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[57] ABSTRACT

A temporal learning neural network includes a plurality of
temporal learning neural processing elements and an input/
output control section. Each element includes a caiculation
device and a learning device. The calculation device
includes an input memory section and a response calculation
circuit. The learning device includes a learning processing
circuit and a history evaluation circuit. The calculation
circuit calculates a sum of a total summation value of a
product of input values and connection efficacies, and an
internal potential, compares the sum with a predetermined
threshold value, outputs a 1 or 0 signal depending on the
comparison and substitutes internal potential of a next time
for the sum. The processing circuit receives an input history
evaluation value when the calculation circuit has produced
an oufput 1 signal which strengthens, weakens or leaves
unchanged the connection efficacies depending on the com-
parison. The evaluation circuit obtains an input history
value, compares the obtained input history value with the
learning threshold value, generates an evaluation signal and
distributes the evaluation signal to the input memory sec-
tion. The input/output control section is provided with input
terminals and output terminals, sends signals input from the
calculation circuit and evaluation circuit to the input
memory section, receives signals output from the calculation
circuit and evaluation circuit, and effects communication
with each of the processing elements. This process 1s an
input temporal associative learning process.

4 Claims, 8 Drawing Sheets
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TEMPORAL LEARNING NEURAL
NETWORK

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a temporal learning neural
network that uses a plurality of temporal neural learning
processing elements that can effect information processing
and control on the basis of time sequence information that is
learned and memorized, which enables neural networks to
be implemented in hardware as integrated circuitry.

2. Description of the Prior Art

There have been analog and digital methods for integrat-
ing neural networks in which conventional neural processing
elements are used. Among the problems of analog imple-
mentations are that the number of connection lines has to be
increased when the number of processing elements is
increased, and that it is difficult to freely vary input con-
nection efficacies and maintain them for long periods of
time. Problems with digital implementations include the
need to use precision multiplication circuits to calculate
connection efficacies for signal inputs, the time-consuming
nature of the multiplying and summing processes and the
complexity of the non-linear calculations. As conventional
neural processing elements are basically operated by the
transmission of analog signals between elements, the num-
bers of connection lines and the complexity of the calcula-
tions involved make it difficult to implement them as large-
scale integrated circuits.

As a new method of integrating neural processing ele-
ments that resolves problems relating to connection efficacy
and lines, JP-A-6-83994 disclose a pulse-driven neural
processing element that can simplify calculations and can be
implemented by a simple digital circuit arrangement.
However, as yet there is no learning method for this pro-
cessing element. Back-propagation and Hebbian learning
rules are two of the learning processes used in the teaching
of neural networks. These learning methods are static in the
temporal processing, and as such do not take time sequence
relationships into account, meaning they do not relate to
temporal associative learning. There have been some experi-
mental integrated neural circuits using a back-propagation
learning method. However, the fact that the learning pro-
cesses have been calculated based on all information in the
network results in complex learning circuitry, and no large-
scale integration.

The present inventors have proposed a learning procedure
for a pulse-driven neural network that uses time sequential
input. This is a revised Hebbian learning rule, involving
local input and output information and less calculation than
back-propagation based learning. At each response output,
this learning method obtains a time correlation by compar-
ing input history values with a learning threshold and
making appropriate adjustments to the strengths of the
connections.

As yet, no method has been forthcoming for integrating
this learning method into the above pulse-driven neural
processing elements in the form of a circuit. The reason is
that although input/output responses can be calculated using
digital input/output line connections, input history values are
needed to calculate the learning procedures, but obtaining
history values of each input to each element involves a large
amount of computation. The number of calculations can be
reduced by calculating the history values of element outputs
instead of inputs, and then transferring these values to the
elements as input history values. However, since these
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histories are analog values, a complex line arrangement and
a large memory capacity are required to enable these signals
to be transferred to each of the input sections. This has been
a barrier to the digital circuit integration of large numbers of
processing elements, and to the realization of an integrated
circuit capable of learning time sequences relationships.
With respect also to training a multilayer neural network for
pattern recognition applications, as yet there are no means
for establishing how teaching signals are to be used to train
the neural network to fire selected output elements corre-
sponding to an input pattern.

An object of the present invention is to provide a temporal
learning neural network using a plurality of temporal neural
learning elements, that have temporal learning capabilities
and in which element learning calculations are simple and
can be carried out at high speed; use simplified learning
connections between elements that enable large numbers of
clements to be digitally integrated; enable large-scale sys-
tems to be constructed by forming multiplicities of elements
into groups and linking the groups, using simple, reliable
signal connections between elements; and in which., when
configured as a multilayer network learning is facilitated by
the use of induction signals to select arbitrary output layer
elements.

SUMMARY OF THE INVENTION

To attain the above object, the present invention provides
a temporal learning neural network comprising a substrate,
a plurality of temporal learning neural processing elements
integrated on the substrate, and an input/output control
section; each of the processing elements comprising calcu-
lation means and learning means.

The calculation means can comprise means for inputting
a plurality of signal pulses, an input memory section for
holding a plurality of input signals input from the means,
and a response calculation circuit. The response calculation
circuit calculates a sum of (a) a total summation value of a
product of (i) input values to the input memory section and
(11) corresponding input terminal connection efficacies, and
(b) an internal potential remaining in a processing element
at a current time, which is obtained by decaying the internal
potential of the processing element at a preceding time. The
sum forms an accumulated value. The response calculation
circuit compares the accumulated value with a predeter-
mined threshold value and, (1) when the accumulated value
exceeds the predetermined threshold value, outputs an out-
put 1 signal and stores, as the internal potential of the
processing element at a subsequent time, a value obtained by
deducting a constant from the accumulated value, and (2)
when the accumulated value does not exceed the predeter-
mined value, outputs an output O signal and stores the
accumulated value as the internal potential of the processing
clement of subsequent time. The learning means can com-
prise a learning processing circuit and a history evaluation
circuit. When the response calculation circuit has produced
an output 1 signal, the learning processing circuit receives
from the history evaluation circuit an input history evalua-
tion value (positive/negative/zero) to (1) strengthen the
connection efficacies when the evaluation value is positive,
(2) weaken the efficacies when the evaluation value is
negative and (3) leave the connection efficacies unchanged
when the evaluation value is zero, thereby generating new
connection efficacies. In order to determine the input history
evaluation value, the history evaluation circuit obtains an
input history value input from the processing element at a
preceding time by using an output history value of the
processing element of the preceding time for the input
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history value, compares the obtained input history value
with two learning threshold values, an enhancement thresh-
old value and a decrease threshold value, uses the input
history evaluation value so that the connection efficacies are

(1) strengthened when the obtained input history value is
equal to or higher than the enhancement threshold value, (2)
weakened when the obtained input history value is less than
the enchantment threshold value and is equal to or higher
than the decreased threshold value near zero and (3) left

unchanged when the obtained input history value is lower
than the decreased threshold value close to zero, and dis-
tributes the evaluation value (positive/negative/zero) to the
input memory section of each of the processing elements as
the input history value of each of the processing elements.
The input/output control section sends signals input from the
response calculation circuit and from the history evaluation
circuit to the input memory section of each of the plurality
of processing elements, receives signals output from the
response calculation circuit and from the history evaluation
circuit, and communicates with each of the processing
elements, thereby enabling input temporal associative learn-
ing processing.

The temporal learning neural network can comprise a
plurality of substrates, on each of which a plurality of
processing elements have been integrated, wherein temporal
associative learning is applied to the processing clements
between the plurality of substrates to form an associative
memory system in which temporal relationships can be
stored. The neural network can also be provided with means
for training selected output processing elements through the
use of teaching or induction signals.

The pulse-driven processing element according to this
invention enables signals to be transmitted between
elements, using multiple address lines and a single data line.
In the learning process it is necessary to obtain input history
values. Calculation performance can be enhanced by obtain-
ing the values on the output side of the elements and
transferring the values to the elements as input histories.
Also, learning is localized by each input history value and
output firing signal of the element. This eliminates the need
for the type of complex calculations required by the back-
propagation method and enables leaming to take place no
matter how complex the element interconnections. Connec-
tion efficacy adjustment equations were re-examined with
the aim of minimizing the number of additional connection
lines required for the learning process. As a result, a system
has been incorporated which compares inputs with a learn-
ing threshold and generates an evaluation value indicating
whether a connection efficacy should be increased or
decreased. Only the evaluation value is transferred, so just
two data lines are nceded for the learning process.

In the temporal learning neural network according to this
invention, based on the above system, operating mode
ON/OFF signals and learning mode signals to increase,
decrease or not change connection efficacies are all digital.
This means that connections between elements or element

boards can be freely configured to form large systems, using
just the address lines and two data lines. Moreover, for
training aimed at obtaining a response from specific output
elements for a particular pattern, induction signals corre-
sponding to an input can be directly input to output elements
to elicit the desired output pattern by increasing the firing
probability of the elements concerned.

In accordance with this invention, response and learning
processes can be accomplished using simple calculations,
and as such can be implemented by simple digital circuits,
which can be formed into integrated circuits. The elements
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thus integrated can be formed into modules each functioning
as a single unit. These modules can be linked to form
systems with higher-level functions.

The above and other features of the present invention will
become apparent from the following description made with
reference to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the temporal learning
processing element according to the invention;

FIG. 2 (a) illustrates input memory and response calcu-
lation in the dement of FIG. 1;

FIG. 2 (b) illustrates evaluation processing by the history
evaluation circuit in the element of FIG. 1,

FIG. 2 (¢) illustrates the operation of the learning pro-
cessing circuit in the element of FIG. 1;

FIG. 3 shows a temporal learning neural network accord-
ing to the invention, configured using the ¢lements of FIG.
1

FIG. 4 illustrates the operation of a multilayer neural
network arrangement;

FIG. 5 illustrates the operation of a temporal associative
memory network;

FIG. 6 shows the arrangement of a large-scale neural
network system comprised of function modules;

FIG. 7 (a) illustrates the operation of a temporal learning
network element;

FIG. 7 (b) shows an example of input signals to the
element of FI1G. 7 (a);

FIG. 7 (c) shows an example of input history vaiues in the
element of FIG. 7 (a);

FIG. 7 (d) shows an example of signal output from the
element of FIG. 7 (a);

FIG. 7 (e) shows an example of a time course of the input
history value;

FIG. 7 (f) shows an example of a time course of the
connection efficacy change during learning;

FIG. 8 shows the input and output operation in a prior art
pulse-driven neural processing element;

FIG. 9 is a block diagram showing an example of digital
circuits used to form the element of FIG. 8; and

FIG. 10 is a block diagram of a neural network according
to the present invention, configured by connecting a plural-
ity of the elements of FIG. 9.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

An embodiment of the invention will now be described
with reference to the drawings. FIG. 1 is a block diagram
showing an arrangement of the principal parts of an embodi-
ment of a temporal learning neural processing element 100
according to the present invention. The processing element
100 is comprised of an input memory section 1, a response
calculation circuit 2, a history evaluation circuit 3 and a
learning processing circuit 4. The input/output pulse-driven
response element disclosed in JP-A-6-83994 is used for the
input memory section 1 and response calculation circuit 2
input/output response portions of the processing element
100. The operation of the neural processing element will

now be described with reference to FIGS. 8, 9 and 10.

Element 80 in FIG. 8 is assumed to be the i-th element that
responds to inputs from other elements. X, is an input pulse
signal from a j-element that is input to the i-element at a
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synaptic (connection) efficacy W, and accumulated 1in the
element. Internal potential V, remalmng in the element is
added to accumulated petentlal U; in the next time interval
as a ' V,, ‘a’ being a decay constant (0<a<1) for V,. A discrete
time interval is used for the processing of this operation,
which is expressed as follows.

N (1)
Uih= 2 WzK{t—~1)+aV(r—1)
=1

This calculation is very simple, since the value of X;is *1”
or “0”. Accumulated potential U, is compared with a pulse
generation threshold T. If the value of U; exceeds the
threshoid value, a pulse is generated (X=1), and a value
obtained by subtracting a constant ‘p’ from U, remains in the
next step as internal potential V. If the value of U, is less
than the threshold value, no pulse is generated (X=0), and
U, remains unchanged as internal potential V. This can be
described by the following equation.

If U,(HZ T(2), then X (=1 and V)=V (t)p

If U (H)xT(2), then X{()=0 and V{r)=U (¥ (2)

The above operations are iteratively performed in parallel
for each of the processing elements to calculate and obtain
an oufput response.

FIG. 9 shows the digital circuitry used to constitute a
response calculation section comprised of an input memory
section 1 and a response calculation section 2. As an input
pulse is either 1 or 0, the integration calculation of equation
(1) is merely a matter of adding W, which is X=1. aV, is
calculated by multiplying V; by the decay constant ‘a’, so
there is no need for a complex circuit implementation.
Equation (2) only involves numerical comparison and sub-
traction calculations that can be done using a simple digital
circuit arrangement. Data is input and output as 1s and Os,
so by using a time division serial transfer arrangement, the
data can be transferred by means of the address lines S135
and data line S1 arrangement shown in FIG. 10. Also, if a
digital memory is used for each processing element, W, can
be held and easily changed as desired. As described by
JP-A-6-83994, this processing element arrangement is well-
suited to integration in the form of digital circuit elements.
Information is processed by a neural network of these
processing elements.

The learning function added to the processing elements
will now be described. Basically the neural network tem-
poral learning method of JP-A-5-345321, depicted in FIG. 7,
is applied in the form of a pulse-driven learning rule. To
describe this learning method with respect to FIG. 7, a
history value H,(t) of pulses input from a j-element such as
those of the pulse train X(t) shown in FIG. 7 (b) is
calculated and stored at an mput portion provided on the
processing element 100 shown in FIG. 7 (a). This input
history value is incremented by a constant ‘q’ at the input of
each pulse signal (X,=1), and then decays, as shown in FIG.
7 (¢). If ‘d’ is the history decay constant (0<d<1), history
value H,(t) can be expressed as follows.

H,(0=d-H,{~1)+g-X(+-1) (3)

During the learning operation the connection efficacy W ;
is changed when an element is fired by a strong input signal,
generating the output signal (X (t)=1) shown in FIG. 7 (d).
When this pulse firing takes place, each input history is
compared with learning thresholds to determine whether the
connection efficacy W is to be enhanced, decreased, or
unchanged. With reference to FIG. 7 (¢), which shows the
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decay of the synaptic history, two learning threshold levels
are set, which are an enhancement threshold level G1 and a
decrease threshold level G2 (G1>(G2>0). In this way, the
direction of the learning process is determined by compari-
son of the input history values H,(t) with the learning
thresholds G1 and G2. FIG. 7(f) shows that the connection
efficacy increases if the element fires in a short time from its
receipt of an input signal and that it decreases if the firing is
weakly correlated with the input signal. Also, broken lines in
the graph shows approximated lines and how to simplify the
learning process calculation by taking the constant increas-
ing level and constant decreasing one. That is, connection
efficacy W is enhanced if H,,(t)=G1, decreased if G1>Hj;
() =2, unchangecl if G2>H. (t) when the output element 1s
fired, while with respect to an n element that does not fire, W,
remains unchanged.

Input connections can be excitatory or inhibitory. A con-
nection efficacy W; can be calculated as excitatory when it
is positive, or mhlbltery when it is negative. The connection
efficacy has some physiologically limited range and there-
fore it is necessary to take into consideration such a limi-
tation in the calculation for the connection efficacy change.
If Wmax and Wimin arc set as maximum and minimum
values, respectively, of the connection efficacy W, k1 is a
learning rate increase constant and k2 a learming rate
decrease constant, the change in connection efficacy AW ;; of
an element that has fired is calculated as follows.

Enhancement:

If H,{n2G1, then W,=ki(Wmax-W,, ) (4)

Decrease:

If GI>H,($)&G2, then W,=k2(Wmin—W,) (5)

The value (Wmin—W ) in equation (3) is always negative
and k2 is a positive constant.

If Wmax and Wmin are represented by Wm, and k1 and
k2 by k, the preceding two equations can be expressed as
follows.

AW, =k(Wm—W,) (6)

Calculation can be simplified by making the following
omissions. With respect to input history values H; that are
actually integrated, as connection cfficacy W is also
involved, H,(t) multiplied by W should be compared with
learning thresholds G1 and G2. However, as initial values
for W, are randomized and the emphasis is on time
sequence, the effect of W, values on history values is
ignored, and only H.(t) is cempared to G1 and (G2. Also,
while the degree of ehange AW is related to H; and to G1
and G2, for simplicity the rate of learning enhancement/
decrease is taken as being a constant k1/k2. This simplifi-
cation reduces the learning calculations. For example, to
obtain the H, for each input without obtaining all input
history values for each processing element, the history value
at the output side of each element can be obtained and used
to calculate a coefficient of learning by transferring the
history value to each processing element.

The following problems used to be encountered when a
circuit has been added in which a learning function has been
imprinted by the above learning process. If the history is
obtained at the output side and transferred to the input
portion of each element, since the history value H; is an
analog quantity, the number of lines required to transmit the
information to the elements became a problem., while
another problem was the memory capacity required to store
the information at each element. These problems made
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circuit implementation of the method impossible, and also
seemed contradictory with respect to the use of pulse-driven
elements, and the simplified 1-bit response data connections
between elements.

It will now be explained how these problems have been
solved in accordance with the present invention, by realizing
a digital integrated neural network having a temporal learn-
ing function comprised by processing elements 100 each
having the input memory section 1, response calculation
circuit 2, history evaluation circuit 3 and learning processing
circuit 4 shown in FIG. 1. In FIG. 1, the input memory
section 1 is comprised of an input state memory 11, a
connection efficacy memory 12 and a learning evaluation
memory 13. S1 denotes response input, S2 evaluation input,
S3 response output, S4 evaluation output, S5 to S8 are input
memory section 1 outputs, §9 is connection efficacy chang-
ing output obtained by learning process, S10 is the output of
the response calculation circuit 2, $11 is input to the learning
processing circuit 4, S12 is input to the history evaluation
circuit 3, and S13 is output of the history evaluation circuit
3.

With reference to FIG. 1, a circuit 3 that processes and
evaluates output history values is added to the processing
element thus constituted by the input state memory 11 and
connection efficacy memory 12 of the input memory section
1 and the digital response calculation circuit 2, of which the
processing steps are shown in FIG. 2 (a). As shown by FIG.
2 (b), in the processing means of the history evaluation
circuit 3, a constant multiplication circuit is nsed to obtain
the decayed history value dH,. and calculation of equation
(3) in which the output value thus obtained is incremented
by q each time there is an output X,, forms an adder. Before
the history value thus obtained at the output side is trans-
mitted to the input side of each processing element, it is
compared with a learning threshold and processed until an
evaluation value is attained concerning whether the connec-
tion efficacy should be increased, decreased or left
unchanged. This evaluation value is then sent to the evalu-
ation value memory of each element’s input section. As the
evaluation value is not more than two bits, it is possible to
economize on storage memory resources, and the data can
be transmitted serially over two lines.

Based on the transmitted evaluation value results, con-
nection efficacies are trained by the addition of the learning
processing circuit of FIG. 1 to perform the calculations of
equations (4) and (5). FIG. 2 (¢) shows the content of the
processing by the circuit. First, a circuit is formed to confirm
the processing clement has generated an output pulse and to
discriminate whether the evaluation is an increase, decrease,
or no change evaluation. Equation (0) is used to obtain AW ;.
For this, for an increase Wmax is substituted for Wm and k1
for k, and for a decrease Wmin is substituted for Wm and k2
for k. a subtraction circuit is used to obtain (Wm-W ), and
AW is then obtained by using a constant multiplication
circuit to multiply the obtained value by constant k. An
adder circuit is then used to obtain the new W, from
(W,;+AW ), and the connection efficacy is rewritten. The
above is the added learning processing circuit 4.

The learning evaluation memory 13, the history evalua-
tion circuit 3 having means for the processing shown in
FIGS. 2 (a) and (b), and the learning processing circuit 4 are
the only circuits added for the connection cfficacy-based
learning process. These are simple digital circuits for per-
forming discrimination, constant multiplication and addition
and subtraction and the like and can be readily integrated.
With respect to the evaluation value, by using a “1™ first bit
to signify an increase, a “1” second bit to signify a decrease
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and “0” first and second bits to signify no change, the
evaluation signal does not exceed two bits and can be
transmitted by adding just two lines, keeping down the
number of lines and the size of the memory. When response

data and/or evaluation data are sent to each element as a
stream of serial data, address lines are used to address the

location of each element’s input state memory and learning
evaluation memory. This can be done using ten address lines

in the case of 1,024 elements, and eleven lines for 2.048
elements.

Regarding this operation of a processing element as one
cycle of synchronized operations, with reference to FIG. 1,

first the input is set, and the element output response is
processed is response mode. Then there is a switch to
learning mode, and the learning processing circuit uses the
previous evaluation output response to calculate any change
in the connection efficacy. The connection efficacy is then
adjusted, and history value calculation and evaluation is
performed for the next step. Thus, the operation comprises
repeated cycles of the two operating modes of response and
learning. If high-speed response calculation is required, the
learning procedure does not have to be calculated for each
response. Instead, each cycle could be comprised of a
number of response calculations and history evaluations that
is followed by one learning processing.

A neural network system can be configured by integrating
a thousand or so processing clements 100 on a single board
or substrate. An input/output control unit 5 of FIG. 3
transmits response and evaluation input data to the input
memory section of each of the processing elements 100. The
output control unit 5 also receives response and evaluation
outputs from the elements, and also functions as an external
signal interface. The lines S17 and S18 of the input/output
control circuits are also communication lines with other
processing units, such as sensor devices, actuators and
digital computers. Taking the circuits integrated on a single
substrate as a function module, a system can be formed by
combining large numbers of modules. As signalling between
elements is digitally implemented, the neural network of this
invention is reliable. Modules can be readily interconnected
by using three data lines, address lines, and control lines for
clocks, modes, and so forth, and the arrangement allows
large-scale systems to be implemented. Input and output
lines can be time shared by controlling the timing of signals
used 1n response and learning modes.

In the above learning evaluation, learning thresholds G1
and (G2 are used to discriminate between whether connection
efficacy is to be increased, decreased or not changed. using
equations (4) and (5). However, the arrangement can be
simplified by using just threshold G1. In this case, when an
element fires the connection efficacy is increased if H;=G1,
and decreased if G1>H, This makes it possible to transmit
learning evaluation data using a single line, providing fur-
ther simplification. In the case of such an arrangement,
“learning” would have a slightly different meaning. Con-
nection efficacy would still be increased when inputs/outputs
are well time-correlated. In other cases, however, pulse
firing would result in a decrease in the connection efficacy.
This enables learning to be conducted more efficiently when
teaching output elements to respond to just a specific input
pattern. The number of stages into which learning evaluation
is divided depends on the number of learning evaluation data
lines used. As such, either the number of evaluation data
lines can be increased to obtain detailed, multivalue
evaluation, or simpler evaluation can be obtained using
fewer lines. Either option can be selected as required.

In general there are two types of neural networks. In one
type the processing elements are interconnected, while in the
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other type, shown in FIG. 4, the elements are connected in
layers. When integrated circuits are used to form an inter-
connected network configuration, as shown in FIG. 3, it is
only necessary for output and input values to be given a
one-to-one correspondence at the input/output control
section, and to iteratively write the values to the same
address. The other neural network configuration can adapt to
the way the input memory section 1 is used by the input/
output control section. The network of FIG. 4 is comprised
of an input layer 41, hidden layer 42 and output layer 43.
Since the processing elements in each layer are not inter-
connected with other elements in the layer, there will be a
total mismatch between input and output patterns. For
example, a method may be used in which input pattern data
A B C from the input layer 41 is received by the input/output
control section and written into the input state memory and
learning evaluation memory in the input memory section of
the processing elements 100 of the hidden layer 42, and a
response is calculated, and the outcome of this processing,
A' B’ ' in this example, is then ransmitted to the input/
output control section as evaluation output data for input/
output control and connection of processing elements 100 of
the output layer 43. Reference numeral 44 denotes connec-
tion lines between processing elements 100, and 45 denotes
induction or teaching signal input lines.

For circuits with interconnections combined with direct
input or external connections, memory can be divided for
different requirements. For example, one part of the input
memory may be used for interconnections and the other part
for direct input or external connectioms. Specifically, N
elements that are interconnected and M input terminals that
are connected for external elements can be handled by
preparing input memory for N+M connection efficacy,
enabling memory sections 1-N to be used for interconnec-
tions and the remaining M parts for external connections. In
this way, the neural network according to this invention is
adaptable to various circuit connection arrangements includ-
ing circuits having complex recurrent loops and the like, and
there is no problem since learning rules relate to local inputs
and outputs.

A learning method will now be shown having output
selection means for selectively obtaining a desired output for
an input, when an input firing pattern is to be changed to a
certain output pattern, using the multilayer network configu-
ration of FIG. 4. Connections are formed in the multilayer
network whereby teaching and induction signals having a
time correlation with input layer 41 signals (A, B, C) are
directly input to processing elements 100 of the output layer
43 that it 1s desired to fire. Since the resultant firing of the
output layer 43 eclements receiving the teaching signals
(elements A", B", C") is temporally correlated with the input
signals, connection efficacies between input layer 41 and
hidden layer 42 clements and the selected output layer
elements are strengthened, thereby enabling learning to take
place to form an associative memory whereby a desired
selected output pattern (A", B", C") can be obtained for an
input pattern (A, B, C).

The formation of a temporal associative memory will now
be shown, using a network of temporal learning elements
100 interconnected as shown in FIG. §. To start with, weak
connections are established between neural processing ele-
ment groups A, B, C, D, H, and K. It is assumed that as a
result of an input signal, the elements of Group A fire, then
the elements of Group B. A check of the history values of all
Group B element inputs shows a large history value for the
input from Group A, so connection A—B is strengthened. If
then Group C fires, then Group D, in accordance with the
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same temporal learning signal paths B—C and C—D will be
strengthened. Through these learning iterations, an input
pattern is imprinted on the synaptic connections of the
network. For recall, an input is applied to Group A, causing
Group A to fee. Owing to connection A—B, Group B fires
and is read, then Groups C and D, in time order (see the bold
arrows in FIG. 8).

The temporal learning method is not limited to strength-
ening of direct primary connections such as A—B and
B—C. Recall performance can be enhanced by changing
parameters to strengthen secondary connections with a
broad time width such as A—C or B—D. Take as an

example two temporal patterns A—-B-sC—-D and
H—C—K intersecting at Group C that were imprinted at the
same time. If the recall process were started from Group H,
Group C is recalled after H, and next, Group K would be
more easily recalled than Group D owing to secondary
connection H—K, thereby enabling the intersecting pattern
H—-C-5K to be recalled (see the open arrows in the
drawing). Experience-based learning of this type could be
used to form a temporal associative memory network able to
predict a subsequent state.

In the network system arrangement shown in FIG. 6,
processing elements 100 according to this invention are
integrated into input/output modules, intermediate modules
and higher level modules, cach having a particular function.
By associating large numbers of modules as in FIG. 6,
temporal learning can be used to extend network links via
module interconnection lines 60 to form large, dynamic
neural network systems. When supervised learning is
required, an active pattern can be taught using induction or
teaching signals corresponding to an input pattern that are
applied to the appropriate modules via teaching signal lines
45. Since modules can be connected by digital pulse signals
links, it is possible to build large-scale neural information
processing systems without the noise problem and signal
decrease that are concerns in the case of analog signals.,

As described in the foregoing, the temporal learning
network element according to this invention includes a
plurality of input means, an input memory section, a
response calculation circuit, a learning processing circuit
and a history evaluation circuit. Because the temporal learn-
ing method comprises simple comparison, subtraction and
addition operations, it has the advantage that it cam be
constituted using simple digital circuits that can be used to
form large-scale integrated neural networks. Even with the
inclusion of response input/output signals and learning
evaluation signals, since input and output signals are digital,
elements and integrated circuits can be linked using reliable
digital connections and a low number of lines. This makes
it possible to form large systems by linking numerous groups
of processing elements.

With respect to the temporal learning neural network of
the invention, the elements thus integrated can be formed
into modules each functioning as a single unit. These
modules can be combined to produce systems with higher-
level functions. Taking the circuits integrated on a single
substrate as a function module, a system can be formed by
combining large numbers of modules. As signalling between
elements is digitally implemented, the neural network of this
invention is reliable. Modules can be readily interconnected
by using three data lines, address lines, and control lines for
clocks, modes, and so forth, and the arrangement allows
large-scale systems to be implemented. Input and output
lines can be time shared by controlling the timing of signals
used in response and learning modes.

Function modules can be formed by integrating pluralities
of the above processing elements on a single substrate. By
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then grouping together pluralitics of these modules and
applying temporal associative learning between modules, a
system can be formed in which time relations can be
associatively stored. In addition, the network has means that
can be taught to select output elements, by using teaching or
induction signals. An input control section enables the input
memory section to be flexibly used for different purposes,
such as for inputs from outputs of other modules or for the
output of signals to the outputs of other modules. As such,
temporal learning can be applied to networks formed of
circuits that are interconnected or connected in layers, to
produce temporal associative memory circuits.

The temporal learning method has a locality determined
by just element input/output, and can therefore be adapted to
various circuit configurations including interconnection cir-
cuits and feedback circuits. By applying a teaching signal to
elements on the output side, circuit output can be controlled
and an associative memory circuit formed having an arbi-
trary output pattern. A natural learning method with a
physiologically plausible function is implemented by the
present invention as a neural network. A temporal flow of
events can be accurately stored in the network’s synaptic
connections, and recalled, similarly to the way a nervous
system functions. As the network can handle temporally
dynamic phenomena, it can be used to realize high-level
neural networks such as a temporal associative memory that
can use experience to predict a subsequent state, That is, In
the neural circuit it will be possible to form logical circuits
that incorporate a temporal cause-and-effect relationship,
enabling high-level information processing that is even
closer to a human central nervous system.

What is claimed is:

1. A temporal learning neural network for implementing
input temporal associative learning, the neural network
comprising:

a substrate,

a plurality of temporal learning neural processing ele-

ments integrated on said substrate, and

an input/output control section including input terminals
and output terminals;

each of said processing elements comprising:

learning means. and

calculation means comprising:

an input memory section with inputting means for
inputting a plurality of signal pulses, and means for
storing the signal pulses input from said inputting
means, and

a response calculation circuit which calculates a sum of
(a) a total summation value of a product of (i) input
values to said input memory section and (ii) corre-
sponding input terminal connection efficacies, and
(b) an internal potential remaining in the processing
element at a current time, which is obtained by
decaying the internal potential of the processing
element at a preceding time, the sum forming an
accumulated value, said response calculation circuit
including comparing means for comparing the accu-
mulated value with a predetermined threshold value
and, (i) when the accumulated value exceeds the
predetermined threshold value, outputting an output
1 signal, and storing, as the internal potential for the
processing element at a subsequent time, a value
obtained by deducting a constant from the accumu-
lated value, and (ii) when the accumulated value
does not exceed the predetermined threshold value,
outputting an output 0 signal and storing the accu-
mulated value as the internal potential of the pro-
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cessing element of the subsequent time, said learning
means comprising:

a history evaluation circuit for determining an input
history evaluation value, and

a learning processing circuit for generating new con-
nection efficacies in a processing element wherein
said calculation circuit has output an output 1 signal,
by receiving an input history evaluation value from
said history evaluation circuit, the input history
evaluation value (i) strengthening the connection
efficacies when the evaluation value is positive, (ii)
weakening the connection efficacies when the evalu-
ation value is negative and (iii) leaving the connec-
tion efficacies unchanged when the evaluation value
is zero, wherein said history evaluation circuit
includes:

means for using an input history value of the processing
element of the preceding time for the input history
value of the processing element of a current time,
which is obtained by accumulating the input signals
with decay,

means for comparing the input history value with an
enhancement learning threshold value and a
decreased learning threshold value, generating the
input history evaluation value whereby a changing
direction for the connection efficacies is (i) positive

when the obtained input history value is equal to or
higher than the enhancement learning threshold
value, (ii) negative when the obtained input history
value is lower than the enhancement learning thresh-
old value and is equal to or higher than the decreased
threshold value, or (iii) zero when the obtained input
history value is lower than the decreased threshold

value, and

means for distributing the input history evaluation
value to the input memory section of each of the
processing elements, and

wherein said input/output control section includes

means for receiving at said input terminals (i) the output
1 and output O signals output from said response
calculation circuit and (ii) the input history evaluation
value from said history evaluation circuit, and

means for sending, from said output terminals, the signals
input from said response calculation circuit and from
said history evaluation circuit, to said input memory
section of each of said plurality of processing ¢lements.

2. A neural network according to claim 1, further com-

prising:

a plurality of substrates on each of which said plurality of
processing elements have been integrated, and wherein
temporal associative learning is applied to said pro-
cessing elements between said plurality of substrates to
form an associative memory system for storing tem-
poral relationships; and

means for training selected output processing elements
using at least one of teaching and induction signals.

3. A neural network according to claim 1, wherein said

plurality of processing elements are divided into a plurality

60 of groups having input terminals and output termunals con-

nected respectively to said output terminals and said input
terminals of said input/output control section.

4. A neural network according to claim 1, wherein said
input/output control section further comprises means for

65 connecting to an external circuit.

#® L . .



	Front Page
	Drawings
	Specification
	Claims

