United States Patent

L
I:

US005701464A

[11] Patent Number: 5,701,464
Aucsmith [45] Date of Patent: Dec. 23, 1997
[54] PARAMETERIZED BLOOM FILTERS Primary Examiner—Thomas G. Black
Assistant Examiner—Jack M. Choules
[75] Inventor: David W. Aucsmith, Portland, Oreg. Artorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
Zafman
[73] Assignee: Intel Corporation, Santa Clara, Calif. (571 ABSTRACT
[21] Appl. No.: 528,912 A method and apparatus for determining validity of a key. A
_— bloom filter is updated in a first computer system (e.g. a
[22] Filed: Sep. 15, 1995 client system) at periodic intervals by providing the system’s
[51]1 Int. CLO e ceesescreeneassssens GOGF 17/30 requirements of the bloom filter to a second computer
[52] UsS. CL wovreesreneemersserernss s 395/610; 395/602 ~ System (e.g. a server system). These requirements may
. include: 2 number of bits which are included in the bloom
[58] Field of Search 3951235!66%{5 ?5012{5 vectors: a number of the coefficients for hash functions of
A the bloom filter; or an error value indicating the possibility
[56] References Cited of error of the bloom filter. The second computer system has
access to an invalidity database which includes all invalid
U.S. PATENT DOCUMENTS keys and can generate a matrix of bloom vectors and
5394471 2/1995 Ganesan et al 380723 coefhcients for different client requirements. Responsive to
o Fom——— the provision of the first system’s requirements, it receives
OTHER PUBLICATIONS bloom vectors and coefficients which comprise the bloom

Mullin, J.K. “Optimal Semijoins for Distributed Database
Systems” IEEE Trans. on Software Engineering, vol. 16,
No. 5, pp. 558-560. May 1990.

Gauthier, P, “Wide Area Information Retrieval” Masters
Thesis, http:/http.cs.berkeley.edu/~gauthier/thesis/thesis.h-
tmi, pp. 1-21, Oct. 1994,

Knuth, Donald E. The Art of Computer Programming,vol. 3:
Sorting and Searching, Addison-Wesley Publishing Com-
pany, Inc. 1973, 561-562.

Bloom. Burton H., Space/Time Trade—offs in Hash Coding
with Allowable Errors, Communications of the ACM 13, 7
(Jul. 1970), 422426.

222

INVALIDITY
DATABASE

SN—

o

CREDIT | KEY

CARD

212

BL.OOM FILTER
AND MATRIX
CALCULATOR

filter. The system can then accept a key and apply the bloom
filter to the key to determine if the key is present in the
invalidity database. Invalidity of the key can be confirmed if
the bloom filter indicates that the key is present in the
invalidity database by transmitting the key to the second
computer system to determine the presence of the key in the
invalidity database. In this way, communications bandwidth
is conserved because no communication between the first
comptiter system and the second computer system need take
place if the bloom filter indicates that the key is not present

in the invalidity database.
26 Claims, 14 Drawing Sheets

SERVER

230

INVALIDITY
CONFIRMATION

CLIENT
~— 210

LOCAL INVALIDITY CACHE 218

U.S. Patent Dec. 23, 1997 Sheet 1 of 14

100

121

INVALIDITY SERVER 120
DATABASE

VALIDITY/INVALIDITY
SIGNALS

116

114
CREDIT KEY

CARD CLIENT 110
112

FIGURE 1
(Prior Art)

U.S. Patent

Dec. 23, 1997 Sheet 2 of 14 5,701,464

SERVER 200

BLOOM FILTER

INVALIDITY

DATABASE AND MATRIX 224

CALCULATOR

230

INVALIDITY
CONFIRMATION

210

LOCAL INVALIDITY CACHE 218

FIGURE 2

S,701,464

Sheet 3 of 14

Dec. 23, 1997

U.S. Patent

¢ HANOIA

20t
JOSSID0Ud

90¢

AJOWHIN
A'INO AVdY

AJONWHIN
NIVIA

dOVIOLS

HOIAI(
NOLLVOINNNINOD

JAIAOd Ko—1 HOIAGd
TVIIAS

¥43
"TOYINOD

JOSAND

743
QAVOIATIA

43
AVIdSIA

U.S. Patent Dec. 23, 1997 Sheet 4 of 14 >,701,464

&
-
<

420

418
m

416

414

412

410

406

404

DATE

402

U.S. Patent

Dec. 23, 1997 Sheet 5 of 14 5,701,464

TO SERVER ',218

230
' PARAMETERS, BLOOM VECTORS, COEFFICIENTS

REQUEST
KEY/CONFIRMATION
SIGNALS

PARAMETER/FILTER ;’8
CONFIRMATION >10 REQUESTOR

PARAMETERIZED 506
BLOOM
FILTER

CONTROL

>12 | INVALIDITY S02

DETECTION

CONFIGURATION USER

FIGURE 5

U.S. Patent

Dec. 23, 1997 Sheet 6 of 14 5,701,464

224

222

BLOOM
VECTOR 606

INVALIDITY CALCULATOR

DATABASE

BLOOM FILTER 604
608 MATRIX

LOOKUP
CONTROL 602

230

U.S. Patent Dec. 23, 1997 Sheet 7 of 14 5,701,464
700
KEY INVALIDITY
DETECTION
YES

CURRENT BLOOM
FILTER STRING
STORED?
104

NEGOTIATE WITH SERVER
NO TO OBTAIN CURRENT
BLOOM FILTER

106

DETERMINE WHETHER
KEY IS IN LOCAL
INVALIDITY CACHE

108

REQUEST THAT
SERVER LOOKUP
KEY IN
INVALIDITY
DATABASE

714

SERVER
INDICATES KEY
VALID?

716

INDICATE KEY VALID
120

FIGURE 7

U.S. Patent Dec. 23, 1997 Sheet 8 of 14 5,701,464

NEGOTIATE WITH SERVER
TO OBTAIN CURRENT
BLOOM FILTER
706

REQUEST THAT SERVER
PROVIDE RANGE OF
PARAMETERS
802

RECEIVE
PARAMETERS
804

CLIENT SELECTS
PARAMETER(S)
806

CLIENT REQUESTS
BLOOM FILTER WITH
PARAMETER(S)
808

CLIENT RECEIVES BLOOM FILTER
AND UPDATES LOCAL
INVALIDITY CACHE
810

FIGURE 8

U.S. Patent

Dec. 23, 1997 Sheet 9 of 14 5,701,464

210 900

KMAX, MMAX
OMIN: KSTEP:
MSTEP

CLIENT SERVER
210 79(0)
SERVER

FIGURE 9b CLIENT

BLOOM FILTE
FIGURE O¢ CLIENT STRING A

U.S. Patent Dec. 23, 1997 Sheet 10 of 14 >,701,464

SERVER COMPUTES
NEW BLOOM FILTER
1000

NEW BLOOM
FILTER REQUIRED?
1002

NO

DETERMINE RANGE OF
PARAMETERS
1004

CALCULATE
BLOOM FILTER MATRIX
BASED ON CURRENT
INVALID KEYS AND
RANGE OF PARAMETERS

1006

BROADCAST CURRENT
DATE AND SERIAL NO. OF
CURRENT BLOOM FILTER

1008

U.S. Patent

Dec. 23, 1997 Sheet 11 of 14 5,701,464

CHECK KEY IN LOCAL
INVALIDITY CACHE

108

1114

RETURN "NOT IN DATABASE" RETURN "IN DATABASE"
1124 1122

FIGURE 11

U.S. Patent

Dec. 23, 1997 Sheet 12 of 14 5,701,464

BUILD BLOOM
FILTER MATRIX
1006
1202
RETRIEVE MMA X, kMAX. N, t STEPyy,, STEP, -
1204
STORE DATE & SERIAL NO.

1206

1208

STORE COEFFICIENTS.,
O and Ppg

1224

k =k + STEP

1228

FIGURE 12a

U.S. Patent Dec. 23, 1997 Sheet 13 of 14 >,701.,464

FIGURE 12b (&) SRR R
m=1
1230

STORE BLOOM
VECTORS

U.S. Patent Dec. 23, 1997 Sheet 14 of 14 5,701,464

TES GET NEXT KEY
1258

NO k =k + STEP
1262

NO

YES

FIGURE 12c

5,701,464

1
PARAMETERIZED BLOOM FILTERS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method for determining
membership in a database. More specifically, the present
invention relates to the use of parameterized bloom filters in
order to determine membership in database, such as a key
invalidity database, to determine key validity.

2. Background Information

The use of credit cards, debit cards, or other types of
non-cash payment methods for a transaction requires a
determination of the validity of the payment means prior to
the completion of the transaction. Current methods of deter-
mining validity of such payment methods includes a client/
server system such as 100 shown in FIG. 1. In one prior art
method, a payment method, such as a credit card 112, is used
for inputting a key 114 into a client 110. Because the list of
revoked credit card numbers or “keys” 114 is very large, the
client 110 performs a query 116 of key validity, for example,
to a server 120. Server 120 has access to a very large
invalidity database 121 which contains a list of all of the
invalid keys. Thus, client 110 makes a query 116 to server
120 whether the key 114 is in the database 121. The database
could contain all keys, valid and invalid, and mark which
keys are invalid. For simplicity, it is assumed that only
invalid keys will be found when the database is querred.

Responsive thereto, server 120 performs a lookup in an
invalidity database 121 to determine the presence of the key.
If the key is present in the database, then it is invalid. Server
120 then either provides a valid or invalid signal to client
110 indicating whether the key is a member of the invalidity
database 121 or not. If a valid signal is returned (indicating
the key is not in invalidity database 121) client 110 com-
pletes the transaction.

One shortcoming of some prior art database membership
applications, such as those used in the credit card verifica-
tion application discussed above, is that membership in the
database is determined based upon of a request from a client
and a corresponding response from a server. That is. for
every transaction, a communication link must be established
and a database lookup must be performed. Because keys,
such as credit cards, have large numbers of possible values,
and correspondingly large numbers of possible invalid keys,
the server 120 is capable of communicating with large
numbers of clients and can service large numbers of
requests.

In order to respond to all the possible requests which may
occur, especially at high traffic intervals, server 120 requires
a large number of communication channels, and typically
should be able to service a large number of search requests
in invalidity database 121 efficiently. This requires a high
performance server, which may increase costs dramatically,
according to the implementation.

Thus, the prior art has suffered from the shortcoming that
very expensive mechanisms for verifying the validity of
keys. and correspondingly large amount of communication
bandwidth must be provided in order for such a key validity
determination system to be fully practicable. Such a capacity
stretches resources both in terms of communication
resources, computational resources, and the corresponding
cost of providing such resources.

Thus, a need exists for a method and apparatus which can
determine membership in a database, such as an invalidity
database, but yet, minimizes computational,
communication, and cost resources.

5

10

15

20

30

35

45

50

35

65

2
SUMMARY OF THE INVENTION

A method and apparatus for determining validity of a key.
A bloom filter is updated in a first computer system (e.g. a
client system) at periodic intervals by providing the system’s
requirements of the bloom filter to a second computer
system (e.g. a server system). These requirements may
include: a number of bits which are included in the bloom
vectors; a number of the coefficients for hash functions of
the bloom filter; or an error value indicating the possibility
of error of the bloom filter. The second computer system has
access (o an invalidity database which includes all invalid
keys and can generate a matrix of bloom vectors and
coeflicients for different client requirements. Responsive to
the provision of the first system’s requirements, it receives
bloom vectors and coefficients which comprise the bloom
fiiter. The system can then accept a key and apply the bloom

filter to the key to determine if the key is present in the
invalidity database.

In implemented embodiments, invalidity of the key can be
confirmed if the bloom filter indicates that the key is present
in the invalidity database by transmitting the key to the
second computer system to determine the presence of the
key in the invalidity database. The first system can receive
a result signal from the second computer system indicating
whether the key is present in the invalidity database. In this
way, communication bandwidth is conserved because no
communication between the first computer system and the
second computer system need take place if the bloom filter
indicates that the key is not present in the invalidity data-
base. Applying the bloom filter includes hashing the key
with the coefficients and a prime key value, also received
from the second computer system when the bloom filter is
updated, to generate a test value and comparing the test
value with the bloom vectors to see if the bit pattern is the
same.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying in
which like references indicate like elements and in which:

FIG. 1 shows a prior art validity determination system.

FIG. 2 shows an invalidity detection system.

FIG. 3 shows a computer system in which either a client
and/or a server may be implemented.

F1G. 4 shows the format of a data string which is returned
from a server for a current bloom filter to be stored in the
client.

FIG. 5 shows a functional block diagram of processes or
dedicated circuitry which may be contained within a client
for providing the function of a local invalidity cache of an
invalidity database.

FIG. 6 shows a functional block diagram of processes or
circuitry contained within a server which provides member-
ship confirmation signal(s), bloom filter coefficients and
vectors to a client upon request.

FIG. 7 shows a process which is performed for key
invalidity detection within a client.

FIG. 8 shows a process performed by a client for nego-
tiation with a server to obtain a current bloom filter string.

FIGS. 9a-9¢ show a series of messages which may be
transmitted between a client and a server in order to make
available a current bloom filter to a requesting client.

FIG. 10 shows a sequence of steps performed within a
server for updating a bloom filter matrix which is used for
providing bloom filters to requesting client(s).

5,701,464

3

FIG. 11 shows a sequence of steps performed within a
client for determining whether a key is in the local invalidity
cache.

FIGS. 12a-12¢ shows details of the process performed
within a server for calculating the bloom filter matrix.

DETAILED DESCRIPTION

Embodiments of the present invention include an inval-
idity detection system wherein a client maintains a local
invalidity cache of a database stored in a remote system,
such as a server. The client connects with the server only if
a key is potentially a member of an invalidity database, as
indicated by the local invalidity cache. The local invalidity
cache of the invalidity database, is a hash function of all
invalid keys. If the key does not exist in the local invalidity
cache, then it is guaranteed that it does not appear in the
invalidity database. In the instance where the key may be
invalid, that is, it may be a member of the invalidity
database, then the client can request that the server perform
a lookup in an invalidity database. Although the present
invention will be described specifically with reference to
certain specific embodiments, especially those shown in
FIGS. 2-12¢, these embodiments are described for the
purposes of illustration only, and do not limit the present
invention. Modifications and other changes may be per-

formed without departing from the overall spirit and scope
of the present invention.

Overview

FIG. 2 illustrates a system which is used for invalidity
detection of keys in implemented embodiments of the
present invention. A client system 210 accepts a key, a
unique value 214, for example, the number of a credit card
212. The database 222 may include a list of revoked credit
card numbers. ID badge numbers, or other unique values
which are no longer valid. The client determines whether the
key is in invalidity database 222 to determine whether a
transaction will be allowed to proceed.

Upon receipt of a key 214 the client 210 performs a
lookup in a local invalidity cache 218. A response signal
indicating the results of the lookup in the local invalidity
cache 218 is now generated. As will be described, local
invalidity cache 218 comprises a bloom filter which is
generated by performing one or more hash functions of the
invalid keys contained in the invalidity database 222 stored
in the server. If a lookup in the local invalidity cache 218
indicates that the key is not a member of invalidity database
222 then the key is guaranteed to not be a member of
invalidity database 222. In this case, no communication
between the client 210 and server 200 need take place.

If the local invalidity cache 218 indicates that the key is
a member of invalidity database 222, then this may or may
not be true. In that instance, the client may perform an
invalidity confirmation process wherein the client commu-
nicates with the server 220 and requests a lookup to confirm
the key’s membership in invalidity database 222. No inval-
idity confirmation process need take place if the client can
accept the possibility of the key actually being valid, within
an error measure ¢. In the case of a database lookup, server
220 provides signals 230 to client 210 indicating whether the
key is or is not a member of database 222. There is a
possibility that a finding of membership in the local inval-
idity cache by the client will result in membership not being
found in invalidity database 222, however, the emror o 1s
calculable and is relatively small. The error ot may be used
by the client to determine the local invalidity cache’s

10

15

25

30

33

43

35

65

4

accuracy and may determine whether a lookup is even
required in some implementations.

Local invalidity cache 218 is a bloom filter of all the
invalid keys in the database 222. Server 220 includes a
bloom filter/matrix calculator 224 which generates bloom
filters for-various parameters at periodic intervals from
invalidity database 222. The bloom filter and matrix calcu-
lator 224 accesses invalidity database 222, and hashes all
keys contained within the database for a range of
parameters, error values, number of coefficients of the hash
functions, and a prime key value which is used during the
process for determination of whether the key is a member of
the local invalidity cache 218. Any of the bloom filter
vectors, coefficients, and prime key values may be down-
loaded from server 220 by client 210 upon demand, at
regular intervals, or other defined intervals according to the
established protocol. In implemented embodiments, the
bloom filter vectors, coefficients and parameters stored in the
matrix 224 may be computed at some interval, such as the
beginning of the business day or when the invalidity data-
base 222 is updated by some threshold measure.

Computer System

Referring to FIG. 3, a system 310 upon which one
embodiment of a computer system (e.g. client 210 or server
220) of the present invention as implemented is shown. 310
comprises a bus or other communication means 301 for
communicating information, and a processing means 302
coupled with bus 301 for processing information. System
310 further comprises a random access memory (RAM) or
other volatile storage device 304 (referred to as main
memory), coupled to bus 301 for storing information and
instructions to be executed by processor 302. Main memory
304 also may be used for storing temporary variables or
other intermediate information during execution of instruc-
tions by processor 302. System 310 also comprises a read
only memory (ROM) and/or other static storage device 306
coupled to bus 301 for storing static information and instruc-
tions for processor 302, and a data storage device 307 such
as a magnetic disk or optical disk and its corresponding disk
drive. Data storage device 307 is coupled to bus 301 for
storing information and instructions.

System 310 may further be coupled to a display device
321, such as a cathode ray tube (CRT) or liquid crystal
display (LCD) coupled to bus 301 for displaying informa-
tion to a computer user. An alphanumeric input device 322,
including a alphanumeric and other keys, may also be
coupled to bus 301 for communicating information and
command selections to processor 302. An additional user
input device is cursor control 323, such as a mouse,
trackball, stylus, or cursor direction keys, coupled to bus 301
for communicating direction information and command
selections to processor 302, and for controlling cursor move-
ment on display 321.

In implemented embodiments, another device which may
be coupled to bus 301 includes a serial interface 324. This
may be coupled to a key input device 326 which can
automatically input a key. This type of device may include
a bar code, OCR (Optical Character Recognition), magnetic
reader or other type of automatic key input device.

System 310 may also include a communication device
325 which comprises a means for communicating with other
devices. This communication device may also include a
means for communicating with other nodes in a network or
across telephone lines. In implemented embodiments, this

may include a MOdulatort/DEModulator (MODEM) for

5,701,464

~

communication between client 210 and server 220. Note,
also, that any or all of the components of system 310 and
associated hardware may be used in various embodiments,
however, it can be appreciated that any configuration of the
system that includes a processor 302 may be used for various
proposes according to the particular implementation.

In one embodiment of a client 210, system 310 my be one
of the IBM AT-compatible type personal computers such as
the Gateway 2000 brand personal computer manufactured
by Gateway Computer Systems. Processor 302 may be one
of the Pentium® brand microprocessors available from Intel
Corporation of Santa Clara, Calif. (Pentium and Intel are
trademarks of Intel Corporation).

Note that the following discussion of various embodi-
ments discussed herein will refer specifically to a series of
routines which are generated in a high-level programming
language (e.g., the C or C++ language) and compiled,
linked, and then run as object code in system 310 during
run-time. It can be appreciated by one skilled in the art,
however, that the following methods and apparatus may be
implemented in special purpose hardware devices, such as
discrete logic devices, large scale integrated circuits (LLSI’s)
application-specific integrated circuits (ASIC’s), or other
specialized hardware. The description here has equal appli-
cation to apparatus having similar function.

The Invalidity Database

Database 222 contains N items. Each item in the database
is uniquely identified by a key Q so that there are Q, ... Q,,
... Qa Each key, Q. consists of t bytes q such that Q_=q,,,
e v+ Qui -« » Qur A bloom filter is used in implemented
embodiments for the local invalidity cache 218. No search
in invalidity database 222 need be performed if the key is not
present in local invalidity cache 218. Database 222 may be,
for example, a database of revoked credit cards. A bit vector,
B, is maintained in the local invalidity cache 218, so that
most keys not in the file can be recognized as absent without
making any references to database 222.

An internal bit vector, B, known as a Bloom vector is
stored in client 210 with bits bb, . . . b,, .. where M is
rather large. During creation of the Bloom Vector by the
server 220, each bit b, of B is initially set equal to 0. For
each key Qw in the file, k independent hash functions,

H(Q,) ... H{(Q,) ... H(Q,) are computed by the server
and the comresponding k b’s are set equal to 1 in the bloom

vector. (These k values need not be distinct.) Thus b =1 iff
H(Q,)=x for some j and w.

To determine if a search argument Q is in the external
database using the Bloom vector, client 210 first tests
whether or not b is equal to 1 for H(Q)=x. If it is not, then
Q is guaranteed to not be in the database 222. If it is set equal
to 1 then each of the k hash functions are continued to be
tested. If all k hash functions correspond with bits equal to
1 then Q is in the external database 222 with a certain
probability 1—0.. The probability of a “False positive” o
when there are N records in the database 222 is:

Ly’
x=[l-eM]

Some prior art systems employ bloom filters which are
static storage devices with k and M fixed and with N
varying. In implemented embodiments of the present
invention, N is fixed at any given time. That is, there are N
members in the database 222. Embodiments provide a
method for constructing a Bloom filter B encoding the N

10

15

20

25

30

33

45

50

35

65

6

members of the database 222 in a way that allows o, k, and
M to be chosen to optimize the vector B for client 210°s

needs.

In one embodiment of the present invention a function is
used:

FxFp

where p is the next prime number greater than the number
X. This may be accomplished using any number of tech-
niques including Euclid’s or Verasmus’ theorems. The
Bloom vector B is modified so that the calculated or chosen
value M is replaced by

F(M)=py,

so that B 1s a vector of p,, bits. A set of k hash functions,

H/(Q,)...H(Q,) ... HQ,) are used by the sever 220 that
map uniformly over B where

H(Q) =T (~Lr pu)

4

Il Yw M
i=1

The function H(Q,,) maps uniformly over B as long as

l"=(T_{1—PH)

4
[1 gui>> Py
=1

Constructing hash functions in this manner allows for an
arbitrary number of hash functions. Thus, k, M, and o can
be varied for a given N.

Client 210 uses the bloom vector B to verify membership
of item Q in database 222 with the client 210 off-line from
the server 220. The server 220 varics the number of hash
functions H(Q) in order to maintain the Bloom filter’s
efficiency. An arbitrary number of hash functions is stored in
a matrix and the client 210 and server 220 negotiate the
Bloom filter parameters, k, M, and o for a given number of
invalid keys N.

Server 210 maintains the database 222 of items (e.g.
invalid credit card numbers). For a given value of N, the
server computes an optimized Bloom vector for each param-
eter of interest. Thus, there are Z bloom vectors B, ... B_.
. . B.. The server then stores each of these Bloom vectors in
a data string 400 as shown in FIG. 4. These are accessible
via a bloom filter matrix addressable by the three param-
eters.

The Bloom Filter String

Bloom vector strings are downloaded by a client from a
server to determine the possible database membership of a

- key. A bloom filter suing 400 illustrated in FIG. 4 has a serial

number 402 which is a unique sequential identifier for the
data suing. This number may be used by a client to deter-
mine if it has the most up-to-date vector. The Date and Time
fields 404 and 406 containing the date and time of the
vector’s creation for a similar purpose. The error value o in
field 419 is the probability of a false positive when using the
vector to test a key. The values N and k stored in fields 412
and 414 are the other parameters used in the vector’s
construction.

5,701,464

The hash function

H,(Qw)=r(—;_{1— p,,) m

I1 Gw M
=1

can be rewritten in the form:

Py j(Q,.)modp,,
where
. 4
pi=I= (T+'1; PM) and (@) = _111 Gw, Dy
=

Thus, the values p, . . . p; . . . px contained in field 416
correspond to the p; for a given k and p,,. The remaining
portion of the data string is field 418 containing the prime
key pas and the bits, bob, . . . b,,, , in field 420 that
constitute the actual vector. The server may also create
multiple Bloom vectors, B, based on any other combination
-of parameters such as those for a given k

Client Functional Block Diagram

FIG. § illustrates a functional block diagram of processes

which are present in client 210 for performing the functions
of the local invalidity cache 218. Invalidity cache 218 in
FIG. 5 may include processes which are resident within
memory of the client during the client’s runtime, or
alternatively, be dedicated circuitry such as firmware, or
discrete circuitry for performing the described functions.

Local invalidity cache 218 includes an invalidity detector
502 which receives as an input a key and provides as an
output a valid/invalid signals to a user. The invalidity
detector 502 communicates with a control circuit 504, which
interacts with the parameterized bloom filter 506. If circuit
S06 indicates that the key is possibly a member of the
database, via the assertion of an invalid signal, then control
504 activates confirmation module 510 which interacts with
server 220 to request a database lookup within database 222.

The key and request signals are sent over communication
link 230 to server 220.

Bloom filter 506 further communicates with parameters
filter request module 508 which requests and obtains the
coefficients and bloom vectors from the server 220. Module
508 ncgotiates with server 220 in order to provide the
client-required parameters of the bloom filter to the server,
and receive the bloom filter string 4090.

The desired parameters, if any, o, k, and M are provided
by client parameters circuit 512 which receives and stores
the time/space requirements configured within client 210.
These are also provided to the parameter/filter request
module 508. Module 508 may be operative at various
periodic intervals, including when the bloom filter contained
within bloom filter 506 becomes out of date, and a request
for a key lookup in the invalidity cache 218 is performed in
client 210. Bloom filters may also be updated at other
periodic intervals such as the beginning of a business day, or
when the serial number and/or date of the bloom filter

changes. Other periodic intervals may be used for updating
of the bloom filter in different implementations.

Server Functional Block Diagram

FIG. 6 illustrates a functional block diagram of bloom
filter calculation circuit/matrix 224 in server 220 illustrated
in FIG. 2. These may also be processes resident in computer

10

15

30

35

43

S0

55

635

3

system memory of server 220. Module 224 includes a
control module 602 which receives parameters, keys,
request signals to and provides coefficients, vectors and
other information from the server 220 over communication
medium 230. According to operating circumstances, control
module 602 controls and communicates with the bloom filter
matrix 604, the bloom vector calculator 606 and lookup

module 608. In the event of a lookup request from a client,
control circuit 602 causes lookup module 608 to access

database 222. Responsive thereto, the results, whether the
key is present or not present in database 222, i1s then
provided to client 210.

In the event of a request of an update of the bloom filter
contained within the client, the control module 602 com-
municates with bloom filter matrix 664 and, according to the
parameters provided to the server, accesses the appropriate
bloom filter string containing the client-specified
parameters, o, k, and M, as well as the coeflicients p; . . . Px
of the hash functions, the bloom vector B and the prime key
Pas- Control module 602 negotiates with client 210 in order
to obtain the requested bloom filter string according to the
client’s time/space requirements.

Circuit 224 further includes the bloom vector calculator
606. Bloom vector calculator 606 is operative at periodic
intervals. when control module 602 determines that a new

bloom filter matrix 604 is desired to be calculated. This may
occur at various periodic intervals, such as once a business

day, upon a threshold increase in the number of invalid keys
contained within database 222, or some other update criteria.
Bloom vector calculator 606 accesses invalidity database

222 and the values of M, k, and o and calculates the
coefficients and the vectors of the bloom filter string for the

various parameters. These are then placed in the bloom filter
matrix 604 for accessing of bloom filter string by clients
upon request.

Client Processing

The process performed within the client for key invalidity
detection is shown as 700 in FIG. 7. For the purposes of this
embodiment, the client awaits input at step 702 of a new key
which the user wishes to check for invalidity at step 702.
Once a key is input, as detected at step 702, it is determined
at step 704 whether the bloom filter string stored in the client
is the current bloom filter string. This may be performed in
any number of manners, including but not limited to, the
checking of the serial number against a serial number
broadcast by the server, the checking of a date if updates of
the bloom filter are performed on a daily basis, or other
pre-established protocol between the client 210 and the
server 220.

If the current bloom filter has not been stored in the client,
as detected at step 704, then at step 706, the client negotiates
with the server to obtain the current bloom filter. This
process may include specification by the server of the range
of parameters that is capable of providing bioom filter
coefficients and vectors for, as well as step values indicating
the step size between available parameters within the range.
Other negotiation protocols may be performed. Once the
new bloom vectors have been retrieved, because the con-
nection has already been established with server 220, a key
lookup may be requested to be performed by server 220 at
step 714.

If the current bloom filter string has been stored in the
client 210 then, at step 708, the key is checked to determine
if it is present in the local invalidity cache 218 at step 708.
The determination of whether the key is in the local inval-

3,701,464

9

idity cache is performed using the coefficients of the hash
functions, p, . . . p,. the prime key p,,. and the bloom vector
bob; - . . b,y ;. The details of the determination of whether
the key is in the local invalidity cache is discussed in more
detail with reference to FIG. 11.

Subsequent thereto, if the key is detected as being present
in the local invalidity cache as detected at step 712 then the
client requests a lookup of the key in the invalidity database
222 by server 220 at step 714. If the key is not in the local
invalidity cache, then the key is indicated as valid to the user
at step 720, and the process returns to step 702 for the
detection of the input of additional keys. Thus, in the
instance where the key is not in the local invalidity cache
218, it is guaranteed that the key is not in the invalidity
database 222, and no communication between the client 210
and the server 220 need take place.

In the event that the local invalidity cache indicates that
the key is present, there is still a probability o that the key
may not be present in the invalidity database 222. Thus, a
key lookup must be performed at step 714 in the server 220
in order to ensure that the key is a member of invalidity
database 222. In some implementations., no such lookup may
be required to take place if the error ¢ is acceptable. At step
714, a key lookup request is sent to the server 220 with the
key in a request signal to server 220 by the client 210. Then,
at step 716, it is determined whether the server indicates
whether the key is valid or not. That is, if the key is indicated
as valid, then the key was not present in invalidity database
222. The user is then notified at step 720 that the key is valid.
If, however, the server indicates that the key is invalid as
detected at step 716, then the user is alerted at step 718 that
the key is invalid. The key is a member of invalidity
database 222,

FIG. 8 illustrates the process 706 in more detail which
shows the negotiation process from the client’s perspective
for the current bloom filter string. Although 706 was shown
within the key invalidity detection process 700, it can be
appreciated by one skilled in the art that this may be
performed at any periodic interval, such as a predetermined
time or at daily intervals. However, the embedding of step
706 within a key invalidity detection process 700 above
optimizes the transfer of the bloom filter strings between the
server and the client to time periods in which actual key
lookups are required to be performed in the client 210. Thus,
the bloom filter will be updated when communication links
are otherwise already established.

Process 706 starts at step 802 wherein the client requests
the range of parameters supported by the server. At step 804,
the client receives the available parameters from the server.
For example, FIG. 9g illustrates the receipt of the range of
parameters for k and M including k,,,, or M,,., (the
maximum values of M and k), o,,,.. (the minimum error
value), and step sizes for any of these values (e.g. K¢pp,
Mgrzp. Osrep). Once these values are received by the client,
the client can select the parameters of interest, if any are
desired, at step 806. This is illustrated in FIG. 95, wherein
the relevant parameters k, M, and are transmitted 910 to
server 220 by client 210. If any parameters are not specified
(at least two are required to obtain a unique bloom filter),
then appropriate default values may be used by the server for
providing the bloom vectors to the client.

At step 808, the client requests the appropriate bloom
filter suing with the specified parameter(s), if any. At step
810, the client then receives the bloom filter string 920, as
illustrated in FIG. 9¢. The local invalidity cache 218 is thus
updated.

10

15

25

30

35

45

50

35

65

10

Bloom Vector Calculator

FIG. 10 illustrates the process 1000 which may be per-
formed by bloom vector calculator 606 in FIG. 6 at periodic
intervals when a new bloom filter is required to be computed
in server 220. This process is thus performed for the entire
range of M’s, k’s and o’ s which the server supports. Process
1000 is performed at a periodic interval, such as a daily
invalidity database update time period. Thus, all computa-
tion may be performed off-line by the server and the new
bloom filter strings are made available to clients upon
request. Process 1000 commences at step 1002 and deter-
mines whether a new set of bloom filters is required or not.
Whether a new set of bloom filters is required may be
determined based upon any of a number of circumstances,
including a threshold number of new invalid keys, a daily
bloom filter update period or other implementation-specific
determination. Then, at step 1004, the range of parameters is
determined. At step 1006, the bloom filter matrix is calcu-
lated based upon the current invalid keys and the range of
parameters which are desired to be maintained by the server.
In this implementation, subsequent to the calculation of the
bloom filter matrix, the server may broadcast the current
date and serial number of the current bloom filter strings
available to potential clients of the server. Other embodi-
ments of this invention may also be performed wherein
clients are notified on a regular basis of the new serial
number and date of the bloom filters, upon an initial con-
nection with a client to determine whether the client’s serial
number and/or date is out of date, or other implementation-
specific protocol. Upon completion of step 1008, process
1000 is thus complete.

Local Invalidity Cache

FIG. 11 illustrates the details of process 708 which
determines whether the key is in the local invalidity cache
218. Process starts at step 1102 which initializes the vari-
ables i and Q. Then, at step 1104, the product of all the
t bytes %w, of the key Q,, are accumulated in the Q. value.
It is then detected at step 1106 whether i is yet equal to t, the
total number of bytes contained within the key. If not, i is
incremented at step 1108, and steps 1164-1108 continue
until the product of all the t bytes 9w, in the key have been
accumulated in Q,,~

Once all of the t bytes have been accumulated in Qo
then, at step 1110, a modulo (MOD) is performed of the
accumulated Qg value using the prime key p,,. This is
performed at step 1110. Continuing at step 1112, the index
} 1s initialized to 1. This will then allow the checking of all
of the bytes in the bloom vector B against the product of
each of the parameters and the Q.- value. At step 1114 the
variable TEST is set equal to the product of the current
parameter p; and Qg It is then determined at step 1116
whether TEST has the same bit pattern as bloom vector B.
If not, then the process returns at step 1124 indicating that
the key is not present in the local invalidity cache 218, and
thus it is not present in the invalidity database 222. It is
therefore guaranteed that the key is valid—it is not a
member of invalidity database 222. No communication with
server 220 need take place.

Step 1116 is a bitwise comparison of the bits set in the
variable TEST and corresponding bits in the bloom vector B.
Thus, the step 1116 comprises testing for each set bit in the
variable TEST whether the corresponding bit in the bloom
vector B is set. If not, then step 1116 yields a negative result
~TEST is not equal to B. If the bit is set, then the next set
bit in TEST is checked against the corresponding bit in B,

5,701,464

11

and this pattern continues until all of the set bits in TEST
have been compared against the corresponding bits in B.
Thus. this further improves the efficiency of the local
invalidity cache because all bits in each hashed key value
stored in TEST do not have to be checked if one is not set
in the corresponding bloom vector B. In addition, no addi-
tional coefficients of the hash functions need to be applied to
the key because one corresponding unset bit in the bloom
vector B also causes the test to fail for all remaining untested
hash function coefficients.

In the event that TEST has the same bit pattern as bloom
vector B, as detected at step 1116, it is then detected at step
1118 whether all the coefficients have been checked, that is,
that j=k. If j is not equal to k, then j is incremented at step
1120. and steps 1114-1118 repeat. This process continues
iteratively until all of the coefficients p, have been checked
or TEST is not equal to B. Once all of the parameters have
been checked to determine whether the bits set in the bloom
vector B are equal to the bit pattern p;* Qprthen j=k. In that
event, process 708 then proceeds to step 1122 and the
process returns indicating that the key may be present in
invalidity database 222. A confirmation via a lookup in
server database 222 may be performed if required in the
implementation. No database lookup need be performed 1in
some implementations, as long as the error ol is acceptable.

Process 708 is thus more efficient than prior art client/
server techniques which always require a server lookup.
Although some computation is required to be performed by
the client, the advantage of conservation of communication
resources, especially during high traffic intervals, outweighs
any disadvantages posed by some local computation in the
client.

Computation of Bioom Vectors

FIGS. 12a through 12¢ illustrate the bloom filter matrix
calculation and build process 1006 which is performed in the
server at some interval. As previously discussed, this inter-
val may include when a threshold number of invalid keys are

added to database 222, on a daily basis according to some
predetermined scheduling algorithm, or any other

implementation-specific interval. Upon the determination
that a new bloom filter matrix should be created in the
server, process 1006 starts at step 1202 to retrieve the range
of parameters for which the bloom filter matrix will be
created. These include a maximum value for M, M,,, . a
maximum value for k, Kk,,,, the number of invalid keys N
in database 222. and t, the number of bytes contained within
each key. This also may include step sizes such as STEP,,,
STEP, which define the necessary steps sizes between
parameters supported by the server.

Then, at step 1204 the date and serial number which will
be associated with the current bloom filter strings stored in
the bloom filter matrix can be stored at step 1204. These are
used by the client to determine whether the bloom vector
string contained within a client 210 is current. Once these
values have been stored, computation of the bloom filter
matrix for the various parameters can Commence.

At step 1206 an index m which is used for varying M for
the matrix is initialized at step 1206. Step 1208 determines
the p,, value for m using a known technique. Then, at steps
1210 and 1212, the indices k and j are initialized to 1. At step
1214, the coefficients p,,,; are computed for each of the
varying values. These can bc stored in a three-dimensional

matrix which is addressable by specified values of m, k and
j. In addition, an o value will be stored addressable by two

parameters in a specified location in the matrix o,,,, wherein

10

15

25

30

35

45

53

65

12

a string can also then be retricved based upon its ¢ value. At
any rate, at step 1216, it is determined whether all of the
coefficients P have been calculated. That is, that k. If
not, then j is m::rcmcnted at step 1218, and steps 1214-1218

iteratively continue until such time as j=k as detected at step
1216. Subsequent to the computation of the coeflicients p,,,;
of the hash functions for the various m and k values, the ¢
value is then computed and stored with the associated m and
k values at step 1220. Subsequently, at step 1222, it is

determined whether k=k,, . If not, k is incremented at step

1224 by STEP,. Steps 1212 through 1224 arc then per-
formed iteratively until it is determined at step 1222 that

k=K, .x

Subsequent to the determination that all coefficients have
been now calculated for the current m value, at step 1226, it
is determined whether all possible values of m have been
used to calculate the coefficients stored in the matrix. That
is, that m=M,,, 5. If not, then at step 1228, m is incremented
by STEP,,. Process 1006 returns to step 1208, and iteratively
performs steps 1208-1228 until such time as all the possible
values of m have been used for calculating the coeflicients
P,... the prime key pM,, and o,

Upon completion of step 1226 and detection that the
entire range of values of m have been used for calculation of
the coefficients p,,;. process 1006 continues on FIG. 125.
FIGS. 12b and 12¢ illustrate the portion of the process which
is used for calculating the bloom vector B from each of the
keys contained in invalidity database 222. At steps 1230 and
1232, the indices m and k are initialized to 1. At step 1234,
the bloom vector B, , is initialized to zero. Then, at step
1236, the first key stored in invalidity database 222 is
retrieved. Then, at step 1238, the index i and Qg are
initialized to 1.

At step 1240, the product of the t bytes %w; of the key Q,,
are accumulated in Q,, It is then determined at step 1242
whether i is equal to t, that is, the product of all of the bytes
in the key Q,, have been accumulated in Qpp I not, as
detected at step 1242, then the index i is incremented at step
1244. Steps 1240-1244 continue iteratively until the product
of all of the t bytes 9w, have been accumulated in Qrop

Once the product of all the t bytes 7w, in the key Q,, have
been accumulated in Q. then at step 1246 a modulo of
Q+is performed using the prime key pM,,,. Once this has
been performed, Q. is used for computation of the bloom
vector B_,. At step 1248, the index j is again initialized to
1. Then, the bloom vector B_, is set equal to a bitwise OR
function (‘|”) of the current B, value and the product of the
coefficient p,,,,; multiplied by the Qrn;value at Step 1250. It
is then detcrmncd at step 1252 whether j=Kk that is, that all
coefficients p,,; for the current m and k values have been
hashed with the key and stored in bloom vector B, ,. If not,
then step 1252 proceeds to step 1254 to increment), and
steps 1250-1254 are iteratively performed until j=k, as
detected at step 1252.

Once the bloom vector B_, for the current m and k values
has been computed based on all the coefficients p,,; and this
invalid key, then process 1006 proceeds to step 1256 of FIG.
12¢. Step 1256 of FIG. 12¢ determines whether there are any
more keys contained in invalidity database 222. If so, then
the next key is retrieved at step 1258, and the process
proceeds back to step 1238 of FIG. 125. If not, then process
1006 proceeds to step 1260.

Step 1260 determines whether k=k,,,y. the maximum k
which will be supported by server 220. If not, then 1260
proceeds step 1262 to increment k and returns to step 1234
of FIG. 12b. Further processing for the next supported K is

then performed for the bloom filter matrix.

5,701,464

13

Finally, if step 1260 determines that all possible k’s for
the current m value have been used for computation of the
bloom vector, then process 1006 proceeds to step 1264 on
FIG. 12¢. It is then determined whether m=M,,,,. the
maximum possible M value. If not, m is incremented by the
step size STEP,, at step 1266, and process 1006 proceeds
back to step 1232 for computation of the bloom vector for
all possible values of k for this value of m. Once it is
determined that m=M,,, . at step 1264, then computation of
the bloom filter matrix is complete, and it can be made
available to any clients which may connect with the server.
Once the calculation of the matrix is complete, accessing of
a bloom filter suing 400, is performed by accessing the
values stored for client-specified and/or default M and k
values (or o, if specified) and transmitted in a single string
to a requesting client.

Thus, a method and apparatus of determining membership
in a database, such as an 1nvahd1ty database 222, has been
described. This may be done. in some embodiments, without
referencing that external database using a local invalidity
cache implemented as a parameterized bloom filter stored in
a client system. Such a system ensures that if a client
determines, by use of the bloom filter, that the key is not a
member of the database, it is guaranteed that the key is not
a member of the database. Thus, no communication with a
server and corresponding search need be performed. This
thus conserves communication resources between servers
and clients, and further guarantees that the key is not invalid.
Although this invention has been described specifically with
references to certain specific embodiments contained in
FIGS. 2-12c¢, it can be appreciated by one skilled in the art
that many modifications may be made without departing
from the overall spirit and scope of this invention. Thus, the
invention 1s to be construed by the claims which follow.

What is claimed is:

1. A method in a first computer system of determining
validity of a key comprising:

a. updating a bloom filter at periodic intervals by:

i. providing said first computer system’s requirements
of said bloom filter to a second computer system,

said second computer system having access to an
invalidity database which includes all invalid keys;
and

ii. receiving bloom vectors and coefficients which com-
prise said bloom filter from said second computer
system:;

b. accepting said key; and

c. applying said bloom filter to said key to determine if

said key is present in said invalidity database.

2. The method of claim 1 further comprising the step of
confirming invalidity of said key if said bloom filter indi-
cates that said key is present in said invalidity database by
transmitting said key to said second computer system to
determine the presence of said key in said invalidity data-
base and receiving a result signal from said second computer
system indicating whether said key is present in said inval-
idity database.

3. The method of claim 1 wherein said step of updating
said bloom filter further includes the step of receiving a
prime key associated with said bloom vectors and said
coeflicients.

4. The method of claim 1 wherein said step of applying
said bloom filter includes hashing said key with said coef-
ficients and said prime key to generate a test value and
comparing said test value with said bloom vectors.

3. The method of claim 1 wherein said step of providing
said first computer system’s requirements includes provid-
ing a number of bits which are included in said bloom
vectors.

10

13

20

25

30

35

45

50

35

63

14

6. The method of claim 1 wherein said step of providing
said first computer system’s requirements includes provid-
ing a number of said coefficients.

7. The method of claim 1 wherein said step of providing
said first computer system’s requirements includes provid-
ing an error value indicating the possibility of error of said

bloom filter.
8. An apparatus in a first computer system for determining

validity of a key comprising:

a. a first circuit for updating a bloom filter at periodic

intervals by:

1. providing said first computer system’s requirements
of said bloom filter to a second computer system,
said second computer system having access to an
invalidity database which includes all invalid keys;
and

i1, receiving bloom vectors and coefficients which com-
prise said bloom filter from said second computer
system;

b. a second circuit for accepting said key; and

¢. a third circuit for applying said bloom filter to said key

to determine if said key is present in said invalidity

database.

9. The apparatus of claim 8 further comprising a fourth
circuit for confirming invalidity of said key if said bloom
filter indicates that said key is present in said invalidity
database by transmitting said key to said second computer
system to determine the presence of said key in said inval-
idity database and receiving a result signal from said second
computer system indicating whether said key is present in
said invalidity database.

10. The apparatus of claim 8 wherein said updating said
bloom filter further includes the step of receiving a prime
key associated with said bloom vectors and said coefficients.

11. The apparatus of claim 8 wherein said applying of said
bloom filter includes hashing said key with said coefficients
and said prime key to generate a test value and comparing
said test value with said bloom vectors.

12. The apparatus of claim 8 wherein said providing of
said first computer system’s requirements includes provid-
ing a number of bits which are included in said bloom
vectors.

13. The apparatus of claim 8 wherein said providing of
said first computer system’s requirements includes provid-
ing a number of said coefficients.

14. The apparatus of claim 8 wherein said providing of
said first computer system’s requirements includes provid-
ing an error value indicating the possibility of error of said
bloom filter.

15. A method in a client of determining database mem-
bership of a key stored in a server comprising the following
steps.

a. accepting said key;

b. determining whether a bloom filter stored in said client

is current, and if not, performing the following steps:

1. providing parameters of said bloom filter to said
server according to requirements of said client and
requesting said bloom filter from said server;

1. receiving a bloom vector which comprises said
bloom filter; and

iti. receiving coefficients which comprise said bloom
filter;

¢. determining whether said bloom filter of said key

matches said bloom vector;

d. if said bloom filter of said key does not match said

bloom vector then indicating that said key is not a

member of said database.

5,701,464

15

16. The method of claim 15 wherein said parameters
include a number of bits in said bloom vector.

17. The method of claim 15 wherein said parameters
include a number of coefficients which comprise said bloom
filter.

18. The method of claim 15 wherein said parameters
include a value indicating the likelihood that said bloom
filter will falsely indicate that said key is a member of said
database.

19. The method of claim 15 wherein said step of deter-

mining whether said bloom filter of said key matches said
bloom vector includes hashing said coefficients comprising
said bloom filter with said key, and determining whether a
result of said hash equals said bloom vector.

20. The method of claim 15 further comprising the step of
requesting that said server perform a lookup in said database
to determine if said key is a member in the event that said
bloom filter of said key matches said bloom vector.

21. The method of claim 15 where said step of providing
parameters of said bloom filter to said server includes
receiving from said server a range of parameters which said
server can provide, and responsive thereto, said client pro-
viding certain of said parameters to said server.

22. A validity detection system comprising:

a. a key input circuit for accepting a key;

b. a bloom filter coupled to said key input circuit for
determining validity of said key, said bioom filter
generating a valid signal if said key is not present in an
invalidity database, said bloom filter generating an
invalid signal if said key may be present in said
invalidity database;

c. a key invalidity confirmation circuit coupled to said
bloom filter for confirming invalidity of said key if said
bloom filter generates said invalid signal, said key
invalidity confirmation circuit including:

i. a key transmission circuit for transmitting said key to
a server having said invalidity database;

ii. a reception circuit for receiving a result signal
indicating whether said key is present in said inval-
idity database;

d. a bloom filter update circuit coupled to said bloom filter
which is operative at periodic intervals for updating
said bloom filter, said bloom filter update circuit includ-
ing:

i. a parameter provision circuit for providing client
requirements of said bloom filter to said server;

ii. a bloom vector reception circuit for receiving bloom
vectors which comprise said bloom filter;

10

15

25

335

45

16

iii. a coefficient reception circuit for receiving coeffi-
cients which comprise said bloom filter; and
iv. a bloom filter request circuit for requesting said
bloom vectors and said coefficients from said server
according to said client requirements.
23. The apparatus of claim 22 wherein said server
includes:

a. said invalidity database which includes all invalid keys
for said invalidity detection system;

b. a bloom vector calculation circuit for calculating said
bloom vectors and said coefficients according to dif-
ferent values of said parameters;

¢. a bloom filter matrix for storing said bloom vectors and
said coefficients arranged in said matrix by said param-
eters; and

d. a bloom filter provision circuit for accessing said
coefficients and said bloom vectors in said bloom filter
matrix by client-specified parameters, and responsive
thereto, providing said coefficients and said bloom
vectors to said client.

24. The apparatus of claim 22 further comprising:

a. a current filter detection circuit for determining whether
said bloom filter is current; and

b. an activation circuit for activating said bloom filter
request circuit responsive to said current filter detection
circuit for determining that said bloom filter 1s not
current,

25. The apparatus of claim 22 wherein said bloom filter

includes:

a. a hash computation circuit for hashing said key with
said coefficients in order to determine a test value; and

b. a bloom vector determination circuit coupled to said
hash computation circuit for comparing said test value
against said bloom vectors; and

c. an invalid signal generation circuit coupled to said
bloom vector determination circuit for activation of
said invalid signal if said test value equals a first bloom
vector of said bloom vectors.

26. The apparatus of claim 25 wherein said hash compu-

tation circuit includes:

a. a product circuit for multiplying said key and a first
coefficient of said coefficients to produce a product; and

b. a modulo circuit coupled to said product circuit for
performing a modulo of said product and a key coet-
ficient in order to produce said test value.

. . T . T

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. ; 5,701,464
DATED : December 23, 1997
INVENTOR(S) : David W. Aucsmith

It is certified that error appears in the above-identified patent and that said Letters
Patent is hereby corrected as shown below:

in column 6 at line 58 delete "suing" and insert --string --

In column 6 at line 60 delete "suing" and insert --string --

Signed and Sealed this
Sixth Day of October, 1998

Attest: ﬁWd W

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

