United States Patent (9

Lai et al.

[54]

[75]

[73]

[21]
[22]

[S51]
[52]

[58]

[56]

TRANSACTION PROCESSING SYSTEM AND
METHOD

Inventors: Robert Shiwen Lai, San Jose, Calif.;
Robert Daniel Millar, Farcham,
England; Harry Otto Radke, San Jose,
Calif.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 210,977
Filed: Mar. 21, 1994

EERE. LG oo eeeevtenesesasss snsmensns sessassnons GO6F 13/60

US. Cl crirannee 395/200.01; 395/200.03;
395/500

Field of Searchvvmnnecen 3957200, 200.09,
395/200.01, 200.03, 800, 500

References Cited

U.S. PATENT DOCUMENTS

4.604.686 8/1986 Reiter €t al. ..oeeoveereeererssssesonsens 395/500
4922486 5/1990 Lidinsky €t al. w..coveeereemereesonsnn 370/60
5021949 6/1991 Morten et al.ccorreeereenenne 395/200.09
5109515 4/1992 Laggis et al.coererereruererssenens 395/650
5224008 6/1993 Bird et al. ..converreemssrasneresneceen 370/94.1
5329619 7/1994 Page €t al. ...coovrverrrecnrneen 395/200.01
5.363,121 1171994 Freundco.commssesmemsecssenenes 395/600
5425028 6/1995 Britton et al. .cewuomeeessensnrens 370/94.1

US005706429A
111 Patent Number: 5,706,429
451 Date of Patent: Jan. 6, 1998
5428771 6/1995 Daniels et al. w.oovmvcoririceree 395/575
5537626 7/1996 Kraslavsky et al.ccceueneenee. 395/828
OTHER PUBLICATIONS

Per Gunningberg, Mats Bjorkman, Erik Nordmark. Stephen
Pink. Peter Sjodin. Jan-FErik Stromquist, “Application Pro-
tocols and Performance Benchmarks”, in IEEE Communi-
cations Magazine, Jun. 1989, 30-36.

V. S. Sunderam. “A Fast Transaction Oriented Protocol for
Distributed Applications”. Proceedings of USENIX Winter
Conference, Feb. 9-12, 1988, Dallas, Texas, pp. 79-387.

Primary Examiner—Mehmet B. Geckil
Attorney, Agent, or Firm—Baker, Maxham, Jester &

Meador
[57] ABSTRACT

A transaction processing system, adapted for use in a com-
puter system having a host computer running applications
and user terminals connected to the host computer, deter-
mines the transaction attributes for each transaction received
by the host computer and dynamically associates a transac-
tion protocol to be used in processing that particular trans-
action. The transaction protocol specifies such attributes as
synchronization paradigm and flow control. The synchroni-
zation paradigm and flow control are used only for as long
as the transaction remains in the system and are used only
for that transaction.

21 Claims, 11 Drawing Sheets

202

TRANSACTION SENT TO ADAPTER
FROM USER TERMINAL

ADAPTER RECEIVES TRANSACTION 204

ADAPTER DETERMINES TRANSACTION INFO. 206
AND GENERATES TRANSACTION PROTOCOL

ADAPTER SENDS WRAPPED TRANSACTION 208

TO INTERPROCESS TRANSPORT MECHANISM

sl RANSACTIOI

INTERPROCESS TRANSPORT MECHANISM SENDS 210
TRANSACTION TG OPEN TRANSACTION MANAGER

ANAGER SEQUENCES

MESSAGE SEGMENTS, CREATES TRANSACTION 212
PROCESSES FOR MESSAGE FLOW

OPEN TRANSACTION MANAGER SENDS TRANSACLTION} 4,
TO INFORMATION MANAGEMENT SYSTEM

[INFORMATION MANAGEMENT SYSTEM PROVIDES
TRANSACTION TO PROPER APPLICATION FOR
DATA MANIPULATION OR OTHER PROCESSING

216

Jan. 6, 1998 Sheet 1 of 11 5,706,429

U.S. Patent

12

14
16
APP 1 IMS 18
== /
e
ﬂ -
]
VTAM ')

APP n

FIG. 1 (PRIOR ART)

U.S. Patent Jan. 6, 1998 Sheet 2 of 11

112

116
120
APP 1 122
- 124
118
APP 2 |'
|

FIG. 2

U.S. Patent Jan. 6, 1998 Sheet 3 of 11

124

126 126

126
ool o | P
m 128 “ ﬂ 128

4 -
B .

132
13

FIG. 3

U.S. Patent Jan. 6, 1998 Sheet 4 of 11 5,706,429

202

TRANSACTION SENT TO ADAPTER
FROM USER TERMINAL

ADAPTER RECEIVES TRANSACTION 204

ADAPTER DETERMINES TRANSACTION INFO. 206
AND GENERATES TRANSACTION PROTOCOL

ADAPTER SENDS WRAPPED TRANSACTION 208
TO INTERPROCESS TRANSPORT MECHANISM

INTERPROCESS TRANSPORT MECHANISM SENDS 010
TRANSACTION TO OPEN TRANSACTION MANAGER

5PEN TRANSACTION MANAGER SEQU
MESSAGE SEGMENTS, CREATES TRANSACTION 212
PROCESSES FOR MESSAGE FLOW

OPEN TRANSACTION MANAGER SENDS TRANSACTION| 54,
TO INFORMATION MANAGEMENT SYSTEM

INFORMATION MANAGEMENT SYSTEM PROVIDES
TRANSACTION TO PROPER APPLICATION FOR 216
DATA MANIPULATION OR OTHER PROCESSING

FIG. 4

U.S. Patent Jan. 6, 1998 Sheet 5 of 11

INFORMATION MANAGEMENT SYSTEM RECEIVES
TRANSACTION FROM APPLICATION AND PROVIDES IT
TO OPEN TRANSACTION MANAGER (OTM)

OTM IDENTIFIES THE TRANSACTION PROCESS TO BE
USED FOR RETURNING THE TRANSACTION RESPONSE

OTM ADDS MESSAGE HEADER & TRAILER,
SPECIFIES MESSAGE PARAMETERS FOR XCF,
PROVIDES RESPONSE TO XCF

OTM DELETES TRANSACTION PROCESS
ASSOCIATED WITH THE TRANSACTION
AND THE RESPONSE

XCF RECEIVES THE RESPONSE AND PROVIDES
IT TO THE ADAPTER DESIGNATED
BY THE RESPONSE

ADAPTER RECEIVES TRANSACTION RESPONSE
AND SENDS IT TO THE USER TERMINAL

FIG. 5

240

242

244

246

248

250

5,706,429

9 OId

‘ON
FON3N03S § 9V 14
INTGWO3S | Xid3dd | NIVHI |NOILOVSNVYdL J

NaX0l | 3d03 | 3FON3ND3S
ASNJS

Sheet 6 of 11

Jan. 6, 1998
i,

JO1VIIONI

3dAl NOILVWYHIANOD | 4OLVIIANI
ONISS330Ud | ANVIWWOD LIWWOD

ddAl
dSNOdS3Y | AOVSSIANW | FHNLIFLIHIAEY

U.S. Patent

U.S. Patent Jan. 6, 1998 Sheet 7 of 11 5,706,429

MAP

SYNCHRONIZATION | SYNCHRONIZATION
NAME

IMS
LEVEL

LENGTH| STATE

_-—_ﬂ_—-—-ﬂ_-—“——-—_——-#—

FIG. 7

Jan. 6, 1998 Sheet 8 of 11 5,706,429

U.S. Patent

LENGTH SERVER | ORIGINATOR'S | DESTINATION

NAME

FIG. &8

Jan. 6, 1998 Sheet 9 of 11 5,706,429

U.S. Patent

LENGTH |SECURITY | LENGTH TYPE DATA
FLAG FIELD FIELD FIELD

FIG. 9

Jan. 6, 1998 Sheet 10 of 11 5,706,429

U.S. Patent

LENGTH USER DATA . . .

FIG. 10

U.S. Patent Jan. 6, 1998 Sheet 11 of 11 5,706,429

LENGTH APPLICATION DATA

FIG. 11

5,706,429

1

TRANSACTION PROCESSING SYSTEM AND
METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer processing
systems and, more particularly, to systems for processing
user input transactions that are directed to applications.

2. Description of the Related Art

A computer processing system typically comprises a host
computer or central processor, memory units, and one or
more user terminals connected to the host computer. Appli-
cation programs execute within the host computer and
typically manipulate data stored in the memory units. User
terminals. also referred to simply as users, generate input
messages. These messages can request transactions that are
processed by the application programs. Messages that
request transactions also are referred to simply as transac-
tions. Generally, the host computer supports a transaction
processing system having a transaction manager that con-
trols the execution of transactions and the processing of the
application programs. An application response to a transac-
tion is called a transaction output and also is routed by the
ransaction manager. The transaction output typically is
returned in a message directed to the user terminal that first
requested the transaction.

Users can communicate with the application programs
and manipulate data stored in the memory units. The users,
for example, can insert, modify, and retrieve data from the
memory units through the application programs. Each one of
the users can be linked directly to the host computer and
identified by a connection port or node. Alternatively, each
user may be connected to other users as part of a network,
which in turn is connected to the host computer. Most
computer systems do not permit a user terminal to comru-
nicate with the application programs until the user is linked
to the host by establishing a user-host communication ses-
sion via a log-in procedure.

The log-in procedure establishes the attributes of message
handling, also referred to as the communication protocol,
that will be followed by the host computer for the receiving
of transactions from the users and for the return of transac-
tion responses to the users. The protocol, for exampie,
specifies a synchronization paradigm such as queued or
two-phase commit, flow control parameters such as half
duplex or full duplex mode, message routing to and from
applications, commit sequences, and message acknowledge-
ment schemes, and also parameters such as message word
size and error detection and correction.

Generally, a user is bound to the established communi-
cation protocol for the duration of the session. Session
binding of the communication protocol takes place via
control blocks that are created at the beginning of each
session. The information management system or supporting
operating system maintains control blocks for each user
connection to the computer system as transactions are
received and responses are returned. After the transaction
manager receives a transaction, the transaction manager
determines the transaction message information within the
message requesting the transaction, such as the application
for which the transaction is intended and the type of data
operation requested. The transaction response Is returned
according to the session information.

It would be advantageous if user terminals were not
bound to a particular transaction processing protocol for an

10

15

20

23

30

35

45

50

35

65

2

entire operating session. That is, if user terminals could
specify different processing for different transactions, they
would be able to select the best processing parameters and
associated processing data structures depending on the mes-
sage type. resource availability, or other dynamically
encountered system condition known to them. For example,
users might want to change the synchronization paradigm or
transaction message routing within a communications ses-
sion. Most existing systems do not permit such flexibility.

Another problem encountered by information manage-
ment system users is that different users may have different
communication or transaction protocols. For example, dif-
ferent models of terminals from different manufacturers
might each have a different protocol, and therefore the host
computer and information management system must accom-
modate a variety of communication protocols. Moreover, the
networks in which the terminals might be connected could
have different protocols. Again, the host computer system
must support whatever communication protocol is being
used by the attached network to receive messages from
users, perform the necessary processing of messages to
determine the type of transaction protocol the information
management system uses internally, and then convert the
transaction response back into the communication protocol
of the user for return.

FIG. 1, for example, shows a computer processing system
10 including a host computer 12 to which multiple user
terminals 14 are connected. The host computer can comprise
a processor such as an International Business Machines
(IBM) Corporation System/370 or 3090 with an IBM Cor-
poration operating system called “MVS”. The user terminals
are used to communicate with multiple applications 16
running on the processor. As illustrated, the terminals are
connected to the computer system via a connection proces-
sor 18 that, for an IBM Corporation System/370 or 3090, is
known as a Virtual Telecommunication Access Method, or
“YVTAM”. The connection processor establishes a commu-
pication session with each user terminal such that the
terminal communication protocol will be recognized and
transaction output will be properly directed. Each session 1is
associated with control blocks that exist for the duration of

the session and specify the protocol to be followed.

Communication between the connection processor 18 and
the applications 16 occurs through an information manage-
ment system 20 that operates under control of a transaction
manager 22. The information management system can
comprise, for example, the IBM Corporation product known
as “IMS”. The information management system includes
multiple protocol interface modules (in the IBM Corporation
IMS product, these modules are referred to as device depen-
dent modules, or “DDM”s) 24 that receive transactions from
one of the user terminals through the connection processar,
recognize the communication protocol being used by the
terminal, and process the transaction so as to provide a
transaction protocol that can be understood by the informa-
tion management system. The “DDM?” through which a user
terminal will communicate is established for the duration of
the communication session.

The user terminals 14 can potentially use any one of many
communication protocols. For example, the terminals may
communicate using an IBM Corporation protocol known as
a “SNA” protocol. Other protocols that might be used
include APPC., TCP/IP, and RPC. A different protocol inter-
face module “(DDM”) must be provided for each type of
communication protocol that will be supported by the host
computer 12. For each supported protocol, the connection
processor 18 must recognize the protocol being used by the

3,706,429

3

user terminal and direct the transaction to the appropriate
“DDM” module. The “DDM” module can then isolate the
transaction information and provide the proper transaction
protocol to the information management system. “DDM”
modules are generally half-duplex processes that operate
serially. That is, they send a first transaction and must
receive back an acknowledgment before they will transmit a
second transaction. Because the half duplex *DDM” mod-

ules frequently must communicate with full duplex user
terminals and complex communication protocols, the
“DDM” modules can be quite complicated and diflicult to

create.

As can be seen from the discussion above, many different
layers of processing are needed to facilitate communication
from users to application programs. Transaction processing
systems such as described above are often characterized in
terms of an industry standard, seven-layer architectural
model proposed by the International Standards Organization
(ISO) and referred to as the Open Systems Interconnection
(OSI) reference model. As known to those skilled in the art,

the OSI model includes a lower-most physical layer at the
terminal level concerned with transmitting data bits between
systems over a channel, a data link layer concerned with
error-free transmission of data bits, a network layer con-
cerned with routing message packets over a host network, a
transport layer whose function it is to control the flow of
messages and identify message sources and destinations, a
session layer concerned with establishing user transmission
sessions and with message sequencing and synchronization,
a presentation layer concerned with the syntax and seman-
tics of the transmitted messages, and an application layer
concerned with the application programs and getting mean-
ingful information into and out of them.

For example. with respect to the IBM Corporation “IMS”
product described above, “IMS” resides in the upper three
layers of the OSI model. so that the application programs,
transaction manager, and “DDM” modules comprise the
application, presentation, and session layers, respectively.
The “VTAM?” interface modules, network channels, and user
terminals comprise the lower four layers of the OSI model,
including the transport layer, network layer, data link layer,
and physical layer.

At the higher OSI model levels. such as the presentation
layer and application layer, there are a limited number of
computer system architectures in widespread use today, the
“IMS” product being one of them. The number of such
architectures is likely to remain relatively stable, consider-
ing the enormous amount of resources that already have
been invested in building and maintaining systems based
around such architectures. Many computer system users
would like to keep their databases and application programs
according to the presently used presentation and application
layer facilities. In contrast, the lower OSI model levels, such
as the transport layer and network layer, are experiencing
tremendous change. For example, many network and trans-
port protocols such as TCP/IP, APPC, and the like, were
developed much later than system architectures such as the
“IMS” architecture. As a result, many of the existing infor-
mation management systems do not have interface modules
that are compatible with the newer network and transport
layer facilities.

To permit newer network protocols to interface with
existing presentation and application layer facilities, inter-
face modules must be developed that accept the newer
network protocols and convert them to an appropriate trans-
action protocol. In many cases, it can be relatively difficult
to develop new interface modules, such as “DDM” modules,

10

15

20

25

30

35

45

30

33

65

4

that can directly bridge the protocol gap between older
system architectures and newer communication protocols.
Moreover, some of the newer protocols are capable of
performance that cannot be supported by older systems. It
would be advantageous if a transaction processing system

could interface application programs to user terminais that
operate according to newer protocols so that full advantage

can be taken of the performance of newer user terminals and
could provide an interface such that operation with newer
protocols would appear seamless to existing application
programs.

From the discussion above, it should be apparent that
there is a need for a system that permits dynamic processing
of transactions from a variety of protocols and accommo-
dates new and modified protocols without great difficulty.
The present invention satisfies this need.

SUMMARY OF THE INVENTION

In accordance with the invention, a transaction processing
system, adapted for use in a computer system having a host
computer running applications and user terminals connected
to the host computer, determines the transaction attributes
for each transaction received by the host computer and
dynamically associates a transaction protocol to be used in
processing that particular transaction. The transaction pro-
tocol specifies such attributes as synchronization paradigm
and flow control. The synchronization paradigm and flow
control are used only for as long as the transaction remains
in the system and are used only for that transaction. In this
way, a user can dynamically specify how each transaction
will be processed independently of the manner in which
other transactions are processed. The system treats transac-
tions as objects to facilitate a separate transaction-specific,
application and session independent layer in a communica-
tions architectural model. Thus, users are provided with
greater flexibility in their transaction processing and trans-
action processing systems can more easily accommodate
new protocols and new processing features desired by users

To provide support for the dynamic processing of
transactions, the transaction processing system creates trans-
action processes that implement the specified transaction
protocol. including synchronization paradigm and flow con-
trol. The transaction processes are deleted from the host
computer when the transaction response is generated and
sent to the user terminal. In yet another aspect of the system,
a high speed interprocess transport mechanism is used that
can operate in full duplex mode, thereby reducing the
amount of time necessary for sending and receiving trans-
actions and increasing the number and type of user terminals
that can be easily supported by the system.

Other features and advantages of the present invention
should be apparent from the following description of the
preferred embodiment, which illustrates, by way of
example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a prior art transaction
processing system.

FIG. 2 is a block diagram of a computer transaction
processing system constructed in accordance with the
present invention.

FIG. 3 is a representation of the data structures created
within the host computer of the transaction processing
system illustrated in FIG. 2.

FIG. 4 is a flow diagram of the transaction processing
within the host computer illustrated in FIG. 2

5,706,429

S

FIG. 5§ is a flow diagram of the transaction response
processing within the host computer illustrated in FIG. 2.

FIG. 6 is a representation of the transaction message

control information of the transaction protocol used by the
transaction processing system illustrated in FIG. 2.

FIG. 7 is a representation of the transaction state data of
the transaction protocol used by the transaction processing
system illustrated in FIG. 2.

FIG. 8 is a representation of the state data for command
messages of the transaction protocol used by the transaction
processing system illustrated in FIG. 2.

FIG. 9 is a representation of the security data of the
transaction protocol used by the transaction processing
system illustrated in FIG. 2.

FIG. 10 is a representation of the user data of the
transaction protocol used by the transaction processing
system illustrated in FIG. 2.

FIG. 11 is a representation of the application data of the
transaction protocol used by the transaction processing
system illustrated in FIG. 2.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 2 is a block diagram that shows a computer pro-
cessing system 110 constructed in accordance with the
present invention. The computer processing system includes
a host computer 112 that can comprise, for example, a
processor such as an IBM Corporation System/370 or 3090
processor running an operating system such as the IBM
Corporation “MVS” product. Multiple user terminals 114
are connected to the host computer and communicate with
one or more applications 116 by sending transactions
through an information management system 117 running on
the host computer under control of a transaction manager
118. The applications may, in turn, manipulate data stored in
memory units 119 of the computer system 110. In the
preferred embodiment, the computer system supports a
transaction processing system that permits user terminals to
dynamically specify the transaction processing attributes
that will be used for each particular transaction they send. As
illustrated, the user terminals communicate with the infor-
mation management system through multiple adapters 120,
an interprocess transport mechanism 122, and an open
transaction manager 124. The user terminals send their
transactions to the adapter appropriate for the communica-
tion protocol they are using. For each transaction that is
received, the adapters recognize the communication proto-
col being used by the terminal and provide a transaction
protocol that can be understood by the information manage-
ment system. Adapters can specify a synchronization para-
digm and can control the flow of transactions through the
information management system by providing transaction
message information that will result in the desired synchro-
nization and flow control. Thus, user terminals 114 can
change the processing of transactions dynamically with each
transaction according to their needs. In addition. new adapt-
ers can be created for accommodating new protocols without
adding to the size or complexity of the information man-
agement system.

The transaction processing system constructed in accor-
dance with the present invention is based on a client/server
model such that the open transaction manager 124 can be
viewed as a server and the adapters 120 can be viewed as
client processes. In that regard, the adapters are only one
type of client process that can be served by the open
transaction manager. The processes can take whatever form

10

15

25

30

35

43

50

35

63

6

necessary for implementation of the processes described in
greater detail below in conjunction with the present
invention, as determined by those skilled in the art. In this
way, the present invention provides a system that, in terms
of a communications architectural model, provides a layer
separating the processing requirements of transactions from
the communication management requirements of users, or
client processes.

An additional benefit provided by the computer process-
ing system 110 illustrated in FIG. 2 is that both the adapters
120 and the interprocess transport mechanism 122 are
capable of communicating in a full duplex mode. Thus. the
full communication speed of user terminals 114 can be
exploited for faster handling of transactions. The interpro-

cess transport mechanism supports the transport of transac-
tions to the applications and transaction responses back to

the adapters by maintaining appropriate data structures. In
the preferred embodiment, the information management
system comprises the IBM Corporation product called
“IMS”. but those skilled in the art will recognize that the

teachings of the present invention apply equally to other
computer systems and other information management prod-
ucts. If the computer system comprises a processor such as
an IBM Corporation System/370 or 3090 processor running
the IBM Corporation “MVS” operating system, then the
interprocess transport mechanism can comprise, for
example, an IBM Corporation process product known as the
Cross-System Coupling Facility, or “XCF”. Using this exist-
ing product simplifies the implementation of the invention
into computer systems.

When the interprocess transport mechanism 122 receives
a user transaction, the mechanism sends the transaction on
to the open transaction manager 124, which acts as an
interface between the mechanism and the information man-
agement system 117. The open transaction manager deter-
mines the appropriate pathway for a transaction into and out
of the information management system based on parameters
specified by the user 114 in the transaction message
information. as described further below. That is, the open
transaction manager 124 specifies the data structures that are
necessary to pass a transaction from the interprocess trans-
port mechanism 122 to the information management system
117 and pass a transaction response from the information
management system back to the appropriate user terminal
114.

Thus, the information management system 117 assumes
the role of a server to the adapter 120 role of a client. To the
computer system 110, the adapters appear to be applications.
The computer system supports the information management
system and adapters in this client/server relationship, and
also supports the interprocess transport mechanism 122 and
maintains the needed data structures for operation of the
transaction processing system.

In the preferred embodiment, the open transaction man-
ager 124 creates data structures within the host computer
112 that permit such two-way communication. As illustrated
in FIG. 3. such structures are referred to as transaction pipes
126. The transaction pipes include an input process 128 and
an output process 130. The open transaction manager also
creates data structures called transaction processes 132, 134,
. ... 136 that are associated with each transaction pipe, as
indicated by the arrows connecting the transaction processes
with the T1 transaction pipe. In FIG. 3, transaction processes
are shown only for the transaction pipe labeled T1, but it is
to be understood that each transaction pipe includes one or
more transaction processes. Those skilled in the art will be
aware that the data structures reside in relatively high speed.
random access memory of the host computer 112.

5,706,429

7

The transaction pipes 126 are created dynamically by the
open transaction manager 124 during an initialization rou-
tine when the open transaction manager receives the trans-
action request messages. The transaction processes 128, 130
are created by the open transaction manager as needed for
each transaction received from a user terminal 114, provided
the transaction request is associated with the name of a
transaction pipe 126. After a particular user transaction
response is returned to a user terminal, the associated
transaction process is deleted from the host computer 112. In
this way, the host computer does not become heavily laden
with the transaction process data structures.

Thus, rather than maintain various information manage-
ment system session control blocks associated with each
session participated in by each one of the user terminals, the
transaction processing system in accordance with the present
invention dynamically maintains transaction process data
structures only for the duration of a transaction. This reduces
the amount of overhead that must be supported and the
volume of data structures that must be maintained by the
host computer.

FIG. 4 is a flow diagram that illustrates the transaction
processing within the computer system of FIG. 2 for mes-
sages received from the user terminals. As illustrated, pro-
cessing begins at the first diagram block 202 when a user

terminal creates a transaction message and sends it to a client
process, also referred to above as an adapter. As described

above, the transaction includes message information that
identifies a transaction pipe in the host computer to be used
for receiving the transaction and sending a transaction

response. If the transaction pipe cannot be located, then the
adapter causes the open transaction manager to create the

necessary data structures in accordance with the information
management system.

For example, in the case of the preferred embodiment
with the IBM Corporation “IMS” system communicating
through the “XCF” interprocess pipe is created within the
“IMS™ system.

Those skilled in the art will recognize that prior to
communication via the “XCF” system, a process must “join”
an “XCF” group and also will recognize that the “XCF”
system will maintain a list of group members. Thus, either
an adapter or the information management system itself will
create, or define, the group to which the remaining adapters
and/or information management system will join.

At the next diagram block 204, the adapter receives the
transaction and recognizes the communication protocol of
the user terminal. Next, at the next diagram block 206, the
adapter isolates the tramsaction message information and
generates the IMS transaction protocol that will specify,
among others, the transaction name identified by the user
terminal, and uniquely identify the transaction. The unique
transaction identifier can comprise, for example, a transac-
tion token that remains with the transaction as it is passed
from an adapter to the interprocess transport mechanism and
on to the information management system. Isolating the
transaction message information comprises the adapter
inquiring as to the transaction attributes, which is accom-
plished in the preferred embodiment by determining data
fields that specify these attributes, as described in greater
detail below.

After the adapter has generated the proper transaction
protocol, the step illustrated at the next diagram block 208
is for the adapter to send the transaction to the interprocess
transport mechanism. This is done after the adapter wraps
the transaction message information in appropriate header

10

15

20

23

30

35

45

50

33

65

8

and trailer blocks so the reconstituted transaction will be
understood by the information management system and
open transaction manager. The next diagram block 210
illustrates that the next step is for the interprocess transport
mechanism to provide the transaction message information
to the open transaction manager. As noted above, the com-
munication to and from the interprocess transport mecha-
nism can take place in a full duplex. relatively high-speed
mode. The next diagram block 212 illustrates that the next
step is for the open transaction manager to receive the
transaction and create a transaction process for the transac-
tion that is associated with the transaction pipe specified by
the transaction message information and to determine if the
transaction includes multiple message segments. If mulitiple
message segments are present, then the open transaction
manager properly sequences them and reconstructs the origi-
nal transaction information.

Finally, the flow diagram block 214 illustrates that the
open transaction manager sends the transaction on to the
information management system transaction manager for
processing and, at the flow diagram block numbered 216, the
transaction is passed on to the appropriate application run-
ning in the host computer. This completes the processing of
a transaction coming into the transaction processing system
from a user terminal.

FIG. § is a flow diagram that illustrates the transaction
output processing within the computer system of FIG. 2. As
illustrated, output processing begins at the first diagram
block numbered 240 when the information management
system receives a response from an application after pro-
viding the application with the transaction message. The
next processing step, illustrated in flow diagram block 242,
is for the open transaction manager to identify the transac-
tion process it created to be used for returning the transaction
output to the proper user terminal. The next step is illustrated
by the diagram box numbered 244, which indicates that the
open transaction manager next adds message header and
trailer information and specifies message processing param-
eters that are required by the interprocess transport mecha-
nism for proper communication.

As indicated by the flow diagram box numbered 246, the
next step in the transaction output processing is for the open
transaction manager to delete the data structure comprising
the transaction process associated with the transaction and
the transaction output. This reduces the amount of overhead
and reduces the number of data structures maintained within
the computer system, making room for the next transaction
process to be created for a subsequent transaction. The next
flow diagram box 248 indicates that the next step is for the
interprocess transport mechanism to receive the transaction
output and provide it to the adapter designated by the output,
as added by the open transaction manager. Finally, at the step
numbered 250, the adapter receives the transaction output
and sends it to the user terminal specified by the transaction
output, again, as added by the open transaction manager in
the form of header and trailer information.

As was noted above, the adapters and the open transaction
manager add certain information to transactions as they are
received from user terminals and make their way through the
computer system, including certain data comprising the
transaction protocol used by the information management
system. A description of the protocol recognized by the open
transaction manager in the preferred embodiment illustrates
the type of transaction processing that can be achieved in a
system constructed in accordance with the present invention.
FIGS. 6 through 10 illustrate these protocols and the infor-
mation they provide. It is to be understood, however, that

5,706,429

9

such information and their arrangement is for purposes of
illustration only. For example, some of the data fields
described in the protocol are set by the information man-
agement system. Those skilled in the art will recognize that
such data fields will differ depending on the particular

information management system being used.

FIG. 6 is a representation that illustrates message control
information that accompanies every transaction received by
the host computer. In the preferred embodiment, the mes-
sage control information comprises a thirty-two byte length
of data, as follows. The first byte is an architecture level data
field that permits the transaction processing system to deter-
mine what level, or edition, of the transaction processing
system is being used and thereby determine what features
will be supported. The next byte specifies message type and
can assume a value that indicates either a data message,
transaction message, response message, command message,
or a commit confirmation message. A data message indicates
a transaction output from an application. The response field
indicates when a response, or acknowledgment, to the
transaction is requested before the next transaction will be
accepted. The next data field is for the response indicator,
which indicates whether the acknowledgement is a positive
acknowledgment, or a negative acknowledgment, or a
request for an acknowledgment. The next data field is for a
commit confirmation indicator, which will indicate whether
the transaction committed successfully or aborted.

The next data field is to indicate command type. The
various command types supported by the transaction pro-
cessing system in accordance with the present invention
provide a great deal of flexibility. The command type can be
used to request, for example, particular information man-
agement system processing or can be used to control various
aspects of the transaction processing system. A client-bid
command type, for example, is used in conjunction with a
response-request flag to initiate communication with the
information management system via the interprocess trans-
port mechanism. A server-available command type is a
response sent to a client by the information management
system to confirm communications that can then follow.

Another type of command type supported by the illus-
trated system is for suspending input for all transaction
pipes. In this way, an adapter or the information manage-
ment system itself can specify when input will not be routed
to any transaction pipes. A resume input command type
permits all transaction pipes to again receive input. Another
command type permits input to be suspended for a particular
identified transaction pipe and yet another command type
permits input to be resumed for a particular identified
transaction pipe. These command types provide a throttling
mechanism with which a user (as well as the information
management system itself) can control the flow of informa-
tion and transactions through the information management
system, simply by providing appropriate transaction mes-
sage Information.

Other command types include a resynchronization com-
mand for resynchronization between an adapter and the
information management system, a command to cancel a
message chain in progress, to discard output from an iden-
tified transaction pipe, and to request a context identification
token. The token request command type permits an adapter
to request a transaction token prior to actually sending a
transaction to the information management system.

The next data field of the message control information
illustrated in FIG. 6 is for a processing flag. which is used
to specify whether a transaction pipe being used is to be

10

15

25

30

35

43

30

33

65

10

operated in a synchronized mode and/or is used to indicate
that the transaction contains the name of an application. The
next data field is for a transaction pipe name, which is used
in all transaction processing and transaction response pro-
cessing. The next data field contains a chain-state flag, which
is used in transaction segment splitting. This indicates
whether the accompanying message comprising message
segments split over many transaction messages occurs at the
beginning of the segment chain, middle of the chain, or end
of the chain. The next data field is for a prefix flag, which
indicates which prefixes are attached to the message. The
prefixes can comprise, for example, state data. security data,
user data, or application dam, or any combination thereof.

The next data field illustrated in FIG. 6 is for the segment
sequence number, which is used to sequentially number
message segments. The next data field contains a request for
sending the sequence number as a response and is used, for
example, in resynchronization operations. The next data
field is for a sense code, which accompanies only a negative
acknowledgment message and is otherwise unused. Finally,
the last field in the message control information is for a
transaction token, if tokens are used in the supporting
information management system.

FIG. 7 and FIG. 8 are representations that illustrate state
data for transactions. The particular state data actually
accompanying a transaction depends on the message being
sent. For messages other than command messages, the FIG.
7 data is sent. In such a case, the state data represents the first
section of the message prefix.

As illustrated in FIG. 7, the first state data field comprises
the length of the state data field itself. As noted above, in the
preferred embodiment the information management system
comprises the IBM Corporation IMS product. The next data
field specifies the IMS state, which is either a conversational
state or a response mode. These states are set by the IMS
system and will be known to those skilled in the art. The next
state data field comprises synchronization flags. These flags
set either a forced response that guarantees a transaction
output, even if the transaction ends without sending output
data, a “commit mode zero” that commits output before
sending it, a “commit mode one” that sends output before
committing it, or a notify transfer mode that ensures user
notification if a context token identification is transferred by
the information management system.

The next data field specifies the synchronization level.
which can be set to either none, confirm, or commit. The
next data field, which is for map name, refers to mapping
options available to users of the IBM Corporation IMS
product. The next data field illustrated in FIG. 7 is for
correlator data and refers to a token that cormrelates input
transactions with transaction output, or responses. This field
is for the open transaction manager to use in pairing up
transaction responses with transactions, in a manner known
to those skilled in the art. The next data field is for a context
token identification that is used by the IMS system for
managing a unit of work. The last two data fields refer to the
length of the user data field and to the user data itself.

FIG. 8 is a representation of the state data for command
messages only. The first data field contains the length of the

state data field, including the length field. The next data ficld
refers to the server, or open transaction manager, identifi-

cation name for use by the interprocess transport mecha-
nism. The next data field is for a token of the transaction

message originator and the last data field is for a token
representing the message destination.

FIG. 9 is a representation of security data information and
illustrates novel security features provided by the transaction

5,706,429

11

processing system constructed in accordance with the
present invention. The first security data field is the length of
the information, including the length field itself. The next
data field is for a security flag, which can be set to indicate
to the information management system that the user terminal
has already gone through security verification procedures at
the adapter level and which do not have to be repeated. In
general, transaction protocols require security to be verified
immediately before access to the information management
system is granted. In accordance with the present invention,
then, the adapters can perform security verification duties
and therefore can eliminate duplicative security processing
with the security flag data field. This can greatly reduce the
amount of processing overhead.

The next three user identification data fields may appear
in any order or may be omitted. These fields specify ficld
type. the user identification field length, and the user iden-
tification data field. The data field is for the user identifica-
tion itself, then the password length, the password type, the
password itself, the security profile length not including the
length field itself, the profile type, and the profile itself. The
next two data fields, for RACF group length and RACF
group itself, relate to IBM Corporation product features
only.

FIG. 10 is a representation of the user data information.
This data comprises only two data fields, a length field that
specifies the length of the user data section, including the
length field itself, and a user data field that can be optionally
inserted by a user terminal and will be returned unchanged
from the IMS system in the first segment of any transaction
response message.

FIG. 11 is a representation of the application data section.
This data section also comprises only two data fields. The
first field is a length field that specifies the length of the
application data section, including the length field itself. The
second data field is the application data, or transaction
output data. The application name is contained in the first
bytes of the application data.

Thus, as described above, a computer system that has a
host computer running applications and user terminals con-
nected to the host computer and also includes a transaction
processing system constructed in accordance with the
present invention determines transaction attributes for each
transaction received by the host computer and dynamically
associates a transaction protocol to be used in processing
that transaction. The transaction protocol specifies such
attributes as synchronization paradigm and flow control. The
synchronization paradigm and flow control are used only for
as long as the transaction remains in the system and are used
only for that transaction. A user can thereby dynamically
specify how each transaction will be processed, indepen-
dently of the manner in which other transactions are
processed, and can enjoy greater flexibility in transaction
processing. In addition, transaction processing systems can
more easily accommodate new protocols and new process-
ing featurcs desired by users.

Those skilled in the art will appreciate that changes and
modifications to the preferred embodiment described above
can be implemented without departing from the teachings of
the present invention. For example, the transaction pipe data
structures as described are not necessary; there simply must
be a process for directing transactions and transaction out-
put. Similarly, the specific interprocess transport mechanism
described with respect to FIG. 2 can be replaced with
alternate mechanisms that provide the high-speed, two-way
communication described.

10

15

20

23

30

35

43

50

55

65

12

In terms of the OSI reference model referred to above and
known to those skilled in the art, the present invention treats
transactions as data objects that have attributes independent
of any application, session, or transport layer considerations.
As such, the invention can be implemented as a unique,
transaction-specific reference model layer that is indepen-
dent of the other layers. Thus, the protocol described above
is not specific to any application being served. This frees the
client processes, or adapters, from being burdened with
application-related issues when submitting transactions and
receiving transaction output. The invention thus provides a
client/server protocol that dynamically binds transaction
processing attributes, including flow control and synchroni-
zation paradigm, to each transaction.

The present invention has been described above in terms
of a presently preferred embodiment so that an understand-
ing of the present invention can be conveyed. There are,
however, many configurations for computer transaction pro-
cessing systems not specifically described herein but with
which the present invention is applicable. The present inven-
tion should therefore not be seen as limited to the particular
embodiment described herein, but rather, it should be under-
stood that the present invention has wide applicability with
respect to computer transaction processing systems gener-
ally. All modifications, variations, or equivalent arrange-
ments that are within the scope of the attached claims

therefore should be considered as being within the scope of
the invention.

We claim:

1. In a computer transaction processing system having a
host computer and at least one user terminal connected to the

host computer:

at least one adapter that dynamically receives transaction
attributes of tramsactions comprising messages to be
sent from one or more of the user terminals to one or
more applications executing in the host computer of
computer {ransaction processing system during a com-
munication session between the host computer and the
user terminal;

means for specifying a transaction protocol for each one
of a plurality of received transactions, independently of
any predefined communications protocol, based on the
transaction attributes received in each transaction;

means for dynamically binding said transaction protocol
to said one transaction; and means for dynamically
unbinding said transaction protocol after said one trans-
action is completed.

2. A computer transaction processing system as defined in
claim 1, wherein the adapter further includes a plurality of
client processes that receive transactions from one or more
user terminals and that direct the flow of transaction
responses.

3. A computer transaction processing system as defined in
claim 2, wherein:

the means for dynamically binding the transaction proto-

col comprises an open transaction manager that creates
a data structure for each transaction that controls the
flow of the transaction within the transaction process-
ing system.

4. A computer transaction processing system as defined in
claim 3, wherein the open transaction manager specifies a
synchronization paradigm and flow control associated with
each transaction based on the transaction attributes received
by the adapter.

5. A method for establishing a protocol in a transaction
processing system having a host computer, to which are
connected one or more user terminals, said method com-
prising:

5,706,429

13

inquiring of an application, in said transaction processing
system, the attributes of a transaction comprising a
message to be sent from one or more of the user
terminals to one or more applications executing in the
host computer during a communication session
between the host computer and the user terminal; and

specifying. based on said received transaction attributes,
for each one of a plurality of transactions independently
of a predefined communication protocol, a transaction
protocol comprising a synchronization paradigm and a
flow control;

whereby said transaction protocol is dynamically bound
to the transaction and the transaction protocol process-
ing is unbound after said transaction ends.

6. A method as defined in claim 5, wherein the step of
inquiring comprises reading data fields of the transaction,
said data fields specifying the transaction attributes.

7. A method as defined in claim 6, wherein the step of
specifying further includes determining if a security verifi-
cation step has been performed and is not to be repeated.

8. A method as defined in claim 6, wherein the step of
specifying further includes determining if no more transac-
tions should be accepted from one or more users.

9. A method as defined in claim 8, wherein the step of
specifying further includes determining if additional trans-
actions should be accepted from one or more USCrs.

10. A method as defined in claim 6, wherein the step of
specifying comprises creating a data structure that deter-
mines the synchronization paradigm and flow control to be
used in processing the transaction.

11. A method as defined in claim 10, wherein the step of
specifying further comprises deleting the data structure after
the transaction ends.

12. In a transaction processing system having a host

computer:

transport means the receiving a plurality of transactions,
each having protocol-specifying transaction attribute,
from one or more transaction processing system users
communicating with the host computer and for sending
a plurality of transaction responses to on€ Or more of
the system users;

process means for receiving the transactions from the
transport means and determining a transaction protocol
for each received tramsaction, in accordance with the
transaction attributes received with each respective
transaction, each transaction protocol including a plu-
rality of protocol data fields specifying a synchroniza-
tion paradigm and transaction flow control. and for

determining a user destination for each transaction
output; and

presentation means for associating the determined syn-

chronization paradigm and transaction flow with each
received transaction to permit a trapsaction to be
directed to an application connected to the presentation
means in the synchronization paradigm specified and
for ending the association after a transaction response
has been returned to the process means.

13. A transaction processing system as defined in claim
12. wherein: the system users comprise computer terminals
connected to the system; and the transport means includes
interprocess transfer means for providing full duplex com-
munication between the user terminals and the process
means.

14. A transaction processing system as defined in claim
13. wherein the interprocess transfer means maintains a

10

15

20

25

30

35

43

50

35

65

14

group list of members for which the interprocess means will
send and receive transactions and transaction responses.
15. A transaction processing system as defined in claim
13. wherein the transport means further includes a plurality
of protocol adapters to which the user terminals direct the
transactions and from which the users receive transaction

LEeSpOonses.
16. A transaction processing system as defined in claim

15. wherein each adapter must join the group of interprocess
transfer means members before it can send fransactions to
the process means.

17. A transaction processing system as defined in claim
16, wherein each user transaction specifies a transport pro-
tocol adapter through which the transaction will be sent to
the processing means and from which the sending user will
receive the transaction response.

18. A transaction processing system as defined in claim
17, wherein cach adapter receives transactions according to
a first predefined protocol selected by the user and produces
an adapter transaction output according to a second trans-
action manager protocol.

19. A transaction processing system as defined in claim
18. wherein each transaction includes data that specifies an
adapter with which the transaction will be associated.

20. A transaction processing system adapted for use with
a computer system having user terminals linked to a host
computer supporting an information management system
that receives transaction from the user terminals, commu-
nicates with applications being executed in the host
computer, and provides transaction responses to the user
terminals. the transaction processing system comprising:

transport means for receiving a plurality of transactions

from the system user terminals and providing the
transactions to the host computer, and for sending a
plurality of transaction responses from the host com-
puter to one or more of the user terminals;

process means for determining a transaction protocol for
each received transaction according to transaction
attributes of each respective received transaction, each
transaction protocol including a plurality of protocol
data fields specifying a synchronization paradigm and
transaction flow control, and for determining a desti-
nation user terminal for each transaction output;

coupling means for receiving a plurality of transactions
from the user terminals and providing the plurality of
transactions to the process means in a full duplex mode:
and

presentation means for associating the determined syn-

chronization and transaction flow with each received
transaction to permit a transaction to be directed to an
application connected to the presentation means and for
ending the association after a transaction response has
been returned to the process means.

21. A transaction processing system as defined in claim
20, wherein the process means includes a memory area for
storing information and creates a transaction process data
structure in the memory area for each new transaction
received from the coupling means, in which the process
means stores the transaction until it is sent to the information
management system and in which the process means places
an associated transaction response received back from the
information management system until the output transaction
is sent to the coupling means, and then deletes the transac-
tion process from the memory area.

* k ® kX

	Front Page
	Drawings
	Specification
	Claims

