United States Patent [

451 Date of Patent:

Lowry
[54] DATA PROCESSING SYSTEM HAVING A
DATA STRUCTURE WITH A SINGLE,
SIMPLE PRIMITIVE
[75] Inventor: Edward S. Lowry, Acton, Mass.
[73] Assignee: Digital Equipment Corporation,
Maynard, Mass.

[21] Appl. No.: 181,105

[22] Filed: Apr. 13, 1988

[51] Int CLO ccrrrrcsesriemssssssessassssssrsssssenns GOGF 17/30

1522 I U O R 395/611

[58] Field of Searchccvevevninnnerennnnen. 364/200, 900,

364/DIG. 1, DIG. 2; 395/600, 611
[S56] References Cited
U.S. PATENT DOCUMENTS

4,183,083 1/1980 Chatfieldccccoreeereccrinnnneenernns 364/200
4,462,077 T/1984 Yorkcccceirrcreerencenerncseccnanees 364/200
4,511,958 4/1985 TFunkccovereenvrcennencercscsceennens 364/200
4,583,164 4/1986 Tollecriereerereeeinnirierecnonenn. 364/200
4,631,664 12/1986 Bachmanceeeeeevcseneeccsees 364/200
4,635,189 1/1987 Kendallccirecrnecrcnnerscnnnecens 364/200
4,649479 3/1987 Advani et al.cocveeerrenenrnerenees 364/200
4,774,661 9/1988 Kumpatlccoecervrececcccveraeecnee 364/300
4,791,561 12/1988 Huber ..cccceeeeeeeeeneemeeeecenennene 364/300
4,805,134 2/1989 C(Calo et al.ccevvereeeeceeererrannnes 364/900

FOREIGN PATENT DOCUMENTS
0251461 1/1988 European Pat. Off. .

OTHER PUBLICATIONS

Van Horn, “Expressing Product Development Information
In Application Terms,” Proc. ICCD ’85, pp. 82-85 (Oct.
7-10, 1985).

Charts and text used during a presentation by Ed Lowry in
May 1985 to two groups at MCC. |

Dawn language reference manual (Dec. 1982) (CR. 1983),
Lowry et al. |

Dawn Specification (Sep. 1982) (CR. 1983), Lowry et al.
Dawn (CR. 1983), Lowry et al.

\
\

US005664177A
Patent Number:

5,664,177
Sep. 2, 1997

[11]

P155 Computer Assisted Instruction CAI, No Date, Lowry
et al.

A Comparison between Dawn and Prolog (E. Lowry Nov.
1982).

Dawn examples compared with Sequel II (Updated Jan.
1981), Lowry et al.

Potential for a near—universal data model and formal lan-
guage (E. Lowry Sep. 1983).

Nodes and Arcs the Ideal Primitive Data Structures, E.
Lowry, Digital Equipment Corporation (Nov. 1980).

Prose Specification, E. Lowry Nov. 23, 1977.

N. Winterbottom, “General purpose database structure”,
IBM Technical Disclosure Bulletin, vol. 20, No. 8§, Jan.
1978, pp. 3320-3323.

N. Winterbottom, “Integrated data dictionary for a data-
base”, IBM Technical Disclosure Bulletin, vol. 20, No. 8,

Jan. 1978, pp. 3324-3327.

C.J. Date, “An introduction to database systems”, vol. 1, 4th
Ed., Addison-Wesley Publishing Co., 1986, pp. 503-540.
T.A. Gibson, et al, “Master links—A hierarchial data system”,
The Bell System Technical Journal, vol. 52, No. 10, Dec.
1973, AT&T, pp. 1691-1723.

R.A. Crus, et al, “Methods for deleting records from a
hierarchial data base”, IBM Technical Disclosure Bulletin,
vol. 25, No. 11B, Apr. 1983, pp. 5886-5888. |

S. Sem—Sanberg, “Pluto, a data base management system”,
Ericsson Technics, vol. 26, No. 3, 1970, p. 131-156.

J.D. Ullman, “Principles of Database Systems”, Pitman,
1980, pp. 30-51.

Primary Examiner—Thomas G. Black
Assistant Examiner—Maria N. Von Buhr
Attorney, Agent, or Firm—Kenneth F. Kozik

[57] ABSTRACT

A data structure in a computer memory is constructed from
a single primitive data element or attribute. Attributes of the
data structure are arranged in accordance with certain rules
which impose a hierarchical organization upon the attributes
as well as non-hierarchical relationships. The attributes may
be created and erased by a data processing system contain-
ing the memory.

29 Claims, 32 Drawing Sheets

ELEMENT 604

HEADER
BLOCK

LE{IZ
i i .
ELEMENT ™.
BLOCK ™
\

\.\ RELATION

\ SUB-BLOCKS

\
\
\

606

"HELD"” ELEMENT
SUB-BLOCKS

608

Lil

610 ~ PLURAL

RELATION
BLOCK

\
623] INSTANCE ROOT

BLOCK I

\
\

630 | INDEX DIRECTORY \‘\

BLOCK \

\

PLURAL HELATION
HEADER
BLOCK

612

\
\
~
N
~
~
\
\
\

PLURAL RELATION
SUB-BLOCKS

614

|

U.S. Patent

Sep. 2, 1997 Sheet 1 of 32 5,664,177

100

120

COMMON
STRUCTURE
DATA

U.S. Patent Sep. 2, 1997 Sheet 2 of 32 5,664,177

320

Figure 3

5,664,177

Sheet 3 of 32

Sep. 2, 1997

U.S. Patent

t 8inbi

(STYNDIS)
(S3LVYD)

INDHID)

(S1

g6t 26V

U.S. Patent Sep. 2, 1997 Sheet 4 of 32 5,664,177

540 510

CONVERTER
/- I_

CONVERTER -
- UPDATE
530 '

SYNCHRONIZER

565

FILE

560

PROGRAM
APPLI- 520
CATION 580
PROGRAM
RETRIEVAL
PROGRAM
595 SLAVE
DATA

RETRIEVAL BASE

PROGRAM

590

Figure 5A

5,664,177

Sheet 5 of 32

Sep. 2, 1997

U.S. Patent

695
AD010 84

34
vivd

d31LSVIN

GSS 31id
TOHLNOD

896
AO01

4311V

1) 44

JHVMLH40S
ININIOVNVYN
49OVHOLS

99§

NvYHO04dd

TVA3IIHL3d

08S

|

|

_

| _
_ _
| |
_ |
| _
| _
| _
| |
| WYHDOHd |
| NOLLYOINddY | |
_ _
| |
| _
_ |
_ _
| _
| _
| |
_

_

_

_

0€S

H31H3IANOD

5,664,177

Sheet 6 of 32

Sep. 2, 1997

U.S. Patent

8¢ } A } Slig

JHNLONYLS ViVa
3714 | LNINVWH3d NI S1SIX3
NOISN3ILX3 | gingiHilV ‘X3ANI ‘121 ‘N18 01 d31NIOd

aNnod
HOIHM NI 3714 40
ONINNID34 NOHd X118

135440 | 3013s440 | ant NI 314 H3HLIHM
270 319 oz9/ gLg/ (S8 2E) HILNIOM 919
008
9 a.inbif 711

X3ANI

314
AHVNOILLOId

ovi

il N
IIIIII'.IIIIII[IIIIIIII-]IIIIIIII!I

0zl Del mwoma “1ddV mwomn_ 1ddV
AHOW3W

U.S. Patent Sep. 2, 1997 Sheet 7 of 32 5,664,177

600

ELEMENT
BLOCK

ELEMENT 604

HEADER
BLOCK

\ SUB-BLOCKS

"HELD" ELEMENT 608
SUB-BLOCKS |

610 PLURAL

RELATION
BLOCK

PLURAL RELATION
HEADER

BLOCK

612
625

630

PLURAL RELATION
SUB-BLOCKS

614

U.S. Patent Sep. 2, 1997 Sheet 8 of 32 > ,664,177

604 905 910 915

900
h LENGTH OF BLK ELEMENT (ELM.)
(4-BYTE MULTIPLES) HEADER BLOCK (BLK)

150 | POINTER (PTR) TO ELM. TYPE BLK IN DICTIONARY [TYPE DEFINITION
~ (DICT.)SPECIFIES THIS ELEMENT TYPE

925.] PTR. TO ELM. BLK OF "NEXT" ELM. HAVING SAMF NEXT
"HOLDER"

930) PTR TO ELM. BLK OF "HOLDER" HOLDER

935 PTR TO PLURAL (PL) RELATION (REL) BLK REFERENCES
SPECIFYING RELS FOR THIS ELM.

940 - PREVIOUS
PTR TO ELM. BLK FOR "PREVIOUS" ELM. HAVING SAME "HOLDER" |

Figure 9 06

1000 RELATIONS

PTR TO ELM. BLK FOR "REFERENT" OR PL. REL. BLK. FOR "REFERENTS"

Figure 10A

606

1050~ NUMERIC/STRING

| INTEGER OR FLOATING INUMBER OR PTR TO CHARACTER
STRING RELATION

Figure 108

2L 8inbi4

SHld OL SLN3HI434 AITVA NIVLNOD “31 -)0078-aNS 4311071V HOV3 HO4 118 3NO

5,664,177

- . VAl
3SN NI JHY SY18-9NS HOIHM DNIALID3dS WSYW Lig |
‘318 “134 “1d SIHL OL DNILNIOd-)18 "13H "1d .SNOIAIHd. Ol Hld -
W13 40 SLINIHIATH SH18 W13 ONIAJIDIAdS SNOIAIH

% M1g 194 “1d SIHL OL INIOd-M16 134 "1d .1X3N. Ol Hld
Qo _ -
- W13 40 SLNIHI43H4 SH19 W13 DNIALID3dS _ 1X3N izl

> (S3dILTNW 18 S134 HO4 SH18 'ST13d alvA
= 319 134 31A8) M8 -9NsS @3LLO0T1IV OHNINIVLINOD SYH19-8NS
£ SSY1D “1d E 4O HIDN3I1 | SIIHINT 40 'ON a3LL0T1V 40 'ON [Noozl

6021 519 1021 G021 A1
o}
A
-
ﬂw ‘SIN13 HO4 XIANI 0L SS3IOV NI 18 "HIA X3AANI Ol Hlid
X3ANI MozLL
(S1SIX3 1801S INO NVHL JHOW) “W13.a13H. 40 X168 ‘W13 LSV1 0L Hld [Noiil
1SV
W3 SIHL AE .d13H, “W13 404 18 "W13 (ATNO HO) 1SHid Ol H1d
” 1SHId NoolLt

809

U.S. Patent

148 HId X3AaNt O1L Hld

5,664,177

RS

H3IQTOH INVS DNIAVH SW13 40 1SV1 0L Hld ocyL
1SV
- H3ATOH INVS DNIAVH SW13 4O 1SHId Ol Hld 0Zv L
_fD)
—
o
2 %18 100Y | S31dILINW
= JONVISNI | 31A8 ¢) X149 40 H1ODN3T
s 5
SSY1D E OLblL
_ R4 79 Ll
2 gel a4nbi4
2.....)
W INIHIITH DNIHLS 'OVHVHD OL Hld HO ‘HIGWNN "1d DNILVO14 Ol Hlid

ONIHLS/OHIANWNN NoLel

vi9

veL ainbi4

ANIHI4TH SIHOIHM W3 HO4 1d W13 Ol 'Hid
NOILLVY13Y

00t}

V19

U.S. Patent

U.S. Patent Sep. 2, 1997 Sheet 11 of 32 5,664,177

702
700
APEX
BLOCK
706
704 CONTEXT
BLOCK
CONTEXT .
| BLOCK _
716
SYMBOL
TABLE
ELM. . ELM.
TYPE TYPE
BLOCK BLOCK
710

ATTRIBUTE
TYPE -

BLOCK

714

Figure 15

9/ ainbiH

5,664,177

X1 SIHL NI TOEWAS 1SI HOd4 AH1N3 3718V1 WAS Ol dld

TJOENAS 1544 0991

2 _
% X192 SIHL Ni 3dAL ‘W13 HO4 W18 IdAL ‘W13 1S101 Hld [geol
-

& IdAL INIWI13I 1SHIS
i
& a13H SI X1D SIHL HOHM ASG (X3dV HO) X192 Ol H1d
< 0v9l
H3IAa10H
(X3dV HO) X1D 3WVS AS d13H XLD .1X3IN. OL Hld [~ 0£9}
e~
% =
—
3 (X3dVY HO) X1D3IWVS Ag A13H S.X1D 1S1 01 H1d
s |
2 IX3LINOD G3NIVLINOD 1SHId [N 0z9l

X1J SIHL HO4 ,H3idILN3al, HLIM AHIN3 3719V1 TO8NAS Ol dld

W19 (X19) LX3ALNOD N9 40 HLDN3IT

SIATdILTNN 31A9)
ssvio | ES

9091 Py €091

U.S. Patent

/| ainbi4

-

5,664,177

-+

AdAL W3 SIHL 40 S3dAL 31NgidLlY HOd 3dAl 31ngidlliv Ol Hld

0LLL
A1NAIHLILY
_ 3dAL SIHL 40 SH18 W13 OL H1d HLIM X178 SIONVLSNI 3114 JLNSIMLLY OL Hld 09/ |
% ~ SIONV.LSNI
M ANNO4 3HY 3dAL SiHL 40 SW13 HOIHM NI LX31LNOD HO4 X718 1X31NOD Ol Hid
m.w | IX3INOD | ,46s1
7 1X31NOD JWVS 40 SINIWITI HOH Y18 3dAL WIS .IX3N. OLHLld |
~ 3dAL SIHL 40 SW13 HO4 3114 31NAIHLLY NiXT18 W13 40 HIDN3T [N 0€Ll
m HLON3T IONVLSNI
M 3dAL INFWI13 HOdJ HII4ILNZAI - 3719VL WAS OL Hid
=2
7).

a343aHO IHY 3dAL SIHL 40 SINIWI13 HIHLIHM

WHOd JAON
0tl1

<$od
m SN19 IdAL ‘W13 (ST1ILTINN TLAL P)
- 314 40 HLONI
- = E
W
S. I AV

g1 ainbi4

5,664,177

IN3HI43H HO4 X114 3dAL "W13 Ol Hld ‘JLNGIHLLY 134 HO4

ddAl IN3IH343H 0981

. 3LNGIHLLY SIHL DNIAVH 3dAL ‘W13 HO4 XM19 3dAL W13 Ol Hld
o g |
Gl
40 . d43d10H 0sgl
m IdAL ‘WT3 NIAID HOH X149 3dAL 'HLLY 1X3N Ol Hid oval
Y _

3dAL SIHL 40 "SHLLV HO4 O4NI3LNGIHLLY OL X178 "WT3 NI L3S440 [~ 0€8)
r~ | 13S440
Z) .
= 3dAL 3LNAIYLLY HOH HIIHILNIAI-378VL WAS Ol Hld L o)
o§ _
S VN
7).

SNOILLVY13H ONILNIS3Hd3IH 40 HINNVIN O1 SY HOLVIIANI

31A1S 434
0181

Al 3dAL 'H1LV

(STdILTINN 21 ‘ap)

A18 40 H1ION31 E 0081

9081 Py} €08}

U.S. Patent

0Z 2.nbi

D18 X3aANI SIHL HO4 14 MNNHL Ol Hlid

5,664,177

0302 | _ MNNHL

ANNYL FNVS ONIAVH X118 SNOIA3Hd Ol Hld

ovo¢ SNOIAIHd
) |
% M¥NNHL JWVS DNIAVH 318 1X3N Ol Hid
-
0202 .
: £
.
.m W18 | SIVdILININ TLAS) S)1E-9NS Ni %0018 4v3
7 HONYHSE X3aN! Y16 40 HIONI1 | S3anNIvA ASM 40 'ON | HO 31aaIw ‘LO0H
0002 E SANTVA A NI HONVHE
I~ 9102 Z102 8002 028 v002
A
y—
3 61 @inbi
W ¥2018-9NS

HONVHSY X3aNI

N20718
HONVHE XdANi

148 43dvaH
HIONVYHE X3ONI

0c8

U.S. Patent

" U.S. Patent Sep.2, 1997 Sheet 16 of 32 5,664,177

2100 KEY VALUE

PTR TO KEY VALUE

2150 | LEAF/ OBJECT

PTR TO NEXT BRANCH BLOCK IN PATHWAY OR TO OBJ

Figure 21

630 2230 2240

LENGTH OF BLK

(4 BYTE MULTIPLE)

2210

2250
ORDERING

PTR TO ROOT BLK OF ORDERING INDEX

" accesswe.

PTR TO ROOT BLK OF ACCESSING INDEX

INDEX DIR. BLK

Figure 22

U.S. Patent Sep.2,1997 Sheet 17 of 32 5,664,177

12300
EXTRACT "NODE DATA"
START DETERMINE OBJECT TYPE |~ %3%°
FOR CORRESP. OB..
2310

DETERMINE INSTANCE
STORAGE SPALE LENGTH FOR OBJECT | (OBJ. TYPE BLK-

AVAILABLE IN |
N
TEMP. MEMORY INSTANCE LENGTH)

FOR OBJ. BLK?

NO

2315
(SEE FILE STORAGE

FLOWCHART)
MAP STORAGE YES
IN PRIM. MEM. - _
ALLOCATE MEMORY 2325
2320 SPACE FOR ELM. BLK.
~ FORMPTRTO 2330
ELM. BLK.

CHOOSE HOLDER ATTRIBUTE

DATA OBJ. AND IDENTIFY 2335
POSITION OF FIRST, LAST, INDEX
ENTRIES OF ELM. SUB-BLK OF
"HOLDER"

Figure 23A

U.S. Patent Sep. 2,1997 Sheet 18 of 32 5,664,177

DETERMINE NEXT, PREVIOUS, |~ 2340
FIELDS FOR ELM.-WRITE (USING DICT., INDEX INFO
IN ELM BLK AS APPROPRIATE)
UPDATE FIRST, LAST 2345

INDEX ENTRIES OF
"HOLDER" ELM. BLK

INITIALIZE OTHER FIELDS 2350
FOR ELM. BLK

Figure 23B

U.S. Patent Sep. 2, 1997 Sheet 19 of 32 5,664,177

2400

START

IDENTIFY POSITION
OF REL. SUB-BLK

2405
OF ELEMENT

DETERMINE NATURE 2410
OF REL, |.E, PLURAL
OR SINGULAR

2415

SINGULAR
RELATION

YES
2435

REL. SUB-BLK ALLOCATE PL.
SHOWS A PTR? REL BLK (IF
NOT PRESENT)

»440 | PLACE PTR TO PL REL

ERASE
PREVIOUS
RELATION

BLOCK IN REL
SUB-BLK
2425 -
OBTAIN PTR TO ,430
REFERENT: PLACE .
’ SCAN LINKED PL REL.
IN SUB-BLK 2445 \{ BLK. INCLUDING ONE

HAVING PTR IN

SUB-BLK

U.S. Patent Sep. 2, 1997 Sheet 20 of 32 5,664,177

2450 FREE SUB-BLK IN ONE
" OF LINKED PL. REL. BLKS

2460

LINK NEW

PL. REL BLK.
WITH FREE ENTRY

TO LINKED PL.
REL. BLKS

PLACE PTRTO
2470 REFERENT IN FREE
LOC. IN NEW
PL. REL. SUB-BLK

PLACE PTR TO
2475 HOLDER INPL. REL. | ArTER SEARCH FOR

:L;(E';%'::EESD ;I"JEI'_"I; ENTRY IN REFERENT'S
s PL. REL BLK.)

OF REFERENT'S
ELM. BLK.

Figure 248B

U.S. Patent Sep. 2, 1997 Sheet 21 of 32 5,664,177

2500

START

LOCATE RELATION

SUB-BLK IN ELEMENT |~ %°%°
BLK OF ELM.
SINGULAR RELATIONS? 2510
YES

SCAN PL. REL. BLKS.
SPECIFIED IN
REFERENCES POINTS

SCAN LIST OF
PL. REL. BLKS
FOR HOLDER

'OF REFERENT'S ELM. 2515
BLKFOR PTRTO
HOLDER

oeac _ | LOCATE REFERENT AND
PL REL BLKS SPECIFIED

| IN REF. FIELD OF
TO HOLDER REFERENT'S ELM. BLK.

SCAN PL REL BLKS
SPECIFIED
IN REF FIELD OF

CLEAR 2540
HOLDERS 2525

PTRTO
REFERENT

STOP

REFERENT'S ELM. BLK
FOR PTR. TO HOLDER

2545 RENDER HOLDER
POINTERS INOPERATIVE

AND RECLAIM SPACE
FOR THE PL. REL. BLKS.

OF THIS TYPE WHICH
WERE SCANNED

Figure 25

U.S. Patent

START

OBTAIN PL. REL.
BLKS FOR THIS ELM.

(REFS. FIELD)

ERASE PTRS TO THIS

ELM. IN PL. REL. BLKS
OR REL SUB-BLKS OF
OBJS

ERASE ALL SINGULAR
& ALL PLURAL
RELATIONS HELD BY
THE ELEMENTS

FREE PL. REL. BLKS
USED TO ESTABLISH
RELS. FOR THIS ELM.

ERASE ELEMENTS
HELD BY THIS
~ ELEMENT

Sep. 2, 1997

2610

2620

2640

2650

2655

Sheet 22 of 32

2600

FREE INDEXES
POINTED TO BY
INDEX FIELD IN

- THIS
ELM'S ELM BLK.

UNLINK THIS
BLOCK FROM

LINKED BLKS

HAVING SAME

HOLDER; UPDATE
HOLDERS LINKED

LIST OF HELD
BLKS

RECLAIM SPACE

FOR ELEMENT

Figure 26

5,664,177

2660

2670

2680

U.S. Patent Sep. 2, 1997 Sheet 23 of 32 5,664,177

2700
START

IS ATTRIBUTE TYPE 2705
SINGULAR? ‘ NO o

YES

2720 2715'

710

e S

2
IS THERE A NEXT HOLDER? | YES

SET
COMPLETION

INDICATOR
RETURN _
(NO RESULTS) GET OFFSET POINTER 2793
IN ELEMENT BLOCK
FOE NEXT HOLDER
FROM ATTRIBUTE

TYPE BLOCK

GET ELEMENT BLOCK L~2725
OF NEXT HOLDER

IS THERE A

RELATION OR 2730

AN ELEMENT? ‘ NO

YES
GET ATTRIBUTE 2735
TYPE BLOCK

_ . 2745
RETURN (W/RESULT)

Figure 27A

U.S. Patent ‘ Sep. 2, 1997 Sheet 24 of 32 5,664,177

COMMENCING EXAMINATION OF
2750

A NEW HOLDER OR OF AN
EXPRESSION ‘ NO
YES

2751
NO |

SET
COMPLETION

INDICATOR
IS THERE A
YES NEXT HOLDER
RETURN
(NO RESULT) 2763
GET ELEMENT BLOCK
OF NEXT HOLDER
IS THERE A - |
RELATION OR 2766
AN ELEMENT? ‘ NO
YES
ARE THE
ATTRIBUTES p— | " IS THIS THE
RELATIONS? 2783 FIRST ENEMY?
 YES -
NO
YES 2775 _

GET NEXT ELEMENT
FROM HELD OBJECT
BLOCK

GET NEXT RELATION
FROM PLURAL

RELATION BLK.

GET FIRST
ELEMENT
FROM HELD

' | 2780 OBJECT
RETURN (W/RESULT) ' BLOCK

2790

Figure 27B

Sep. 2, 1997 Sheet 25 of 32 5,664,177

START

SEARCH INDEX
DIRECTORY

BLOCK
FOR KEY VALVE

U.S. Patent

2800

2810

KEY
VALUE
FOUND?

~ RETURN (NO RESULT) VES

CREATE INDEX
| RESULT BLOCK 2540

GET ADDRESS
USING
INDEX RESULT

BLOCK

. 2860

RETURN (RESULT)
Figure 28

2850

- U.S. Patent Sep. 2, 1997 Sheet 26 of 32 5,664,177

2890

FIRST LEAF NODE 2891

FIRST LEAF INDEX e832

LAST LEAF NODE 2693
- LAST LEAF INDEX

Figure 28A

2894

3200

3210 SWT. VERSION NO.

3220 - SWT VERSION PTR.
3230

3240 SWT. MPAGE SLOT NO.

3250 SWT. NEWER VERSION

3260 SWT. OLDER VERSION

3270 ~ SWT. NEXT

3280 SWT. B FLAGS

Figure 32

e Topaiel GLREES SIS WSS b

5,664,177

ge6Z 9662 2 vE6E CE6Z |
0 - - 6¢ @4nbi4
_ hil s i Bl ni _
|
. Lk E — “
N20719 NOISIA -
% SIOV4OHOVIN ov6e |
& Z | "
S v62 “ " _
m Mﬂ || "
|
1L 8262
_ L _
W b 20189 NOISHIA — —
= 0562\ | ——— 2018
2-,, llllll zo_wm_m\f WNGN
o . gsez | 9s6z | vS62 l o
HOLIMS I E 262
o1 11 1 /su31NIod ¢e6e
L
m 4 1 | H3TTIOHLINOD 0¢6<C
o —d 1 | 3svavivd
- MH019 NOISHIA I
o R e e e et e e e e e - |
m yeez-| 09090 ™7 b e .

U.S. Patent Sep. 2, 1997 Sheet 28 of 32 5,664,177

2922
Figure 30
3100

Figure 31

U.S. Patent Sep. 2, 1997 Sheet 29 of 32 S ,664,177

START
3330
3310 GET ALTER LOCK GET DBC LOCK
AND DBC LOCK
3315 CREATE NEW
VERSION BLOCK
MPAGE TO LAST CHANGED

3520 RETURN DBC LOCK
FIELD OF VERSION BLOCK

3325 |
YES : 3345
RETURN DBC LOCK

3300

COPY LAST CHANGED
FIELD OF VERSION

BLOCK TO NEXT
| UPDATED FIELD OF MPAGE

3335

COPY POINTER TO THIS 3340

NO
IS NEXT MODIFICATION TO
AN UNMARKED MPAGE?
3350
MODIFY MPAGE |
| COMMIT ROUTINE 3360
33585 ~ _
NO

YES

ARE THERE MORE
MODIFICATIONS?

Figure 33

U.S. Patent Sep. 2, 1997 Sheet 30 of 32 5,664,177

3400
ENTER —
3405 PERFORM 3460

INTERMEDIATE

' HOUSEKEEPING
GET DBC LOCK 0

IS VERSION LAST . UPDATE CURRENT
CHANGED POINTER = 04 VERSION NO. IN

3410 3465
YES POINTER BLOCK
FROM DBC AND
UPDATE VERSION
BLOCK POINTER
NO (COMMIT POINT)
PERFORM INITIAL 3415
HOUSEKEEPING __ FINAL 3470

HOUSEKEEPING

GET MPAGE INDICATED

BY VERSION FIRST
CHANGE POINTER

3420
RETURN DBC 3475

AND ALTER LOCK

EXIT

3495 ENTER INTO SWITCH
BLOCK SLOT NO. FOR
THE RETRIEVED MPAGE

GET SWITCH NEXT

- FIELD FOR
3430 J CHECK LINK BLOCK TO CORRECT SWITCH
VERSION BLOCK BLOCK
3435 COPY MPAGE FROM

MASTER TO SNAPSHOT
FILE AT SLOT NO.

Figure 34

3440 UPDATE HASH TABLE

AND LINE BLOCK TO
EARLIER VERSIONS

GET MPAGE TO
NEXT SWITCH
BLOCK

3455

U.S. Patent

Sep. 2, 1997

3500
3505

DELETE OBSOLETE

VERSIONS & SWITCH BLKS
IF NOT CURRENT AND NO

USERS, UNLINK BLKS AND ADD

TO LIST OF FREE BLKS

IF ATTRIBUTE FILE IS
GREATER THAN SNAPSHOT
FILE, EXPAND SNAPSHOT

FILE AND ADD MPAGES TO
LIST OF NATURAL SLOTS

Figure 35A

Sheet 31 of 32

5,664,177

3540

DELETE OBSOLETE 3545

VERSIONS (CHECK
LAST MOST CURRENT)

Figure 35C

3520

EVICT ALL 3525
SQUATTERS

MOVE MPAGES INTO | _as30
PROPER VACANT

NATURAL SLOTS

Figure 35B

US. Patent Sep. 2, 1997 Sheet 32 of 32 5,664,177

3600

CNTER IS MOST RECENT VERSION
OF DESIRED MACROPAGES
IN HASH TABLE?

3610 3615

NATURAL

SLOT NUMBER

YES IS VERSION NO. OF THAT
MACROPAGE LESS THAN OR
EQUAL TO VERSION NUMBER
FOR ACCESSING APPLICATION

3620

YES

GET SWITCH

BLOCK FOR NEXT
OLDER VERSION

ACCESS INDICATED 3640
MACROPAGE

3630

5,664,177

1

DATA PROCESSING SYSTEM HAVING A
DATA STRUCTURE WITH A SINGLE,
SIMPLE PRIMITIVE

RELATED APPLICATION

This application is related to U.S. Ser. No. 07/185,095,
entitled “Method of Integrating Software Application Pro-
grams Using An Attributive Data Model Database” by
Edward S. Lowry, Earl C. Van Horn, and David M. Nixon,
filed on Apr. 13, 1988, which issued as U.S. Pat. No.
4,864,497 on Sep. 5, 1989.

BACKGROUND OF THE INVENTION

This invention relates to software and more specifically to
data models as they are used to represent information in

application programs and databases.

Software systems, especially large ones, suffer from a
variety of problems in their development, use, and adaption
to new requirements. Programs tend to be complex and
obscure. Interfaces to functionality tend to be numerous,
specialized, and hard to coordinate. Data structures tend to
reflect indirectly the information they represent. Indepen-
dently developed data structures and applications tend to
interact only with the help of elaborate conversion sub-
systems.

The choice and variety of data models used can affect the
severity experienced with these problems. A data model is
that part of a language (i.e., a type of interface to
functionality) which defines the permissible structures for

subject matter of the language. For example, operations
described using relational database languages necessarily
talk about tables of tuples. Programs written in APL neces-

sarily talk about integer indexed arrays. Programs written in
PL/1 talk about a wider variety of data structures, composed
trom records, arrays, pointers, strings, etc.

Languages tend to have one of two general kinds of data
models, each with different limitations. Some languages
such as relational database languages and APL are “func-
tionally expressive.” They can be used to express many
operations on large aggregates of data all in a single state-
ment. However, each such language has a very limited range
of data structures allowing accurate representation of con-
ceptual structures for only a narrow class of applications.
Operations in such languages tend to be complicated by a
need to deal with special conventions used to adapt the
conceptual structures of the application to the limited avail-
able data structures in the language.

Other languages such as PL/1 and COBOL have a greater
ability to represent rich structures accurately. They may be
described as “structurally expressive.” However, the variety
of elementary data structures used in such a language makes
it impractical to also provide powertul nested operations on
large data aggregates within a language of manageable size.
The lack of powerful operations leads to complications of
expression in the language of a different kind.

One object of the present invention is to provide a data

model on which it is possible to design interfaces to func-
tionality which largely eliminates both those kinds of com-

- plication.
It is also an object of the present invention to simplify
interfaces to functionality.

SUMMARY OF THE INVENTION

To achieve the foregoing objects, and in accordance with
the purpose of the invention as embodied and broadly

10

15

20

25

30

33

45

50

335

63

2

described herein, a data structure is constructed from a
single primitive data object, the attribute, to provide func-
tional expressiveness. Structural expressiveness is achieved
by making that primitive data object extremely simple and
allowing for highly unconstrained interconnections between
attribute instances.

More specifically, the data structure of the present inven-
tion resides in a memory of a data processing system for
access by an application program being executed by the data
processing system. The data structure comprises a plurality
of attribute data objects stored in the memory.

The data structure further comprises a single holder
attribute data object for each of the attribute data objects.
Each of the holder attribute data objects 1s chosen from the
plurality of attribute data objects such that a being-held
relationship exists between each attribute data object and its
holder attribute data object and such that a hierarchy of the
attribute data objects is established by ensuring that each of

the attribute data objects has a being-held relationship with
only a single other attribute data object.

The data structure also comprises a single referent
attribute data object for selected ones of the attribute data
objects. A referent attribute data object is nonhierarchically
related to the holder attribute data object of the same
attribute data objects. Those attribute data objects with only
holder attribute data objects are called “clement data
objects,” and those attribute data objects also pointing to
referent attribute data objects are called “relation data
objects.”

The data structure further includes an apex data object
stored in the memory. The apex data object has no being-
held relationship with any attribute data object, however, at
least one attribute data object has a being-held relationship

with the apex data object.

In connection with the above-described data structure, the
present invention also includes methods for creating
attribute data objects for storage in the memory, and for
retrieving attribute data objects.

The accompanying drawings, which are incorporated in
and which constitute a part of this specification, illustrate an

embodiment of the invention and, together with the
description, explain the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a data processing system in
accordance with the present invention;

FIG. 2 shows an example of an attribute data object as
taught by the present invention;

FIG. 3 shows a circuit for use in illustrating the use of the
Attributive data model of the present invention;

FIG. 4 shows a data structure for representing the circuit
of FIG. 3 according to the Attributive data model;

FIG. SA shows a block diagram of certain components of
a software system in accordance with the preferred embodi-
ment of the present invention;

FIG. 5B shows a block diagram of certain components of
a software system in accordance with an alternate embodi-
ment of the present invention.

FIG. 6 shows a portion of the contents of a memory
system containing a data structure including a plurality of
files in accordance with the present invention;

FIG. 7 shows a 32-bit longword used as a pointer in the
preferred embodiment of this invention;

FIG. 8 shows a more detailed block diagram of the
constituent portions of the aftribute file shown in FIG. 6;

5,664,177

3

FIG. 9 shows a block diagram of an element header block
shown in FIG. 8;

FIGS. 10A and 10B show block diagrams of the preferred
embodiment of a relation sub-block shown in FIG. 8;

FIG. 11 shows a block diagram of the preferred embodi-
ment of a *held” object sub-block shown in FIG. 8;

FIG. 12 shows a block diagram for a plural relation header
block shown in FIG. 8;

FIGS. 13A and 13B show block diagrams of the preferred
embodiments of two Kkinds of plural relation sub-blocks
shown in FIG. 8;

FIG. 14 shows a block diagram of the preferred embodi-
ment of an instance root block shown in FIG. 8;

FIG. 15 shows a block diagram of a preferred embodi-
ment of a dictionary file shown in FIG. 6;

FIG. 16 shows a block diagram for the basic structure and
contents of the preferred embodiment of either an apex
block or a context block shown in FIG. 15;

FIG. 17 shows a block diagram of a preferred embodi-

ment of an element type block shown in FIG. 15;

FIG. 18 shows a block diagram for an attribute type block
shown in FIG. 15;

FIG. 19 shows a preferred embodiment of a block dia-
gram of an index branch block in accordance with the
present invention;

FIG. 20 shows a block diagram of a preferred embodi-
ment of an index branch header block shown in FIG. 19;

FIG. 21 shows a block diagram of an index branch
sub-block shown in FIG. 19;

FIG. 22 shows a block diagram of a preferred embodi-
ment of an index directory block shown in FIG. 8;

FIGS. 23A and 23B show a flow diagram depicting the
steps involved in a preferred method of creating an element
data object according to the present invention;

FIGS. 24A and 24B show a flow chart depicting the steps
involved in a preferred method of creating a relation in
accordance with the present invention;

FIG. 25 shows a flow chart depicting the steps involved
in the preferred method of erasing a relation in accordance
with the present invention;

FIG. 26 shows a flow chart describing the steps involved

in erasing an element data object in accordance with the
present invention;

FIGS. 27A and 27B show a flow chart describing the steps

involved 1n the preferred method of accessing the common
data structure in accordance with the present invention;

FIG. 28 shows a flow chart describing the steps involved
in an alternative preferred method of accessing the common
data structure using key values in accordance with the
present invention;

FIG. 28A shows an index result block:

FIG. 29 shows a detailed block diagram of a preferred
embodiment of common data structure 140' in accordance
with the present invention;

FIG. 30 shows a block diagram of a preferred embodi-
ment of the pointer/counter section of a controlier shown in
FIG. 29;

FIG. 31 shows a block diagram of version blocks shown
in FIG. 29;

FIG. 32 shows a block diagram of switch blocks shown in
FI1G. 29;

FIG. 33 shows a flow chart describing the steps involved
din updating data structure 140' in accordance with the
present invention;

10

15

20

25

30

35

40

45

S0

35

60

65

4

FIG. 34 shows a flow diagram for a preferred COMMIT
routine indicated in FIG. 33;

FIGS. 35A, 35B and 35C show flow diagrams of the
procedures followed in the initial, intermediate and final
housekeeping steps, respectively, of the COMMIT routine
shown in FIG. 34; and |

FIG. 36 shows a preferred embodiment of a flow chart for
accessing the desired version of common data structure 140°
in accordance with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will npow be made in detail to presently pre-

ferred embodiments of this invention, examples of which are
illustrated in the accompanying drawings.

A. Common Database Structure

FIG. 1 shows a picture of a data processing system 100
including a central processing unit (CPU) 110 and a memory
120. CPU 110 can be any standard and commonly known
central processing unit, and memory 120 can include mag-
netic core, semiconductor RAM, magnetic disks and mag-
netic tapes, or any other known memory device. CPU 110
can also represent several independently running central
processing units which may be executing application pro-
grams simultaneously. As shown in FIG. 1, application
programs 130, 132, and 134 are alternately executed by CPU
110. FIG. 1 shows CPU 110 executing application program
130 while application programs 132 and 134 are stored in
memory 120.

In accordance with the present invention, application
programs 130, 132, and 134 share a common data structure
140 which is based upon an Attributive data model. The
Attributive data model represents all of the information
accessed by application programs 130, 132 and 134 as
various combinations of a single primitive. In general,
application programs 130, 132, and 134 have their own
databases which contain data either in the Attributive data
model’s format or in some other format. If the application
program information is not in the Attributive data model
format, it is converted into that format by means described
below. In this manner, data structure 140 can be accessed by
each of the-application programs 130, 132, and 134.

The common data structure 140 is different from more
conventional database systems by the unique data structures
which are created and accessed by the application programs.
The Attributive data model uses, as its single primitive, an
attribute or attribute data object which contains certain
hierarchical information about its relationship with other
attributes, and which can “point to” attributes to reflect a
nonhierarchical relationship. The use of the attributes in
accordance with the present invention is limited by the use
of certain simple rules. This limited number of rules allows
the attributes the flexibility to accurately represent complex
objects and relationships.

FIG. 2 shows an example of an attribute data object 200.
Attribute data object 200°s hierarchical relationship with
other attribute data objects is denoted as a holding or
being-held relationship, depending upon how the relation-
ship is considered. In general, each attribute data object can
have a being-held relationship with (i.e., can be held by)
only one other attribute data object, but each attribute data
object can have a holding relationship with (i.e., can hold)
several other attribute data objects.

Each attribute data object 200 is related hierarchically to
a holder attribute data object 210. Holder attribute data

5,664,177

S

object 210 is the attribute data object which has a holding
relationship with attribute data object 200. Conversely,
attribute data object A 200 has a being-held relationship with
attribute data object 210.

The nonhierarchical or pointing relationship describes the 3
relationships between the information represented by
attribute data objects. Certain attribute data objects may also
be related to a single referent attribute data object to reflect
the pointing relationship. A referent attribute data object 220
represents the information which has a nonhierarchal rela- 10
tionship with the information represented by attribute data
object 200.

Each attribute data object 200 may also be related to type
data which describes the relationship between the attribute
data object 200 and those attribute data objects for which 1>
attribute data object 200 has a holding relationship as well
as the referent attribute data objects which atiribute data
object 200 “points to.”

There are only a few rules which the attribute data objects
must obey in accordance with this invention. Although each
attribute data object may hold several other attribute data
objects, each attribute data object can only have a being-held
relationship with a single other attribute data object. Thus,
each attribute data object has only one holder attribute data
object.

One kind of attribute data object, the element data object
or clement, does not have a separate referent attribute data
object because clements are considered to “point to”
themselves, i.e., each element is its own referent. Another
kind of attribute data object, the relation data object, is
related to a single separate referent attribute data object.
Each attribute data object may be a referent attribute data
object for a plurality of attribute data objects.

Basic to the Attributive data model is the concept that the 55
single primitive element, the attribute, can represent com-
plex information in other databases. An attribute expresses
the idea that one thing is attributed to another thing. For
example, things normally attributed to an automobile
include its color, its engine, and its owner. To organize 4,
complex databases around the attribute as a primitive rep-
resents the view that a database is basically a collection of
attributions. Common data structure 140 is a concrete rep-
resentation of that view.

As indicated, clements or element data objects are 45
attribute data objects which refer to themselves, or in other
words have only a holder attribute data object and no
separate referent attribute data objects. An element can
represent a thing, such as an automobile, an engine, a
version of a multiplier circuit, or a signal. Elements which sp
have a being-held relationship with an element can, for
example, represent the internal structure of the thing repre-
sented by that element. For example, if an element repre-
sents an engine, other elements having a being-held rela-
tionship with the element representing the engine can ss
include the pistons, the cylinders, and the rings.

Each embodiment of data structure 140 has one attribute
data object which does not have a being-held relationship
with another attribute data object. That attribute data object
is called the apex or apex attribute data object and holds at 60
least one other attribute data object. In addition to the
requircment of a single apex attribute data object and the
single holder for each attribute data object, each embodi-
ment of data structure 140 has the configuration of attribute
data objects in accordance with the invention such that it is 65
possible, but not necessary, to create the configuration by
starting with the apex and by adding the other attributes, one

20

25

30

6

at a time, in a holding relationship. This restriction creates
a hierarchy and prevents certain circular or loop
configurations, such as when a first attribute data object has
a holding relationship with a second attribute data object,
which in turn has a holding relationship with a third attribute
data object, which then has a holding relationship back with
the first attribute data object. Such a configuration would not
be hierarchical according to this invention.

The relation or relation data object, as explained above, is
an attribute data object which is related to a referent attribute
data object different from the attribute data object itself.
Relations can have a being-held relationship with elements,
for example, if an element represents a multiplier circuit,
one relation can attribute to that element a previous version
of the multiplier. In addition, relations can have holding and
being-held relationships with other relations. For example, if
a first relation attribute data object attributes a part number
to a multiplier, that first relation attribute data object may
hold a second relation attribute data object which attributes
to the first relation attribute data object the date on which the
part number was assigned to the multiplier.

The Attributive data model can be better understood by an
example. FIG. 3 shows a circuit including two AND gates,
320 and 330, having threc inputs and two inputs, respec-
tively. The inputs of AND gate 320 are 322, 324, and 326,

and the inputs of AND gate 330 are 332 and 334. Input 322
of AND gate 320 is driven by output 336 of AND gate 330,

and input 334 of AND gate 330 is driven by output 328 of
AND gate 320.

The circuit in FIG. 3 can be represented according to
many different data models. For example, it it were repre-
sented by a relational data model, there would be separate

tables for gates, inputs, and loads of the gates. Those tables
would then contain identifiers of entries in the other tables.

FIG. 4 shows a data structure 400 representing the infor-
mation in FIG. 3 in accordance with the Attributive data
model of this invention. Data structure 400 can be stored in
the common data structure 140 in FIG. 1.

Data structure 400 includes an apex 410 which, as
described above, does not have a being-held relationship
with any other object. In addition, apex 410 holds (i.e., has
a holding relationship with) CPU attribute data object 420,
which can also be a context. The context is a construct to
facilitate naming of attribute data objects, because those
names have meaning only in the context holding the named
objects, and to establish holding relationships for attribute
data objects that are associated with the context, like the
circuits and signals in FIG. 3.

CPU attribute data object 420 holds attribute data objects
430 and 440 which are circuit elements. Attribute data object
430 represents the circuit in FIG. 3. Attribute data object 430
in turn holds two attribute data objects 450 and 460 which

~are gate clements. Gate clement 450 in turn holds four

attribute data objects 480, 482, 486 and 488 which are pin
clements. In this way, a hierarchical holding relationship is
imposed upon the information in FIG. 3.

As FIG. 4 shows, the other information from FIG. 3 1s also
hierarchically organized. Apex 410 also holds elements 462,
464, 466, 468, 490, and 492 representing labels for other
elements, and attribute data object 420 (CPU element) holds
elements 470, 472, 474, and 476 which represent signal
elements.

The hierarchical arrangement of attribute data objects
gives rise to a “‘containment tree,” which is used to contain
the attribute data objects that collectively represent concep-
tual objects. A containment tree of an attribute data object,

5,664,177

7

calied the root attribute data object or root of the contain-
ment tree, includes all attribute data object, held by the root
(1.e., directly held), as well as all attribute data objects held
by any other attribute data objects in the containment tree
(.e.,, indirectly held). An attribute data object held directly
or indirectly by another attribute data object is said to be
“contained” by that other attribute data object or in that other
attribute data object’s containment tree. In a containment
tree, the conceptual object represented by that tree corre-
sponds to the root. All other attribute data objects in the
containment tree represent conceptual sub-objects, such as
components, listed items, or relationships within the con-
ceptual object represented by the tree. The attribute data
objects 1n a containment tree may also represent relation-
ships with attribute data objects outside the containment
tree.

In FIG. 4, the containment tree for circuit element 430
would include gate elements 450 and 460, and the relation
data objects held by gate elements 430, and 450 (i.c., the
relation data objects pointing to elements 440 and 468 and
the relation data object pointing to element 462), the ele-
ments held by element 4350 (i.e., pin elements 480, 482, 486,
and 488). and the relation data objects held by pin elements
480 and 488 (i.e., relation data objects pointing to elements
464. 470, 472 and 466).

The use of a containment tree, as explained in detail
below, simplifies operations such as erasing complex
objects. As an example, erasure of an object involves the
removal from the common data structure of the correspond-
ing containment tree. This invention allows all attribute data
objects in that tree to be identified quickly, making feasible
the elimination of random pauses caused by automatic
garbage collection commeonly used in prior art databases.

FIG. 4 also contains several other attribute data objects,
which are representative of information describing each of
the things in FIG. 3 represented in FIG. 4 by attribute data
objects. For example, attribute data object 430 holds a
relation data object pointing to the name “Xyz.” This relation
data object has “xyz” as a referent attribute data object. The
name “xyz” 1s element 468. In a similar matter, element 450
has a relation data object pointing to element 462, which is
the number (320) of the AND gate in FIG. 3 represented by
element 450.

FIG. 4 shows other relations as well. For example, ele-
ments 470, 472, 474, and 476, representing signals such as
S1 and S2, are organized into a linked list which is repre-
sented by a series of relations. Furthermore, attribute data
object 480 also holds a relation pointing to attribute data
object 470 showing that the signal represented by that object
is an input to the gate represented by object 450. The
converse relationship is also represented by a relation held
by element 470 pointing to element 480. The name of the
signal represented by attribute data object 470 is reflected by
the relation held by attribute data object 470 and pointing the
attribute data object 490, which represents the label “S1.”

Preferably, a simple constant, such as the integer 35 or the
character “K.” is an element and is represented by a single
attribute data object held by the apex. A character string is
also preferably an element held by the apex. The character
string element, however, holds a list of relations to its
constituent character objects. Thus, for example. the string
“CAT” could be represented by an element data object
which held first relations to three other element data objects
or elements: the letters “C,” “A” and “T.” The ordering of
those letter elements to form the character string “CAT”
could be represented by second relations that organize the

10

15

20

23

30

35

40

45

50

33

60

65

3

first relations into a list. For example, the relation from
“CAT” to “C” would hold a relation whose referent data
object is the relation from “CAT” to “A.”

B. Software Utility Organization

FIG. 5A shows a block diagram of certain components of
a software system in accordance with the preferred embodi-

ment of the present invention. The operation of certain of
these components is presented in a later section. All that will
be described with regard to FIG. SA is the major functions
of each one of the components and their relationship to other
components.

Preferably, the common data structure 140 shown in FIG.
1 includes a master database 510 and a slave database 520.
Any updates to the common data structure 140 are made to
master database 510, and a copy of it is later made to form
the next version of slave database 520.

In FIG. 5A, 530 and 560 recpresent two application
programs, such as the application programs 130, 132 and
134 in FIG. 1. In accordance with the present invention, the
data processing system includes means for retrieving from
the common data structure the referent attribute data object
for a specified relation data object. For application program
330 shown in FIG. 5A, retrieval program 580 performs such
retreival function. The slave database 520 provides the
actual data to the application programs 530 and 560.

The details of an exemplary embodiment of portions of a
retrieval program S80 are discussed in a later section. In
general, however, application program S30 specifies a rela-
tion data object to retrieval program 580 and asks for the
referent data object(s) for that specified relation data object.
Retrieval program 580 then searches the slave database 520
for the specified relation data object. When that specified
relation data object is obtained, retrieval program 580 copies
the desired referent attribute data object(s), performs any
conversion necessary to place the referent data object into
the forinat applicable for application program 530, and
returns the formatted referent data object to application
program 530.

The data structure of the present invention also includes
means for retrieving from the common data structure all of
those attribute data objects which have a being-held rela-
tionship with a specified attribute data object. Again,
retrieval program 380 in the preferred embodiment shown in
FIG. SA performs this type of retrieval also. In operation,
application program 530 specifies an attribute data object
and asks for all those other attribute data objects which are
held by the specified attribute data object. Retrieval program
580 then translates that request into an appropriate format,
and searches through the slave database 520 until the
specified attribute data object is located. Once the specified
attribute data object is located, retrieval program 580 obtains
copies of all of the attribute data objects which are held by
that specified data object. Retrieval program 580 then con-
verts those held attribute data objects into the format appli-
cable for application program 8530 and transmits those
converted attribute data objects to application program 530.

In accordance with the present invention, the data pro-
cessing system also includes means for retrieving from the
common data structure information from all attribute data
objects of a specified type. Retrieval program 580. in
response to such a request from application program 530,
searches the common data structure 140 in slave database
520 for all attribute data objects of the specified type. When
those specified attribute data objects are found., the attribute
data objects are extracted, converted into the appropriate
format, and sent to retrieval program 580.

5,664,177

9

Preferably, retrieval program 390 performs the same
functions as retrieval program S80. The only functional
difference between retrieval programs 580 and 590 would
reflect the manner in which information is transmitted to
application programs 3530 and 560. For example, retrieval
program 3590 could perform a series of retrievals as
described above, converting the data so obtained into appro-
priate format for application program 560, and write this
data into a file 595. Application program 560 would then
read the retrieved data from file S9S.

Further in accordance with the present invention, the data
processing system includes means for creating a new
attribute data object in the common data structure from an
identification of the attribute data object desired to be the
holding attribute data object for the created attribute data
object. That creating means could also include means for
creating the new attribute data object from an identification
of a referent data object as well to form the created relation
data object.

FIG. 5A shows different ways for creating new attribute
data objects in the common data structure 140 according to
the preferred embodiment of the invention. For example,
application program 530 uses converter program 540 which
receives the necessary information from a database in appli-
cation program 530, extracts the needed information for
forming common data structure 140 in master database 5190,
and then constructs attribute data objects by determining the
holder attribute data objects and the referent data objects.
Converter program 540 then sends these attribute data
objects to master database 510 for storage.

As another example, information created in application
program 530°s database can be sent to master database S10
as follows. First, application program 530 sends a request to
update synchronizer 550. This request includes information
characterizing the desired update. Update synchronizer S50
then modifies master database 510 by signaling converter
program 340 to modify master database S10 by creating
attribute data objects in common data structure 140 using
information from application program 330. Update synchro-
nizer may also be used to create attribute data objects in
master database 510 in accordance with the characterization
information in the update request.

Preferably, converter program S70 performs the same
functions as converter program 3540. The only difference
between converter programs 540 and 570 shown in FIG. 5A
is the manner in which information is transmitted from
application program 3560. Application program 560 first
writes data into a file S6S. Converter program 570, after
receiving a signal from update synchronizer 330. reads file
565 and creates attribute data objects in common data
structure 140 of master database 510 1n accordance with data
in file 565.

Modifications of master database S10 and signals to
converter programs 5S40 and 560 are performed by update
synchronizer 550 to ensure that master database 510 is
updated in a regular and noninterruptive manner while the
common data structure 140 in master database 510 and slave
database 520 are used by application programs. Upon
completion of modifications to master database S10 by
converter program 540 or converter program S70, a copy of
the common data structure 140 of master database 510 is
then made available as a new version of slave database 520,

where it may be accessed by retrieval programs 580 and 590.

The present invention also includes means for removing
a specified attribute data object from the common data

structure. This is sometimes known as an erase operation

10

15

10

and is easily performed due to the hierarchical data arrange-
ment of the common data structure 140. In the preferred
embodiment, a database modifying program such as con-
verter 540 first locates a specified attribute data object in
response to a request received from application program
530. Then converter 5S40 removes the attribute data object
from the common data structure 140.

In addition, application program 530 can request not only
that the specified attribute data object be removed, but also
that the entire containment tree for that attribute data object
be removed. In response to such requests from application
program 530, converter 540 locates the specified attribute
data object. Converter 540 also locates all attribute data
objects which are held by the specified attribute data object.
Converter 540 traverses through the containment tree by

- examining holding relationships and locating all of the

20

25

30

35

40

45

30

35

65

attribute data objects which are held directly or indirectly by
the originally specified attribute data object. Converter 540
removes all located attribute data objects from common data
structure 140.

FIG. 5B shows a block diagram of an alternate embodi-
ment of the components of the software system in common

data structure 140'. The items surrounded by the dotted line,
application program 3530, converter program 540 and
retrieval program 580, are essentially identical to the cor-
responding elements in FIG. SA.

Common data structure 140' in FIG. SB contains a master
data file 515 and a snapshot data file 325. Like slave
database 520 of common data structure 140, snapshot file
525 of common data structure 140' contains at least one
complete copy of a version of master data file S15. However,
unlike slave database 520, snapshot file 525 is designed to
represent .a plurality of versions of master data file 5§15 by
storing portions of master data file 515 which have been
updated. In confrast, slave database 520 is designed to
represent complete copies of the current version of master
database 510. Common data structure 140" also includes a

control file 555 which includes data necessary for the control
of the common data structure 140' as well as certain locks to

prevent simultaneous access of structure 140' by several
application programs. Two of the locks which are shown are
ALTER lock 568 and DBC lock 569. These are explained in

greater detail below.

In addition, storage management software 566 is shown
as providing an interface between common data structure
140’ and the software encompassed by the dotted lines in
FIG. SB. A preferred embodiment of portions of storage
management software 566 will be explained in greater detail
below.

C. Data Structure Representation of the Common
Database

In a preferred embodiment of the invention, common data
structures 140 or 140' are stored in memory 120 along with
application programs such as programs 132 and 134. This
arrangement is shown schematically in FIG. 6 as is the
preferred organizational structure of common data structure
140 into a plurality of files.

As FIG. 6 shows, the common data structure 140 portion
of memory 120 preferably includes an attribute file 600, a
dictionary file 700, and an index file 800. Prior to a detailed
explanation of these files, a general description of the files’
functions will be provided to facilitate an understanding of
the entire system.

Attribute file 600 preferably includes all of the attribute
data objects or, more precisely, a memory area or data entry

5,664,177

11

for each of the attribute data objects. In the preferred
embodiment of attribute file 600, the attribute data objects,
including both as eclement data objects and relation data
objects, are organized in a manner which is consistent with
the information in the databases of programs 130, 132 and
134. For example, in a manner described in greater detail
below, node data and node data descriptors of the databases
are corresponded to element and relation data objects, and
the hierarchical holding relationship is imposed on the
attribute data objects in a logical manner designed to facili-
tate the access to and identification of desired attribute data
objects.

Dictionary file 700 preferably includes data entries for the
apex and other contexts, as well as information descriptive
of the type of attribute data objects in attribute file 600. The
data entries for the apex and contexts could instead be stored
in the attribute file, but those entries have been stored in
dictionary file 700 in the preferred embodiment of the
invention because that file is treated primarily as a read only
file, and the apex and context data generally do not change.

Index file 800 preferably includes information used by
CPU 110 to obtain quick access to attribute data objects in
the attribute file. Index file 600 is designed to take advantage
of certain features of many practical implementations of data
structure 140 to increase the efficiency with which data
structure 140 may be used.

In the preferred embodiment of the present invention,
attribute file 600, dictionary file 700, and index file 800 in
common data structure 140 are maintained in a “permanent”
memory section of memory 120, such as a disk. When CPU
110 needs to access certain portions of files 600, 700, and
800, CPU 110 transfers those portions to a primary memory,
such as semiconductor RAM memory. The permanent
memory is relatively large in comparison with the primary
memory and CPU 110 preferably manages the flow of data
between the permanent memory and the primary memory in
using known virtual memory techniques and in a preferred
manner set forth below.

Preferably, data in each of the files in common data
structure 140 are grouped in macropages. Each macropage
is a contiguous 64K byte portion of a file which consists of
128 512-byte pages. In known embodiments of the
invention, attribute file 600, dictionary file 700, and index
file 800 have permitted up to 16K macropages of storage.

In the preferred embodiment of this invention, the stan-
dard unit of data in attribute file 600, dictionary file 700, and
index file 800 is a longword composed of four bytes or 32
bits. The pages or macropages of the files typically include
several blocks each of which consists of a group of several
longwords. Often the longword is used as a pointer.

FIG. 7 shows a 32-bit longword 615 used as a pointer. In
the preferred embodiment, CPU 110 derives longword
pointers for each of the data blocks in the files of common
data structure 140.

According to the preferred embodiment, longword pointer
615 includes a leftmost bit, or TEMP field 616. which
indicates whether the block of memory to which this pointer
“points” is not part of the permanent data structure, in which
case the rest of the pointer is the virtual address of the block
in primary memory. The other fields shown in FIG. 7 apply
only when the block is part of the permanent data structure
located in permanent memory and transferred to primary
memory as needed.

KIND field 618 is two bits long and designates the kind
of block to which longword pointer 615 points. For example,

in the preferred embodiment, this field indicates where the

10

15

20

25

30

35

45

50

55

60

65

12

block pointed to is in attribute file 600, dictionary file 700,
or index file 800.

The next field, R field 620, is one bit wide. R field 620 is
presently reserved to allow an additional kind of pointer to
be defined for use with the present invention.

The final field of longword pointer 615 is OFFSET field
622 which comprises the twenty-eight rightmost bits of
longword pointer 615. OFFSET field 622 identifies the
referenced information by specifying the location of that
information as a longword offset from the beginning of a file
containing the referenced block.

The pointers used in the preferred embodiment are not the
only ones necessary to effect the present invention. For
example, the pointers can directly indicate the location of the
corresponding items or can indicate that location indirectly
through procedures such as indirect or indexed addressing.

1. Atiribute File

FIG. 8 shows a more detailed block diagram of the
constituent portions of attribute file 600. Attribute file 600
includes several element blocks. Only one element block is
shown, however, for simplicity, and for description purposes
in this section, the attribute data object represented by
element block 602 will be called the “represented element.”
The element block is the basic data unit for representing an
element attribute data object in the preferred embodiment of
attribute file 600. Element block 602 preferably includes one
element header block 604, one or more relation sub-blocks
606 (optional), and one or more “held” element sub-blocks
608 (optional). Information regarding the number and type
of contiguous sub-blocks in element block 602 following
element header block 604 1s preferably provided in dictio-
nary file 700 or through the use of a compiler. These blocks
and sub-blocks are described in detail below.

Attribute file 600 also includes plural relation blocks 610,
only one of which 1s shown for simplicity. Each plural
relation block 610 contains data for one or more relation data
objects representing the non-hierarachical relationships in
data structure 140. Plural relation block 610 preferably
includes a plural relation header block 612 and one or more
plural relation sub-blocks 614. These blocks and sub-blocks
are also described in detail below.

Finally, attribute file 600 includes instance root blocks
625 and index dictionary blocks 630, only one of each of
which is shown for simplicity. These two blocks are
described in detail below.

FIG. 9 shows a block diagram of eiement header block
604 in the preferred embodiment of the invention. In this
embodiment, each attribute data object in data structure 140
would be represented by an element header block, such as
element header block. 604. As shown, element header block

604 includes six longwords 900, 920, 925, 930, 935, and
940.

Longword 900 preferably includes a blank field 905, a

SIZE field 910, and a CLASS field 915. SIZE field 910
indicates the number of longwords in element header block

604. CLASS 918 indicates that block 604 is an clement
header block.

Longword or TYPE DEFINITION pointer 920 specifies a
location in dictionary file 700 containing element type
information for the represented element. Type information
could also have been made available to common data
structure 140 by some other means, for example, through the
use of a special compiler which also could establish the
apex, other contexts, and identifiers for contexts.

NEXT and PREVIOUS pointers 925 and 940,
respectively, designate the locations of element blocks for

5,664,177

13

attribute data objects having the same holder attribute data

object as the represented element. In the preferred embodi-
ment of the present invention, attribute data objects of a
common type having the same holder attribute data objects
are linked by use of these longword pointers. The NEXT and
PREVIOUS pointers 925 and 940, respectively, effect such
linking.

HOLDER and REFERENCES pointers 930 and 935 of
element header block 604 respectively indicate the hierar-
chical being-held relationships and non-hierarchical rela-
tions between the represented element and other attribute
data objects represented in attribute file 600. HOLDER
pointer 630 points to the element block for an attribute data
object, i.e., the “holder object” with which the represented
attribute data object has a being-held relationship. Thus,
HOLDER pointer 630 points to the element block of the
attribute data object which holds the attribute data object
represented by element block 602.

The REFERENCES pointer 935 points to a first of a
sequence of plural relation blocks (e.g., block 610 in FIG. 8)
in attribute file 600. Those plural relation blocks indicate the
attribute data objects which hold relations of which the
represented element is a referent data object. The details of

plural relation blocks are discussed below.

Relation sub-block 606 and “held” element sub-block 608
of object block 602 (shown in FIG. 8) are preferably
contiguous sub-blocks which are also continguous to ele-
ment header block 604. For each object block there may be
several relation sub-blocks and several “held” element sub-
blocks. Relation sub-blocks 606 specify referent attribute
data objects for singular relations held by the represented
element. “Held” element sub-block 608 specifies the
attribute data objects which have a being-held relationship
with the represented element. The relation sub-blocks 606
and “held” element sub-blocks 608 for the represented
object possibly appear in mixed order.

FIGS. 10A and 10B show block diagrams of the preferred
embodiment of relation sub-block 606. Relation sub-block
606 preierably contains one of two kinds of information. If
relation sub-block 606 is a relation pointer, then it appears

as a longword or RELATION pointer 1000 (FIG. 10A)
which specifies either an element block of a single referent
attribute data object or a plural relation block (e.g., block
610 in FIG. 8) which in turn identifies several referent
attribute data objects for the relations held by the repre-
sented element.

Alternatively, relation sub-block 606 may be a
NUMERIC/STRING identifier for identifying a number or
date, or a string. If relation sub-block 606 is a numeric or
date identifier, then it appears as double longword. Identifier
1050 may be a pointer to an element block representing an
attribute data object for a character string or may itsclf be an
integer or floating point constant or a date.

~ FIG. 11 shows a block diagram of the preferred embodi-
ment of “held” element sub-block 608 shown in FIG. 8.
Sub-block 608 includes longword pointers 1100, 1110 and
1120. Longword or FIRST pointer 1100 identifies an ele-
ment data block of the first in a selected order of attribute
data objects which have a being-held relationship with the
represented element. If only one attribute data object has that
relationship, then FIRST pointer 1100 identifies that
attribute data object. Longword or LAST pointer 1110
identifies the last in the selected order of such attribute data
objects, but also identifies the first attribute data object of
only one held object exists. The selected order of attribute
data objects having a being-held relationship with the rep-

10

15

20

25

30

35

45

S0

55

65

14

resented object is the linkage defined by the NEXT and
PREVIOUS pointers of those “held” attribute data objects.

Longword or INDEX pointer 640 contains a pointer to an
index directory block. These blocks are described in greater

detail below, and the function of INDEX pointers 640 will
be understood from that description.

As explained above, plural relation blocks 610 provide an

efficient means of reference when several referent attribute
data objects must be identified. Each plural relation block

610 includes a plural relation header block 612 and one or
more plural relation sub-blocks.

FIG. 12 shows a block diagram for plural relation header
block 612 according to a preferred embodiment of the
present invention. Plural relation header block 612 com-
prises longwords 1200, 1210, 1220 and 1230. Longword

1200 includes a USE field 1203, an ENTRIES field 1205, a
SIZE field 1207, and a CLASS field 1209. USE ficld 1203

indicates the last one of the plural relations sub-blocks 614
for header block 612 which may contain a valid pointer.
ENTRIES field 1205 contains the number of contiguous
plural relation sub-blocks 614 following header block 612
which are included in plural relation block 610, whether
those sub-blocks contain pointers or not. SIZE field 1207
and the CLASS field 1209 indicate, respectively, the number
of longwords in plural relation block 610 and that this header
block is a plural relation header block.

BIT MASK field 1230 contains bits indicating which
sub-blocks 614 contain valid pointers. Thus, although the
USE field indicates the largest numbers of contiguous sub-
blocks which may have valid pointers, not all of those
pointers may necessarily by valid. BIT MASK field 1230
supplies this latter information.

Plural relation blocks are linked in a manner similar to the
linkage of element blocks for attribute data objects having
the same holder attribute data object. Accordingly, header
block 612 includes NEXT and PREVIOUS longword point-
ers 1210 and 1220, respectively, which specify next and

previous plural relation blocks in a selected order of such

biocks. The plural relation header blocks in that order are all
used by the same holder attribute data object.

FIGS. 13A and 13B show block diagrams of preferred
embodiments of two kinds of plural relation sub-blocks 614.
If the referent attribute data object is an element attribute
data object other than a string, number, or date, then,
RELATION pointer 1300 is a longword which points to the
element block for that attribute data object. If the referent
attribute data object is a nurnber or date or a character string,
then NUMERIC/STRING field 1310 is used to point to a
floating point number, or date, or a block representing a
character string.

Creation and use of element biock 602 and plural relation
block 610, according to the teachings of the present
invention, are described in further detail below. As can now
be readily appreciated, the data structure representations for
attribute file 600 discussed above embody the principles of
an Attribute data model according to this invention.

The contents and structure of an instance root block are
shown in FIG. 14. “Instances” of an element type refer to a
set of attribute data objects all having the same element type
and all having the same holder attribute data object. It has
been determined that such groups of attribute data objects
are referenced often. Thus, the instance root block was
developed to provide an efficient mechanism to access such
attribute data objects. Locating instance root block 625 in
attribute file 600 allows it to be dynamically updated more
easily than if this block were located in essentially read-only
dictionary file 700.

5,664,177

13

Instance root block 600 comprises a longword 1410
which includes a SIZE field 1413 and a CLASS ficld 1416

indicating, respectively. the number of longwoods in root
block 625 and that block 625 is an instance root block.

Instance root block 625 also includes FIRST and LAST
pointers 1420 and 1430, respectively, which indicate first
and last attribute data objects in any set. Preferably, pointers
1420 and 1430 identify the locations of the element type
blocks (discussed in a later section in relation to dictionary
file 700) of those attribute data objects.

An INDEX pointer 1440 of block 625 points to an index
directory block (described in detail below) in attribute file
600 which permits ready access to each instance of the
linked list of attribute data objects, the first and last object

of which are specified by pointers 1420 and 1430 of instance
root block 600.

(2) Dictionary File

FIG. 15 shows a block diagram of a preferred embodi-
ment of dictionary file 700. In the preferred embodiment, the
portions of the common database structure in dictionary file
700 include an apex block 702, other context blocks 704 and
706, element type blocks 710 and 712, attribute type blocks
714 and symbol table 716.

Apex block 702 is a special kind of context block which
represents the apex data object. According to the basic rules
of the Attribute data model of the present invention, the apex
data object holds contexts or attribute data objects, but is not
itself held by any context or attribute data object.

Context blocks 704 and 706 are used to represent a
context such as CPU 420 described in connection with FIG.
4. Element type blocks 710 and 712 each represent a
different type of attribute data object in attribute file 600.
Preferably, for each different type of attribute data object
there 1s a corresponding element type block. Attribute type
block 714 includes information regarding the type of rela-
tions which exists between attribute data objects of a speci-
fied type and referents for these attribute data objects.
Symbol table 716 contains identifiers for the apex, contexts,
element types, and attribute types represented in the different
blocks of dictionary file 700.

As explained above, apex block 702 and context blocks
704 and 706 are preferably stored in dictionary file 700

because dictionary file 700 is usually a read only file. Apex
block 702 and context blocks 704 and 706, which are very

similar and will be discussed together, are generally not
modified and thus are primarily for a read only fiie.

FIG. 16 shows a block diagram for the basic sfructure and
contents of the preferred embodiment of either apex block

702 or context blocks 704 or 706. Because of the simnilarities

of apex and context blocks, only the file structure for context
blocks will be discussed with the understanding that the file

structure for apex blocks is similar.

In context block 704. longword 1600 includes a SIZE
field 1603 and a CLASS field 1606. SIZE field 1603
1ndicates the number of longwords of context block 704, and

CLASS field 1606 indicates either that the block is an apex
block or a context block.

Longword or NAME pointer 1610 identifies an entry in
symbol table 716 (see FIG. 14) specifying an identifier for
the apex or other context represented by block 704.

Longword or FIRST CONTAINED CONTEXT pointer

1620 points to the first context block of a set of contexts

which are held by context block 704. Pointers 1630 and
1640 described below, are empty in apex block 702.

For context block 704, Longword or NEXT pointer 1630
points to the next context in the ordered set of contexts just

10

15

20

23

30

35

45

50

35

60

65

16

described. Longword or HOLDER pointer 1640 points to
the context block or apex block of the context or apex which
holds the context for block 704.

Longword or FIRST OBJECT TYPE pointer 1650 points
to a first one of an ordered set of element type blocks, e.g..
blocks 710 or 712. The element type blocks in that ordered
set represent element types of attribute data objects held by
the context represented by context block 704. The ordered
set 1s preferably a linked list as explained below in the
description of element type blocks.

Longword or FIRST SYMBOL pointer 1660 identifies an
entry in symbol table 716 which is designated as a first
symbol for the first of an ordered set of symbols for other

-contexts, objects or relations held by the context represented

by block 704.

Preferably, the apex data object or a context attribute data
object provides the first or top portion of a containment tree.
Access to an attribute data object of a specified element type
in a context may be obtained by entering the containment
tree through the apex and by proceeding through the tree to
the the context in which the desired attribute data object is
found. Because the apex and contexts are represented by
apex and context blocks in dictionary file 700 in the pre-
ferred embodiment of the invention, entry into the preferred
embodiment of the data structure through the apex or
context requires access to the information stored in the apex
or context blocks in dictionary file 700. In different embodi-
ments according to this invention, access through a dictio-
nary file would not be required.

FI1G. 17 shows a block diagram of a preferred embodi-
ment of an element type block such as element type blocks
710 or 712. For purposes of this description, element type
block 712 alone will be described with the understanding

that element type block 710 has the same components.

For each type of element in attribute file 600, there exists
an element type block 712 in dictionary file 700. In the
preferred embodiment, the creation of an element of a
certain type in attribute file 600 must be preceded by a
declaration that elements of that type may exist. The mecha-
nism for representing the existence of objects of a specified
type is element type block 712.

Element type block 712 contains general parameters for
certain element blocks in attribute file 600, for example,
information regarding the length of those element blocks
and information regarding the instances of a given element

type.
The contents and structure of element type block 712 are

as shown in FIG. 17. Included in element type block 712 is
longword 1700 which has SIZE field 1703 and CLASS field
1706. As in the case with other data blocks, SIZE field 1703
indicates the number of longwords in element type block
712 and the CLASS field indicates that block 712 is an
element type block.

Longword or NODE FORM ficld 1710 indicates whether
attribute data objects of the type specified by element type
block 712 have a predetermined order and whether the
elements of this type are held by a context or held by other
elements. Longword or NAME pointer 1720 points to an
entry in symbol table 716 having a name or identifier for
attribute data objects of this type. INSTANCE LENGTH
field 1730 specifies the length of an element block 602 for
attribute data objects of the type specified by block 712.

As indicated above, element type blocks for types of
attribute data objects contained by (i.e., in the containment
tree for) the same context are preferably organized into
ordered sets. In fact, these blocks are preferably linked using

5,664,177

17

longword or NEXT pointer 1740, which specifies the next
element type block.

Longword or CONTEXT pointer 1750 points to the
context block or apex block in which elements of the type
specified by block 712 are contained. Longword or
INSTANCE pointer 1760 points to an instance root block in
attribute file 600 which contains pointers affording access to
each of the instances of an element of this type in attribute
file 600. The remaining field of element type block 712
includes longword or ATTRIBUTE pointer 1770.
ATTRIBUTE pointer 1770 points to the first relation type
for relation types contained by this element type.

Dictionary file 700 also provides a mechanism for speci-
fying the types of relations which may exist between
attribute data objects of a type specified by an element type
block 712 and their referent attribute data objects. This
mechanism includes attribute type blocks such as block 714
(see FIG. 13).

FIG. 18 shows a block diagram for attribute type block
714 according to a preferred embodiment of the present
invention. Attribute type block 714 includes longwords
1800, 1810, 1820, 1830, 1840, 1850 and 1860. Longword
1800 contains SIZE ficld 1803 and CLASS field 1806 which

indicate, respectively, the number of longwords in block 714
and that block 714.

Longword or REPSTYLE field 1810 indicates the manner
in which relations for attribute data objects are to be speci-
fied. According to the preferred embodiment of the present
invention, relations between attribute data objects and their
referent attribute data objects may be specified either
directly or indirectly. For directly specified or singular
relations, a relation sub-block 606 (see FIGS. 7 and 10A) in
the element block 602 contains the pointer for a referent

attribute data object. For indirectly specified or plural
relations, a plural relation sub-block 614 of a plural relation

block 610 (see FIGS. 8 and 13) accessed from the object
block 602 for the referenced object contains pointers to the

referent attribute data objects.

Longword or NAME pointer 1820 of block 714 points to
an identifier entry in symbol table 716 for attribute type
block 714. Longword or OFFSET ficld 1830 contains an
offset from the beginning of an element block 602 for a
relation sub-block 606 representing relations of this type, or
an offset for a held element sub-block 608 representing
elements of this type.

Attribute type blocks 714 for a given element type are
linked by means of a NEXT pointer 1840 in the manner
described above for other linked blocks. Longword or
HOLDER pointer 1850 points to the element type block 712
for the type of attribute data object which holds the type of
relation specified by attribute type block 714. Longword or
REFERENT TYPE pointer 1860 also points to an element
type block, but that element type block is one specifying the
type of the referent attribute data objects in the event that
attribute type block 714 corresponds to a relation.

(3) Index File

Index file 800 provides another efficient and direct means
to access attribute data objects which share a common
holder attribute data object. Specifically, index file 800

provides a means for accessing certain ones of the attribute
data objects to which unique key values have been assigned.

In the preferred embodiment, index file 800 comprises
several index branch blocks organized into at least one index
having a tree structure. The branch blocks of an index
include leaf blocks each of which corresponds to a different
set of the key values. Each key value for an attribute data

10

15

20

25

30

35

45

50

53

65

18

object is in only one of the different sets of key values and,
therefore, only one leaf block has a correspondence with that
key value and the attribute data object to which that key
value is assigned. |

Leaf blocks include pointers, each of which corresponds
to a key value of the leaf block and to the location in attribute
file 600 for the attribute data object having the key value as
its assigned key value. Quick accessing of a desired attribute
data object is achieved by entering an index with a key value
for the desired attribute data object, and by locating a unique
pathway through the tree structure of the index to the leaf
block having that key value and the corresponding pointer to
the desired attribute data object.

Accordingly, in the preferred embodiment an index’s tree
structure includes a root block to provide an entry into the
tree structure. The root block “branches” to a plurality of
branch blocks each of which corresponds to a different,
non-overlapping group of the sets of key values to which
certain leaf blocks correspond. The branch blocks are orga-
nized to provide a unique pathway from the root block
through one or more middle branch blocks to a single leaf
block having a corresponding set of key values for which the
unique pathway exists. By organizing the root, middle
branch and leaf blocks in such a manner, the leaf block
having a corresponding set of key values, which includes a
key value for a desired object, can be located expeditiousiy.
In turn, the pointer to an attribute data object having that key

value as its key value can be quickly located, as can the
attribute data object itself.

The root branch, middle branch, and leaf blocks of an
index are preferably represented by index branch blocks.
FIG. 19 shows an index branch block 810 which comprises

an index branch header block 820 and several index branch
sub-blocks 8§30. '

FIG. 20 is a block diagram of an index branch header
block 820. In the preferred embodiment, branch header
block 820 includes longwords 2000, 2020, 2040 and 20690.

Longword 2000 includes a BRANCH KIND field 2004, a
KEY VALUES field 2008, a SIZE field 2012, and a CLASS
field 2016.

BRANCH KIND field 2004 specifies whether index
branch block 810 is a root, middle branch, or leaf block. A
KEY VALUES field. 2008 indicates the number of key
values specified in sub-blocks 830. SIZE field 2012 and
CLASS field 2016, respectively, indicate the number of
longwords in branch block 810 and that block 810 is an
index branch block

Different index branch blocks 810 having the same trunk
block are linked through longword or NEXT pointer 2020
and longword or PREVIOUS pointer 2040, which point to
designated next and previous branch blocks for the same
trunk, respectively. Longword or TRUNK pointer 2060
points to the trunk block for an index branch block 810.

In the preferred embodiment, index branch header block
820 is followed contiguously by one or more index branch
sub-blocks 830.

The index branch sub-blocks 830 shown in FIG. 21
preferably include a longword or KEY VALUE pointer 2100
and a longword or LEAF/OBJECT pointer 2150. KEY
VALUE pointer 2100 specifies a location attribute file 600
holding a key value.

If index block 810 is a leaf branch block, its LEAF/
OBJECT field 2150 points to an element block 602 for an
attribute data object in attribute file 600 having the key value
denoted by the corresponding KEY VALUE field 2100 1n
sub-block 830. Otherwise, if the index branch block 810 is

5,664,177

19

a branch block. the LEAF/OBJECT field 2150 points to a
branch block 1n the unique pathway to a leaf block, the set
of key values of which are within the group of sets for that

branch block.

In the preterred embodiment, each index branch block
810 is used either as an ordering index or as an accessing
index. The ordering index is used to insert elements into a
list according to prescribed ordering rules and enables quick
access to the place in the list of elements, e.g., as described
by an instance root block 625 or a held element sub-block
608. An accessing index is used to access existing elements
quickly using a key value.

In the preferred embodiment of the invention, both the
ordering and accessing index require use of index directory
block 630, discussed briefly with regard to the constituents

ol attribute file 600 (see FIG. 7). A block diagram of index
directory block 600 is shown in FIG. 22.

Index directory block 630 includes longwords 2210, 2250
and 2270. Longword 2210 includes SIZE and CLASS field
2230 and 2240, respectively, which indicate the number of
longwords in index directory block 600 and that block 600
is an index directory block. Longword or ORDERING
pointer 2250 identifies the instance root block for an order-
ing index, and longword or ACCESSING pointer 2200
indicates a root branch block for an accessing index.

Access to an index directory block 630 which designates
indices for quickly accessing attribute data objects is
obtained either through an instance root block 625 or
through a “held” object sub-block 608. Preferably, for
attribute data objects held by a context, index pointer 1440
of an instance root block 625 points to the index directory
block 630 so that attribute data objects held by a specified
context can be accessed easily. For attribute data objects
held by another attribute data object, index directory block
630 is accessed using the INDEX pointer 1120 of the “held”
object sub-block 608 specifying designated first and last
ones of the held objects. The accessing operations are
explained in greater detail below.

D. Basic Database Operations

Using the preferred embodiment of the invention, certain
basic data operations such as creation, erasure, and access,
can be easily and efficiently carried out according to pre-
ferred methods described below. The following description
presumes that, whether by use of a compiler or dictionary
700, certain data like an apex or the contexts which are
necessary to the creation of attribute data objects, already
exist in common data structures 140 or 140'. It is also
assumed that the elements and relations to be created and the
element types and relation types for the elements and
relations to be created have already been specified to data
structure 140, so that the appropriate element type blocks
and referent type blocks have already been created.

(1) Element Creation

FIGS. 23A and 23B show a flow diagram 2300 for a
preferred method of creating an element data object (“new
element”) according to the present invention. As stated
above in connection with the description of application
programs 132 and 134, these programs either contain the
information needed for forming common data structure 140
in memory 120 or have their databases alrady organized in
accordance with the Attributive data model of this invention.

If the application program databases need to be converted
to the Attributive data model of this invention, the informa-
tion needed from these programs to create an element is in
the form of “node data.” Attribute data objects to be created

10

15

20

25

30

35

20

may correspond to node data from the application programs
or may be specifically derived for creation. Accordingly,
creation of an element data object may involve the extrac-
tion of node data from an application program and a deter-
mination of the type of corresponding element data object to
be created from the node data. (Step 2305). Examples of
such extraction appear in the next section.

Once the type of the new element has been determined,
the instance length, that is the length of element block 602
for the new element, can be determined by reference to the
INSTANCE LENGTH field 1730 of an existing element
type block 712 for the new element (Step 2310).

Once the instance length is determined, primary memory
is checked to see whether storage space is available for
element block 602 (Step 2315). If storage space does not
exist, then primary memory space for that element block is
created (Step 2320). The details for managing storage space
by CPU 110 in permanent and primary memory is described
in more detail in a later section and involves virtual memory
and mapping techniques readily ascertainable to artisans of
ordinary skill.

After storage space for element block 602 in primary
memory is located or created, that space is allocated for
element block 602 for the new element (Step 2325). CPU
110 then forms a pointer to that allocated primary memory
space (Step 2330).

Next, a holder attribute data object is chosen for the new
element such that a being-held relationship exists between
the new element and its holder attribute data object (Step
2335). Selection of the holder attribute data object, allows
FIRST, LAST and INDEX pointers. 1100, 1110 and 1120,
respectively, in “held” object sub-block 608 of element
block 602 for the holder attribute data object to be located
(Step 2335).

FIRST, LAST and INDEX pointers 1100, 1110 and 1120,
respectively, may be updated then to reflect the existence of
the new element as an element now held by the holder
attribute data object. Of course, updating these fields is not

necessary if the new element is not the first or last element
held by the holder attribute data object.

After locating the sub-block 608 pointers, NEXT,

- PREVIOUS, and HOLDER pointers 925, 940 and 930,

43

50

35

60

65

respectively of element header block 604 in eclement block
602 of the new attribute data object are used to link the new
element to the element blocks for the other elements having
the same holder as that new element and indicates the holder
attribute data object for the new eclement (Step 2340). This
is done by locating HOLDER pointer 930 in object header
block 604 for the new object. That HOLDER pointer 930
points to a memory area in which an element block 602 for
the holder attribute data element of the object being created
may be found. In addition, element pointers to other attribute
data objects which have the same holder attribute data object
as the new attribute data object are provided as NEXT
pointer 925 and PREVIOUS pointer 940. If the new element
is the only attribute data object held, no pointer will be
provided in a NEXT pointer 925 of element header block
604 and no object pointer will exist as PREVIOUS pointer
940.

Next, the FIRST, LAST, and INDEX pointers 1100, 1110
and 1120, respectively, on the “held” element sub-block 608
of the holder attribute data object, which have been previ-
ously located, are updated to reflect the existence of the new
element and to refiect its “being-held” relationship with the
holder attribute data object (Step 2345). With regard to such
updating, if the new object is the first attribute data object

5,664,177

21

held by the holder attribute data object, then a pointer to the
element biock 602 of the holder attribute data object will be
provided in the FIRST pointer 1100. INDEX pointer 1130
will also be updated to identify an index directory block 630
if appropriate.

To complete the creation of the new element in method
2300, other fields of element block 602 must be initialized.
For example, TYPE DEFINITION pointer 920 of element
header block 604 for the new attribute data object must be
provided with appropriate pointers, such as a pointer to the
element type block 712 in dictionary file 700 which specifies
the type of the new element. “Held” element sub-block 608
and relation sub-block 606 for the new element are initial-
ized for such time as the new attribute data object comes to

hold or comes to have relations with other attribute data
objects.

(2) Creating a Relation

The steps shown in FIGS. 23A and 23B are sufficient for

creation of an element data object. To create a relation data
object, additional steps are needed. FIGS. 24A and 24B

show a flow chart 2400 depicting the steps involved in
creating a relation between the new element and a referent
attribute data object. As indicated previously, node data
descriptors in an application program database may be used
to form a relation. Alternatively, the relation may be formed
by computations performed by one of the application pro-
grams. Thus, a node data descriptor from one of the appli-
cation programs can be extracted for use in creating a
relation attribute data object. This extraction function is
described in greater detail below. When extracting the node

data descriptor, the appropriate attribute data object to be the
referent attribute data object for the relation data object is

selected.

Once the extraction and selection are complete, the rela-
tions sub-block 606 in the proper element block 602 is then
identified (Step 2405). From the position of the relation
sub-block 606 in element block 602, the nature of the
relation between the holder attribute data and the referent
attribute data object (i.e., plural or singular) can be deter-
mined (Step 24190). |

If the relation is singular, a pointer from the holder
attribute data object to the referent data object will be
provided in relation sub-block 606 of the element block for
the corresponding element. If the relation is to be plural, a
pointer to a plural relation block 612 will be provided in that
relation sub-block 606. A referent pointer to the referent data
object will then be provided in the plural relation block 612
identified by the pointer in the element block 602 for the
corresponding element.

If the new relation is singular, a determination must be
made whether the relation sub-block 606 (see FIGS. 8, 10A
and 10B) of the holder attribute data object already contains
a pointer (Step 2420). If this is also true, creation of the
relation will be temporarily halted while a previous relation
specified in relation sub-block 606 is erased so that a new
singular relation can be created (Step 2425). When relation
sub-block 606 does not contain a pointer to a referent
attribute data object, then a object pointer to the referent
attribute data object for this relation is obtained and placed
in relation sub-block 606 (Step 2430).

If the relation to be created is not singular, then a plural
relation block 610 is allocated for specitying the new
relation data object, unless one has already been allocated
(Step 2435). A pointer to the plural relation block for the new
relation is then placed into the appropriate relation sub-block
606 (Step 2440).

10

15

20

25

30

35

40

45

50

33

65

22

Next, the plural relation sub-blocks 614 (see FIGS. 8, 13A
and 13B) of the allocated plural relation block 610 are

scanned as well as plural relation sub-blocks 606 in other
plural relation blocks linked to the pointed to plural relation
block 610 (Step 244S). As described above, plural relation
blocks 610 are linked by means of NEXT and PREVIOUS
pointers, so scanning preferably proceeds using those point-
€rs.

If none of the scanned plural relation sub-blocks 614 are
free (Step 2450), then a plural relation block which contains

a free plural relation sub-block 614 is allocated (Step 2455).
A sub-block is free if it does not contain a valid pointer to

an object block 602 for a referent data object. The newly
allocated plural relation block 610 is then linked with the
other plural relation blocks 610 for the new object (Step
2460).

After the allocation and linking of a new plural relations
block 610, or if a free sub-block in one of the linked plural
relations block was located, pointer to the referent data

object is obtained and placed in the free plural relation
sub-block 614 of the plural relation block 610 (Step 2470).
Next, or after the pointer for a singular relation is obtained,

the pointer for the referent is placed into one of the plural
relation blocks 610. That block 610 is the one accessed from
the REFERENCES pointer 935 of element header block 604
for the element block 602 of the holder attribute data object
(Step 2475). |

(3) Relation Erasure

This section describes erasure of all relations of a given
type held by a given element. Relation erasure involves

freeing the memory of space used to hold the pointers which

relate an attribute data object to its referent attribute data
object. F1G. 25 shows a flow chart 2500 depicting the steps
involved in the preterred method of erasing a relation.

First, the relation sub-block 606 used to relate the rela-
tion’s holder attribute data object and referent attribute data
object is located (Step 2505) using the OFFSET 1830 of the
relation type.

Next, a determination is made, according to the relation
type, whether the relation is singular (Step 2510). If so, the
plural relation blocks 610 specified in the REFERENCES
pointer 935 of the referent’s element block 602 are scanned
to find the object pointer to the holder attribute data object
for this relation (Step 2513) when the type is not numeric,
a date or a string. Then the object pointer to the holder
attribute data object is cleared from the plural relation block
pointed to by the REFERENCES pointer 935 of the refer-
ent’s element block 602 (Step 2520). Finally, sub-block 606
in the holder attribute data object which contains a pointer
to the referent attribute data object is cleared along with any
string data pointed to (Step 2525).

If the relation to be erased is not a singular relation, then
plural relation blocks 610 of the holder attribute data object
are scanned unless the referent type is numeric, a date or a

string (Step 2530). The purpose of the scanning is to locate

the plural relation blocks 610 accessed by the REFER-
ENCES pointer of the element block 602 for the indicated
referent attribute data objects those referent attribute data
objects are the ones pointed to by the referent pointers in
those plural relation blocks 610 of the appropriate type for
the holder attribute data object of the relation to be erased
(Step 2535). Next. the plural relation blocks 610 accessed by
the REFERENCES pointer 935 of those referent attribute
object blocks are scanned to find a pointer to the holder
attribute data object (Step 2540).

When the pointer to the holder attribute data object 1s
found in a plural relation block 610, the holder pointer to the

5,664,177

23

referent attribute data object is rendered inoperative by
resetting the corresponding bits in BIT MASK field 1230.
That BIT MASK ficld 1230 is found in the plural relation
header blocks 612 for the plural relation blocks 610 in which

pointers to the holder attribute data object pointer are found.
Finally, the space for plural relation blocks 610 which were

scanned is reclaimed along with any string data pointed to
and the relation sub-block is cleared (Step 2545).

(4) Element Erasure

FIG. 26 shows a flow chart 2600 describing the steps by
which an element object is erased. After this element is

accessed, plural relation blocks 610 for the object being
erased are obtained from REFERENCES pointer 935 for the

element to be erased (Step 2610).

Next, pointers to this element are erased from the plural

relation blocks under the elements accessed from those
plural relation blocks (Step 2620).

After erasing these pointers, all singular and plural rela-
tions held by the element are erased (Step 2640) and space
used by any plural relation blocks associated with this
element is also freed (Step 2650). All element blocks held by
the element are erased by recursive use of this procedure.
Elements or objects held by this element are then erased
(Step 2635). Next, indices pointed to by the INDEX pointer
1120 in the element block for the element being erased are
freed (Step 2660). The element block for the element being
erased 1s unlinked from element blocks for the other ele-
ments having the same holder (Step 2670). Finally, space for
the element is reclaimed (Step 2680).

(5) Accessing an Attribute Data Object

From the organization of the preferred data structures
described above, as well as from the preferred methods for
creating and erasing elements and relations also described
above, different ways of accessing elements and relations
will be apparent to persons of ordinary skill in the art.
Accessing, of course, depends upon the type of information
desired, and the data structure provided in the preferred
embodiment show pathways for such accessing.

FIGS. 27A and 27B show a flow chart 2700 describing a
preferred method of accessing common data structure 140 or
140° to find either the elements having a being-held rela-
tionship with a given element or to find referents of certain
relations of that element. The procedure reflected by flow
chart 2700 may also be used to obtain held elements and
referents of relations for multiple attribute data elements.
The described method is not the only such method, but it is
provided as illustrative of the types of methods which can be
used to carry out the purposes of this invention.

- Flow chart 2700 assumes that during the creation of the

comimon data structure 140, a compiler or some similar sort
of language processing software (included in converter
programs 540 and 570) generated a virtual address or offset
for each identifier. The flow chart further assumes that
common data structure placed that virtual address or offset
in an address table located in a common area of memory 120
so it could be accessed by retrieval programs, such as
retrieval programs 580 and 590 shown in FIGS. SA and 5B.
Those retrieval programs are preferably interpreters, but
they could also be any other type of language processing
software, such as compilers.

Flow chart 2700 also assumes that prior to its execution,
a virtual address for accessing a referent or held element of
the given element has already been retrieved as have the
virtual addresses of the attribute type block 714 correspond-
ing to the relations or elements (collectively called
attributes) to be fetched. The given element(s) will be
referred to as the holder(s).

10

15

20

25

30

35

45

30

35

60

65

24

The first determination to be made upon entering flow
chart 2700 1s whether the relations for a holder of a given
type are singular or plural (Step 2705). If singular, the next
determination 1s whether there is a first or next holder of the
element(s) or relation(s) to be accessed (Step 2710). If there
is no such holder, then a completion indicator is set (Step

2713), indicating that the search for all the holders is
complete, and the execution of the access routine is ended

with a return of no result (Step 2720).

It there was a next holder, the offset ficld (e.g., 1830

shown in FIG. 18) from the attribute type block is then used
to find the offset from the start of the holder’s element block

to find a pointer to any element block for the relation or
element desired (Step 2723). The element block of that next
holder is then retrieved by using the virtual address from the
address table in the common area of memory 120 (Step
2725). Next, a determination must be made to see whether
there is a relation or held element for this particular holder
(Step 2730). If so, (i.e., if the appropriate pointer is not zero),
then the virtual address for the attribute type block of the
desired attribute is examined to access that attribute (Step
2735). When there is a non-zero pointer, the information
about the desired referent or held element is returned (Step
2745).

If the appropriate pointer is zero (Step 2730), then there
is no relation or element of the required type in the clement
block of the next holder attribute data object. In this case, if
a plurality of holders is specified, then a search continues
either until a holder is found with a relation or an element to
be returned (Steps 2710, 2723 and 2725), or until there are
no more holders (Steps 2710, 2715 and 2720).

If, in the initial determination, the attribute type was
found to be plural (Step 27035). then a determination is made
whether execution of the access is first commencing (i.e.. is
the examination of the entire expression commencing) or at
least commencing examination of a new holder element
(Step 2750). If so, then as with the single attribute type, the
next determination is whether there is some next holder
(Step 2751). If not, the completion indicator is set (Step
2755), and a return is made with no results (Step 2760).

If there 1s a next holder, then the element block for that
next holder is retrieved (Step 2763). and a determination is
made from that element block whether there is a relation
block 610 or a first held element for the next holder. This can
be determined by examining the element block for the next
holder (Step 2766). If no attribute exists for the next holder,
then subsequent holders are obtained and examined until
either a holder is obtained which has an attribute (Steps 2751
and 2763) or until there are no more holders (Steps 2751,
2753 and 2760).

From the attribute type block, a determination is made
whether those attributes are relations (Step 2773). If so, then
the next relation is retrieved from the corresponding plural
relation block (Step 2776). Associated with the access of this
plural relation block is a “place indicator” which keeps track
of the next one of the relations from the plural relation
blocks to be accessed. This is done because the routine in
flow chart 2700 only returns one result in each access. When
the last relation from the plural relation block 610 is
obtained, the “place indicator” directs that the next inquiry
into the existence of a relation or an element to be obtained
be answered in the negative. Each time a relation is obtained,
the “place indicator” is updated to the next position, and a
return from the procedure is made with the indicated result
(Step 2780).

If the desired attributes were instead found to be elements
or if the examination was not commencing (Step 2773), then

3,604,177

25

a determination would be made whether that element was
the first in a linked list of elements having a being-held

relationship with the holder (Step 2783). If not, then the next
held element is obtained using NEXT field 925 from the

element accessed immediately prior to the present element
(Step 2786). A different “place indicator” which keeps track
of the next associated one of the elements to be accessed is
updated to point to the next of the held objects. The return
is then made with indicated result (Step 2780).

If the desired element was the first of the held elements
(Step 2783), then the held object block is obtained using the
offset pointer and the holder attribute data object’s element
block, and the appropriate place indicator is initialized (Step
2790). The return is then made with the indicated result
(Step 2780).

FIG. 28 shows another example of an access procedure.
The flow chart 2800 in FIG. 28 is used for finding an
attribute data object using the index file 800 and a key value.
Again, it must be remembered, that flow chart 2800 is only
one method of access and is not meant to Iimit the invention.

When using a key value to identify and find an attribute
data object, the index directory block (see index directory
block 630 in FIG. 8) is searched for that key value (Step
2810). If that key value is not found (Step 2820), then a
return is made from the routine in FIG. 28 with no result
(Step 2830).

If a key value is found, then an index result block 2890
shown in FIG. 28A is created with four longwords set to the
following values (Step 2840). First leaf node 2891 is set to
the pointer of the ieaf index branch block 810 containing the
first occurrence of the desired key value. First leaf index
2892 contains the ordinal of the index branch sub-block 830
in the index branch block 810 which is the first occurrence
in the leaf index branch block. Similarly, last leaf node 2893
and last leaf index 2894 contain a pointer and ordinal,
respectively, for the last occurrence of the desired key value.
Index result block 28990 is a temporary data structure created
only for access using index file 800.

Next, the address of the desired element(s) is found using
index result block 2890 (Step 2850). It the key is unique,
then first and last occurrences are the same. If the key is not
unique, as may be the case for the ordering index, then the
complete set of valid results can be found using the index
result block 2890 because the index branch blocks are
linked. The pointer to the attribute data object is found using
the result block.

If the key value is found, it will contain an address in the
attribute data file 600 for a corresponding attribute data
object. A return from this procedure is then made with the
indicated result (Step 2860).

E. Data Organization, Extraction, and Conversion

In accordance with this invention, the information used by
application programs such as programs 330 and 560 shown
in FIGS. 5A and 5B, must be fit into an organization of
common data structure 140 (or 140'). In many cases the
application programs are previously written in terms of their
own databases, and in other cases application programs may
already use attribute data objects organized in accordance
with the present invention.

The process of extraction and conversion refers to the

methods by which data from application program databases
are converted to the common data structure 140 (or 140'). As
shown in FIGS. 5A and 5B. converter programs 540 and 570
take data from the application databases and convert that
data from the format in those databases into a format proper
for common data structure 140 (or 140').

10

15

20

25

30

35

40

45

26

There are several ways to organize a common data
structure according to the present invention for each appli-
cation program database. The organization and conversion
of the application program data for the the common data
structure likely depends upon the contents of the data in the
application program database, as well as upon the antici-
pated usage of the common data structure.

Organization of the common data structure, and conse-
quently exftraction and conversion, need not follow absolute
and unwavering rules. Instead, this section contains some
general guidelines and design considerations for persons
desiring to practice this invention. Additional guidelines and
design considerations will be apparent to persons of ordinary
skill in the art, without undue experimentation, from the
entire description of the preterred embodiment such as the
construction of the preferred data structures and the pre-
ferred methods of access, creation, and erasure.

Quite often, the first concern in building a common data
structure according to this invention is the selection of
clement data objects. The information in the application
program from which element data objects are often selected
can bereferred to as node data. Node data generally includes
“things” that are either “objects” or “subjects” in the data-
base. In terms of parts of speech, therefore, element data
objects are most likely data that would be described by
nouns. For example, node data can include physical objects,
such as circuits, gates, portions of an engine, or persons.
Node data can also include events, such as time line enfries
or filing dates. Another example of node data are concepts,
such as ideas and colors.

Once the elements are selected, then the holding relation-
ships between elements are established. The determination
of holding relationships usually reflects some hierarchy
among the clements. As with the selection of elements
themselves, the determination of the hierarchy refiected by
the holding relationship is, in most cases, not unique.
Preferably, the determination of the holding relationship
should also take into account the anticipated use of the data.
The existence of a relationship between two elements (or
between an element and a relation) does not necessarily
mean that such a relationship should be reflected as a
holding relationship in the common data structure. That
relationship can also be represented by the nonhierarchical
relationship indicated by the relation data objects.

The types of relationships which are most often reflected
in the holding relationship reflect some natural hierarchy,
such as officers of a corporation, or refiect the constituent

- parts of a thing, such as the parts of a machine, the chapters

50

55

65

of a book, or cities in a state. The holding relationships can
also reflect the possession of one thing by another.

Once the holding relationships are determined, however,
a context must usually be selected. As explained in an earlier
section, the context is a construct to help in haming attribute
data objects since the names of such objects have meaning
only in the context holding those objects. The context should
be used to reflect groupings of related attribute data objects
for convenience of reference and to aliow the use of spe-
cialized vocabulary. For example, design information about
printed circuit boards might be organized into a different
context from design information about VLSI chips, so that
terminology familiar in either application area can be used
without conflict. In the example demonstrated in FIGS. 3
and 4, the term “gate” can have different meanings in these
two application areas. The use of separate contexts aliows
the same term “gate” to have different meaning in each

context.

5,664,177

27

One can also have several layers of contexts. For
example,. a first context may contain objects related to
general application concepts such as version tracking and
project management. Each of a plurality of contexts held by
the first context might contain attribute objects for particular
technologies, such as mechanical or electrical.

Relations are usually determined next. After the node data
are assigned as elements, the information remaining usually
concerns the relations or attributes of such node data which.
if not reflected in the hierarchical holding relatioships, can
be thought of as generally reflecting descriptors of the node
data. The purpose of the relations is to reflect nonhierarchi-
cal relationships that exist among attribute data objects. The
relations are created so that they associate the appropriate
objects in order to reflect the relationships between node
data and their descriptors as expressed by the original
application data. Examples of node data descriptors. pref-
erably represented by relations, include the connection of
gates to signals, the identification of the designer of a circuit,
and the connection of events in a project plan.

The final steps of data organization involve type deter-
mination and selection of key values. The “typing” of an
attribute generally follows the designation of elements and
relations, as well as the designation of holding relationships.
The types generally reflect the sets into which the elements
and relations have already been grouped and describe the
commonalities of the elements or relations in those sets.

The selection of key values depends again on the data.
The use of key values 1s primarly an aid to access, so the
determination and selection of the keys should follow the
anticipated usage of common data structure 140 or 140'. In
addition, the use of key values may reflect an ordering of the
information in the application programs databases to facili-
tate use of such information by the application programs.

The details of converter programs 540 and 570 are
specific to the requirements of application programs 530 and
560, respectively, the following example of the processing
performed by such converter programs is provided to illus-
trate the guidelines provided above. If an application pro-
gram 560 generates the circuit shown in FIG. 3, file 565
(FIG. SA) might contain the following information descrip-
tive of the circuit.

1) ADD 3-1-A; 320;
2) ADD 320.322/S2
3) 320.324
4) 320.326
5) 320.328/81
6)

7 ADD 2-1I-A: 330;
8) ADD 330.332

) 330.334/81
10) 330.336/82

Each non-blank line of this file represents a node datum.
Line 1 calls for the creation of three-input AND gate 320.
Lines 2 through S call for the creation of pins 322, 324, 326,
and 328 of gate 320. Line 7 calls for the creation of
two-input AND gate 330. Lines S and 9 indicate that pin 328
is connected to pin 334 by signal “S1.” Similarly, lines 2 and
10 indicate that pin 322 is connected to pin 336 by signal
“S2.”

Converter program 570 could be designed to read file 565
and create common data structure 140 or 140' representing
the circuit of FIG. 3 using operations described in the
proceeding sections. Part of the common data structure so
created is shown 1n FIG. 4. Each of the “things” (i.e., gates

10

15

20

25

30

35

45

50

35

60

65

28

and pins or signals) is an element. The holding relationships
represent the hierarchy implicit in the creation-—first the
AND gates, then the pins or signals. The remaining
relationships, such as signal connections and names, are
created as relations.

F. Storage Management

As may be expected, the amount of storage required to
implement an embodiment according the present invention
can be quite great. This section discusses a preferred
embodiment of a storage management technique for

maintaining, updating and accessing common data structure
140" in order to achieve benefits such as a reduction in the
amount of required storage. This preferred embodiment of a
storage management technique is also designed to provide
an easy and efficient means of accessing and updating the
data structure 140' of memory 120 by application programs.

The description of the storage management technique is
based upon the representation of the system shown in FIG.
5B showing common data structure 140 as including a copy
of master data file 515, snapshot data file 525, and control
file 855 with locks 568 and 569. Storage management
software 566 controls the files in common data structure
140'.

A block diagram of an embodiment of common data
structure 140’ is shown in greater detail in FIG. 29. FIG. 29
includes a master data file 2900, which cormresponds to
master data file 515 in FIG. SB. Master data file 2900, shown
as including macropages (-3, corresponds to the most recent
version of the common data structure 140'. That most recent
version is etther the version currently being modified or the
one which was most recently modified.

As FIG. 29 shows, each macropage in master data file
2900 has an associated numbered entry composed of two
portions. The larger number of an entry refers to the mac-
ropage number and the superscript portion of an entry refers
to the version number. The version number indicates a
version of the database as updated by a single user. In
accordance with the preterred embodiment, newer versions
always have a higher number than older versions. The total
number of macropages depends on the total size of the
database.

Snapshot data file 2910 corresponds to snapshot data file
525 in FIG. 5B and includes several slots 0—5. Each slot
contains a macropage and corresponds to one of the mac-
ropages from either the current version of master data file
2900 or from a previous version of that file. The macropages
from previous versions of the master data file 2900 still
maintained in snapshot file 2910 are for versions which are
still active. A version is still active if there is at least one
application program or user which is currently accessing
macropages of that version.

The numbered entries associated with each macropage in
snapshot data file 2910 include as the larger number a value
for the corresponding macropage in master data file 2900,
and include as a superscript a number indicating the version
of that macropage.

After master data file 2900 is updated, those macropages
from the master data file 2900 which were changed are
copied into slots of snapshot data file 2910. This copying
accounts for the multiple versions of macropages from the

master data file 2900 which are stored in snapshot data file
2910. The snapshot data file must not grow indefinitely. so

housekeeping routines, which are explained in greater detail
below, are invoked to remove outdated macropages.

Certain of the slots of snapshot data file 2910 are referred
to as a “natural slots.” A “natural slot” refers to a slot in

5,664,177

29

snapshot data file 2910 having a slot number which is the
same as the corresponding macropage number. This is the
state of snapshot data file 2910 when it originally receives
the contents of the master data file 2900. This initial state, in
which all the macropages are in their natural slots, is desired
for efficiency.

Data Base Controller (DBC) 2920 controls the storage
management functions. DBC 2920 corresponds to the con-
trol file 3535 1n FIG. 5B. In general, DBC file 2920 controls
the modification of data structure 140" as well as the access
to that data structure. DBC 2920 controls the modification of
data structure 140' by managing and keeping track of
changes to the data structure and by ensuring, through the
use of AL'TER lock (See FIG. SB) that only one user can
make modifications to a version of a macropage of the data
structure. DBC file 2920 controls access to the data structure
by keeping track of the location of all active macropages and

by preventing collisions with certain users through the use of
DBC lock (See FIG. $B).

DBC 2920 contains four major components. One com-
ponent is pointer/counter section 2922 which indicates
where the other portions of DBC 2920 reside. Another
component 1s HASH table 2924 which provides a means for
locating the active macropages in snapshot file 2910. Ver-
sion block section 2926 contains version blocks, such as
blocks 2930, 2940, and 2950, which contain information
about different versions of data structure 140'. Switch block
section 2928 contains section blocks, examples of which are
2932, 2934, 2936, 2938, 2942, 2944, 2952, 2954, 2956 and
2958, which contain information about the active mac-
ropages. Preferably, different kinds of switch blocks are used
for changes in attribute file 600 and in index file 800. If,
however, the information in attribute file 600 and index file
800 resided in a single file, one kind of switch block would
be needed. In the ensuing discussion, the discussion about

switch blocks applies to changes either in attribute file 600
or index file 800.

FIG. 30 shows a preferred embodiment of pointer/counter
sections 2922 in greater detail. As shown in FIG. 30,
pointer/counter section 2922 preferably contains a user
count 3005 and several other fields and pointers. User count
30035 indicates the total number of users which are accessing
or modifying common data structure 140'. Each time a new
user wants to access common data structure 140, the storage
management software obtains the DBC lock, increments
user count field 3005, and returns the DBC lock. The
purpose of the DBC lock in this instance is to prevent
multiple users from simulataneously accessing the user
count and improperly incrementing it.

Rollback version number field 3010 and rollback version
pointer 3015 refer to a rollback function. This function
allows a user to retract certain changes made to a version of
common data structure 140'. Rollback occurs only while
changes which are being made to common data structure
140’ by a user are still in progress. Rollback occurs either
because the user performing the changes “voluntarily”
decides it does not want to proceed with the changes and
wishes instead to restore master data file 2900 to its state
before the modifications started, or because an exrror makes
it impossible to complete the changes.

In the preferred embodiment, the version being rolled
back is fully modified in accordance with the changes
spectfied by the user. The storage management and updating
steps described below are executed, but this to-be-rolied-
back version of common data structure 140' is not made

available to other users. Immediately after the to-be-rolled-

10

15

20

25

30

35

43

50

335

65

30

back version has been created, a new version, the rollback
version, is created. ‘The rollback version, by use of switch
blocks in section 2928 and snapshot data file 2910, undoes
all the changes brought by the to-be-rolled-back version.
Accordingly, after the roll back the master data file 2900 for
the rolled back version has been returned to its state before
the roll back sequence was initiated.

Snapshot data file 2910 is not returned to its state before
creation of the to-be-rolled back master file 2900. After roll
back, smapshot data file 2910 contains two additional
versions, the “bad version” that was rolled back and the new
current version. As stated above, however, users are not able
to read the “bad version” and the new current version is just
a copy of the macropages initially changed by the *“bad
version.” The “bad version” is already obsolete at the

completion of roll back and will be deleted by housekeeping
routines to be described later.

In pointer/counter section 2922, roll back version number
3010 refers to the number of the version which is “rolling
back” the “bad version” and roll back version pointer 3015
points to the version block of that version number.

Next version number 3020 and next version pointer 3025
in section 2922 refer to the version of common data structure
140" which is either currently being updated or, if there is no
version cuirently being updated, which will be the version to
be updated next.

Current version number 3030 and current version pointer
3038 refer to the most recent version which is currently

readable. This is the most current version which is available
in snapshot data file 2910. The oldest version number field
3040 and the oldest version pointer 3045 refer to the the
active version which is the least recent. Field 3040 and
pointer 30435 are changed as common data structure 1490’ is
being updated and obsolete (i.e., inactive) versions are freed.

The 1nitial version number 3050 refers to a version of
common data structure 140' existing at the time an event
referred to as a “checkpoint” occurs. For purposes of error
recovery, the contents of common data structure 140' in
master data file 515 are replaced with a checkpoint. This
“checkpoint version” may be used to continue operation of
the system atter the loss or destruction of part or all of the
data structure 140' contents.

Initial version number 3050 indicates the newest version
in snapshot data file 2910 when the most recent checkpoint
occurred.

HASH table 2924 provides a means for accessing the
active macropages in a manner described in greater detail
below. HASH table 2924 is preferably a standard HASH
Table and thus will not be described in any further detail.
HASH Table 2924 preferably contains pointers to the switch
block corresponding to the most recent version of each
macropage. As described below, each switch block is linked
to 1ts earlier versions. Thus, by entering through HASH table
2924, a user can locate every active version of each mac-
ropage 1n snapshot data file 2910. Version area 2926 pref-
erably includes a plurality of version blocks 2930, 2940 and
2950 shown in FIG. 29. Each one of those version blocks

preferably contains the fields and pointers shown in version
block 3100 of FIG. 31.

Version block 3100 includes a version number field 3110
which identifies the number of the version to which version
block 3100 pertains. This field is also shown schematically
in FIG. 29 by the numbers 1, 2, and 3 at the top of version
blocks 2930, 2940, and 2950, respectively.

Version use-count field 3120 refers to the number of users
currently accessing the version corresponding to version

5,664,177

31

block 3100. Each time a user wishes to initiate a new
version, version use-count field 3120 of the current version
3120 is incremented by one. When the user finishes with the
version, use-count field 3120 is decremented by one. The
purpose of the version use-count 3120 is to identify versions
which are no longer being accessed so that the macropages
of that version can be replaced if newer versions of master

data file 2900 become available.

Newer version field 3130 points to the version block for
the next most recent version of the master data file 2900. The
pointer in field 3130 effects a type of linking shown sche-
matically in FIG. 29 as version block 2930 points to version
block 2940 and version block 2940 points to version block
2950.

Related to newer version field 3130 is older version field
3140 which points in the opposite direction to the version
block for the next version of master data file 2900. Thus the
linking between version blocks i1s bidirectional. As demon-
strated in FIG. 29, version block 2950 points to version
block 2940, which in turn points to version block 2930.

The version last changed field 3150 contains a pointer to
the macropages for the corresponding version which was
first changed most recently. The function of this field is
explained in greater detail below, but as a brief explanation,
the first time a macropage is changed for a particular
version, a “next updated field” of that macropage is changed
to contain the contents of version last changed field of the
version block 3100, and version last changed field 3150 of
version block is changed to point to this macropage. Version
last changed field 3150 of version block 3100 is initially set
to zero. The first time each macropage is first changed, it is
linked to the head of a list of macropages changed in this
version. The version last changed pointer thus points to the
macropage that was first changed most recently.

The reason for this procedure is efficiency in data opera-
tion. When a new macropage is first modified, it is very
possible that the macropage modified next most recently has
been placed back on disk to save space in the primary
memory. It would be inefiicient to retrieve this macropage
from disk merely to update one pointer. It is instead easier
to update the corresponding field of version block 3100,
since that version block always resides in primary memory.

A first attribute switch field 3160 and a first index switch
field 3165 point to the switch blocks for the attribute and
index files, respectively, which were the first ones created for
the corresponding version. Of course if the attribute and
index files are combined, then only one of these fields is
necessary. |

Completing version block 3100 are four version initial
macropage number fields 3170, 3175, 3180, and 3185. The
initial attribute macropage number ficld 3170 identifies the
highest macropage number for the master data file 2900
corresponding to attribute file 600 at the start of that version.
For the example in FIG. 29, the number in field 3170 would
be 3. The initial snapshot macropage number field 3175
contains the highest macropage number in snapshot file
2910 for attribute file 600 at the start of that version. In the
example shown in FIG. 29, this field would contain the
number 3.

The initial index macropage number file 3180 and the
initial snapshot index macropage number field 3185 have
functions equivalent to those of fields 3170 and 3175, but
relate to master data and snapshot data files for index file
800. The master and snapshot data files for index file 800 are
not shown but are preferably identical to the master and
snapshot data files for attribute file 600. Of course if the

10

15

20

23

30

35

40

45

50

33

60

65

32

index file 800 is combined with attribute file 600, ficlds 3180
and 3185 are not needed.

The switch block section 2928 in database control file
2920 include the switch blocks, such as blocks 2932, 2934,
2936, 2938, 2942, 2944, 2952, 2954, 2956, and 2958 shown
in FIG. 29. Switch block 3200 in FIG. 32 is an example of
such switch blocks. The preferred embodiment of switch
block 3200 applies to switch blocks which are for attribute
file 600 as well as index file 800. If there is a single
attribute/index file, there is only one type of switch block.

Switch block 3200 includes a version number field 3210

which identifies the version number for which that switch
block exists. This number is also shown in representative

fashion in FIG. 29 by the number in the upper right-hand
corners in each of these switch blocks.

Switch block 3200 preferably also contains a version
pointer 3220 which identifies the location of the version
block for the version to which switch block 3200 corre-
sponds. The next field, macropage number field 3230, iden-
tifies the corresponding macropage in master data file 2900,
or in the equivalent master data file for index file 800.
Micropage slot number 3240 identifies the slot number in
snapshot data file 2910 (or in the snapshot data file for index
file 800) into which the version of the macropage corre-
sponding to switch block 3200 is stored.

The next two fields in switch block 3200 are the newer
and older version fields 3250 and 3260, respectively, which
contain pointers to the switch blocks corresponding to the
immediately more recent and the immediately less recent
versions, respectively, of the same macropages in master
data file 2900 to which switch block 3200 corresponds.
Although the use of these fields is explained in greater detail
below when discussing how to access common data struc-
ture 140', an example of the use of such fields can be
appreciated by considering FIG. 33.

'To access a macropage, one enters HASH table 2924 with
a desired macropage number and obtains a pointer to the
switch block corresponding to the most recent version of
that macropage. To obtain an earlier version of that

macropage, one continues to use the older version pointers
3260 until the switch block for the desired version of the
macropage 1s located.

Switch block 3210 also contains a switch next pointer
3270 which identifies the next switch block for the same
version. The linking effected by switch next field 3270 is
shown schematically in FIG. 29 by the rightward pointing
arrows between switch blocks 2952, 2954, 2956, and 2958;
between switch blocks 2942 and 2944; and between switch
blocks 2932, 2934, 2930 and 2938. The final field in switch
block 3200 is the switch b flags field which are switch b flags
include a switch-v-shared-slot flag. This flag is used in roll
back error recovery described above. The flag indicates that
another switch block is identical to this switch block. For
example, a version n of a macropage X may be a slot y. So
also a version n+2 of a macropage X may be in slot y, these
versions corresponding to the identical state of a version just
before and just after roll back.

With the understanding of the common structural data
140" just provided, the creation and access procedures
described generally for the common data structure of this
invention can understood with regard to the specific imple-
mentations of this invention. Flow charts 3300. 3400, 3500,
3520, 3530 and 3700 in FIGS. 33-36 show preferred meth-
ods for updating and accessing common data structure 140’
shown in FIGS. 29-32. Preferably, the procedures in FIGS.
33-36 are carried out by storage and management software
566.

5,664,177

33

At the outset of the procedure in FIG. 33, the ALTER and
DBC locks are obtained (Step 3310). The purpose of ALTER
lock 568 is to ensure that only one application is modifying
the common data structure 140" at any one time. The purpose
of the DBC 569 lock is to make sure that only one appli-
cation is modifying the database control file 2920 at any one
time.

Next, a new version block is created for this particular

version (Step 3315). Then DBC lock 569 can be returned
(Step 3320).

The next step is to determine whether the next modifica-
tion to be made is to an unmarked (i.e., previously unmodi-
fied in this version macropage (Step 3325). If so, then
several actions have to take place.

First, the application obtains DBC lock 569 (Step 3330)
Next, the current contents of the last changed field of version
block 3150 is copied to the next updated field of the
macropage (Step 3335). Then the pointer to the macropage
1s copied to the version last changed field 3150 of the version
block (Step 3340). Finally, DBC lock 569 is returned (Step
3345).

It the next modification was not to an unmarked page, or
after the macropage has been linked to the version block, the
modifications to the macropage can be made (Step 3350).
Subsequently it is determined whether there are any more
modifications to be made (Step 3355). If so, then the process
1s repeated beginning with the inquiry whether the next
modification is to an unmarked page (Step 3325). If there are
no more modifications to be made, then the COMMIT
routine is called (Step 3360) to store the master data file
2900 macropages to snapshot data file 2910, and to indicate
that this version of data structure 140' can now be accessed
by other applications programes.

FI1G. 34 shows a preferred flow diagram for the COMMIT
routine. The first step is to get the DBC lock (Step 3405).
Next, a determination must be made as to whether the last
changed field 3150 in version block 3100 is equal to zero. If
so, then no changes have been made. If version last changed
pointer is not equal to zero, changes have been made and
initial housekeeping must be performed (Step 3415). This
housekeeping is explained in greater detail below.

Next, the macropage indicated by the version last changed
pointer must be retrieved (Step 3420). Then the slot number
for that retrieved macropage must be updated to indicate the
slot number of snapshot data file 2910 into which the
retreived macropage is to be stored (Step 3425). That slot
number is preferably in some sort of list contained by the
storage and software 565 of free slots for snapshot data file
2910.

Next, the linkage of the switch block to the version is
verified (Step 3430), and the macropage is copied from
master data file 2900 into snapshot data file 2910 at the
appropriate slot number (Step 343S5). Then, HASH table
2924 is updated to point to the switch block for this most
recent version of the modified macropage, and to link that
switch block to earlier versions of the switch block for that
same macropage (Step 3440).

After this updating, the next updated field of the current
macropage is obtained (Step 3445). It that next updated field
is not equal to zero (Step 3450), indicating that there are
additional macropages which were modified, then the next
updated macropage is obtained and the procedure is repeated
beginning with the entry into the proper switch block (Step
3425). |

If the next updated field of the current macropage is zero,
then there are no more modified macropages, and interme-

10

15

20

25

30

35

40

45

50

55

65

34

diate housekeeping is performed (Step 3460). This step also
takes place if the version first field is zero (step 3410). This
intermediate housekeeping is also explained in detail below.
Next, the current version number 3030 and the version block
pointer field 3035 in the pointer/counter block 2922 of the
data base control file 2920 are updated. This is now the
commit point at which time the other applications become

aware of the newest version of the master data file 2900
(Step 3465). Then final housekeeping is performed (Step
3470), and both the DBC and ALTER locks are returned
(Step 3475).

FIGS. 3SA-C show the procedures followed in the initial,
intermediate and final housekeeping steps of the COMMIT
routine in FIG. 34. Flow chart 3500 shown in FIG. 35A
corresponds to the imitial houseckeeping; flow chart 3520
shown in FIG. 35B corresponds to the intermediate house-
keeping; and flow chart 3540 shown in FIG. 35C corre-
sponds to the final housekeeping.

In the initial housekeeping procedure, the first step is to
delete obsolete version blocks and switch blocks (Step
3505). A version block is obsolete when it is not the most
recent version and when; as indicated by version user count
field 3120, there are no current users. A deletion occurs by
unlinking these switch blocks and version blocks and by
placing the memory corresponding to these un]mked blocks
onto the list of free blocks.

The size of master data file 2900 is then compared to the
size of snapshot data file 2910. If new macropages were
added to master data file 2900 making it larger than the
snapshot file 2910, then snapshot data file 2910 must be
increased accordingly (Step 3510). When this occurs, the
added macropages to the snapshot file are also put on the list
of natural slots for the corresponding macropages added to
the master data file.

In the intermediate housekeeping, shown in flow chart
3520, the first step is to evict all squatters (Step 3525). A
squatter is a macropage which is in the natural slot for
another existing macropage. Thus, if the natural slot for
macropage 3 (in other words slot number 3) has a macropage
not equal to 3, then that macropage is moved somewhere

else in snapshot data file 2510.

Next, the macropage corresponding to the vacant natural
slots are moved into those natural slots (Step 3630). In our

example, the most recent version of the macropage number
3 is then found and inserted back into its natural slot.

In the final houseckeeping, the only actions that occur are

the deletion of obsolete versions and switch blocks (Step
3545).

FIG. 36 shows a preferred embodiment of a flow chart
3600 for accessing a desired version of a macropage. In the
first step, the HASH table is searched to determine the
location of the most recent version of the desired macropage
(Step 3610). Next, if the HASH table indicates a location for
the macropage, the version number of that macropage 1is
tested to see if it is less than or equal to the desired version
number (Step 3620). This is necessary because an applica-
tion already operating with one version must continue to
access the same version for all the other macropages. While
accessing one macropage, however, several other versions
may have been completed, so the current version may not be
the appropriate version.

It the version number of the macropage currently
accessed is larger than the version number for the
application, then the switch block pointer is accessed to find
the next older version macropage. in the same test as made
(Step 3630). Once the proper version is found, then .the

3,664,177

33

switch block for the desired macropage is used to point to
the location in the snapshot file 2910 for that macropage

(Step 3640).
If the entry is not found in the HASH table (Step 36190),
then the macropage number itself 1s used as the macropage’s

slot number to access the macropage (Step 3640). The
routine is then exited.

G. Summary

It should be apparent to those skilled in the art that various
modifications may be made to this invention without depart-
ing trom the scope or spirit of the invention. Thus, it is
intended that the invention cover modifications and varia-
tions of the invention, provided they come within the scope
of the appended claims and their legally entitled equivalents.

What is claimed:

1. A memory for storing data for access by an application
program being executed on a data processing system, com-
prising:

a data structure stored in said memory, said data structure
including information resident in a database used by
said application program and including:

a plurality of attribute data objects stored in said memory,
each of said attribute data objects containing different
information from said database;

a single holder attribute data object for each of said
attribute data objects, each of said holder attribute data
objects being one of said plurality of attribute data
objects, a being-held relationship existing between
each attribute data object and its holder attribute data
object, and each of said attribute data objects having a
being-held relationship with only a single other
attribute data object, thereby establishing a hierarchy of
said plurality of attribute data objects;

a referent attribute data object for at least one of said
attribute data objects. said referent attribute data object
being nonhierarchically related to a holder attribute
data object for the same at least one of said attribute
data objects and also being one of said plurality of
attribute data objects, attribute data objects for which
there exist only holder attribute data objects being
called element data objects, and attribute data objects
for which there also exist referent attribute data objects
being called relation data objects; and

an apex data object stored in said memory and having no
being-held relationship with any of said attribute data
objects, however, at least one of said attribute data
objects having a being-held relationship with said apex
data object.

2. The memory of claim 1 wherein more than one of said
attribute data objects can have a being-held relationship with
another one of said attribute data objects.

3. The memory of claim 1 wherein at least one of said
attribute data objects is a referent attribute data object for a
plurality of said attribute data objects.

4. The memory of claim 1 wherein at least one of said
attribute data objects includes type data descriptive of a
relationship between that at least one of said attribute data
objects and the other ones of said attribute data objects
having a being-held relationship with that one attribute data
object.

S. The memory of claim 1 wherein at least one of said
relation data objects includes type data descriptive of a
relationship between that at least the one of said relation data
objects and the referent attribute data object of that one
relation data object.

S

10

15

20

25

30

35

43

30

36

6. A data processing system executing an application
program and containing a database used by said application
program, said data processing system comprising:

cpu means for processing said application program; and

memory means for holding a data structure for access by

said application program, said data structure being

composed of information resident in said database used

by said application program and including

a plurality of attribute data objects stored in said
memory, each of said attribute data objects repre-
senting different information from said database;

a single holder attribute data object for each of said
attribute data objects, each of said holder attribute
data objects being one of said plurality of attribute
data objects, a being-held relationship existing
between each atfribute data object and its holder
attribute data object, and each of said attribute data
objects having a being-held relationship with only a
single other attribute data object thereby establishing
a hierarchy of said plurality of attribute data objects;

a referent attribute data object for at least one of said
attribute data objects, said referent attribute data object
being nonhierarchically related to a holder attribute
data object of the same at least one of said attribute data
objects and also being one of said plurality of attribute
data objects, attribute data objects for which there exist
only holder attribute data objects being called element
data objects, and attribute data objects for which there
also exist referent attribute data objects being called

relation data objects; and

an apex data object stored in said memory and having no
being-held relationship with any of said attribute data
objects, however, at least one of said attribute data
objects having a being-held relationship with said apex
data object.

7. The data processing system of claim 6 wherein more
than one of said attribute data objects can have a being-held
relationship with another one of said attribute data objects.

8. The data processing system of claim 6 wherein at least
one of said attribute data objects is a referent attribute data
object for a plurality of attribute data objects.

9. The data processing system of claim 6 wherein at least
one of said attribute data objects includes type data descrip-
tive of a relationship between that at least one of said
attribute data objects and the other ones of said attribute data
objects having a being-held relationship with that one
attribute data object.

10. The data processing system of claim 6 wherein at least
one of said relation data objects includes type data descrip-
tive of a relationship between that at least one of said
relation data objects and the referent attribute data object of

- that one relation data object.

35

60

65

11. The data processing system of claim 6 further includ-
ing means for retrieving from said data structure the ones of
said attribute data objects having a being-held relationship
with a specified attribute data object, in response to a request
for access from said application program.

12. The data processing system of claim 6 further includ-
ing means for retrieving from said data structure the ones of
said referent attribute data objects for a specified relation
data object, in response to a request for access from said
application program.

13. The data processing system of claim 6 further includ-
ing means for creating a new attribute data object in said
data structure from one of said attribute data objects which
is the holding data object for the new attribute data object.

14. The data processing system of claim 13 wherein said
means for creating a new attribute data object also includes

5,664,177

37

means for creating that new attribute data object as one of
said relation data objects from a referent attribute data object
for the new relation data object.

15. The data processing system of claim 9 further includ-

ing means for retrieving from said data structure each of said
attribute data objects having type data that are the same, in

response to a request for access from said application
program.

16. The data processing system of claim 9 further includ-
ing means for retrieving from said data structure the type
data from a specified attribute data object, in response to a
request for access from said application program.

17. The data processing system of claim 6 further includ-
ing means for removing from said data structure a specified

attribute data object, in response to a request for access from '

said application program.

18. The data processing system of claim 17 wherein said
means for removing also includes means for removing from
said data structure all attribute data objects which have a
being-held relationship with said specified attribute data
object and all attribute data objects which have a being-held
relationship with any attribute data object removed from
said data structure by said removing means.

19. The data processing system of claim 6 wherein said
cpu means executes a plurality of application programs, and
wherein said data structure is a common data structure for
access by all of said application programs and composed of
information resident in databases used by said application
programs.

20. In a data processing system executing an application
program, wherein said application program is accessing a
data structure composed of information resident in a data-

base used by said application program, wherein said data
structure resides in a memory of said data processing system

and includes a plurality of attribute data objects each rep-
resenting difterent information from said database, wherein
for each of said attribute data objects there exists a holder
~attribute data object and for certain of said attribute data
objects there also exists a referent attribute data object
related to a holder attribute data object for that attribute data
object, each of said holder and referent attribute data objects
being one of said plurality of attribute data objects, and
wherein each of said plurality of attribute data objects has a
being-held relationship with its holder attribute data object
thereby establishing a hierarchy of said plurality of attribute
data objects, a method of accessing attribute data objects in
said data structure comprising the steps of:

selecting, by said application program, information resi-

dent in said database; |

searching, by a data management program executed by

said data processing system, said data structure for one
of said attribute data objects representing said selected
information;

retrieving, by said data management program, the

attribute data objects having a being-held relationship
with said one of said attribute data objects representing
said selected information; and

transmitting to said application program by said data

management program, information related to said
retrieved attribute data objects.

21. In a data processing system executing an application
program, wherein said application program is accessing a
data structure composed of information resident in a data-
base used by said application program, wherein said data
structure resides in a memory of said data processing system
and includes a plurality of attribute data objects each rep-
resenting different information from said database, wherein

10

15

20

25

30

35

45

50

33

65

38

for each of said attribute data objects there exists a holder
attribute data object and for certain of said plurality of

attribute data objects there also exists a referent attribute
data object related to a holder attribute data object for that

attribute data object, each of said holder and referent
attribute data objects being one of said plurality of attribute

data objects, and wherein each of said attribute data objects
has a being-held relationship with its holder attribute data
object thereby establishing a hierarchy of said plurality of
attribute data objects, a method of accessing attribute data
objects in said data structure comprising the steps of:
selecting, by said application program, information resi-
dent in said database;
searching, by a data management program executed by
said data processing system, said data structure for one
of said attribute data objects representing said selected
information;

retrieving, by said data management program, a referent

attribute data object for said attribute data object rep-
resenting said selected information; and

transmitting to said application program by said data

management program, information related to said
retrieved referent attribute data object.

22. In a data processing system executing an application
program, wherein said application program is accessing a
data structure composed of information resident in a data-
base used by said application program, wherein said data
structure resides in a memory of said data processing system
and includes a plurality of attribute data objects each rep-
resenting different information from said database, wherein
for each of said attribute data objects there exists a holder
attribute data object and for certain of said attribute data
objects there also exists a referent attribute data object
related to a holder attribute data object for that attribute data
object, each of said holder and referent attribute data objects

~ being one of said plurality of attribute data objects, and

wherein each of said attribute data objects has a being-held
relationship with its holder attribute data object thereby
establishing a hierarchy of said plurality of attribute data
objects, a method of creating attribute data objects in said
data structure comprising the steps of:
selecting, by said application program, information to be
entered into said database;
creating, by a data management program executed by said
data processing system, an attribute data object for said
selected information;

choosing, by said data management program, one of said
attribute data objects as a holder attribute data object
for said created attribute data object, the chosen holder

attribute data object being chosen according to said
selected information; and

entering, by said data management program, the created

data object into said data structure.

23. The method of claim 22 further including the step of
choosing a referent attribute data object for said created
attribute data object from said data structure, said chosen
referent attribute data object being chosen according to said
selected information.

24. A method for creating a data structure for access by an
application program, said application program being
executed by a data processor which also creates said data
structure in a memory coupled to the data processor, said
data structure being created from application data originat-
ing in said application program, and said method comprising
the steps. executed by said data processor, of: |

(a) creating a different one of a plurality of attribute data

objects from said application data;

5,664,177

39

(b) organizing said plurality of attribute data objects
hierarchically according to a being-held relationship by
choosing from said plurality of attribute data objects for
each of said attribute data objects, a holder data object,
a hierarchical being-held relationship existing between
each attribute data object and a singie holder data
object;

(c) establishing nonhierarchical relationships for certain
ones of said attribute data objects created from said
application data by choosing, from said attribute data
objects, referent data objects for the ones of said
selected attribute data objects, each chosen referent
data object corresponding to one of said attribute data
objects, said selected attribute data objects being called
relation data objects and attribute data objects without
referent data being called element data objects;

(d) creating an apex data object with which at least one of
said attribute data objects has a being-held relationship,
said apex data object having no being-held relationship
with any of said attribute data objects;

(e) creating an attribute file for said attribute data objects;

(f) entering each of said attribute data objects into said
attribute file;

(g) entering holding pointers for each of said attribute data
objects, each of said holding pointers indicating one of
said attribute data objects having a being-held relation-
ship with that attribute data object; and

(h) entering referent pointers into said attribute file, said
referent pointers reflecting said nonhierarchical rela-
tionships between said attribute data objects.

25. In a data processing system including a central pro-
cessor and a memory, said memory containing a data struc-
ture with a plurality of attribute data objects each having
hierarchical being-held relationships with a single other one
of said attribute data objects or with an apex, wherein certain
ones of said attribute data objects have non-hierarchical
relationships with others of said attribute data objects, and
wherein each of said attribute data objects has an associated
memory area including pointers to memory areas for other
ones of said attribute data objects which have a being-held
relationship with that attribute data object, a method for
adding new attribute data objects to said data structure
comprising the steps, executed by said central processor, of:

creating a memory area for said new attribute data object;

choosing, as a holder attribute data object, one of said
attribute data objects, said new attribute data object
having a being-held relationship with the chosen one of
said attribute data objects;

adding in the memory area for said holder attribute data
object, a pointer to the memory area of said new
attribute data object; and

linking said new attribute data object with other ones of
said attribute data objects having a being-held relation-
ship with said holder attribute data object.

26. In a data processing system including a central pro-
cessor and a memory, said memory containing a data struc-
ture with a plurality of attribute data objects each having
hierarchical being-held relationships with a single other one
of said attribute data objects or with an apex, wherein certain
ones of said attribute data objects have non-hierarchical
relattonships with others of said attribute data objects, and
wherein each of said attribute data objects has an associated
memory area, a method for creating a non-hierarchical
relationship between one of said attribute data objects and a
referent one of said attribute data objects comprising the
steps, executed by said central processor, of:

5

10

15

20

23

30

335

435

50

35

60

65

40

determining a location of said referent attribute data
object;

accessing the memory area for the one of said attribute
data objects; and

placing a pointer to said referent attribute data object
location in said memory area of the one of said attribute
data objects.

27. The method according to claim 26 wherein said
non-hierarchical relationship is one of a predetermined type

of relationships, wherein said memory includes a type area
identifying said types of non-hierarchical relationships and
identifying where in a memory area for said attribute data
objects to find pointers to referent attribute data objects
having said predetermined type of relationship to said
attribute data objects, and wherein the step of placing a
pointer includes the substeps of

determining the one of a predetermined type of said
non-hierarchical relationship;

finding, in said type area, a location in said memory area
for relationships of the type of said desired non-
hierarchical relationship; and

placing said pointer into said memory area of said given

attribute data object found for said desired non-
hierarchical relationship type.

28. In a data processing system including a central pro-
cessor and a memory, said memory containing a data struc-
ture with a plurality of attribute data objects each having
hierarchical being held relationships with a single holder one
of said attribute data objects or with an apex, wherein certain
ones of said attribute data objects have non-hierarchical
relationships with others of said attribute data objects, and
wherein each of said attribute data objects has an associated
memory area containing

sequence pointers to ones of said attribute data elements

having a being-held relationship with a single holder
one of said attribute data objects,

a holder pointer to said single holder one of said attribute
data objects, and

referent pointers to any of said attribute data objects with
which that attribute data object has a non-hierarchical
relationship,
a method for erasing a memory area for one of said attribute
data objects comprising the steps, executed by said central
processor, of:

locating said memory area for the one of said attribute
data objects;

erasing from said memory area for the one of said
attribute data objects any referent pointers to any of the
ones of said attribute data objects with which the one of
said attribute data objects has a non-hierarchical rela-
tionship;

locating the memory area for said holder attribute data
object;

erasing from said memory areca for the one of said
attribute data objects said holder pointer for the one of
said attribute data objects;

adjusting said sequence pointers in said memory area for
the one of said attribute data objects to remove any
pointers to the one of said attribute data objects; and

erasing the memory area for all containment tree ones of
said attribute data objects which have a being-held
relationship with the one of said attribute data objects
or which have a being-held relationship with another

one of said containment tree attribute data objects.
29. In a data processing system including a central pro-
cessor and a memory, said memory containing a data struc-

5,664,177

41

ture with a plurality of attribute data objects each having
hierarchical being-held relationships with a single other one
of said attribute data objects or with an apex, wherein certain
ones of said attribute data objects have non-hierarchical
relationships with referent ones of said attribute data objects,
~and wherein each of said attribute data objects has an
associated memory area containing referent pointers to any

of said atiribute data objects with which that attribute data

object has a non-hierarchical relationship, said associated
memory area for each of said referent attribute data objects
containing a non-hierarchical relationship pointer to that
attribute data object having a non-hierarchical relationship
with that referent attribute object, a method for erasing a
desired non-hierarchical relationship between one of said
attribute data objects and a referent one of said attribute data
objects comprising the steps, executed by said central
processor, of:

10

15

42

locating the memory area for the one of said attribute data
objects;

locating the referent pointer to said referent attribute data

object in the memory arca for the one of said attribute
data objects;

locating said referent attribute data object using said
referent pointer;

locating the non-hierarchical relationship pointer to the

one of said attribute data objects in the memory area for
said referent attribute data object;

erasing said non-hierarchical relationship pointers; and

erasing said referent pointer.

S T T T -

	Front Page
	Drawings
	Specification
	Claims

