United States Patent (9
Woods et al.

[54]

[75]

[73]

[21]
[22]

[51]
[52]
[58]

[56]

METHOD OF OPTIMIZING THE
EXECUTION OF PROGRAM INSTUCTIONS

BY AN EMULATOR USING A PLURALITY

OF EXECUTION UNITS
Inventors: William E. Woods, deceased, late of
Natick, by Arnold 1. Zaltas, executor;
Richard A. Lemay, Carlisle; Edward
Kumiega, Pepperell, all of Mass.
Assignee: Bull HN Information Systems Inc.,
Billerica, Mass.
Appl. No.: 523,876
Filed: Sep. 6, 1995
INL CLO ... rrnecnnsseses s sasssss s GOGF 9/30
ULS. ClL v cncsseassessnas sen e anees 395/500
Field of Search 364/578; 395/500,
395/375
References Cited
U.S. PATENT DOCUMENTS
5430862 7/1995 Smith et al.ccvieirinrienniinniins 395/500
5438668 8/1995 Coon et al.c.coceevierriveeenrenase 395/375
5481,684 1/1996 Richter et al. ..ecevrerreereanerrenss 395/375
5522083 5/1996 Gove et al.coeeeerrinncceencens 395/800
5544342 8/1996 Dean ...ciccirernrnnreirccscransninn. 395/446
3,546,552 8/1996 Coon et al.ccoveceeenrrsencncsaccans 395/375

1A 0 0 A

US005678032A
(113 Patent Number: 5,678,032
[45] Date of Patent: Oct. 14, 1997

Primary Examiner—Kevin J. Teska

Assistant Examiner—Stephen J. Walder, Jr.

Attorney, Agent, or Firm—Faith F, Driscoll; John S.
Solakian

[57] ABSTRACT

An application such as an interpretative emulator executes a
wide range of different classes of emulated program instruc-

tions developed for the processor architecture being emu-

lated on a host system which includes an dual integer
pipelined execution unit. The sets of RISC instructions

which execute emulated program instructions are organized
within the emulator so as to be processed as two distinct
instruction streams by the dual integer pipelined execution
units wherein one of the pipelined unit performs the steps
necessary to completing a current or foreground like opera-
tion on each emulated program instruction while the other

pipelined unit performs the steps of an anticipated lookahead
or background like operation on the next emulated program
instruction. By having one unit execute operations such as
interpreting each program instruction within an established
foreground instruction stream and the other unit execute
operations such as prefetching each next program instruction
within an established background instruction stream. the
speed of emulated program execution is optimized.

21 Claims, 8 Drawing Sheets

SOCKET

MONITOR CALL P*
HANOLER UNIT

I— SCB |— LISTENER TASK 36

i .\r TCB 1:] IRB IORB RCT 1L
_ r DEVICE TYPE

1€

MEMORY
QUEUED INTERFACE |1

(MQI)

TR T IS S A e e SIS VRS VUTEE TSy VRS BN veem—m PESDSST EEESS ESm—

|
-

5,678,032

............. H I

(1DW) (OvS) | SININOAROT DTS

JOVA4IINT 3N3ND [« 3NIND JALLOV W6 &),
I4VMLI0S WIS TIVINAG

6¢ NN |
- 4TIONVH
[:]!-I%m' M)

OF — ¥8¢Z —
11 — LINN ¥TIANVH

10 E H 8ol TIVO_¥OLINOW
= | | == 4

_ 13X00S
| 8t O Yoyl WINALSTT . —

4174 08¢
INANIIDVNVIA J1NAON
ERIE, SANALSTT

Sheet 1 of 8

Oct. 14, 1997

e TEEEEEy S bl O ehbEilied O ppepiegee e skl g " whaee) O EEEEE— I ek abaaashk e R el "

U.S. Patent
=
O
LL

4014

5,678,032

8‘%‘

S309N053Y
WBHd =] (aon)) —
WIS IS0F [qlo|301A30 0/1
510 e L13INY3HIT ; ASOMIN _ Ndd
L "8G P8S q8g 95
\\
- 13T
FUVMONVH
> -
- -
- (SIOINITS ag
w |93A10/TINIIM
@ RIS 150 SIOIAN3S (W)
< 0/1 T3NY3N SIMIIVA dIOVNVA ¥9
o’ L /6 1SOH 0L $53004d 14A9]
— TINY3N NISAS
— INILYHIdO
2 49
y—
: (S13%008) X
: aasd) | 0\ T EF T e N O S
g ENEERIE e =]
00n3sd “ " |
T TavL N
. | (NOW3)LINN Lk W TONVH |
98 TIVD YOLINOW |
6 | HOLYINAZ VEIEREREIL zoﬂﬁoym |
- ¥6 | — |
m | ¥ |
Pt |
S | |
: |
p SAYOL ‘sl . _ I { \gen
-

U.S. Patent Oct. 14, 1997 Sheet 3 of 8 5,678,032

58-2
P Bus

oB—6 58-12
DUAL DUAL 58-10
! . H

- o8-8
=] =) = :

58-9
MEMORY BOARD MICRO MICRO
Channel

Channel
el

CPU 58

o8-16

FIG. 2

U.S. Patent Oct. 14, 1997 Sheet 4 of 8 5,678,032

DUAL FXU

N

INSTRUCTION BUS (IBUS) PBUS _ DATA CACHE 0,1

INSTRUCTION 28-50 -

" BUFFER EGISTER FILE INPUT LATCHES AND MULTIPLEXERS

l T FI
INSTRUCTION 32 x 36 JR—-4W
DECODE UNITS REGISTER FILE

R/W CONTROLS l. 32 x 36 4R~4W
¥ v

ALU AND LOGIC UNIT INPUT LATCHES AND MUXESHS

EXECUTION UNIT 1
3 PORT ADDER

58"'54 58"' ‘3
AND LOGIC UNIT

EXECUT[ON UNIT 0
2 PORT ADDER
CONTROL UNITS MULTIPLY/DIVIDE UNIT

BYPASS

58—-52

o
ADDER OUTPUT MULTIPLEXERS 58—45

PBUS Fg-'rqggéc TLB AND DATA CACHE CONTROL [I])ﬁt:ll'il- Ci%ﬂé
LOGIC QUEUE RSE%%FENJS TRANSLAH%NND CONTROL DIRECTORIES

(PSQ) AND STATUS

58-48
PBUS DATA CACHE DATA CACHE 0 5846
ADDRESS/CONTROLS
DATA CACHE 1
ADDRESS /CONTROLS

FIG. 3

U.S. Patent Oct. 14, 1997 Sheet 5 of 8 5,678,032

iw(0)=1

- ‘FETCH-"NEXT - INSTRUCTION - 'AND: -
GENERATE OPWDE—SP[ATTER ADDRESS

- :FETCH- NEXT - INSTRUCTION - AND - -
GENERATE OPCODE-SPLATI'ER ADDRESS

w(0)=0 [T] yw(0)=0 [5] yiw(0)=0 [0] yiW0)=1 [G] Yiw(0)=0 [K]

| o - -
L)

GENERATE OPCODE-SP[ATTER ADDRESS

FI-I‘
n"‘
" w T
' '
R Y
1
- |
LI '
LT
* "
L |
. L]
.ip a
l- | 2]
o
-
| |
r
[]
]
L]
[]
[]
[]
[] []
F n
|
¥
|]
]
[]
[]
n
¥
L}
+
LA
4 w a 1!
L]
o
L]
d
u
[]
Y
"
o
F []
* n
n u
n
L -
L
*
n
.i]
* i
-
¥
44
u
-
]

a E]
-
.-l
¥
= - - = ¥
L *u - . »
r
* L
k|
4 * o .
- .t * . o b - » » ta . . = . *
a » . ® T 0t & " 1 '! L . & M -

IMMEDIATE ROUTINES

FEI'CH NEKT DBTRUCT!ON AND
GENERATE .OPCODE—SPLATTER ADDRESS

BRANCH ROUTINES

D] yiw(0)=1

U.S. Patent Oct. 14, 1997 Sheet 6 of 8 5,678,032

_
FOREGROUND BACKGROUND FOREGROUND EACKGROUND
PROCESSING PROCESSING PROCESSING PROCESSING

COMPUTE CURRENT | FETCH NEXT
PROCEDURE WORD |[INSTRUCTION xe PROCEDURE WORD
AND MULTIPLY BY |SPLATTER ADDRESS

SO

PERFORM COMPUTE NEXT COMPUTE NEXT
OPERATION INSTRUCTION xa INSTRUCTION xa

SPLATTER ADDRESS | ce1eH OPERAND SPLATTER ADDRESS

LOAD xa SPLATTER
REGISTER

ADJUST p BY
LENGTH Of
INSTRUCTION

LOAD xa SPLATTER |ADJUST p BY

REGISTER LENGTH OF

COMPUTE

SHORT-BRANCH

DISPLACEMENT

FETCH 1st WORD |OAD xe SPLATTER FETCH NEXT

OF POTENTIAL REGISTER PROCEDURE WORD
BRANCH TARGET

INSTRUCTION SO FAR

PERFORM LOAD xa SPLATTER
OPERATION REGISTER

FIG. O

5,678,032

Sheet 7 of 8

Oct. 14, 1997

U.S. Patent

q17108 01

p+d 18 4010
: " mu10d ax YN Y19

@ Nol ¢td 18 1PR)

UOROTASUT 1XIU 1IE)S

12151321 0) puwaado aaow
ssoxppe 1aeds ex Apeal

oeids ax

'9d's0'Sd

) ol N .
|l‘-l-" *
*
.'_l-'l'i- . 3 L
foa L a B, o+
..‘ | | ™ P P
6
'

Ml 1X30 0] J 0UBADN
puerado g3)

HHI

RO MiRC: uod My 1X3U 1I1)
B I B) Qe
.
IC

XJput M1 XU 33
.: ol d 1uaund JAes
U NN XIpUl MJ 1X3u 12F

ssaIppe 1anejds 2x Apeas

AD'9d'cO’¢d

oare fomre] s o] s i

¥d 1B PR]

snuiod Ix SV Y Yorj
3uiod 3x SYW 4OR)

[-Bed (39)S133Y peo]) uq ‘Ip|

wmoys jou o syred osfe) <91 191030%9 L[[RMOR GITYM SEONINNST] A[UO SMOYS WeIFeIp HL] ‘$YI0[0 VIV Uy JNIIXI AE_ ..-@_ « BOIINIISUL uuo-v =A—

Auo._uﬁ! Fupnpouy) suononnsur HSIY 0M1-£123m) Moq Jo TONBIEISAIdAI B $1 Motaq wresderp suljadid 9y |, (90N

l“ 9 'O}

qQ $D

I 1O
eyl 11d
xn| 010
Bl Old
28q an
wulr 60
RO 6d
mnu 80
©rIs 3d
nq en
e (d
el 90
Paq AD
o 9d
xi €O
o 6d
Iqq D
s 0
S ¥d
s e0
nuw ¢4
ey zO
i U
e 10
xnl {d

Ip|ToX

q[108

IYos

ap]

g\
o'
<
@0
e~
N
\f

a m¥ - = &
il e " * .-_l.lil.
»
i .
Il..l‘l .- -i_..-
1 = .I.I
i L] -
i.n- . " -
- L S .--..-,._ e
a e LI L
e
el - "yt
- = " i tw -3
a '..I. =
a* % % . . = -

Sheet 8 of 8

Oct. 14, 1997

U.S. Patent

@ || » oo L Ol

arod 9x S 1019} 1 110
| ® |[oa

prdeyne] By 1id
_ H DI +deyne) eqy Ol1d
UORONGSUI JX9u yEis 93q 9D
_ bt 91qEl X 01 XOpUI 193 wulr 60
60'6d'8D"8d | woredsia ssasppe anejds ex Apear w30

oo)opowy cpoms foperopows| opows feoe o] pows | wies mmaw s g i
wpedsax nNog BN
n | oo |6 |8 [P0 maseme w0

7-1ed (J91s139y peo]) uq ‘ypy

WS AP JO ANAQ 18] A UT pAjeIo]

§1 pueIado uoyMm 319 PAYOAUT JIYIRI
puenddo ey w90
SSAUPPR 1PANCD ‘100d-A T NQqQ AD

B CUE

N L] vy
E MIXuZiEnua? Ro GO
e I

sunnoiex oy Pneids 1qq N

E X3pUL M1 Jxou 108 s +0
E d WALING 2AES ¥ vd
) E XIpul M1 IXou 198 1S
ssaIppe IoNeids 9% ApeaI N

yannoa snojadsd uo spuddar E LA RLRI2E) B |

pmod X VY 0] |
TH R PR) ey

[-Med (3915139 peo]) uq ‘ypj mutod x SV 4o xnf g 7o

_ » | _ _ ‘ . 9
aaoqs 1on ars spied aste] “a°1 (91n09x2 AJRAKe YOIqA suononnsu) LJ80 SMOYS WEITeIp R{L, ‘S0P UL U NNIXD A—E 4pj - uopon.nsuy .-Nu__v =A— -.——u—
{sogours] Bopnpou)) soonAnsu) ST 0M>-A)aM) Moy Jo uoneiuasasdas v £] M0jaq wriSerp on:&a YL 0N

o
[
-

L0990
ADP) dpowm

qjf tos
(eD@) spow }

- L '-._..'I.'
I‘- i.‘
W | | LJ
» - [o a
-i. * “] ". &
L]
- L RN .t
ab% 1"

oRSLT

5,678,032

1

METHOD OF OPTIMIZING THE
EXECUTION OF PROGRAM INSTUCTIONS
BY AN EMULATOR USING A PLURALITY
OF EXECUTION UNITS

BACKGROUND OF THE INVENTION

1. Field of Use

The present invention relates generally to computer
instruction interpreters and more particularly to the use of
apparatus and methods for optimizing instruction interpre-
tation performance.

2. Prior Art

As is well known in the art, there are a number of different
techniques which are used to enable applications to be

executed more efficiently, such as applications written for a
specific computer architecture to be emulated on a host

system having a different architecture. In the case of emu-
lation applications, these techniques include static
recompilation, dynamic recompilation and interpretive emu-
lation. In the latter, an emulator is written usually to run on
the host computer which translates a sequence of emulated
program instructions intended to be executed on the emu-
lated architecture into one or more instructions in the host’s
instruction language to perform the same function.

Of the techniques mentioned, interpretive emulation has
been found to be the most desirable emulation technique in
terms of emulation accuracy and completeness. But,
typically, interpretative emulation is the slowest type of
emulation technique. The related copending patent applica-
tion of Richard S. Bianchi, Dennis R. Flynn, Marcia T.
Fogelgren, Richard A. Lemay, Mary E. Tovell and William
E. Woods entitled, “Executing Programs of a First System
on a Second System,” filed on Sep. 28, 1993 bearing Ser. No.
08/128.456, assigned to the same assignee as this patent
application improves performance by using an arrangement
wherein the emulator is run as a host process which executes
emulated program instructions at host processing speed.

A standard simplified way of implementing an interpre-
tative emulator is to employ a dispatch loop within the
emulator to fetch an emulated program instruction from the
emulated program instruction stream and use the binary
value of the program instruction operation code as an
address for indexing into a table in memory. The value of the
table entry is the starting address of an emulation routine
consisting of host instructions that implement the changes of
state within the host system required to emulate the original
program instruction. The dispatch loop causes a branch to
the emulation routine whose instructions are then executed
by the host system. The final host instruction within the
emulation routine returns control back to the dispatch loop
which then fetches the next emulated program instruction. It
has been found that this process is time consuming.

As indicated above. to increase the speed of execution of
an emulation application, one approach is to run the emu-
lator as a process on a host high speed microprocessor
architecture which provide levels of performance which
match or exceed the performance level of the emulated
computer architecture. But, as advances in microprocessor
architectures continue to evolve, it becomes important to be
able to take full advantage of such architectural advances to
optimize emulator performance.

An example of such advances is the hardware improve-
ments made in the POWER2 ™ architecture developed by
IBM Corporation. These improvements are described in two

1994 articles. one entitled “POWER2: Next Generation of -

10

15

20

25

30

35

45

55

65

2

the RISC System System/6000 Family” by Steven W. White
and Sudhir Dhawan and the other entitled “Migration and
Compatibility” by John Reysa, et al. Such improvements
include additional functional units, such as two integer units
and two floating point units. The articles suggest an
approach to enhance emulator performance which is the
enhanced exploitation of the functional units obtainable
through recompiling for a POWER2 target. The compiler i1s
described as being able to expose additional instruction-
level parallelism after more aggressive loop unrolling. Also,
the articles indicate that this allows applications to benefit
from new instructions.

While the above recompiling approach provides an
increase in emulator performance, performance is still less
than what may be anticipated from doubling the number of
functional units within a host system. Further, many appli-
cations can not be recompiled since they were not initially
written in a higher level language.

Accordingly, it is a primary object of the present invention
to optimize the performance of an emulator which runs in a
host system having a plurality of execution units without

requiring emulated program recompilation.

SUMMARY OF THE INVENTION

The above object and other advantages of the present
invention are achieved in the preferred embodiment of the
interpreter of the present invention which is designed to
execute a wide range of different classes of emulated pro-
gram instructions developed for the processor architecture
being emulated on a host system which includes a high
performance execution unit architecture.

The organization of the present invention focuses on
establishing parallel instruction streams of execution at a
higher level of an interpreter unit to exploit fully, the
capabilities of the host system execution unit architecture
which in the preferred embodiment utilizes two integer
pipelined execution units. The organization allows one of
the dual execution units to perform the steps necessary to
completing a current or foreground like operation on each
emulated program instruction while the other execution unit
performs the steps of an anticipated lookahead or back-
ground like operation on each emulated program instruction.
By having one functional unit execute operations such as
interpreting each emulated program instruction contained in
a foreground instruction stream and the other functional unit
execute operations such as prefetching each next emulated
program instruction contained in a background instruction
stream, interpreter unit performance is optimized.

In more particular terms, the teachings of the present
invention involve first, the generation of a set of host RISC
instructions of a routine or code fragment for each different
type of emulated program instruction which are to be
executed by a first one of the execution units. This resuits in
the generation of a different routine containing a set of RISC
instructions for each unique emulated program instruction.
While this may suggest that a particular routine will be used
by more than one emulated program instruction. this is not
required.

Next, a second set of RISC instructions of a common
fetch routine are generated for carrying out an instruction
fetch operation. This routine containing a set of RISC
instructions is common to or used by each different type of
emulated program instruction. In accordance with the
present invention, the different sets of RISC instructions of
the routines are interleaved in a predetermined manner. That

is. the RISC instructions in each of the routines generated in

5,678,032

3

the first step are interleaved with the RISC instructions of the
common routine generated in the second step.

Thus, in the preferred embodiment of the present
invention, the interpreter unit contains a number of different
RISC instruction sequences or code fragments, at least some
of which each include a replicated set of the RISC instruc-
tions of the common fetch routine or code fragment. Dis-
patch logic utilized by the execution units dispatches the sets
of interleaved RISC instructions to the execution units
which execute them in parallel performing both foreground
and background instruction operations simultaneously. This
results in a reduction in the number of RISC clock cycles or
shorter dispatch path or loop which result in substantial
increase in interpreter unit performance.

Further, emulator performance is optimized without cre-
ating any conflicts in host system process operations which
would reduce overall system performance. In greater detail,
when a certain type of violation condition is signaled to the
emulator by the host system attributable to the interpreter
unit execution of an optimized emulated program
instruction, the condition is examined by the emulator to
determine if the violation can be treated as a false alarm and
processed without terminating interpreter unit operation. In
more particular terms, a mechanism is included within the
emulator which examines each signal denoting segment
violations for determining if it relates to the execution of an
optimized emulated program instruction. It does this by
examining the memory address and the particular RISC
instruction being executed at that time. When the mecha-
nism determines that the interpreter unit is in a particular
phase of executing a particular type of emulated program
instruction, the mechanism causes the interpreter unit to
execute a predetermined routine which allows recovery from
the segment violation. The interpreter unit is thereafter
permitted to continue instruction processing. This approach
ehminates the need for taking steps to prevent the occur-
rence of such violations which would introduce further
complexity in addition to not faithfully emulating the behav-
ior of the target system.

The above object and advantages of the present invention
will be better understood from the following description
when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a and 15 show in block diagram form. a host
system which includes an emulator system which incorpo-
rates the method and interpreter unit of the present inven-
tion,

FIGS. 2 and 3 show in greater detail, a portion of the CPU
of FIG. 1.

FIG. 4 is block diagram of the interpreter unit of FIG. 1
constructed according to the teachings of the present inven-
tion.

FIG. 5 is a diagram illustrating the overall implementation
strategy of the present invention.

FIGS. 6 and 7 are timing diagrams used in explaining the
operation of the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIGS. 1a and 15 illustrate a host system 54 which
incorporates the components of the present invention. As
shown, the system 54 includes a hardware platform 56
which contains the hardware elements such as a central
processing unit 58a, a main memory 586 and a number of

10

15

20

23

30

33

45

50

35

65

4

input/output peripheral devices 58¢ and a communications
facility such as an Ethernet local area network (LAN) 584
for connecting system 54 to other processing systems via
standard communication network facilities.

The central processing unit (CPU) represented by block
58a is areduced instruction set (RISC) based processing unit
which takes the form of the RS6000 microprocessor manu-
factured by IBM corporation. More specifically, according
to the teachings of the present invention, the CPU 584
utilizes the POWER2 processor implementation which pro-
vides very high performance in fixed point applications. The
architecture is described in detail in a paper entitled
“POWER2 Fixed-Point, Data Cache and Storage Control
Units™ by D. J. Shippy, T. W. Griffith and Geordie Braceras
copyrighted 1994 available on the World Wide Web at
call-iblm @austin.ibm.com.

As seen from FIG. 1b, hardware platform including
processing unit 58a operates under the control of an
enhanced version of the UNIX* operating system such as
the AIX** operating system. Portions of physical memory
represented by MEM block S8b are illustrated in terms of the
layered construction. As shown, memory is divided into two
basic levels, a user level and an operating system level. The
user level is divided into emulated system (ES) and host
shared memory space and host or an operating system kernel
native memory space. The shared memory space contains
the ES executive level 16 which includes a plurality of
executive program tasks 30 spawned by ES executive ser-
vices components of block 28 for executing ES application

programs 22 and system administrator programs 24.
*UNIX is a registered trademark in the United States and other countries,

licensed exclusively through X/Open Limited Company,
**AIX 1s a registered trademark of International Business Machines Corpo-
ration.

In the emulated system, each task 39 utilizes a plurality of
data control structures, such as a task control block (TCB)
structure 32, an indirect request block (IRB) structure 36. an
input/output request block (IORB) structure 38 and a
resource control table (RCT) structure 40. The task control
block (TCB) structure 32 contains information pertaining to
the state of execution of the associated task as web as
pointers to interrupt save areas for storing hardware param-
eters related to the task. The indirect request block (IRB)
structure 36 contains information defining the operation
requested by an associated task and includes pointers iden-
tifying the task and its associated task control block (TCB)
and a pointer to the associated IORB structure.

The input/output request block (IORB) structure 38 is
used as the standard means of requesting a physical VO
service, It contains information such as a logical resource
number (LRN) that identifies the I/O device being addressed
as well as the location and size of the buffer to be used for
the transfer and the specific function (operation) requested.
The resource control table (RCT) structure 40 contains
information describing the resources, such as its character-

istics or information regarding the tasks or requests being
executed by a corresponding resource as well as pointers to
its associated task control block (TCB) structure.
Additionally, two other structures depicted in FIG. 1a are
a group control block (GCB) structure and a user control
block structure of block 29. The GCB structure contains
information required to define and control the operations of
a spectfic task group which defines a named set of one or
more tasks with a common set of resources within which a
user and system function must operate. Each group has a two
character name (e.g., $L. $S) by which the group is uniquely
known to the system. The GCB structure includes informa-
tion identifying the lead task whose execution spawns all

5,678,032

S

other tasks required for executing group programs. AS
indicated, the GCB structure includes a number of user
control blocks (UCB), each of which contains information
defining the user’s personality such as user node identifica-
tion, user group id within a node, user task id within group,
user person id and pointer information to directories to
which the user has access.

As shown, the emulated system utilizes a further data
structure corresponding to system control block (SCB)
structure 27. This data structure is created at system startup
and contains information defining system resources and
pointers to the different task groups established by the
system represented by a corresponding number of group
control blocks in the system. For further information regard-
ing such structures and their relationships to each other,
reference may be made to U.S. Pat. No. 5,111,384 and the
publication entitled “HVS PLUS Systems Concepis™ pub-
lished by Bull HN Information Systems Inc., Order No.
HE03-01. '

As indicated in FIG. 1a, the shared memory space further
includes a memory queued interface (MQI) represented by
block 84 which provides a form of interprocess communi-
cation mechanism and a software active queue (SAQ) of
block 88. SAQ block 88 represents a data structure used to
provide the path by which the results of the operations
performed by the kernel level components are passed back
or returned by the host processes to the requesting emulated
system user level tasks 30 being executed. Thus, it can be
viewed as functioning as an output stage of MQI 84. This
data structure is similar to data structures which are used by
the emulated system operating system. |

MOQI block 84 is a semaphore data structure which takes
the form of a single linked list controlled by semaphores
through a set of routines which are executed by the various
host processes operating within different levels or layers that
want to communicate with each other. Its routines are used
to manage queues within the pseudo device drivers 86 and
the software active qucue 88.

Executive Services Components 28

As seen in FIG. 1a, the executive services components 28
of executive layer 16 includes a plurality of components or
facilities which are equivalent to those facilities normally
included in the emulated system. The facilities include a
listener module 280, a file management facility 282, a
monitor call unit 284 and an ES command handler unit 286
which are arranged as shown. The listener module 280 is
responsible for monitoring the operations of terminals con-
figured for login and for initiating user tasks in response to
user commands. As indicated in FIG. 1, listener module 280
runs as a task 30 with its own set of unique data structures.

The listener module 280 consults a profiles file containing
user specific registration information such as user id, login
id and password requirements tabulated by the system
administrator for all registered users. The listener module
280 checks the user profile when monitoring the privileges
and/or restrictions given to each user. The file management
facility 282 includes the conventional shared data structure
and set of routines normally provided to perform functions
that access such data structure to control the synchronization
of concurrent processes or tasks in addition to performing
various system services or functions. That is, the facility
responds to system service monitor calls identifying the
types of services requested (e.g. creating or deleting files,
reading or writing records or blocks in files) which result in
the specified system services being executed by the emu-
lated system on bechalf of executing user application pro-
grams.

10

15

20

25

30

35

435

50

55

65

6

The monitor call unit 284 receives monitor calls from the
interpreter component 72 which are in turn to be executed
interpretively using the ES executive service components of
block 28. The command handler unit 286 contains the
routines that respond to user commands entered vial a
terminal or program. In response to such commands, the unit
286 routines invoke the appropriate tasks for executing such
commands.

Emulation Level Layer 68

As indicated in FIG. 1b, the next layer within the user
level is the emulator executive level 68. This level includes
certain components present in the emulated system which
have been transformed into new mechanisms which appear
to the remaining unchanged components to operate as the
original unchanged components of the emulated system. At
the same time, these new mechanisms appear to the com-
ponents of the kernel level 64 as native components with
which the host system is accustomed to operate, As shown,
the components include the interpreter 72, an emulator
monitor call unit (EMCU) 73, an emulator interrupt handler
unit (EEHU) 74, a plurality of servers 90 through 98, and a
plurality of pseudo device drivers (PSDD) 86 arranged as
shown.

Both the EMCU 73 and EEHU 74 operatively couple to
operating system/kernel mechanisms included in kernel
level 64 as discussed herein, The EEHU 74 receives “sig-
nals” from the kernel level 64, as shown and in turn takes the
appropriate actions relative to the emulator 80. According to
the present invention, the EEHU 74 includes a “catcher”
mechanism which as explained herein in greater detail,
catches “signals™ for enabling interpreter instruction pro-
cessing to continue notwithstanding receipt of *signals™
indicative of segment violations which would normally
cause the process running the interpreter to terminate.

The interpreter unit 72 successively fetches the instruc-
tions of an emulated program, categorizes each instruction
and executes it interpretively through sequences of RISC
instructions which allow CPU 58a, MEM 58b and other
elements of host system 54 to emulate the operations of
corresponding elements of the emulated system. The inter-
preter 72 includes a monitor call (MCL) table containing
information for each possible monitor call which it utilizes
to determine whether to trap or send an ES monitor call to

the ES executive services components 28 for execution of
the instruction or to make an emulator call to EMCU 73 for

exccution of the instruction through the services of an
appropriate C language routine (e.g.. server).

Also, interpreter unit 72, as described in greater detail
herein, includes routines which perform a dispatch function
wherein the operation code of an emulated program instruc-
tion is used to index into an emulator jump table (not
shown). The table contains a plurality of address pointer
entries (e.g. up to 2'° entries). The pointer obtained by the
indexing designates the set or RISC instructions of the
routine or code fragment to be executed by the host systemn
required to emulate the instruction of the original emulated
program. According to the present invention, the interpreter
unit 72 is organized in a manner which reduces or shortens
the time required to perform the dispatch function (ie.,
decreases the number of instructions contained in the dis-
patch loop).

As viewed by the host system 54 of FIGS. 1a and 15, the
ES service components 28 and tasks 30 being executed on
behalf of the application programs, the interpreter 72 and
EMCU 73 are executed in system 34 as a single process
comprising emulator 80 wherein such process corresponds
to one or more user processes or stated differently, emulator

1,678,032

7

80 executes one or more emulated system user processes.
Thus, it is possible to have multiple instances of the emu-
lated system concurrently being emulated on host system 54.

The dynamic server handler (DSH) 92 and the network
terminal driver (NTD) server 94 are created by EMCU 73
during initialization. Each of the servers 92 and 94 commu-
nicate with emulated system processes through MQI 84 as
indicated. The lower level server 98 is dynamically created
by their respective higher level server 92. As indicated, the
server 98 provides socket communication capabilities
through socket facilities included within kernel level 64 and
through L AN 584d. The NTD server 94 is designed to contain
the functionality required to handle different types of ter-
minals such as the network terminal driver described in U.S.
Pat. No. 4,951,245 which issued on Aug. 21, 1990.

As 1ndicated in FIG. 15, the emulator executive level 68
further includes a plurality of pseudo device drivers (PSDD)
86 for each input/output device or type of input/output
device which is required to be emulated by host system 54.
For example, the pseudo device drivers 86 will include
PSDDs for terminals. disk driver, tape drivers, displays and
for certain communication devices.

For further details regarding the other components of
FIGS. 1a and 15, reference may be made to the previously
cited related copending patent applications.

Operating System/Kernel Level 64

The operating system/kernel 64 includes the standard
mechanisms and components normally included within the
host operating system. As shown, level 64 includes a kernel
process manager component 70 and a number of host kernel
I/O services (KIOS) processes 66 for each pseudo device
driver (PSDD) 86 which is to be emulated by the host system
54 and for NED server 94. Since the components of kernel
level 64 are well known, they are only briefly described
herein.

The kernel process manager component 70 includes an
exception/interrupt services mechanism. The mechanism
handles both interrupts and exception conditions (i.e. unex-
pected events caused by a process such as illegally address-
ing memory which can cause a segment violation signal).
Exceptions can happen “in the middle” of the execution of
a RISC instruction and the host system normally attempts to
restart the instruction after handling the exception condition.

The kernel level 64 permits certain exception/interrupt
conditions to be handled by the user level 62. The kernel

level 64 generates “SIGNALSs” which inform processes of
the occurrence of synchronous events such as exception

conditions. The process executing the instruction upon
receipt of a SIGNAL denoting the occurrence of an event
such as a segment violation, normally exits by executing an
exit system call. This is done to prevent data corruption. For
the purpose of the present invention, the kernel exception/
interrupt handler mechanism can be viewed as conventional
in both its construction and operation.

Additionally, in the preferred embodiment of host system
34, kernel level 64 is assumed to contain the standard utility

programs, shell, editors, compilers, etc. and libraries (e.g.,
I/0 libraries, open. close) which are accessed in the host user
mode. For further information regarding the use of such
components, reference may be made to publications of the
IBM Corporation describing the AIX operating system.

FIGS. 2 & 3—CPU Dual Pipelined Execution Unit Archi-
tecture

FIG. 2 shows in block diagram form, a portion of the
architecture of CPU 58 whose hardware capabilities are
exploited by the present invention. As shown, CPU §8
includes an Instruction Cache Unit (ICU) 58-2. a dual fixed

10

15

20

25

35

8

point unit (FXU) §8-4, a dual floating point unit (FPU) 58-6,
four data cache units (DCUs) 58-8 which couple to a
plurality of memory boards 58-9 and a storage control unit
(SCU) 58-10 connected to a processor PBUS and SIO bus
58-14 which couples to a plurality of microchannels via
interface units 58-16. The ICU 58-2 prefetches instructions
from an instruction (I) cache, not shown, and places them in
one of two instruction buffers. The ICU can fetch eight
instructions per cycle from the I cache and can dispatch six
instructions per cycle, two internally and 4 externally to the
FXU 58-4 and FPU 58-6.

Control logic included within ICU 58-2 decodes or ana-
lyzes the instructions in the buffers and executes ICU
instructions which are primarily branches. The ICU 58-2
dispatches non-ICU instructions to the FXU 58-4 and FPU
38-6 over a four instruction wide instruction dispatch bus (I
BUS). The FXU 584 and FPU 58-6 cach contain two
execution units.

FIG. 3 illustrates in greater detail, the organization of the
PXU 58-4. The FXU 58-4 performs all storage references,
integer arithmetic and logical operations. The FXU 58-4
contains thirty-two 32 bit general purpose registers (GPRs)
implemented by two multiport register files 58-41, two fixed
point execution units S8-43 and 58-44, a data cache direc-
tory 58-46 which couples to the control circuits of block
538-47, and the TLLB and Segment Registers 58-48.

The register files 58-14 are coupled to receive data from
the PBUS and from the data caches via input latches and

multiplexer circuits of block 58-40. Also, the files 58-41
provide output data to execution units 58-43 and 58-44.
The dual execution units 58-43 and 58-44 can execute a
total of two instructions per cycle. The FXU 584 also
includes an instruction buffer 58-50 which queues instruc-

tions for the two instruction decode units of block 58-52.
The decode units of block 58-52 decode the instructions and

issue them to the two execution units 58-43 and 58-44. The
decode units of block 58-52 also control the GPRs of the
register files 58-41. As indicated, each execution unit con-
tains an adder and a logic functional unit. The execution unit
58-44 also contains a multiply and divide unit.

FIG. 4—Interpreter Unit 72

The interpreter unit 72 of the present invention is orga-
nized in a way which exploits to the extent possible, the

- performance advantages of the above described CPU dual

435

50

35

65

pipelined execution unit architecture in optimizing emulator
instruction execution. This is accomplished by organizing
the interpreter unit 72 as diagramatically illustrated in FIG.
4. Also, such performance is achieved by including a mecha-
nism within the emulator exception handler 74 which
ensures that performance is maintained notwithstanding the
occurrence of segment violation types of exception condi-
tions.

Referring to FIG. 4, it is seen that the interpreter unit 72
comprises a plurality of blocks which correspond to the
different groups of routines or code fragments used to
cxecute the different classes/types of emulated program
instructions. Each such routine consists of a set or sequence
of RISC instructions. These different groups of routines are
designated by the letters D. E, B. L. S, O. G, K and F and
perform the required operations for executing the different
types of emulated instructions. As indicated, these types/
classes include branch, intermediate, shift, effective address,
generic and K types of instructions.

As indicated in FIG. 4, these routines are divided into two
general groups designated as Iw(0)=0 and Iw(0)=1. This
grouping follows the original instruction coding designed to
simplify decoding wherein one group of emulated program

5,678,032

9

instructions contain operation codes having binary ZEROS
in the most significant/high order bit position and the other
group of emulated program instructions contain operation
codes having binary ONES in the most significant bit
position. Thus, B, I, S and G type instructions are included
in group Iw(0)=0 while D, O and K type instructions are
included in group Iw(0)=1. The instructions in these two
groups are discussed later herein with reference to FIG. S.
For general information about these types of instructions and
their formatting, reference may be made to the cited publi-
cations and to the document entitled “ONE PLUS Assembly
Language (MAP) Reference Manual published by Bull HN
Information Systems Inc.. copyright 1986, order no. HE38-
00.

The organization of the present invention shortens the
normal “dispatch” path or loop executed by the interpreter
unit 72 for certain types of emulated program instructions
which can take advantage of the CPU architecture described
above. This is accomplished by incorporating into each of
the blocks or code fragments labeled D, E,B.L S, and O, a
duplicated or replicated set of RISC instructions of the
common fetch routine of block F. This is diagrammatically
illustrated by the shaded blocks included in each of the
blocks labeled D. E, B, L. S, and O and the different entry
point “soi__1b into the common fetch routine of block F.
This integration results in the tightest possible loop pro-
duoced by the simultaneous use of both integer units as
discussed herein.

It will be appreciated that the code fragments used by
instructions which are not optimized are appropriately modi-
fied/recoded so as to continue to reference the common fetch
routine of block F at the proper entry point “soi” as indicated
in FIG. 4. The types of emulated program instructions which
are not optimized include certain types of commercial
instructions such as a multiply or a move instruction whose
execution routine length is quite long in comparison to the
length of the fetch routine. In this instance, there is no
performance advantage gained to interleave RISC instruc-
tions of these types of routines.

The division within the different blocks of FIG. 4 also
shows that the RISC instructions are executed in parallel
simultaneously to do both the execution portion of the
current emulated program instruction and the fetch and

decode for the next emulated program instruction. When the
common fetch code and execution code have been so

incorporated, this results in the interleaving of the duplicated
RISC instructions contained in the shaded portion of block
F with the RISC instructions of each of the routines of
blocks D, E. B. L. S and Q. The result is that those RISC
instructions of block F duplicated into the routines contained
in block D. E, B. 1. S and O are executed in parallel with the
RISC instructions of each such routine. This in turn reduces
the number of RISC clock cycles or the duration of the
dispatch path/loop so that upon completing the execution of
a current emulated program instruction, interpreter unit 72
returns to a lower entry point corresponding to soi__1b or
soi__p2 in the F routine as indicated in FIG. 4.

It will be appreciated that since the RISC instructions
being interleaved pertain to foreground and background
operations which pertain to different emulated program
instructions, there are normally no conflicts relative to
resources etc. But, because of different hardware constraints
and resource conflicts relative to the RISC instructions
pertaining to a particular routine. in certain instances it
becomes necessary to reorder the interleaved RISC instruc-
tions to satisfy any constraints and conflicts which are likely
to arise. In certain instances, RISC instructions are reordered

10

15

25

35

45

50

55

635

10

to fill unused clock cycles which may be used to execute
background or foreground operations. Overall, such reor-
dering ensures that the interpreter unit’s optimized perfor-
mance is not offset by the other factors mentioned and in
some cases is further enhanced.

FIG. 5 illustrates in tabular form. the overall implemen-
tation strategy of the interpreter unit 72 discussed above. As
shown, the table indicates which operations for the groups
Iw(0)=0 and Iw(0)=1 are executed by one of the execution
units 58-43 as a foreground RISC instruction stream and the
other execution unit 58-44 as a background RISC instruction
stream. In general, as discussed, the foreground instruction
stream interprets the current emulated program instruction
and the background instruction stream prefetches the next
emulated program instruction.

More specifically, the interpreter unit 72 of emulator 80
establishes a correspondence between the registers of the
system being emulated and the registers of CPU 58a. For
example, a program visible register of CPU 58a is dedicated
to perform the function of the *“p” counter of the system
being emulated. In the present embodiment, the program
visible registers include a procedure “p” counter, an instruc-
tion “T” register and xa and xe splatter registers.

According to the present invention, certain general oper-
ating parameters are established for executing the instruction
code fragments which govern the contents/state of the p
counter, xa splatter address and the xa splatter register in
addition to the xe splatter address and Xe splatter register. In
the case of the p counter, these operating parameters are that
upon entering the sol common fetch routine, the p counter
contains the address of the first word of the emulated
program instruction and upon exiting the soi common fetch
routine, the p counter contains the address of the first word
of the current emulated program instruction. Lastly, upon
exiting an execution routine “xa” used by an instruction in
group Iw(0)=0, the p counter contains the address of the first
word of the next emulated program instruction.

The xa splatter address for the next emulated program
instruction is computed by the xa routine of the current
emulated program instruction. The computed Xa splatter
address is loaded into the xa splatter register by the xe
routine. For those emulated program instructions without xe
routines, the xa splatter address is loaded into the xa splatter
register by the xa routine.

Instruction Groups Iw(0)=0 and Iw(0)=1

As indicated in the table of FIG. §, each instruction in the
Iw{(0)=0 group is emulated by executing two types of RISC
routines. These are an soi__0 routine which is common to all
Iw(0)=0 instructions and an xa routine which is unique to
each opcode. The major types of emulated program instruc-
tions in this group branch instructions, value instructions
and commercial instructions.

More than half of all of the emulated program instructions
fall into the Iw(0)=1 group. As shown in the table. each
instruction in this group is emulated by executing three types
of RISC routines. These are an soi__1 routine which is
common to all instructions in this group, an xa routine which
is unique to each emulated program instruction address
syllable type and an xe routine which is unique to each

opcode.

DESCRIPTION OF OPERATION

The operation of the interpreter unit 72 of the present
invention will now be described with reference to FIGS. 6
and 7. Both are timing diagrams illustrating the different
cycles of operation or states sequenced through in executing
representative instructions in group Iw(0)=1. The lust

3,678,032

11

example instruction is an emulated program instruction
specifying a load R register (LDR, Bn) operation which uses
the content of a base register (Bn) as an operand address.
The code fragments designated on the left side of FIG. 6 are
the same as those indicated in the timing state portion of the
figure with different labels showing the transitions between
the different code fragments/routines within the interpreter
unit 72. Such code fragments are discontiguous sections of
code 1n the interpreter unit 72 as is illustrated in a first
appendix (Appendix I) included herein which contains the
relevant source code for the load R register emulated pro-
gram instruction.

Since this is an optimized emulated program instruction,
a portion of the normal common fetch routine of block F is
bypassed. The first clock cycle begins at an entry point
sol__1 wherein the ICU S58-2 dispatches a sequence of
previously fetched RISC instructions, P1, Q1, P2, and Q2 to
the different units as shown. More specifically, during clock
cycle 2, the RISC instructions of the interleaved code
fragments are dispatched to the FXU decode #1 and #2 units
of block 58-52 of FIG. 3. In clock cycle 3, the execution
units 58-43 and 58-44 execute these RISC instructions in
parallel. This sequence continues with subsequently fetched
RISC instructions as indicated in FIG. 6.

Appendix 1 indicates in greater detail, the organization of
RISC instructions and the foreground and background
operations performed by each of the distinct independent

code fragments of blocks D and E of FIG. 4. As indicated,
the code fragments of blocks D and E are executed in
sequence. The first RISC routine fragment (xa) calculates
the effective address associated with the emulated instruc-
tion and fetches the operand data for that instruction. The
second RISC routine fragment (xe) which is the execution
part performs the actual functional work of that particular
emulated program instruction (i.e., load register).

The parallel operations take place during the execution of
both blocks (i.e., D and E) as compared to the parallel
operations taking place during the execution of a single
block or code fragment as in the cases of blocks B, I and S.
As noted in Appendix I, becanse of these parallel operations,
the dispatch path is shortened by four RISC instructions in
the case of the emulated load register instruction. This has
been found to provide a substantial increase in performance.

It will be noted that different ones of the RISC instructions
of Appendix I have been labeled “f” and “b” respectively for
designating which RISC instructions are performing fore-
ground operations and background operations. Appendix I
illustrates certain RISC instructions have been reordered to
satisfy hardware constraints/delays, resource conflicts and
for further maximizing performance. It will be appreciated
that as the emulated program instruction is more complex,
the amount of interleaving or alternating increases.

The second instruction example is another type of instruc-
tion included in group Iw(0)=1. It corresponds to an emu-
lated program instruction coded for specifying a byte (8-bit)
load register (LDH) operation. The LDH instruction is used
copy a memory byte into a register. This instruction was
selected for the purpose of illustrating the operation of the
signal “catcher” mechanism contained in emulator excep-
tion handler 74 which maintains interpreter performance in
the presence of segment violations.

As described earlier, the catcher mechanism processes
each SIGNAL generated by the kernel process manager 70
in response to each occurrence of a segment violation.
Because the optimized XA prefetches the operand in the
case where IW(0)=1 of the emulated program instruction,

10

15

20

25

30

35

45

50

55

65

12

the LDH instruction is one of the instructions which can
result in the generation of a SIGNAL indicating a segment
violation caused by accessing a word starting with the last
half word of a segment for loading, adding, etc. As discussed
above, a segment violation would normally cause the pro-
cess running the interpreter to terminate which would result
in incorrect emulation.

A preferred embodiment of the catcher mechanism of the
present invention is illustrated in Appendix I As indicated
in the Appendix, the mechanism first tests the lower 12 of the
effective address register for determining if the last byte of
a segment (page) is being accessed. The mechanism next
tests to determine if the offending RISC instruction is a fetch
(lha) instruction. If both tests are positive, the mechanism
sequences the interpreter unit 72 to a code fragment which
refetches the byte operand. This code fragment performs as
a recovery or fix function for enabling the interpreter unit to
return to the next RISC instruction of the code fragment
which was being executed when the segment violation
occurred. This allows the violation to be treated as a false
alarm enabling the interpreter unit 72 to continue to faith-
fully emulate the behavior of the LDH emulated program
instruction.

FIG. 7 illustrates the pipelined execution of the LDH
instruction which is quite similar to the LDR instruction of
FIG. 6 in the absence of a segment violation. The code
fragments designated on the left side of FIG. 7 are the same

as those indicated in the timing state portion of the figure
with different labels showing the transitions between the
different code fragments/routines within the interpreter unit
72. As in the previous instruction example, such code
fragments are discontiguous sections of code in the inter-
preter unit 72 as illustrated in Appendix II.

Since this emulated program instruction is performed in a
manner similar to the first emulated program instruction
example, it will not be discussed in detail. However, it will
be noted that in the case of a segment violation, the catcher
mechanism is invoked and following the processing of the
violation by the mechanism in the manner described above,
the interpreter unit continues execution of the RISC instruc-
tions as indicated (start of clock cycle 9). It will be appre-
ciated that there is a break in execution after which pipelined
operation begins. Because of this, the RISC instructions
designated in FIG. 7 may not appear exactly as they would
in the absence of the violation. This area of FIG. 7 is shown
with a double-line border.

While the catcher mechanism was described in terms of a
specific emulated program instruction type, the same mecha-
nism may be used with other types of emulate program
instructions for detecting false alarm occurrences and for
enabling recovery from such occurrences thereby ensuring
that faithful emulation is not lessened as a consequence of
having been optimized according to the teachings of the
present invention.

Also, it will be appreciated that the instruction being
processed during the fetch phase in which a segment vio-
lation occurred may actually be one of three different types
of 1nstructions (i.c., shift, value or branch). In the case of a
shift or a value instruction, the computation operations are
completely inappropriate while in the case of a branch
instruction. it is too early to determine if the branch will be
taken. Therefore, the foreground instruction stream is
allowed to continue to operate at optimum performance.

From the above description, it is seen by organizing an
interpreter unit according to the teachings of the present
invention, it is possible to optimize interpreter performance

3,678,032

13

through the simultaneous execution of foreground and back-
ground instruction streams by a plurality of integer execu-

tion units of a host system. While the preferred embodiment
disclosed the use of two integer execution units, the teach-

ings of the present invention are applicable to any number of 5

integer execution units. Also, the present invention may be
used with other types of enhanced CPU architectures.

It will be appreciated that many changes may be made to
the organization of the interpreter unit of the present inven-

14

programmer is free to program emulated program instruc-
tions in the manner deemed most appropriate.

These Appendices include source listings which are sub-
ject to copyright protection. The copyright owner, Bull HN
Information Systems Inc., has no objection to the facsimile
reproduction by any one of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights in such
listings whatsoever.

tion. While the preferred embodiment indicated that several 10 APPENDIX I--Load Register Instruction
types of instructions share a single code fragment, this is not APPENDIX II—Load Byte Register Instruction and Catcher
required by the teachings of the present invention. The Mechanism
APPENDIXT
BLOCK F
#
Start of Instruction
#
(normal start, bypassed n optimized code)
BOL;
sli. deiw,2 # 1w * 4
5.4 w0,dt,top, # fetch XA entry
sol__p2:
mtlr w0 # prepare to splatier
bge 0,s01_0 # branch for opcodes O-0x7ff (executed
by ICU)
rlinm w2,1w,28 21 28 # get index to XE table
sol__I:
Pl lux wo,w2.xep # fetch XE pointer (MAS) ()
Q1 Iha dt,2(p) # fetch @ (P + 2) (next instr. if
current mstr. is one word) (b)
P2 l wl,4(w2) # fetch XE pointer (RAS) (f)
Q2 ha z,4p) # fetch @ (P + 4) (next inst. if
current inst. 1s two words) (b)
(start of instruction, optimized code)
so1__lb:
P3 mitctr w(# move memory AS XE address to CIR (f)
Q3 sli. dtdt,2 # [@(P + 2)]*4 (b)
P4 st p,ph # save copy of P for traps (f)
Q4 sl Z,Z,2 #l@FP+4)]*4 (D)
bbir 12 # jump to entry pt if no mterrupt (f)
(g0 to XA fragment/BLOCK D)
BLOCK D
Base register effective address calculation, operand fetch
PS5 mr ea,bl # centralize b register (f)
Q5 Ix w(,top,dt # fetch next IW XA (b)
P6 mr z,dt # centralize next IW (b)
bbtl 15, _xvba_vp # if v pool,
go to addr convert routine (f)
Q6 Iha d¢,0(ea) # feich word operand (f)
P7 cal p.2(p) # advance P to next TW (b)
betr # splatter to XE ()
(contmue m XE fragment/BLOCK E)
BLOCK E
Load R register execution routine
P8 STai iw,z,2 # set pext IW (b)
Q8 mtlr wO # prepare to splatter (b)
PO r rl,dt # move operand to register (f)
29 rlinm w2,1w,28,21,28 # get imndex to XE table (f)
bge O,s01_0 # branch for opcodes 0-O0x7fif (f)
P10 tha dt,2(p) # fetch TW + 2 (b)
Q10 lux wO,w2,xep # fetch XE pointer (MAS) (f)
P11 lha z,4{p) # fetch IW + 4 (b)
Qi1 1 wld{(w2) # fetch XE pointer (RAS) (f)
b sol__Ib # return to fetch routine (f)
(return to start of instruction/'BLOCK F, label <soi_ib>
APPENDIX I
BLOCK F
#
Start of Instruction
#
(normal start, bypassed i optimized code)
SO1:
sli. dt,iw,2 #1w=*4
Ix w(.dt,top # fetch XA entry

5,678,032

15
-continued

s01__p2:

mtir w(# prepare to splatter

bge 0,s01_0 # branch for opcodes 0-0x7fff

rlinm w2,iw,28,21,28 # get index to XE table

(start of instruction, optimized code)
sol_L
Pl hux w0, w2,xep # fetich XE ptr (MAS) (f)
Q1 tha dt,2(p) # fetch @(P + 2) (b)
P2 1 wl,d(w2) # fetch XE ptr (RAS) ()
Q2 lha z,4(p) §t fetch @(P + 4) (b)
soi_lb:

P3 mitctr w0 # move memory AS XE addr to CTR (f)
Q3 sli. dt,dt,2 #{@FP +2)]*4(b)
P4 st P,ph # save copy of P for traps (f)
Q4 sl 22,2 #{@[P +4)] * 4 (b)

bbir 12 # jump to entry poimnt if no mtr (f)

(go to XA fragment/BL.OCK D)
BLOCK D

Base register + mdex register
effective address calculation, operand fetch
P35 cax ca,bl,r2 # add index to base (T)
Q5 mr z,qat # ceniralize next IW (b)
P6 Ix w(,top,Z # fetch next TW XA (b)

bbtl 15, xvba_ vp # if v pool, go to addr

convert routine (f)

Q6 tha dt,(ea) # fetch word operand (f)

Segment Violation occurs here, continue in Signal Catcher C code

Segment Violation Signal Catcher C Code (partial)
/* handle rare case of word prefetch at last byte of AIX segment */
/* case 1: I pool, multiple sources of segvio */
/* test lower 12 bits of register ea for all 1 (last byte of page} */
if((scp—>sc__jympbuf jmp__context.gpr{ 25] & Ox0ftf) = Ox{i)
{
/* test mstruction is : ‘Iha dt,0(ea)"*/
longbase = {long *) scp—>sc__jmpbuf.jmp__context.iar;
if (*longbase = Oxabl190000)
{
/* set link register to follovang instruction */
scp—>s¢__jmpbuf.ymp__ context.ir =
scp—>sc__jmpbuf.ymp__context.iar+4;
/* direct interpreter to fixup code */
scp—>sc__jmpbuf jmp__context.iar=(long)fetch8;
refsm,

H
}
/* case 2: V pool, smngle mstance */

if(scp—>sc__jmpbuf.ymp__context.iar = (long) xval6__segvio)

{
scp—>sc__jmpbuf.jmp_ context.lr=scp—>sc__jmpbuf jmp__context.iar-+4;
scp—>sc__ympbuf.jmp__context.iar=(long fetch8v;

b

returm;
Assembly code in interpreter urut to refetch byte operand

This code handles extrancous segvio’s caused by the
sequence of a byte operand prefetch performed
via a 16 bit read on the very last byte of an AIX
segment. It is continuation code that the interpreter
is directed to by the segvio signal catcher when the
sequence is detected.
#

globl fetch8v

.globl fetchf
fetch8v:

cax ea,ca,dt # add M:seg base to addr
fetch8:

bz dt,({ea) # fetch byte operand

sli dt,dt,8 # move to right middle byte

exts di,di # sign extend

br # return to origmal sequence

BLOCK D -(cont’d)
Return here after Signal Catcher/fetch 8 code recovery,
| or contimue from BLOCK D

(Q7) cal P.2{p) # advance P to next IW (b)

betr # splatter to XE (f)

(continue it XE fragment/BLOCK E)
BLOCK E
Load R register halfword execution routine

(P8) srai w,z,2 # set next IW (b)
(Q8) mtlr w(l # prepare to splatter (b)

(P9) sTal rl.de8 # store left byte (f)

16

5,678,032

18

17
-continued
(Q9) rhinm w2,1w,28,21,28 # get index to XE table (f)
bge (5010 # branch for opcodes 0-Ox7f (f)

(P10) lha dt, 2(p} # fetch IW + 2 (b)
(Q10) lux wi,w2 xep # fetch XE ptr (MAS) (f)
(P11) lha z.4(p) # fetch TW + 4 (b)
(Q11) 1 x1,4(w2) # fetch XE ptr (RAS) (f)

b so_lb # return to fetch routine (f)

(retwrn to start of instruction/BLOCK F, label <soi__1b>)

It will be apparent to those skilled in the art that many
changes may be made to the preferred embodiment of the
present invention. For example, while the present invention
is described in terms of an emulator application. the teach-
ings of the present invention can be applied to other appli-
cations which could take advantage of using two separate
independent instruction streams, a first stream for perform-
ing anticipation type operations and a second stream for
performing operations utilizing the results of the first stream
to complete an execution operation. Also, while the pre-
ferred embodiment discloses the use of a specific pipelined
execution unit architecture. the teachings of the present
invention may be used with other architectures and other
types of processors which provide for parallel instruction
execution. Also, while the prefered embodiment disclosed

the use of two execution units for carrying out the processing
of two instruction streams, more such units may be

employed.

It will also be appreciated by those skilled in the art
relative to other more specific aspects, that while the opti-
mized emulated program instructions were described as
being within two classes, other types of emulated program
instructions could be similarly optimized. For example,
floating point or scientific emulated program instructions
could be optimized such that all of the integer units of the
preferred embodiment would be used to fetch and otherwise
prepare for the next emulated program instruction while the
floating point execution units included in CPU 58a was busy
executing the emulated scientific program instruction.

While in accordance with the provisions and statutes there
has been illustrated and described the best form of the
invention, certain changes may be made without departing
from the spirit of the invention as set forth in the appended
claims and that in some cases, certain features of the
invention may be used to advantage without a corresponding
use of other features.

What is claimed is:

1. A method of optimizing the performance of an inter-
pretative emulator on a high performance computer system
which includes an operating system and processing appara-
tus operating under control of the operating system, the
processing apparatus having n number of execution units
operatively coupled to a control mechanism which examines
sequential instructions in parallel for dispatching the instruc-
tions to the execution units for simultaneous execution, the
emulator including an interpreter unit operating under the
control of the operating system to execute emulated program
instructions of a target system using the execution units, the
method comprising:

(a) generating a first set of RISC instructions of a common
RISC fetch routine for carrying out an instruction fetch
operation which is to be executed by the interpreter unit
corresponding to a first type of operation;

(b) generating a second set of RISC instructions of a RISC
routine for each different emulated program instruction
which is to be executed by the interpreter unit corre-
sponding to a second type of operation; and.

15

20

25

30

35

45

50

335

60

63

(c) interleaving replications of the RISC instructions of
the first set of RISC instructions of the common RISC
fetch routine generated in step (a) with the RISC
instructions of the second set of RISC instructions of
each of the RISC routines generated in step (b) for
causing the control mechanism to dispatch sets of
interleaved RISC instructions to a plurality of the n
number of execution units for simultancous execution
enabling both first and second types of instruction

operations to be performed in parallel.

2. The method of claim 1 wherein the first and second type
of instruction operations correspond to foreground and back-
ground operations respectively and wherein step (¢) further
includes the step of first replicating the RISC instructions of
the common RISC fetch routine at least once for each of the
RISC routines generated in step (b).

3. The method of claim 1 wherein the emulated program
instructions fall into first and second classes and wherein
step (¢) further includes the step of first replicating the RISC
instructions of the common RISC fetch routine at least once
in each of the RISC routines generated for emulated pro-
gram instructions contained in the first class and the second

class respectively.
4. The method of claim 1 wherein, the method further
includes the steps of:

(d) detecting an occurrence of a predetermined type of
exception condition produced by interpreter unit emu-
lated program instruction execution; and,

(e) determining if the violation condition detected in step
(d) can be processed without having to terminate inter-
preter unit instruction execution.

8. The method of claim 4 wherein the emulator further
includes an exception handler mechanism operatively
coupled to the interpreter unit and to the operating system
for receiving signals indicating occurrences of exception
conditions and for terminating imterpreter unit operation
upon receipt of exception condition signals indicating the
occurrence of segment violations, said method further
including the steps of:

(f) including in the exception handler mechanism, a

catcher code mechanism invoked by signals indicative
of the segment violations;

(g) determining by the catcher code mechanism if the
offending code fragment being executed by interpreter
unit precipitating the exception condition pertained to
an optimized emulated program instruction execution
and can be deemed a false alarm signal;

(h) executing a predetermined routine for recovering from
the segment violation caused by the optimized emu-
lated program instruction; and,

(1) returning the interpreter unit execution to the offending
code fragment to continue execution following comple-
tion of step (h).

6. The method of claim S wherein step (g) further includes

the steps of:

(j) testing the contents of an address register for deter-
mining the type of memory access;

3,678,032

19

(k) testing the offending RISC instruction for determining
the type of operation being performed; and,

(1) when the results of both steps (j) and (k) indicate that

a predetermined type of optimized emulated program

instruction was being executed, signaling that the
exception has been processed as a false alarm.
7. The method of claim § wherein step (h) includes the

step of executing another routine in the interpreter for
refetching an operand in a predetermined manner enabling a
complete recovery from the segment violation only when
caused by the optimized emulated program instruction.

8. The method of claim 1 wherein n equals two and one
of the pipelined integer units executes a foreground RISC
instruction stream and another of the pipelined integer units
executes a background RISC instruction stream.

9. The method of claim 8 wherein the foreground instruc-
tion stream 1nterprets the current emulated program instruc-
tion and the background instruction stream prefetches the
next emulated program instruction.

10. The method of claim 1 wherein the interpreter unit is
organized into a number of code fragments, a first code
fragment of the number including RISC instructions of the
common RISC routine and other code fragments containing
RISC instructions for executing different classes of emulated
program instructions through a dispatch loop, the dispatch
loop for each unoptimized emulated program instruction
consisting of executing RISC instructions contained in the
first code fragment and one of the other code fragments, the
method further including the steps of:

(1) determining which different types of emulated pro-

gram instructions in the emulated program instruction

set are required to be optimized for providing a desired
level of performance; and,

(2) including a predetermined portion of the RISC instruc-
tions of the common RISC routine into each of the
other code fragments used to execute optimized emu-

lated program instructions of a set of instructions being
emulated in a manner which reduces the number of
RISC clock cycles or the duration of the dispatch loop
through the simultaneous use of the plurality of execu-
tion units.

11. The method of claim 10 wherein the RISC instructions
executed in parallel do both the execution portion of the
current emulated program instruction and the fetch and
decode operations for the next emulated program instruc-
tion.
12. The method of claim 10 wherein the other code
fragments used in executing optimized emulated program
instructions include a code which performs both effective
address development (xa) and operation code execution (xe)
operations.

13. The method of claim 10 wherein one type of opti-
mized emulated program instruction is a load register type
instruction.

14. The method of claim 10 wherein another type of
optimized emulated program instruction is a byte load type
instruction.

15. The method of claim 10 wherein the set of emulated
program 1nstructions includes first and second groups of
emulated program instructions, each emulated program
instruction of the first group being performed by the inter-
preter unit executing RISC instructions of the first code
fragment for carrying out an emulated instruction fetch

5

10

15

20

25

30

33

45

50

33

65

20

operation and RISC instructions of another code fragment
for executing the operation specified by the operation code
of the emulated program instruction and each emulated
program instruction of the second group being performed by
the interpreter unit executing RISC instructions of the first
code fragment for carrying out an emulated instruction fetch
operation and other code fragments for performing an effec-
tive address development operation followed by the opera-
tion specified by the operation code of the emulated program
instruction.

16. The method of claim 15 wherein each optimized

instruction in the first group of emulated program instruc-
tions incorporates the RISC instructions of the first code
fragment interleaved with the RISC instructions of the
another code fragment for performing both foreground and
background emulated program instruction operations in par-
allel.

17. The method of claim 15 wherein each optimized
instruction in the second group of emulated program instruc-
tions incorporates RISC instructions of the first code frag-
ment in both of the other code fragments for performing both
foreground and background emulated instruction operations
in parallel.

18. The method of claim 1S wherein the other code

fragments executed by the interpreter unit for each emulated
prograrm instruction in the second group are included as part
of one code fragment.

19. An optimized interpretative emulator system compris-
ing a high performance computer system having an operat-
ing system and processing apparatus operating under control
of the operating system, the processing apparatus having a
plurality of execution units operatively coupled to a control
mechanism which examines sequential instructions in par-
allel and dispatches a plurality of instructions to the execu-
tion units for simultaneous execution, the emulator system
including an interpreter unit operating under the control of
the operating system to execute a set of emulated program
instructions using the execution units. the interpreter unit
comprising:

a common RISC fetch routine including a first set of RISC

instructions for causing the processing apparatus to

carry out an instruction fetch operation as a background
operation for each emulated program instruction; and,

a plurality of RISC routines, each RISC routine including
a second set of RISC instructions for causing the
processing apparatus to execute a different emulated

program instruction as a foreground operation and each
RISC routine further including RISC instructions of the
first set interleaved with the RISC instructions of the
second set, the control mechanism being operative
during execution of each different emulated program
instruction to dispatch sets of interleaved RISC instruc-
tions to a plurality of execution units for simultaneous
execution for performing both foreground and back-
ground emulated instruction operations in parallel.
20. The emulator system of claim 19 wherein the emulator

system further includes an exception handler mechanism
operatively coupled to the interpreter unit and to the oper-
ating system for receiving signals indicating occurrences of
exception conditions and for terminating interpreter unit
operation upon receipt of exception condition signals indi-
cating the occurrence of segment violations, said exception
handler mechanism further including a catcher mechanism

5,678,032

21

invoked by signals indicative of the segment violations, the
catcher code mechanism including:

first means for determining if the offending RISC routine
being executed by interpreter unit precipitating the
exception condition pertained to the execution of a
predetermined type of optimized emulated program
instruction and can be deemed a false alarm signal; and

second means for performing a recovery operation when
necessary and for returning the interpreter unit execu-
tion to the offending code fragment to continue execu-
tion at a point following the offending RISC instruction
which caused the first means to detect the false alarm
is signal.

21. A method of optimizing the performance of an appli-
cation on a high performance computer system which
includes an operating system and processing apparatus oper-
ating under control of the operating system, the processing
apparatus having n number of execution units operatively
coupled to a control mechanism which examines sequential
instructions in parallel for dispatching the instructions to the
execution units for simultaneous execution, the application

15

20

22

including a unit operating under the control of the operating
system to execute program instructions using a plurality of
execution units, the method comprising:

(a) generating a first set of instructions of a common fetch
routine for carrying out an instruction operation corre-
sponding to an anticipatory type of operation;

(b) generating a second set of instructions of a routine for
each different program instruction which is to be
executed by the application corresponding to a current
type of operation; and,

(c) interleaving replications of the instructions of the first
set of instructions of the common fetch routine gener-
ated in step (a) with the instructions of the second set
of instructions of each of the routines generated in step
(b) for causing the control mechanism to dispatch sets
of interleaved RISC instructions to the plurality of
execution units for simultaneous execution enabling
both anticipatory and current types of instruction opera-
tions to be performed in parallel.

C . S . T

	Front Page
	Drawings
	Specification
	Claims

