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[57] ABSTRACT

A dynamically regularized fast recursive least squares (DR-
FRLS) adaptive filter and method are disclosed which
provide O(N) computational complexity and which have
dynamically adjusted regularization in real-time without
requiring restarting the adaptive filtering. The adaptive filter
includes a memory for storing at least one program. includ-
ing a dynamically regularized fast recursjve least squares
(DR-FRLS) program; and a processor which responds to the
DR-FRLS program for adaptively filtering an input signal
and for generating an output signal associated with the input
signal.
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1

ADAPTIVE FILTER AND METHOD FOR
IMPLEMENTING ECHO CANCELLATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to adaptive filtering techniques, and,
more particularly, to an adaptive filtering technique appli-
cable to acoustic echo cancellation.

2. Description of the Related Art

Adaptive filtering techniques may be applied, for
example, to acoustic echo cancellation., speech processing
and video processing, including video compression. In
particular, fast recursive least squares (FRLS) techniques are
known which have relatively fast convergence even as when
the input excitation signal is highly colored or self-
correlated, while also having relatively low computational
complexity. FRLS techniques, as well as recursive least
squares (RLS) techniques, generally employ the inverse of
the sample covariance matrix R, of the input excitation
signal, which may cause the FRLS and RLS techniques to be
computationally unstable when R , is poorly conditioned: i.e.
when the condition number of R, (i.e. the ratio of the highest
eigenvalue of R, to its lowest eigenvalue) is high.

Such high condition numbers may occur due to self-
correlation of the excitation signal, or due to the use of a
relatively short data window for the estimation of R_. RLS
and FRLS are susceptible to systemn measurement noise
and/or numerical errors from finite precision computations
when R,, has some relatively small eigenvalues.

One method for countering such instability is to imple-
ment a regularization technique to least square methods such
as FRLS and RLS. In regularization, a matrix such as 8l is
added to R, prior to inversion, where 8 is a relatively small
positive number, and I is the N dimensional identity matrix.
The use of matrix JI,, establishes § as a lower bound for the
minimum eigenvalue of the resulting matrix R +5I,, and
thus stabilizing the least squares solution, depending on the
size of d.

Generally, for FRLS adaptive filtering, regularization may
increase the computational complexity of the FRLS tech-
nique beyond O(N) complexity. In addition, although FRLS
may perform adaptive filtering, its initial degree of regular-
ization diminishes with time and may not be restored except
by restarting the adaptive filtering.

SUMMARY

A dynamically regularized FRLS (DR-FRLS) adaptive
filter and method are disclosed which provide O(N) com-
putational complexity and which have dynamically adjusted
regularization in real-time without requiring restarting the
adaptive filtering. The adaptive filter includes a memory for
storing at least one program, including a dynamically regu-
larized fast recursive least squares (DR-FRLS) program; and
a processor which responds to the DR-FRLS program for
adaptively filtering an input signal and for generating an
output signal associated with the input signal.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the disclosed adaptive filter and method
wil become more readily apparent and may be better
understood by referring to the following detailed description
of an illustrative embodiment of the present invention, taken
in conjunction with the accompanying drawings, where:

FIG. 1 illustrates a block diagram of the disclosed adap-
tive filter;
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2

FIG. 2 illustrates a portion of the block diagram of the
disclosed adaptive filter of FIG. 1 in greater detail; and

FI1G. 3 shows a flowchart of a method of operation of the
disclosed adaptive filter.

DETAILED DESCRIPTION

Referring now in specific detail to the drawings, with like
reference numerals identifying similar or identical elements.
as shown in FIG. 1, the present disclosure describes an
adaptive filter 10 and method which may be, in an exem-
plary embodiment, applicable for acoustic echo cancellation
in an environment 12. The disclosed adaptive filter 10 and
method implements a DR-FRLS adaptive filtering technique
which provides O(N) computational complexity and which
has dynamically adjusted regularization in real-time without
restarting the adaptive filtering.

As described in greater detail below, the disclosed adap-
tive filter 10 and method are described with reference to
acoustic echo cancellation as an exemplary embodiment,
and various terms and notations are employed with respect
to echo cancellation. One skilled in the art may implement
the disclosed adaptive filter 10 and method to other appli-
cations such as speech processing and video processing,
including video compression.

Referring to FIG. 1, the disclosed adaptive filter 10 and
method receives an input excitation signal 14 labelled x,
from a far-end speaker (not shown in FIG. 1), where n is a
sample index, and x,, is equal to 0 for n<(. In an exemplary
embodiment, the disclosed adaptive filter 10 includes a
processor 16. memory 18, and at least one stored program
20, including a DR-FRLS program as described herein, for
processing the excitation signal 14. The processor 16
includes a first parameter generator 22, a second parameter
generator 24, a likelihood variable stabilization unit 26, and
a joint process extension unit 28, as described in greater
detail below. The second parameter generator 24 also
receives a refresh signal corresponding to v, & . and p, as
described. for example, in reference to Equations (11)—(13)
below, which may be generated by the processor 16, or may
be received from an input device (not shown in FIG. 1), and
then stored in memory 18 of the adaptive filter 10. Such
components 22-28 of processor 16 may be individual pro-
cessors or portions of at least one processor, such as a
microprocessor and/or an integrated circuit, operating in
conjunction with the memory 18 and stored program 20 as
described herein.

The excitation signal 14 is also provided to the environ-
ment 12, which may be a near-end region such as a room
having near-end or local speech and noise associated with a
talker 30. The room also includes a loudspeaker 32, a
microphone 34, and an echo path 36 therebetween. The
loudspeaker 32 responds to the excitation signal 14 to
generate audio signals, which may also generate echoes
associated with the echo path 36.

The microphone 34 receives the audio signals from the
environment 12, including the noise and echoes, and oell-
erates a desired signal 38 labelled d,,. The desired signal d_
includes the room or environment response; i.e. the echo,
caused by the excitation signal x,,, as well as any background
acoustic signal v, detected by the microphone 34.

The disclosed adaptive filter 10 and method processes the
desired signal d,. as described in greater detail below, to
generate an echo residual signal 40, labelled €o..» Which is
output to the far-end speaker (not shown in FIG. 1). The
echo residual signal 40 corresponds to an a priori error or
residual echo associated with the excitation signal x_. The
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echo residual signal 40 may then be used by the far-end
speaker and appropriate devices known in the art to com-
pensate for the echo caused by the excitation signal x,, in
environment 12.

The disclosed adaptive filter 10 and method of use,
including the components 22-28, may be implemented in
hardware such as firmware or customized integrated circuits
controlled by a controller operating to perform the disclosed
method of use of the disclosed adaptive filter 10. In
particular, the controller (not shown in FIG. 1) may provide
a restart signal 42 to, for example, the joint process exten-
sion unit 28 of the disclosed adaptive filter 10 and method,
as discussed in greater detail below. The restart signal 42
may be generated by the user through an input device (not

shown in FIG. 1).

The disclosed adaptive filter 10 and method of use may
also be implemented in an integrated circuit or a computer.
For example, the disclosed adaptive filter 10 and method
may be implemented on an INDY workstation, available
from SILICON GRAPHICS, employing a R4000-based
microprocessor as processor 16, having about 8 MB of
memory as memory 18, and running compiled or interpreted
source code written in a high level language such as MAIT-
LAB® as the at least one stored program 20, where MAT-
LAB® is available from THE MATHWORKS, INC. of
Natick, Mass.

In the disclosed adaptive filter 10 and method, FRLS is
modified to include a computationally efficient regulariza-

tion technique. Generally, RLS and FRLS are efficient
implementations of the following equations:

=
Eﬂm"_'dn_xn h,

(1)

—» =¥

h n b n-—1+Rn_1 fl’ﬁﬂ,ﬂ (2)

where

i ) AU AU (3)

is an N-length excitation vector;

b y=Lhy btz - - - hnalT 4)

is an N-length adaptive filter coefficient vector; and R, is the
NxN sample covariance matrix of X,,.

In RLS and FRLS. windowing techniques may be applied
to the data used to estimate R,. For example, an exponential
window may be used to provide rank-one updating of R,
from sample period n-1 to sample period n according to:

Rp = N+ t80D, + :=§0 At ()

—+ = . (6}

= n—}+ XaXg

where A is a forgetting factor having a value such that
O<A=1;

D, =diag {A¥2M2, .. AL} (7)

and

R_1=5QDL- (3}

Exploitation of the rank-one update of R,, of Equation (6)
was what led to O(N3) complexity RLS from O(N°) com-
plexity least squares methods, and further exploitation of the
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4

shift invariant nature of x,, led to O(N) complexity FRLS
methods from RLS.

With R as above in Equations (5)—(8). §,D,, is used to
initially regularize the inverse of Equation (2). but it may be
seen that, according to the first term on the right side of
Equation (5), the effect of §,D; diminishes with time.
Adding an appropriately scaled version of 8l to R, prior to
inversion in Equation (2) in each sample period would
regularize the inverse, but that would require an additional
rank-N update at each sample period, which would eliminate
the computational benefit of the rank-one update in Equation
(6) above.

One alterative method is to add to R, a regularization
matrix D, which is an approximation of 6ly, in which D, is
updated at each sample period with a rank-one update matrix
obtained from the outer product of a shift invariant vector;
that is, Equation (2) above is modified to be:

> — 4
hn=hn_1+R3’u xnﬂw

@)

where

R, =D,+R,.

With both D, and R, being maintained by rank-one
updates, Ry, then requires a rank-two update, which only
moderately increases the computational complexity.

D, may be generated recursively using the outer product
of a vector composed of a shift invariant signal such that the
eigenvalues of D, are updated or refreshed as often as
possible. Accordingly, let the vector:

(10)

i
={0,0,...0,10,...01

(11)

have all elements equal to zero except for a value of 1 in
position 1+[n),,,, - Aregularization matrix update may then
be performed according to:

it — 12
D= 2 M’ pnins ()

— —
= n—1 + ‘l’nE.nan PnT (13)

with D_,=0 as an initial condition. In Equations (12)—(13),

v, may have the values of +1 or —1. The sample periods in

which v, and &, may change values are restricted to those
el

sample periods where the p, vector has its only non-zero
value in the first position thereof. This restriction causes W/,

ﬁﬂ;n to be shift invariant, which is a property that is
exploited for efficient computation as, for example, in the
FRLS technique.

The y,, and £, signals control the size of the regularization
of the disclosed adaptive filter 10 and method, where W,

determines whether E_2 inflates or deflates the regularization
matrix D_. If y_ and £ are fixed, then the i" diagonal
element of D, attains a steady state value of:

AWn—+Lhwod N
1 —AN

din = Wnbn® (9

which indicates that the regularization provided by the i™”
diagonal element of D, varies periodically due to the peti-
odic nature of the regularization update. For example. the
variation may be depicted as a saw-tooth pattern with a

degree of variance ranging from A™' to 1. Preferably, the
parameter A is to be chosen to have a value near 1 to obtain
a relatively steady amount of regularization.

Updating D, may also be performed with a rank-two
update with a second dyadic product producing a regular-
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ization update which is 180 degrees out of phase with the
first dyadic product, resulting in a decrease in the variation
in the d;,, values.

The disclosed adaptive filter 10 and method implements a
DR-FRLS adaptive filtering technique to operate as a
dynamically regularized fast transversal filter (FTF) with
computational stability. where the rank-two updating of R _,,
in Equation (10) may be implemented as two rank-one
updates. An intermediate regularization refreshed covari-
ance matrix R, , is defined as:

— b

Rpﬂz;l‘"ﬁx;l—l'*'wn;! Pr PnT (15)

and the data updated covariance matrix is defined as:

—» —»
R, =R, +X X, (16)

From the matrix inversion lemma:

(A+BCY '=A"1-A"'B(14+CAT'B)  CA™? (17)

and using Equation (16), a data a posteriori Kalman gain
vector may be expressed as:

=

L = (18)

— r — —
= (R~ Ko a1+ TR o) 3 TR o

A data a priori Kalman gain vector may then be defined

as:
Ko..~R ', (19)
and a data likelihood variable may be defined as:
Mo+ K T ) (20)
Equation (18) may be rewritten as:
K =R X =Ko b (21)

and, using Equation (21) in Equation (9), the coefficient
update becomes:

B J——

hn=hn-—-l+ kﬂ,.t,nl"x.nel},n (22)

—>

The stable computation of the parameters k,_,, and p,,,
from sample period to sample period are disclosed in greater
detail below. The computation of various parameters for a
current sample period is performed recursively from the
parameters of a previous sample period. For example, the
data Kalman gain vectors and data likelihood variables of a
current sample period are determined from previous data
Kalman gain vectors and data likelihood variables of a
previous sample period using the regularization prediction
vectors and regularization prediction error energies of the
current sample period and associated with the regularization
refresh update covariance matrix R, ,.. Such regularization
prediction vectors and regularization prediction error ener-
gies of the current sample period are in turn determined from
their predecessors and the regularization Kalman gain vec-
tors as well as regularization likelihood ratios that are
determined from their predecessors and the data prediction
vectors and prediction error energies of the previous sample
period.

For forward linear prediction, the order update identity for

R, is:
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(23)
R.=

P

0 6} Y §
H E_pl-l +‘€;'-l'laP¥'apﬂ
where ﬁp n 18 the upper right (N-1)x(N-1) submatrix of

R, . 2 . 18 the optimal forward linear prediction vector for
R,..andE, , , is the corresponding forward prediction error
energy.

For backward linear prediction, the order update identity
for R, ™ is:
. 0 o (24)
Ry~ [E;_l ] + B pnbabyg
07 0

where Ep , is the upper right (N-1)x(N-1) submatrix of

—p
R, .. b, ., 1s the optimal backward linear prediction vector
forR, ,,and E,  , is the corresponding backward prediction
EITOr energy.
— —p
Ron apn Yp, Egppe and E,  form the well-known

relationships:

Rmn 4 pszn.p.n u (25)
and

Ron®pn=Eppnll (26)

— — . )
where u and v are pinning vectors:

u=[1,00 . ..,0 (27a)

v=(00, ...,01". (27b)

By post-multiplying Equations (23)—(24) by ?m it may be
shown that:

— 0 — 28

xn= [ EO..m—l ] + %Lﬂimaﬂpn )
and

- . . 0
[koo ]=k0,m_€j;ﬂﬂaaybbp.n e
where

=1 A (30)
- K 0 ]_,,
ko.:,u= — Ao
[OT 0

arc.

Eﬂm_ﬂ=lnrapﬂ (3&2)
¥
Eﬂr‘vﬂfﬁ= X "Tb P (30&’)

The first and last elements of the vectors in Equations
(28)—<29) show that:

1 (31la)

Ko en 1= apn  C0xn0

boxnn=Eppn €omnt (315)

where kK, ., ; and kg, ,, » correspond to the first and last

—
elements of k... respectively.
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The data likelihood variable update is obtained by pre-

multiplying Equations (28)—(29) by ';n and by adding 1 to
both sides of the resulting equations, and so from Equation
(20):

p::,::-:l:i-_l.:,lr—l-l"'Ea..p,n_lE Q,.:I'..ﬂ,ﬂz (32)

qulx,n_l‘sbp,n_leﬂ#,nz (33)

where
T -1

e [10[57] 4]

From the order update identity of R, ™', the following
relationships may be derived:

(34)

> 0 Lo (35)
Kixn= El.r..n-l + &ael,ul,aﬂxn

k1 I > (36)
[ gn ] = Kijm— E.énel.tabbm
where
R.l'.ﬂ;;.ll = Eﬂ.t.u_; (37)
Runbsn = Epan?

—

- R, O
kl-li.l'l =1 = An
of 0

and the a priori forward and backward data prediction errors
are:

erani=XaTans (38a)
—
El’,_n#=x,, bm (33&'}

The first and last elements of the vectors in Equations

(35)—(36) show that:
ky . !,,J:Em_lel o (39a)
k 1 ,.:r..nﬂ:Eb ,:ﬂ-lalw (3%)

Equation (16) is then post-multiplied by _a; » and pre-
multiplied by R_, ', and so, using Equation (25), it may be
shown that:

Opr ==F Gxp+ KL xn20x0n
F axn

From the first elements of the vectors of Equation (40) and
using Equation (24),

(41)

By multiplying both side of Equation (41) by E, ,, ,, and
using Equations (21), (31a), (39a), (35) and (40),

Grn = Gpa = [0 Koan iT"00na (42)
= -‘;p,n - {0, H,.-r-.n—f ]T-“:.n-lgﬂmn (43)
= :;P-n - 10, gmfr‘gfm (44)

which is obtained using the identity:

E!;ﬁqjy:—l‘-b#

and

€ M,n;lxﬂ—leow (45 )

The relations for the data backward predictor error energy,
the data backward prediction vector, the a posteriori data
backward prediction error, and the a priori data backward
prediction error are:

5

10

Ey = p i Coxnif1 an kb (46)

—» -y

b M= b p.n+[EDM,T! 0] TEI Y (47)

& ,:,n,bqjx.neﬂ Y ¥ (48)
15

Using the above Equations, the disclosed adaptive filter
10 and method perform initialization of parameters accord-

ing to Table 1 below:

20 TABLE 1
—» — —+ —+
Gy-1~ U by-1=v
— —

25 Wt =7 =7,
kO,p.—l =0 kox—1=
— —* — —¥
xj=0 y =0
— —
p-1=0

30 Ki=15 K>=25
K4=0 Ks=1

— —
The v, data vector is generated by the y ,, generator of the
joint process extension unit shown in FIG. 2. In response to

the restart signal 42 indicating NO RESTART status, ?,, is

generated to be a copy of ;,, obtained from the excitation
signal Xx,,.

Initialization may be performed to initiate the adaptive
filtering upon start-up of the adaptive filter 10 and method.
To re-initialize the disclosed adaptive filter 10 and method

during a computational restart or rescue procedure, the

initialization of Table 1 is performed, except that the ?n data
vector is not zeroed out. If the restart signal 42 indicates a

35

45

— —
restart, the y, generator 44 does not zero out y,, although
—P

X ,, is zeroed out.

The disclosed adaptive filter 10 and method, using the
various hardware processors and components represented in
the block diagrams in FIGS. 1-2. operate to implement the
disclosed DR-FRLS adaptive filtering in accordance with
the equations of Tables 2-5 below.

The derivation of Table 3 for the data updates may be

shown with reference to the equations above, and the
derivation of Table 2 for the regularization updates may be

derived by one having ordinary skill in the art in an
analogous manner to the derivation of Table 3. The updates
of Tables 2-3 use error feedback for stabilization, such as
described in D. T. M. Slock et al., “Numerically Stable
Transversal Filters for Recursive Least Squares Adaptive
Filtering,” IEEE TRANSACTIONS ON SIGNAL
PROCESSING, VOL. 39, NO. 1, January 1991, pp. 92-114.

Referring to FIG. 1, the second parameter generator 24
generates regularization update signals using adders,

multipliers, and the like, in a manner known in the art, for
example, as described in U.S. Pat. No. 5,371,789 to Hirano,

30

55

65
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which is incorporated herein by reference. For example,
implementation of the steps of Table 2 may include the use
of delays for delaying the sample values.

Such regularization update signals comespond to the
regularization update parameters of steps {1)-(19) of Table
2. As each of steps (3), (11), (14) and (17) employs about N
multiplies. the total computational complexity of steps (1)~
(19) is about 4N multiplies.

The first parameter generator 22 shown in FIG. 1 gener-
ates data update signals, in a manner known in the art using
adders, multipliers, and the like, corresponding to the data
update parameters of steps (20)—«38) of Table 3. As each of
steps (20), (22), (24), (30), (33), and (36) employs about N
multiplies, the total computational complexity of steps (20)
—(38) is about 6N multiplies.

TABLE 2
Regularnization Related Updates:
l) eﬁ,p,n..l - a'x,n—lTE.mPn 1
2) ko,p,n,l = Enﬁf—l_ l_Tﬂﬁ,pln,n
3) EO,anlz [91 Eip,n-d] + aal:,l:l—l kD,p,n.l
;.g “F*n — UE::‘ T‘i—t:gneﬂ,pm kO,P,ﬂ.,l
Copob— 1 n
6) kfﬂjj,bi = A Eh,x,u—-l-lefﬂ,p.n-b
7)  extract K’y p.0n from pun
8) ""’% pab = )'Eb,x.n-—lknﬂ,p,nﬁ *
Ig; ;: 0,p.n,b =K15;ff0,p—n-.h + ((ll_lé‘)?;g.p ab 1=1,2,5
. = opaN T (1- 0.pu,N
11 k! , 0T = ~ by,
T T e e
13) fl,p,n,.l_z l“lpyn—leuslﬂ*-ll,l
1 B gl el ens
16) e m:lﬁ-nh‘= EI, mﬂﬁjo 1: Vo K'0pmn,1 Hpa =12
i;; E]::l ;’nst.n—l ~ ¥ ’[ﬁﬂp,m O]T El,p.n..b
= ABp 201 + ¥u Copnb Cloatb
19)  if ;T:n >1, restart the mglﬂpa?izaﬁgﬁﬂ updates.
TABLE 3
Data Related Updates:
gﬂ; igm - EE'p.nT iil
1 xa,l = Bapa Coxg
gg:)' Eo""f!: [9? ?Fﬂin,n—:,]gfn"{' ﬁﬁ:: kO,JI:,n..l
I"':..n = —1“ + o : 1
24) efﬂ-xrn_-b Zpt;n in SR
25) ko xan = E™y o oxnb
26) extract k%, . Erom;'f:, xa
27) esﬂmb = “0xaN
28) "“"‘mﬂ,;,n_.b = ]Lje 9.xab + (I—Kj)e'ﬂmh 1=1,2,5
g) IEEF"F’“N =0K4 € oxaN ‘*'Efl“Kn]k'o,:,u.N
31; ?'ﬁ ] ':—c” P?:'kom
32) :x.n __l'.':r-,n N 0,x0,b™ 0.x,a,N
lxna ™ I‘11t.l=l—1 A
A i~ e
axn ~ % apn T Eoxnl Hen
35) €D, np = Hra®P0x0n j=1,2
5t T
== + ED ,b El. 'b
38) if 4, _ >1, restart the data updates.

The likelihood variable stabilization unit 26 shown in
FIG. 1 generates stabilized likelihood variable signals from
a forgetting factor signal corresponding to the forgetting

factor A and from regularization update signals and data
update signals received from the parameter generators 22,

24, in a manner known in the art using multipliers and the

like. The stabilized likelihood variable signals correspond to
the parameters p,,, and y,,, of steps (30)—(40) of Table 4.
The forgetting factor A may be stored in the memory 18.
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The parameter signals representing p, ,, and p, , generated
by the likelihood variable stabilization unit 26 are output to
the parameter generators 22, 24, respectively.

TABLE 4
%
Likelihood Variable Stabilization:
%
39) fnisodd: po, = A (B, /By )
40) if mis even: p, = AN (W, E,, /B, )

In steps (39)«40), likelihood variable estimates are sta-
bilized using the multi-channel, multi-experiment method of
D.T.M. Slock et al., “A Modular Multichannel Multiexperi-
ment Fast Transversal Filter RLS Algorithm”, Signal
Processing, Elsevier Science Publishers, VOL. 28, 1992, pp.
25-45.

The updated u, ,, is used by the second parameter gen-
erator 24 when n is even; otherwise, the previous value of

I, Stored by the second parameter generator 24 is used for

the regularization related updates of steps (1)<(19). The

updated p, . is used by the first parameter generator 22 when
—

n is odd; otherwise, the previous value of M ., Stored by the
first parameter generator 22 is used for the data related
updates of steps (20)—~38).

The joint process extension unit 28 shown in FIGS. 1-2
generates the echo residual signal 40 in a manner known in
the art using adders, multipliers, and the like, corresponding
to the parameters generated in steps (41)—(43) of Table 5
below.

TABLE 5
Jomt Process Extension
41) €00 =y — By ;T ¥,
42) €10 = €0
43) by =R,y + koxp €10

In an exemplary embodiment shown in FIG. 2, the joint

—
process extension unit 28 may include a y, generator 44
responsive to the excitation signal x,, and the restart signal
42 for generating a data vector signal corresponding to the

?n data vector. In the exemplary embodiment, the joint
process extension unit 28 may also include a vector/scalar

multiplier 46, a multiplier 48, a vector adder 50. an H,,
generator S2, a sample delay 54, a dot product generator 56,
and an adder 58 for implementing steps (41)—(43) of Table
5 above to generate data signals corresponding to the
parameters in step (41)—(43).

The _;n data vector is generated by the ?n generator 44

of the joint process extension unit shown in FIG. 2. In
response to the restart signal 42 indicating NO RESTART

status, ?" is generated to be a copy of ;n obtained from the
excitation signal x,.

As each of steps (41) and (43) employs about N
multiplies, the total computational complexity of steps (41)
—(43) is about 2N multiplies. Accordingly, the total compu-
tational complexity of steps (1)-(43) is about 12N
multiplies, thus providing O(N) computational complexity.

The disclosed adaptive filter 10 operates according to an
exemplary method as shown in FIG. 3, including the steps
of starting the DR-FRLS adaptive filtering in step 60,
initializing parameters in step and performing the DR-FRLS
adaptive filtering in step 64. As described above for FIG. 2.
the disclosed adaptive filter 10 and method initializes param-
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eters in step 62 by detecting whether a restart is indicated in
step 66 using the restart signal 42; zeroing out ;n and not
?,, in step 68 if a restart is indicated; and zeroing out both

% and v, in step 70 if NO RESTART status is indicated.
After either of steps 68, 70, the method then initializes the
remaining parameters in step 72 to implement Table 1
above.

The method then performs DR-FRLS adaptive filtering in
step 64 by concurrently performing steps 74-82, which
include the steps of performing the data related updates in
step 74 to implement Table 3 above; performing the regu-
larization related updates in step 76 to implement Table 2
above; performing likelihood variable stabilization in step
78 to implement Table 4 above; performing joint process
extension in step 80 to implement Table 5 above; and
outputting an echo residual signal €, , to the far-end speaker
in step 82.

While the disclosed adaptive filter 10 and method of
operation have been particularly shown and described with
reference to the preferred embodiments, it is understood by
those skilled in the art that various modifications in form and
detail may be made therein without departing from the scope
and spirit of the invention. For example, although the
disclosed adaptive filter and method have been described in
an exemplary embodiment for an echo cancellation
application. the application of the disclosed adaptive filter
and method to speech processing and video processing,
including video compression, may also be implemented.
Accordingly, modifications such as those suggested above.,
but not limited thereto, are to be considered within the scope
of the invention. |

What is claimed is:

1. An adaptive filter comprising:

a memory for storing at least one program, including a
dynamically regularized fast recursive least squares
(DR-FRLS) program; and

a processor. responsive to the DR-FRLS program., for
dynamically generating regularization signals from the
input signal for adaptively filtering an input signal and
for generating an output signal associated with the
adaptively filtered input signal from the regularization
signals.

2. The adaptive filter of claim 1 wherein the processor is
responsive to a dynamically adjustable forgetting factor
signal corresponding to a forgetting factor A for dynamically
controlling the adaptive filtering of the input signal.

3. The adaptive filter of claim 1 wherein the processor
further includes:

a first parameter generator for generating data related
update signals from the input signal; and

a second parameter generator for generating regulariza-
tion related update signals from a refresh signal as the
regularization signals;

wherein the processor uses the data related update signals
and the regularization related update signals to generate

the output signal.

4. The adaptive filter of claim 3 wherein the likelihood
variable stabilization unit is responsive to a forgetting factor
signal corresponding to a forgetting factor A for controlling
the stabilizing of the likelihood variable estimates.

§. The adaptive filter of claim 4 wherein the likelihood
variable stabilization unit is responsive to the forgetting
factor signal being dynamically adjustable for dynamically
controlling the stabilizing of the likelihood variable esu-
mates during the adaptive filtering process.
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6. The adaptive filter of claim 1 wherein the processor
further includes:

a likelihood variable stabilization unit for stabilizing
likelihood variable estimates associated with the input
signal; and

a joint process extension processing unit responsive to the
stabilized likelihood variable estimates for generating
the output signal.

7. An echo cancellation system to compensate for an echo

in an environment, the echo being associated with an exci-
tation signal, the echo cancellation system comprising:

an adaptive filter for dynamically generating regulariza-
tion signals for adaptively filtering the excitation signal
using a dynamically regularized fast recursive least
squares (DR-FRLS) technique and a dynamically
adjusted forgetting factor signal to genmerate an echo
residual signal associated with the excitation signal, the
echo residual signal for compensating for the echo in
the environment.

8. The echo cancellation system of claim 7 wherein the

adaptive filter further includes:

a first parameter generator for generating data related
update signals from the excitation signal; and

a second parameter generator for generating regulariza-
tion related update signals from a refresh signal as the
regularization signals;

wherein the adaptive filter uses the data related update
signals and the regularization related update signals to
generate the echo residual signal.

9. The echo cancellation system of claim 7 wherein the

adaptive filter further includes:

a likelihood variable stabilization unit for dynamically
stabilizing likelihood variable estimates using the
dynamically adjusted forgetting factor signal, the like-
lihood variable estimates associated with the excitation
signal; and

a joint process extension processing unit responsive to the
dynamically stabilized likelihood variable estimates for
generating the echo residual signal.

10. A method for adaptively filtering an input signal using

an adaptive filter comprising the steps of:

(a) operating a processor using a dynamically regularized
fast recursive least squares (DR-FRLS) program;

(b) processing the input signal by adaptive filtering using
the processor operated by the DR-FRLS program to
dynamically generate regularization signals; and

(c) generating an output signal associated with the adap-
tively filtered input signal from the regularization sig-
nals.

11. The method of claim 10 wherein the step (b) of

processing the input signal includes the steps of:

(bl) receiving a forgetting factor signal corresponding to
a forgetting factor; and

(b2) controlling the adaptive filtering of the input signal
using the forgetting factor signal.

12. The method of claim 11 further including the steps of:

(al) dynamically adjusting the forgetting factor signal;

the step (bl)of receiving the forgetting factor signal
includes the step of receiving the dynamically adjusted
forgetting factor signal; and

the step (b2) of controlling the adaptive filtering of the
input signal includes dynamically controlling the adap-
tive filtering using the dynamicaily adjusted forgetting
factor signal.
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13. The method of claim 10 wherein the step (b) of
processing the input signal includes concurrently perform-
ing the steps of:

(bl) performing data related updating using the input
signal; and

(b2) performing regularization related updating using a
refresh signal to generate the regularization signals.

14. The method of claim 10 wherein the step (b) of
processing the input signal includes concurrently perform-
ing the steps of:

(bl) performing likelihood variable stabilization for sta-
bilizing likelihood variable estimates associated with
the input signal; and

(b2) performing joint process extension processing on the
stabilized likelihood variable estimates for generating
the output signal.

15. A method for performing echo cancellation to com-
pensate for an echo in an environment, the echo being
associated with an excitation signal, the method comprising
the steps of:

(a) receiving the excitation signal;

(b) operating an adaptive filter using a dynamically regu-
larized fast recursive least squares (DR-FRLS) tech-
nique;
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(c) adaptively filtering the excitation signal using the
DR-FRLS technique;

(d) generating an echo residual signal associated with the

adaptively filtered excitation signal; and

(e) compensating for the echo using the echo residual

signal.

16. The method of claim 15 wherein the step (c) of
adaptively filtering the excitation signal includes the steps
of:

(cl) receiving a forgetting factor signal corresponding to

a forgetting factor; and

(c2) controlling the adaptive filtering of the excitation

signal using the forgetting factor signal.

17. The method of claim 16 further including the steps of:

(bl) dynamically adjusting the forgetting factor signal;

the step (cl) of receiving the forgetting factor signal

includes the step of receiving the dynamically adjusted
forgetting factor signal; and

the step (c2) of controlling the adaptive filtering of the

excitation signal includes dynamically controlling the
adaptive filtering using the dynamically adjusted for-
getting factor signal.

* ¥ % % %
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