- USO05686915A |
United States Patent 9 (111 Patent Number: 5,686,915
Nelson et al. 451 Date of Patent: Nov. 11, 1997
[54] INTERLEAVED HUFFMAN ENCODING AND 4,716,471 12/1987 YOKODUZO ..cccvireemrrerrsacersaseaerses 358/296

DECODING METHOD 5225832 7/1993 Wang et al. w.voerensrersserusennenn 341/67
5,280,349 1/1994 Wang et al.coueeeveerevvernnrennnes 358/133
[75] Inventors: Frank M. Nelson, Sherman Qaks;
Thanh D. Truong, Walnut; Vinod Primary Examiner—Jeffrey A. Gaffin
Kadakia, Rancho Palos Verdes, all of Assistant Examiner—Jason H. Vick
Calif. Attormey, Agent, or Firm—Robert Cunha
[73] Assignee: Xerox Corporation, Stamford, Conn. [57] ABSTRACT
A method of decoding Huffman-encoded words at the rate of
[21] Appl. No.: 579,113 | one per clock cycle. The encoded words are formed into two

strings of bits, one for odd numbered code and one for even

[22] Filed: Dec. 27, 1995 numbered code, and two decoders in parallel are used, each

[S51] IOt CLY et cescnneensensssssnnnes HO3M 7/40 first shifting in a number of coded bits during a first clock
[52] U.S. CLi e ceeesereeesescesssmesesessessenss 341/65: 341/67 period, and converting the Huffman code to data on a second
[58] Field of Searchooerrcrseerecemrerennecn 341/15, 67 ~ clock period. The two parallel decoders are timed so that the
’ shift cycle of one decoder occurs at the same time as the
[56] References Cited conversion cycle of the other. Finally, the two streams of
| decoded data words are combined into one stream. The
U.5. PATENT DOCUMENTS result is one output data word per clock cycle.
4,115,768 9/1978 Eggenberger et al.couneeee. 340/347 | |
4,499,498 2/1985 LNUMA ..oeeecrrnrecnrernerrrnsesecannes 3581261 1 Claim, 3 Drawing Sheets
13
10 iz
Ba0
ENCODER
Bal Compressed data
Streamwith Tag bits
I to distinguishCodes
for each
0C HUFFUAN ‘color plane.
ENCODER

Bbl

é

5,686,915

91

1949

43000N3
NVW1dNH)@

‘oueld 10]00 0494

[yoreo J0J
sopoHYsm3unsIp 0}
§}1q 8e], PIMWEINS
vlep passaiduio)) led

Sheet 1 of 3

NOTY

d3000N3
NYW140H DV

Nov. 11, 1997

oed
¢l 01~

o

U.S. Patent

¢ Old

"TU0)D) _ i'4
udny 4
b - 199 |,
vd -
usfV
PO 0
9 _
J{4
. 1ed
' |

5,686,915

o
-
-
o
)
2 0
|
s 9

39919(]
[
(A
8

usny

9pP0D
- |
s 43 17 Ll
. weans eieq
— passaidwo))

U.S. Patent

Nov. 11, 1997 Sheet 3 of 3 - 5,686,915

b(1)/a .
~ b(i)/b
b(i+1)/a
b(i+1)/b

FIG. 3

b(1)/C

b()/Y
b(i+1)/C
b(1+1)/Y

4

5,686,915

1

INTERLEAVED HUFFMAN ENCODING AND
DECODING METHOD

BACKGROUND OF THE INVENTION

An encoding method comprising the encoding of one
stream of data into Huffman codes and separating the codes
into lists of odd and even numbered codes, and then decod-

ing these lists by decoding the two lists in paraliel and
recombining the data into one data stream.

Huffman coders assign the shortest codes to the most
frequently used numbers. Therefore, the code for a common

10

digital number, such as **512”, would most likely be a

smaller number than for a relatively rare number, like “511”.
This results in data compression, but time is required to code

and decode the data, and system throughput may become
limited.

The problem is more difficult in the decoder than in the
encoder since the decoder can not process data in parallel.
That is, in the coder the consecutive code words can be
created in parallel since the coder knows prior to coding
exactly where each input word starts and ends. However,
since the code words are of variable length, the decoder does
not know where the next code word starts until the carrent
one is decoded. A system which lets the decoder split the
data into two streams and process both in parallel would be
advantageous. |

There are systems which add tag bits to the coded data to
inform the decoder where the end of certain codes are, or
where the end of certain strings of codes are. This allows the
data to be divided up into strings which can be decoded in
parallel, but adds additional data to the encoded strings,
which partially defeats the reason for compressing the data
in the first place. A method of allowing the division of data
to allow parallel decoding without adding extra data would
be advantageous, and various types of Huffman coding and
decoding processes have been published, but do not disclose
this 1invention.

U.S. Pat. No. 5,386,213 (Haupt et al.) discloses a coder
and decoder apparatus for a data transmission system. The
variable length coded data is arranged in blocks having a

predetermined average length. Blocks which are not ftull are
filled with data from other blocks.

U.S. Pat. No. 5,239,308 (Kessen) discloses a method of
processing coded digital signals which are segmented into
variable words. The variable length words are allocated to
fixed length blocks. The fixed length blocks having a word
length shorter than the predetermined word length are filled
up with portions of variable length words having a word
length longer than the predetermined word length.

U.S. Pat. No. 5,140,322 (Sakagami) discloses a method of
transmitting variable word length coded data. The variable

15

20

25

30

35

45

50

length code words are connected until a predetermined

number of bits have been connected. The connected data can
then be transmitted.

U.S. Pat. Nos. 5,379,116 (Wada et al.) and 4,963, 867
(Bertrand) disclose methods of packing variable length
coded data into fixed length packets.

SUMMARY OF THE INVENTION

The type of data word to be coded by this Huffman code
system is assumed in this description to have a number of
leading zeros and a data portion. Thus, to use a numerical
example, an input word may be 0000 0101. This word can
be thought of as a number of leading zeros, known as the
run, (5 bits), a data pattern having a number of bits, the size,

55

65

2

(3 bits), and the bit pattern (101). Using this system, this data
word can be described as 5,3,101. The first two parts of this
number, the run and size can now be applied to a typical
Huffman coder, which assigns the smallest codes to the most
often used inputs, to generate the first part of the actual code
word. Again, to use this same numerical example, the code
word would be a number of bits, such as 100, and would be
the coded equivalent of 5,3. Next, the actual bit pattern (101)
is added to the first part of the code word, to make the
completed code wrod, 100101.

In the decoder, the opposite process is performed. The
pattern 100 is used to address a look up table, the output of
which will be 5,3, and the pattern is used to generate the final
decoded number having 5 leading zeros and a three bit
pattern 101, making the final word 0000 0101, which is the
same as the original input. In this example the input word is
8 bits and the code word is 6 bits so there is some
compression. Input words having long runs of zeros will
have a greater amount of compression, while input words
that are short and uncommon will compress poorly, or may
even be expanded. Finally, the number of bits in a code word
can vary widely.

These code words are output from the coder in a string
and can be labeleled H1D1, H2D2, etc. It follows that H1D1,
H3D3, etc are odd code words and H2D2, H4D4, etc, are
even code words. These are separated into two lists with the
odd list having H1D1, H3D3, etc and the even list having
H2D2, H4D4, etc. It is in this form that the data can be stored
or transmitted, finally reaching the decoder.

Huftman decoding is normally accomplished at a rate of
one word for each two clocks. The code words are received
in a continuous stream of binary bits, and the decoder
initially does not know how many of them in the input
register belong to the first code word. The first step, during
the first clock time, is to look at the bits being received and
decide how many of them are in the first code word. During
the second clock time these first word bits can be decoded
and the data in the register can be shifted to present the
decoder with a new full set of input bits again.

In order to get one output word for each clock pulse, two
decoders can run in parallel, but this normally requires a
time delay or tag bits. This invention solves the problem by
running the two lists of words, odd and even through two

decoders that are offset by one clock pulse. That way, no
buffering, time delay or tag bits are required. Specifically,
while one decoder is decoding, the other decoder is shifting.
Thus, there 1s a decoded output word on every clock.

This is an attractive method of Huffman compression
partly because it is transparent to the user. The data is output
by a terminal or scanner and is received by the printer on a

one-word-per-clock basis with the intermediate compression
details being completely invisible to the rest of the system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the coder.
FIG. 2 is a block diagram of the decoder.

FIG. 3 shows the compressed data format for lab color.

FIG. 4 shows the compressed data format for CMYK
color.

DETAIL ED DESCRIPTION OF THE
INVENTION

A major bottleneck in designing higher speed electronic
systems such as color printers is increasing the performance
of the compression decoder. Increasing this performance can

5,686,915

3

result in an unacceptably complex design, and requires a
high speed clock. The reason for this is that a table lookup,
which normally requires one clock period, and shift
operation, which normally requires another clock period, has
to be accomplished in one clock, and can not be pipelined.

The traditional solution is to use parallel decompressors,
each operating on a separate band of the compressed image.
This, however, requires that the software partition the raw
image into bands, and compress each band separately, each
with its own boundary marker code. Also, there must be a
complex system of ping pong buffers to allow two decom-
pressors that are operating at half speed to continuously
supply output data in one continuous stream at full speed.
This invention presents an alternative solution of allowing
parallel decoders but without having to divide the image into
tagged or coded bands. The result is one output per clock
cycle, which makes the remainder of the system less com-
plex.

The compressed data stream, ignoring markers or stuffed
bytes, consists of codes H1D1 . . . HjDj . . ., where HjDj
represents the Huffman code bits Hj and appended data, if
any, D j. The encoded image is in principle a linear list of
these segments (HjDj . . .), which must be decoded in series,
since the next Huffman (entropy) segment cannot be located
until the preceeding one is decoded. This precludes the use
of parallel decoders unless the raw image is encoded into
separate bands, each with an RST marker.

In this invention, when encoding the image, the encoder
arranges the compressed data into two separate linear lists of
odd and even entropy encoded lists, list 1 being H1D1,
H3D3, . . . and list 2 being H2D2, H4DM4, . . ., where list 1
is every odd entropy segment and list 2 is every even
segment. In this embodiment the code words may be from
4 to 206 bits in length, joined together into continuous strings
of bits and packed into 32 bit words. Each list can be
decoded separately by using two parallel decoders. If, for
example, the compressed data bus width is 4 bytes wide,
then the odd 4 byte words, list 1, are aligned and encoded
separately from the even words, list 2. The decoders also
decode the lists separately, and the decoded data is then
merged and can be fed into a common high speed printing
engine.

This technique is transparent to the user since no addi-
tional software, no partitioning of the image and no special
insertion of separation codes are required.

FIG. 11is a block diagram of the encoder. Image data to be
encoded is delivered through a predictor to maximize the
length of zero strings to the two decoders 10, 11. The first
pixel in each data block is encoded differently from the
remainder and is encoded in encoder 11. The remainder of
the data is encoded in encoder 10. The code words thus
produced, which comprise the Huffman code bits, denoting
run and size, and the data bits, denoting the actual bit pattern,
are coupled to the word align block 12 where the first code
word 1s placed first in the string, and the string is then
separated into odd and even lists of code words, each of
which is integrated into a continuous string of binary bits
and output onto a 32 bit bus to a series of eight word by 32
bit ping pong buffers 13 through 16. In the first cycle, the
first eight 32 bit words of even code are loaded into buffer
13, and the first eight words of odd code are loaded into
buffer 15. In the second cycle, the data within buffers 13 and

15 are sent to memory (or are transmitted) and buffers 14
and 16 are loaded.

The coded data in memory can now be decoded using the
decoder circuit of FIG. 2. Here again, to transfer data

10

15

20

25

30

35

45

50

55

65

4

between memory and the remainder of the decoder, there are
four ping pong buffers, each of eight words by 32 bits, two
for the even words 17, 18 and two for the odd 19, 20. The
even buffers 17, 18 feed one word at a time to ping pong
registers 21, 22, each of which can store one 32 bit word,
which feed a constant supply of bits to the even code align
block 25 which aligns the words into the proper order and
sends the resultant string of bits to the even side of the code
detect block 27. Similarly, the odd registers 23, 24 send odd
code through the odd code align block 26 to the other side

of the code detect block 27.

On the even side of the code detect block 27 the current
string of bits equal in length to the length of the largest code
word is sent to a content addressable memory containing all
of the possible Huffman portions of the code words. One of
the content addressable memory locations will be accessed,
and an 8 bit address will result. This is temporarily stored in
buffer register 28 and is then used as an address in the AC
Huiffman decoder 29 look up table to generate an output of
up to § bits which constitute run and size descriptions. In
case the word being processed is the first word, the DC
decoder 30 will be used. A multiplexer 31 selects the output
of decoder 30 for the first output and the remainder from
decoder 29. Both odd and even sides of the code detecter 27
are 1dentical except that they operate out of phase so that one
side is detecting while the other side is shifting.

The output of the multiplexer 31 now contains the run and
size information , but is still lacking the data pattern. This is
supplied by the code detector 27 to the adder 32. The process
is for the output of the decoders 29, 30 to be sent through the
align control block 34 to the decoder 27. The decoder adds
the number of bits it has determined to be in the Huffman
part to the number of bits specified by the size portion of the
decoder 29 output, and uses that total as determining how
many bits to shift to get the next code word completely
shifted in. Further, the actnal data in the data portion of the
code is sent from the decoder 27 to the image generator 32
where it is added onto the Huffman portion. The complete
code word containing run, size and data parts is now used to
generate the original image data, in its correct order. Finally,
the run/size information output by the align block 34 is sent
through timing register 33 to the code align blocks 285, 26 so
that new data, 4 to 16 bits, will be supplied to the detector
27 as the previous data is consumed.

This same basic circuit, which can be used to separately
decode odd and even words, can also be used for decoding
color data on the Lab color space space by dividing the data
into one list of L terms and another list of a and b terms. For
decompression to proceed properly, the stored compressed
data format for Lab terms must be as shown in FIG. 3 In this
case the L terms are decoded, see FIG. 2, in one decoder 29,
and the a and b terms are decoded in the other 30. The timing
of the decoding process is that at t1, the L. component goes
through the code detection logic 27. Then at time t2, the
code of L is decoded at decoder 29 while the a and b
components go through the code detection logic 27. Next, at
time t3, the ab components are decoded and another L term
is detected at the detector 27, etc. For the a and b terms to
be decoded in parallel, the decoder 30 must be divided into
two decoders, operating in parallel. The result is the output
of either an L term or a and b terms, one byte in either case,
per clock cycle.

For color data in the CMYK space only one decoder is
needed, and the data must be compressed as shown in FIG.
4. The timing sequence is as follows. At {ime t1 the C code
is coupled from the code align buffer 25 to the detector and
is detected. At time t2 the C code is decoded and the M

5,686,915

S

component is coupled in from the other buffer 26. At time t3
the M code is decoded and and the Y component is coupled
in to the detector 27 from buffer 25, etc. In this case there is

a C, Y, M or K byte output every clock cycle.

While the invention has been described with reference to
a specific embodiment, it will be understood by those skilled
in the art that various changes may be made and equivalents
may be substituted for elements thereof without departing
from the true spirit and scope of the invention. In addition,

many modifications may be made without departing from 10

the essential teachings of the invention.

What is claimed is:

1. The method of cyclically using two channels to decode
an input comprising a continuous string of encoded words,
each comprising a Huffman code which is encoded from the
number of leading zeros and the number of bits in the data
pattern, and the data pattern itself, comprising the steps of:

15

6

in each channel,

a. on a first clock cycle, determining the number of bits in
the current Huffman code, and

b. on a second cycle, decoding the current Huffman code
to determine the number of bits in the data pattern and
shifting the input string of encoded words by the
number of bits in the current Huffman code plus the
number of bits in the current data pattern to determine
the position of the next encoded word, and

wherein one channel is on its first clock cycle while the
other channel is on its second clock cycle, so that the
input string of encoded words is shifted on every clock
cycle.

	Front Page
	Drawings
	Specification
	Claims

