel data causes
the pixel storage location to overflow, and thereby causes an
overflow signal to be asserted.

As mentioned before, in response to this asserted over-
flow signal, a prior art multi-layer buffer composites infinite
curtains and resubmits the geometric entities to the buffer
urespective of whether the pixel storage location overflow is
later rendered non-consequential. More specifically, some-
times the composition of the infinite curtain and the resub-
mission of the geometric entities are completely unneces-
sary. For example, as shown in the third row of FIG. 1, if
after an overflow signal has been asserted, an opaque object
1s received and is stored in one of the layers of the over-
flowed pixel storage location, the overflow is rendered
non-consequential because the pixel data from the opaque
geometric entity obscures the pixel data from the geometric
entities that fall behind it. In other words, the third row of
FI1G. 1 shows the overflowed pixel storage location receiv-
ing pixel data for a sixth geometric entity with Z=1.2.
Consequently, as this sixth entity is opaque and as it is
placed in the third layer of the buffer, this opaque object
obscures the pixel data for the background entities with
Z=2.0, 2.1, and 2.2, and thereby effectively eliminates the
need for maintaining the pixel data for these background
geometric entities.

The fourth prior art approach that combines several of the
previously discussed approaches has the steps as illustrated
in FIG. 2. This prior art approach first separates and groups
the opaque and transparent objects (block 3). Next, it sorts
the opaque objects first via a hidden surface removal
algorithm, which is well known in the art, and selects the
opaque pixel with the smallest Z-value (block §). The prior
art method then composites back-to-front the transparent
pixel and the opaque pixel forming a composited pixel
(block 7). It continues compositing back-to-front until there
are no transparent pixels left (blocks 7 and 9). For an
example of this prior art method please see the article
entitled “Transparency and Antiliasing Algorithm Imple-
mented with a Virtual Pixel Maps Technique” by Abraham
Mammen in the Institute of Electronic and Electrical Engi-
neers (IEEE) July 1989 issue of Computer Graphics and
Applications.

There are numerous disadvantages to this approach. First,
since this technique implements a back-to-front
compositing, this method cannot incorporate a Constructive
Solid Geometry (CSG) algorithm, which is known in the art.
Furthermore, this method cannot incorporate shadow vol-
ume rendering algorithms. Last, this technique is inflexible
in that it requires a sorting and separating of the opaque
pixels from the transparent pixels at the very beginning of
the process which is difficult. Moreover, this method pre-
cludes the dynamic evaluation of an overflow status that is
inherent in the present invention.

Unfortunately, in these prior art designs it is not possible
to negate the overflow signal once it has been asserted.

5,706,479

S

Consequently, infinite curtain composition operations have
to be performed. In addition, after the infinite curtain com-

posite operations are performed, the overflow signal is

reinitialized (negated) and all of the geometric entities are
resubmitted for storing in the buffer. Therefore, there is a
need for an overflow management method and apparatus,
which improves the overall system performance by elimi-
nating unnecessary composition and resubmission opera-
tions. |

SUMMARY OF THE INVENTION

For a computer graphics system that has a display device
~and a multi-layer buffer, the present invention provides a
method and apparatus for dynamically detecting overflow of
the buffer. The multi-layer buffer has one pixel data storage
location for each pixel of the display device, where the pixel
data storage location stores more than one object’s pixel data
for its pixel. One embodiment of the present invention’s

method starts by initializing an overfiow count value to zero,

where the overflow count value indicates the number of
-~ overflowed storage locations for the pixels of the region of
the display device that the buffer stores object pixel data for.
This method then (1) receives a submitted object’s pixel
data, (2) attempts to store this object’s pixel data in the
multi-layered buffer at a pixel data storage for the pixel
identified by the object’s pixel data, and (3) increments the
count value in the first direction, if the pixel storage location
was not overflowed prior to the attempt to store the object’s
pixel data but is overflowed after the attempt, and (4)
decrements the count value in a second direction if the pixel
storage location was overflowed prior to the attempt but is
not overflowed after the attempt.

BRIEF DESCRIPTION OF THE DRAWINGS

The _object's, features, and advantages of the present

invention will be apparent from the following description, in’

which:

FIG. 1 illustrates an example of a prior art overflow
detection scheme for a four layer buffer;

FIG. 2 illustrates the flow steps of a prior art approach to

handling overflows;

FIG. 3 illustrates a computer system in which the present
invention may be implemented;

FIG. 4 presents one embodiment of the rendering archi-
tecture of the present invention;

FIG. S illustrates a geometric entity that is displayed on a
display device that is partitioned into four regions;

FIG. 6 illustrates one embodiment of the rendering pipe-
line of FIG. 4;

FIG. 7 illustrates a flowchart of the steps of the present
invention;

FIG. 8 illustrates the hardware components of the present'

invention;
FIG. 9 illustrates in further detail the Overflow_New
gencrator and the Increment and Decrement generator;

FIG. 10 illustrates in greater detail how the present

invention determines the Overflow_ New value:

FIG. 11 illustrates an exemplary system in which the
present in invention may be implemented.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention provides a method and apparatus
for dynamically detecting overfiow of a multi-layer buffer.

10

15

20

23

30

35

45

50

55

65

6

In the following description, numerous details are set forth
in order to provide a thorough understanding of the present

invention. However, it will be understood by one of ordinary
skill in the art that these specific details are not required in

order to practice the invention. In other instances, well-
known electrical structures and circuits are shown in block
diagram form in order not to obscure the present invention
with unnecessary detail.

For purpose of explanation, FIG. 3 presents a computer

system upon which one embodiment of the present invention
is implemented. However, one of ordinary skill in the art

~will appreciate that any other type of configuration for a

computer system may be used in conjunction with the
present invention. Computer system 11 includes a bus or
other communication means 13 for communicating infor-
mation. A processor 10 couples with bus 13 for processing
digital data. Computer system 11 further includes a random
access memory (RAM) or some other dynamic storage
device 15 (referred to in FIG. 3 as main memory), which
also couples to bus 13. Main memory 15 stores digital data
and program instructions for execution by processor 10.
Main memory 15 also may be used for storing temporary
variables or other intermediate information during execution
by processor 10. Computer system 11 also includes static
storage device 20 (such as a read only memory (ROM))
coupled to bus 13 for storing static information and instruc-
tions for processor 10. In addition, mass data storage device
25, such as magnetic disk or an optical disk and its corre-
sponding disk drive, may also be included.

Alphanumeric input device 35 (e.g., a keyboard) may also
be coupled to bus 13 for communicating information and
command selections to processor 10. An additional user

input device which may be included in computer system. 11

is cursor controller 40. Input device 40 may take many
different forms such as a mouse, a trackball, a stylus tablet,
a touchpad, etc. Computer system 11 may also have external
hard copy device 45, which may be used for printing a hard
COpy On paper.

Computer system 11 further includes a display device 30,
such as a cathode ray tube (CRT) or a liquid crystal display
(LCD), for displaying information to a computer user.
Display device 30 couples to bus 13 via flame buffer S0 and
display controller 35. Display controller 53 serves as an
interface between computer system 11 and display device
30. Furthermore, frame buffer S stores the pixel data for
driving the display device 30. This stored pixel data 1s
generated by rendering device 60, also known as a graphics
accelerator. As further discussed below, at the end of the
rendering process, rendering device 60 outputs a high band-
width pixel stream to frame buffer 50. The information that
rendering device supplies to the frame buffer typically
consists of pixel data of images or scan lines that are
rendered.

- For purpose of explanation, a brief general description of
one embodiment of rendering device 69 is provided below

by reference to FIG. 4. As shown in this figure, one

embodiment of rendering 60 utilizes a screen partitioning
rendering scheme which allows performance to be improved
(1) by enabling simultaneous rendering of several different
partitioned regions of the screen, and/or (2) by allowing a
smaller (and therefore faster and cheaper) memory than a
system frame buffer to be used for storing each region’s
pixels while rendering occurs. More specifically, under this
approach, the rendering process begins when the processor
or a dedicated graphics accelerator 65 transforms, projects,
and clips three-dimensional graphical primitives (defined in
a three-dimensional world coordinate system) from its three-

3,706,479

7

dimensional object database, in order to obtain a collection
of two-dimensional geometric entities (defined in a display
device coordinate system, such as a two-dimensional screen
space coordinate system) that represent the primitives on the
display device.

Moreover, in one embodiment of the invention, the pro-
cessor represents a two-dimensional geomefric entity by
boundary and attribute defining data (e.g., by a data structure
which contains a coordinate and attribute information for the
vertices of the geometric entity). Furthermore, in one
embodiment of the invention, the two-dimensional geomet-
ric entity is a triangle which is represented by three coor-
dinate points, where each of the coordinate points have one
or more parameter values which must be interpolated across
the triangle. The segments which interconnect the three
coordinate points define the bounds of a triangle. In another
embodiment of the present invention, the two-dimensional
polygon is a quadrilateral, which is defined similarly to a
triangle except that it will be defined by four coordinate
points (and four corresponding sets of parameter values). In
one embodiment of the present invention, a quadrilateral
may be provided to the rendering device but it would be
converted into a pair of triangles for rendering (each utiliz-
ing three of the four coordinate points).

The processor then supplies the boundary and attribute
defining data of a geometric entity to a rendering pipeline,
which generates the pixel data for all of the pixels that are
covered by the geometric entity in a particular region. More
specifically, as further shown in FIG. 4, after processor 65
transforms, projects, calculates parameter values, and clips
three-dimensional graphical primitives to obtain two-
dimensional geometric entities, the processor uses known
partitioning schemes (such as those disclosed in “The Pixel
Machine: A Parallel Image Computer,” ACM Computer
Graphics, Vol. 23, No 3, p 69-78) to determine which
partitioned region of the display device the geometric enti-
ties intersect. For example, as shown in FIG. 5§, if the
computer graphics systems partitions a display screen into
four regions and processor 65 transforms, projects, and clips
a three-dimensional graphical primitive to obtain geometric
entity 66, the partitioning mechanism of the processor
determines that geometric entity 66 covers a first set of
pixels 68 in the third region and a second set of pixels 72 in
the fourth region. After the processor determines which
partitioned regions of the display device the geometric
entities intersect, the processor inserts into each region’s
geometric entity list data pertaining to the geometric entity
that intersects the particular region.

Triangles which cross more than one partition are added
to all affected partition’s geometry lists. These geometric
entity lists are then stored in one or more rendering pipeline
list databases. The geometric entities stored in each render-
ing pipeline list database are then rendered by one rendering
pipeline. Once all the geometric entities for all of the
three-dimensional graphical primitives have been processed
and placed in their respective partition lists, the rendering
pipelines begin processing those lists to render the parti-
tions. For example, as shown in FIG. 4, more than one
rendering pipeline 69,—69,; is used in the rendering process
when more than one rendering pipeline list database
67,67, are used to store the region geometric entity lists.
Although it is possible for only a single rendering pipeline
to be used to render the partitions one-by-one, two or more
pipelines are used to increase performance.

In this manner, the embodiment of rendering device 60
that is set forth in FIG. 4 partitions the two-dimensional

screen space 1nto a number of regions and then renders the

10

15

20

25

30

35

40

45

50

35

65

8

regions by using more than one rendering pipeline. For
purpose of explanation, a description of one embodiment of

a rendering pipeline 69 is provided below by reference to
FIG. 6. More detailed explanations of the operation of some
of the modules of rendering pipeline 65, and of some of the
additional features that can be incorporated in this rendering
pipeline (such as parameter interpolation shadow plane tests,
and alpha blending), can be found in the U.S. patent appli-
cations entitled: “Computer Graphics System Having High
Performance Multiple Layer Z-Buffer,” Ser. No. 08/237.639,
filed May 4, 1994 now U.S. Pat. No. 5,583,974 and assigned
to Apple Computer, Inc.; “Computer Graphics System Hav-
ing High Performance Multiple Layer Z-Buffer,” Ser. No.
08/060,299, filed May 10, 1993 now abandoned and
assigned to Apple Computer, Inc.; “Method And Apparatus
For Distributed Interpolation Of Pixel Shading Parameter
Values,” Ser. No. 07/812,563, filed Dec. 20, 1991 and
assigned to Apple Computer, Inc.; “Method And Apparatus
For Simultaneously Rendering Multiple Scanlines,” Ser. No.
07/811,570, filed Dec. 20, 1991 now U.S. Pat. No. 5,307,449
and assigned to Apple Computer, Inc.; “A Scanline Render-
ing Device For Generating Pixel Values For Displaying
Three-Dimensional Graphical Images,” Ser. No. 08/359,
953, filed Dec. 19, 1994 now U.S. Pat. No, 5.517,603 and
assigned to Apple Computer, Inc.; “Method And Apparatus
For Approximating A Signed Value Between Two Endpoint
Values In A Three-Dimensional Image Rendering Device,”
Ser. No. 08/051.473 filed Apr. 22, 1993 now U.S. Pat. No.
5,402,533 and assigned to Apple Computer, Inc.; and, in
U.S. Pat. No. 5,345.541, entitled “Method And Apparatus
For Approximating A Value Between Two Endpoint Values
In A Three-Dimensional Image Rendering Device,” filed
Dec. 20, 1991 and assigned to Apple Computer, Inc.
Furthermore, it is to be understood that alternative rendering
pipelines can be employed in conjunction with the teachings
of the present invention.

As shown in FIG. 6, the first module of rendering pipeline
65 is a local coordinate generator 70. This local coordinate
generator (1) obtains the global boundary defining data (e.g.,
the vertex coordinates defined relative to the display device
coordinate system) of the geometric entity that intersects a
region that it renders, and (2) generates the local positional
data (the x and y coordinates defined relative to the local
coordinate system of the region that the pipeline renders) of
the vertices of the geometric entity. For example, one
embodiment of local coordinate generator 70 generates the
local coordinates of the vertices of the geometric entity by
using the following equations:

Xz .p—global coordinate of the left edge of partition;
x'=local coordinates for the horizontal component=x—x; 4;

Y ny—global coordinate of the top edge of partition
y=local coordinates for the vertical component=y—yg,,,.

From these local coordinates for the vertices of the geomet-
ric entities, the local coordinate generator also generates the
remaining coordinates of the pixels in the rendered region
that are covered by the geometric entity, by using one of the
numerous prior art methods for deriving coordinates for the
covered pixels of a partition from the vertex data (such as the
direct evaluation of the line equations for the triangle edges
for each scanline in the partition). Another example of
general polygon scan-conversion methods that use vertex
data to determine which pixels are covered by a geometric
entity is “Computer Graphics, Principles and Practice, 2nd
Edition,” Foley, Van Dam, Feiner, and Hughes, Addison
Wesley, pgs. 92-95.

5.706.479

9

Furthermore, as shown in FIG. 6, rendering pipeline 63
has a function transformation module 73 for calculating the
parameter values for every pixel in the rendered region that
are covered by the geometric entity. Numerous prior art
parameter interpolation modules can be used as the function
transformation module 73. In addition, another example of
- the local function transformation module 73 is disclosed in
the U.S. patent application entitled “METHOD AND APPA-
RATUS FOR DIRECTLY EVALUATING A PARAMETER
INTERPOLATION FUNCTION USED IN RENDERING
IMAGES IN A GRAPHICS SYSTEM THAT USES
SCREEN PARTTITONING”, Ser. No. 08/492,923 and
assigned to Apple Computers, Inc.

‘The local parameter interpolator 75 then submits all of the
generated pixel data (that the local coordinate interpolator
and local parameter interpolator ganerated) to a buffer
circuitry for storing.

This buffer circuitry may include a multi-layer buffer, a
number of logic circuits, and a number of counters. The
multi-layer buffer includes a pixel storage location for each
pixel of the display device. Each pixel storage location can
store pixel data for N geometric entities.

During each attempt to store a pixel data in a pixel storage
location, the logic circuitry for the corresponding region
~ detects whether this attempt has caused the pixel storage
location to overflow or has effectively eliminated the over-
flow signal.

As further shown in FIG. 6, after the local parameter
interpolator 735 directly calculates the parameter values for
all of the pixels of the geometric entity that fall into the
‘rendered region, partition buffer 77 is then used to collect the
final values of the pixels for the partition being processed.
Once all the objects in the partition have been processed, the
contents of the partition buffer are transferred to the system
frame buffer via scan out module 79. In other words, scan
out module is used to transfer to the system frame buffer the
contents of the partition buffer. It should be noted that for an
 alternative embodiment of rendering pipeline 63, the output
of local parameter interpolator 75 is not supplied to partition
buffer 77 but rather is supplied to a pixel buffer. The
parameter values can then later be obtained from the pixel
buffer in order to perform additional calculations with them.

FIG. 7 iliustrates a flowchart of the method of the present
invention. The method of dynamically detecting buffer over-
flows includes the step of initializing an overflow count
value to a predetermined value 83. The method of the
present invention also includes the step of receiving a
submitted pixel data for a geometric entity to a multi-layer
buffer 85. Attempting to store the geometric entity’s pixel
data in the buffer at a pixel storage location for the pixel,
identified by the geometric entity’s pixel data, is embodied
in step 37.

It the pixel storage location was not overflowed prior to
this attempt, but is overtlowed after the attempt, then incre-
ment in the count value in a first direction by a predeter-
mined unit 95, If the pixel storage location was overflowed
prior to said attempt, but is not overflowed after the attempt,
decrement the count value by a predetermined unit in a
direction opposite to the first direction 97. Repeating blocks
85 through 97 until all geometric entities’ pixel data in a
region have been submitted for storing in the multi-layer

buiter.

If the overflow count value differs from a predetenmned
value 103, which equals the initial value, then for each pixel
storage location that is overflowed, composite the pixel data
for the N geometric entity stored at the overflowed pixel
storage location into a composite pixel data and storing said

10

15

20

25

30

35

10

composite pixel as a replacement for said pixel data for said
N geometric entity stored at the overflowed pixel storage
location 105. Then, resubmitting all the geometric entities
for storing in the multi-layer buffer and repeating blocks 83
through 105. The details of block 93 will be illustrated
hereinafter with respect to FIG. 10.

FIG. 8 illustrates the circuitry components of the present
invention. The present invention includes an Overflow__
New Generator 115 for generating and providing an
Overflow__New signal 133. The Overflow__New (Generator
115 receives New Pixel Data 117 for a particular pixel
storage location (e.g., representing a pixel) from the Local
Parameter Interpolator 75 of FIG. 6 (e.g., a scan connecter
for converting triangle information to pixel information) and
Old Pixel Data in the form of Pixel_ Info (x.y), where (X.¥)
defines a pixel on a display screen. Pixel Info (x,y) is
provided by pixel RAM 123 through Memory Controller
131. The New Pixel Data 117 includes Z_ New 119, which
stores the Z value of a New Pixel Data and also Opaque__
New 121, which may be a flag that indicates whether or not
this pixel data is opaque or transparent. Pixel__Info (x,y) 124
includes an Overflow__Old value 125, a 7. Old value 127
and an Opaque_ Old flag 129 for a particular pixel at the
location (X,y). The Overflow__New Generator 115 receives
Pixel Info (X,y) 124 from Pixel RAM 123 each time the
pixel location address, which is provided by the Local
Parameter Interpolator 75 of FIG. 6. The Memory Controller
131 selects which layer, if there is more than one layer. The
critical signal that is provided Overflow__New Generator
115 from pixel RAM 123 is an Overflow__0Old signal 137.
This signal is also provided to a Increment and Decrement
Generator 135. This Increment and Decrement Signal Gen-
erator 135 is also coupled to the Overflow_ New Generator
115 and receives an Overflow_ New signal 133 from the
Overflow__New Generator 115.

The Increment and Decrement Generator 135 prowdes an
Increment signal 136 and a Decrement signal 138 to an
Overflow Tracking Circuit 139. The Overflow Tracking
Circuit 139 maintains an overflow count value 140 (i.e., the
number of overflows of a particular pixel or group of pixels).
An overflow count value 140 may be maintained for one

-~ pixel or a plurality of pixels (e.g., a region on a screen of a

45

50

35

65

display device). The Increment and Decrement Signal Gen-
erator 135 and the Overflow Tracking Circuit 139 will be
described in greater detail hereinafter with respect to FIG. 9.
How an Overflow__New signal 133 is generated by the
Overflow New Generator 115 will be descnbed with respect
to FIG. 10 hereinafter.

FIG. 9 illustrates the Increment and Decrement Signal
Generator 135. This Increment and Decrement Generator

- 135, in one embodiment, includes a first AND gate 145 and

a second AND gate 147. The first AND gate 145 is provided
the Overflow__New Signal 133 and an inverted Overflow__
Old signal 137 and provides the Increment signal 136 to the
Overflow Tracking Circuitry 139. Similarly, the second
AND gate 147 is provided an inverted Overflow_New
signal 133 and the Overflow__Old signal 137 and provides
the Decrement signal 138 to the Overflow Tracking Circuit
139.

The Overflow Tracking Circuitry 139 may be imple-
mented as a counter 143 that receives the Increment signal
136 and the Decrement signal 138. Upon receiving an
Increment signal 136, the counter 143 increments the current
value of the counter; similarly, when the counter 143
receives a Decrement signal 138, the counter 143 decreases
the current count value. These counters are well known in
the art

5,706,479

11

An overflow count value 140 is stored for each partition,
so that at the end of the compositing phase, the present
invention provides a number of overflows per partition. An
Overflow__Old value is stored for each pixel storage loca-
tion. ,

FIG. 10 illustrates the specific steps that are carried out by
the Overflow_ New Generator 115. First, the QOverflow
New generator 115 compares 7 Old 127 and Z_ New 119
(step 161). Next, a determination is made whether Z_ New
is less than Z_ Old (decision block 163). If this conditional
1s true, (i.e., the new pixel data is in front of the old pixel
data) then a second determination is made of whether the
new pixel data is opaque (i.e., is Opaque_ New 121 set?)
(decision block 165). If the new pixel is opaque, then the
Overflow__New Generator 115 de-asserts the Overflow
New 133 Signal (block 167). If the new pixel is not opaque,
then the Overflow__New Generator 115 asserts the
Overflow_ New signal (block 165).

If Z_ New 119 is equal to or greater than Z__Old 127 (i.e.,
the old data pixel is in front of the new pixel) then a
determination is made on whether the old pixel is opaque
(decision block 171). If the old pixel is opaque (i.e., if
Opaque__Old 129 is set), then the Overflow_New 133
generator 115 de-asserts Overflow__New 133 signal (block
173). However, if the old pixel is not opaque (i.e., Opaque__
Old 129 is not set), Overflow__New Generator 115 sets the
Overflow__New 133 signal (block 175).

The above-described steps are accurate for the first pass
(1.e., when there is no infinite curtain layer). When an infinite
curtain layer is present, the new Z value must be greater than
the infinite curtain Z value. If not, the new pixel data is
automatically discarded.

FIG. 11 illustrates the exemplary computer system in
which the present invention may be implemented. The
computer system 188 1s coupled to an enhanced PCI inter-
face 190. The enhanced PCI Interface 190 is coupled to
circuitry for implementing List Traversal 191, circuitry for
Plane Equation Set-up 193, and circuitry for implementing
equations for Edge Traversal 195,

The Edge Traversal Circuitry 195 is further coupled to
circuitry for implementing Plain Equation Evaluation 197
that is in turn coupled to circuitry for implementing Hidden
Surface Removal algorithms 199. The Hidden Removal
Circuitry 199 is further coupled to a memory, which may be
implemented by a 16x16 pixel RAM 210. The Hidden
Surface Removal Circuitry 199 is further coupled to cir-
cuitry for implementing CSG and Shadow techniques 203,
that is in turn coupled to circuitry for Texture Mapping 205.
The Texture Mapping circuitry 205 is further coupled to an
off-chip memory 211 that receives video input 213. The
Texture Mapping circuitry 203 is further coupled to circuitry
for processing transparency 215, which is coupled to a
memory (which may implemented with a 16x16 pixel RAM
217). The Transparency circuitry 215 also produces a pixel
scan out 219 to image buffer 219 through the enhanced PCI
interface 190. The Transparency circuitry 215 also produces
an overflow signal which is provided to the circuitry for
traversal 191.

The present invention may be implemented in the Trans-
parency circuitry 2135 in order to provide an overflow signal
to the List Transversal circuitry 191.

It 1s very efficient to evaluate the buffer overflow using a
counter because only one pixel can overflow during a clock
cycle. If multiple pixels could overflow a more conventional
logical “or” tree would be used to evaluate the buffer
overflow. The inputs to the tree are an overflow signal
(overflow-old) for each pixel in the buffer, essentially a one

bit counter per pixel.

10

15

20

25

30

33

45

50

55

65

12

In addition to determining when an overflow has occurred
for any pixel in the buffer, it can be useful to determine
which specific pixel or pixels caused the overflow. Often the
pixels which overflow are concentrated in a specific region
of the buffer, so it 1s possible to only resubmit objects in that
region of the butter instead of all of the objects in the buffer.

In FIG. 5 the buffer is divided into 4 equal regions as
shown. Just as there is an overflow counter for the buffer,
there is also an overflow counter for each of the 4 regions.
A region can vary in size from a few pixels to nearly the
entire buffer, and the regions do not have to be uniform in
size or dimension. As in the case of the buffer overflow
counter, the region overflow counter must match the reso-
Intion of the buffer.

One of ordinary skill in the art would recognize that the
above-described invention may be embodied in other spe-
cific forms without departing from the spirit or the essential
characteristics of the disclosure. Thus, while certain exem-
plary embodiments have been described and shown in the
accompanying drawings, the invention is not to be limited
by the foregoing illustrative details but rather is to be defined
by the appended claims.

What is claimed is:

1. For a computer graphics system having a display device
and a multi-layer buffer, said display device having at least
one region, said region having a plurality of pixels for
displaying geometric entities, said buffer having a pixel data
storage location for each pixel of said region, each pixel data
storage location for storing more than one geometric entity’s
pixel data for its pixel, a method of dynamically detecting
bufter overflows, said method comprising the steps of:

(a) initializing an overflow count value to a predetermined
value, said overflow count value indicating number of
overflowed pixel storage locations;

(b) submitting pixel data for a geometric entity to said
multi-layer buffer;

(c¢) attempting to store said geometric entity’s pixel data
1n said buffer at a pixel storage location for the pixel
identified by said geometric entity’s pixel data;

(d) if said pixel storage location was not overflowed prior
to said attempt but is overflowed after said attempt,
incrementing in a first direction said count value by a
predetermined unit;

(e) if said pixel storage location was overflowed prior to
said attempt but is not overflowed after said attempt,
decrementing in a second direction opposite said first
direction said count value by said predetermined unit;

(f) repeating steps (b) through (e) until all geometric
entities’ pixel data in said region have been submitted
for storing in said multi-layer buffer.

2. The method of claim 1 further comprising the steps of:

if said overflow count value differs from said predeter-
mined value,

(g) for each pixel storage location that is overflowed,
compositing the pixel data for the N geometric entities
stored at the overflowed pixel storage location into a
composite pixel data and storing said composite pixel
data as a replacement for said pixel data for said N
geometric entities stored at the overflowed pixel stor-
age location

(h) resubmitting all said geometric entities for storing in
said multi-layer buffer and repeating steps (a) through

(1).
3. The method as set forth in claim 1 further comprising

the steps of:

a) generating an increment signal based upon the first and
second overflow signals; and

5.706.479

13

b) generating a decrement signal based upon th& first and
second overflow signals.

4. The method as set forth in claim 3 wherein the step of

generating the decrement signal further includes the steps of

a) inverting the second overflow signal; and

b) performing a logical AND operation on the first over-
flow signal and the inverted second overflow signal;
wherein the step of generating the mcremcnt signal further
includes the steps of

a) inverting the first overflow signal; and

b) performing a logical AND operation on the inverted

first overflow signal and the second overflow signal.

S. The method as set forth in claim 3 further comprising
the steps of maintaining an overflow count in response to the
increment and decrement signals.

6. For a computer graphics system having a display device
and a multi-layer buffer, said display device having a first
region, said first region having a plurality of sub regions,
said first region having a plurality of pixels for displaying
geometric entities, said buffer having a pixel data storage
location for each pixel of said first region, each pixel data
storage location for storing more than one geometric entity’s

pixel data for its pixel, a method of dynamically detecting
buffer overflows, said method comprising the steps of:

(a) initializing a first region overflow count value and a
plurality of sub region count values to a predetermined
value, wherein said first region overflow count value
indicates number of overflowed pixel storage locations
for all pixels of said first region, and each of said sub
region count value indicates number of overflowed
pixel storage locations for all of its pixels

(b) submitting pixel data for a geometric entity to said
multi-layer buffer;

(c) attempting to store said geometric entity’s pixel data

5

10

15 -

20

23

30

35

in said buffer at a pixel storage location for the pixel -

identified by said geometric entity’s pixel data;

(d) if said pixel storage location was not overflowed prior
to said attempt but is overflowed after said attempt,
incrementing by one (i) said first region count value,
and (i1) the sub region count value for the sub region in
which said identified pixel is in; | |

(e) if said pixel storage location was overflowed prior to
said attempt but is not overflowed after said attempt,
decrementing by one (i) said first region count value,
and (1i) the sub region count value for the sub region in
which said identified pixel is in;

(f) repeating steps (b) through (e) until all geometﬁc
entities’ pixel data have been submitted for storing in

said buffer.
7. The method of claim 6 further comprising the steps of:

(g) if said first region overflow count value is greater than
zero, identifying the sub region overflow count values
that are greater than zero;

for each sub region whose corresponding local overflow
count value 1s greater than zero:

(h) for each pixel storage location that is overflowed,
compositing the pixel data for the N geometric entities
stored at the overflowed pixel storage location into a
composite pixel data and storing said composite pixel
data as a replacement for said pixel data for said N
geometric entities stored at the overflowed pixel stor-
age location

(i) resubmitting all said geomeftric entities for storing in
said multi-layer buffer and repeating steps (a) through
(£).

45

14

8. A method for dynamically removing an overflow for a
pixel storage location, said pixel storage location including
a predetermined number of pixel data, said method com-
prising the steps of:

a) receiving a first Z value and a first opaque signal, said

- first Z value and said first signal associated with a first
pixel data, said first opaque signal indicating whether
the first pixel data is opaque or transparent;

b) receiving a second Z value and a second opaque signal,
said second Z value and second opaque signal being
associated with a second pixel data, said second opaque
signal indicating whether the second pixel data is
opaque or transparent; -

c) further receiving a second overflow signal associated
with the second pixel data;

d) dynamically clearing the second overflow signal based
upon the first Z value, the first opaque signal, the
second Z value and the second opaque signal; and

¢) assigning the first Z value and the first opaque signal
with the second Z value and the second opaque signal,
respectively, and assigning a first overflow signal with
the second overflow signal.

9. The method as set forth in claim 8 wherein the step of

dynamically clearing the second overflow signal further
comprises the steps of:

a) comparing the first Z value with the second Z value;

b) it the first Z value is greater than or equal to the second
- Z value then determining if the first opaque signal is
asserted, |
i) if the first opaque signal is asserted, then asserting the
second overflow signal,
ii) else asserting the second overflow signal;

¢) if the first Z value 1s less than the second Z value, then
determining if the second opaque signal is asserted;
i) if the second opaque signal is asserted, then asserting
the second overflow signal,

ii) else asserting the second overflow 51gnal

10. The method as set forth in claim 8 further comprising
the steps of:

a) incrementing an overflow count upon a first predeter-
mined condition; and

b) decrementing the overflow count upon a second pre-
determined condition.
11. The method as set forth in claim 10 wherein the first

predetermined condition is when the first overflow signal is

50

35

60

65

de-asserted and the second overflow signal is asserted; and

wherein the second predetermined condition is when the
first overflow signal is asserted and the second overflow
signal is de-asserted.
12. The method as set forth in claim 8 further comprising
the steps of:

a) asserting the second overflow signal upon a first
predetermined condition, and

b) clearing the second overflow signal upon a second
predetermined condition.

13. The method as set forth in claim 12 wherein the first
predetermined condition is at least one of the following:

when the first Z value is greater than the second Z value,
- and the second opaque signal is de-asserted; and

when the first Z value is greater that or equal to the second
Z. value, and the first opaque signal is de-asserted.
14. The method as set forth in claim 12 wherein the
second predetermined condition is at least one of the fol-
lowing: |

5,706,479

15

when the first Z value is greater than the second Z value,
and the second opaque signal is asserted; and

when the first Z value is less than or equal to the second
Z value, and the first opaque signal is asserted.

15. A computer graphics system having a pixel storage
location. said pixel storage location including a pixel data,
said computer graphics system comprising:

a) means for providing a first Z value and a first opaque
signal, said first Z value and said first signal associated
with a first pixel data, said first opaque signal indicating
whether the first pixel data is opaque or transparent;

b) means for providing a second Z value and a second
opaque signal, and a second overflow signal, said
second Z value and, second opaque signal, and second
overflow signal being associated with a second pixel
data, said second opaque signal indicating whether the
second pixel data is opaque or transparent; and

¢) means coupled to the first and second providing means
for dynamically maintaining the second overflow sig-

nal.
16. The computer graphics system as set forth in claim 15
wherein the means for dynamically maintaining the second

overflow signal includes

a) a first comparator for comparing the first Z value with
the second Z value;

b) first means coupled to the first comparator for deter-
mining whether the second opaque signal is asserted;

¢) second means, coupled to first comparator for deter-
mining; whether the first opaque signal is asserted; and

d) means coupled to the first determining means for
dynamically asserting the second overflow signal based
upon the first Z value, the first opaque signal, the
second Z value, and the second opaque signal.

10

15

20

25

30

16

17. The computer graphics system as set forth in claim 16
further comprising:

a) means coupled to the first determining means for
dynamically asserting the second overflow signal based
upon the first Z value, the first opaque signal, the
second Z value, and the second opaque signal.

18. The computer graphics system as set forth in claim 15
further comprising an overflow tracking circuitry coupled to
the means for dynamically maintaining the second overflow
signal, said overflow tracking circuitry maintaining a count
of the number of overflows for the pixel storage location.

19. The computer graphics system as set forth in claim 18
further comprising means for generating at least one of an
increment signal and a decrement signal to the overflow
tracking circuitry, wherein the increment and decrement
signals are generated in response to the first overflow signal

and the second overflow signal.

20. The computer graphics system as set forth in claim 19
whereln the means for generating an increment and decre-
ment signal includes

a) a first AND gate for receiving an inverted first overflow
signal and a second overflow signal and providing the
increment signal, and

b) a second AND gate receiving a first overflow signal and
an inverted second overflow signal and providing the
decrement signal,

wherein the increment and decrement generator means is
coupled to the overflow tracking circuitry.
21. The computer graphics system as set forth in claim 18
wherein the overflow tracking circuitry is an up-down
counter.

	Front Page
	Drawings
	Specification
	Claims

