United States Patent g

Fast

451 Date of Patent:

[54] METHOD AND APPARATUS FOR
GENERATING DATABASE QUERIES FROM
A META-QUERY PATTERN

[75] Inventor: Ronald Wayne Fast, Bellevue, Wash.

[73] Assignee: Microsoft Corporation, Redmond,
Wash.

[21] Appl. No.: 562,916
[22] Filed: Nov. 27, 1995

[S1] DL CLC e ceeeenenesssseseseasssssssene GO6F 17/30
[S2] US. Cle e rerrcnesersncseeenns 395/604; 395/751
[S8] Field of Searchivencrerrnenens 395/600, 161,
395/603, 604, 605, 601, 751; 364/300,
419
[56] References Cited
U.S. PATENT DOCUMENTS
3,763,474 10/1973 Freeman et al.ccceceerenrnnns 340/172.5
4,506,326 3/1985 Shaw et al. ...cveeeerverccccrenenncens 364/300
4,688,195 8/1987 Thompson et al.ccovrvrereneee. 364/300
5,031,124 7/1991 Bosinoff et al.cceeeeeeernnees 364/551.01
5,133068 7/1992 Crus et al. ..ceeerreecercrenrecssennes 395/600
5,197,005 3/1993 Shwartz et al.ccccereerrrvccanenes 364/419
5,315,709 5/1994 Alston, Jr. et al. ..ccvvervreccceren 395/600
5347.647 9/1994 Allt et al.covvcerveneeeereeencecnane 395/575
5,386,550 1/1995 Hedin et al. ...ceeeereeeeecrrerscncnnes 395/600
5519859 5/1996 Grace ...eeeeciereeccrccsessevessrsensssens 395/600
5,528,748 6/1996 Wallace ...coeeceeeeceecenneencsesvens 395/183.01
5537590 771996 AmAadoccccereererenreccsscnessennacess 395/600
5,550,971 8/1996 Brunmner et al. ...ccceeereereeecranenss 305/161
5,574,898 11/1996 Leblang et al.ceeeerrerercnnneenn 395/601
OTHER PUBLICATIONS

Teach Yourself Web Publishing with HTML in a Week,
Laura ILemay, pp. 1-6.

Microsoft Press Computer Dictionary 2"¢ Edition, Wood-
cock et al., pp. 115-116.

(_ Reenlrant)

EN\% Jutuf

- {okens in
input buifer

Is token
a query
elemant?

Is token
a query lisl
elaman?

Copy token to
autput buffar

Generate complate 508
SOL command
and clear. outpul (-J
bulfer

US005664173A
1111 Patent Number:

5,664,173
Sep. 2, 1997

White et al, Test MAnager: A Regression Testing Tool,
IEEE, pp. 338-347 Sep. 1993.

Paulley et al, Exploiting Uniqueness in Query Optimization,
IEEE, pp. 68—79 Feb. 1994.

Stepheson et al, Imacts: An Interactive, Multiterabyte Image
Archive, pp. 146-161 Sep. 1995.

Primary Examiner—Thomas G. Black
Assistant Examiner—Frantz Coby
Attorney, Agent, or Firm—Duft, Graziano & Forest, P.C.

[57] ABSTRACT

A grammar, parsing method, and associated apparatus for

automatically generating test commands to test an SQL
database engine interface while reducing storage require-
ments and improving access time for such test commands as
compared with prior test tools. The test tools and methods
include a grammar for concise syntactic representation of a
meta-query (also referred to as meta-language statement,
query pattern, or query template). The meta-query defines an
statement similar to the SQL language but includes query
elements and query list elements used to generate a plurality
of SQL test commands to be applied to the SQL database
engine under test. Test commands are generated from the
meta-query to reduce storage requirements of prior test
methods. Query elements are variable space holders in the
meta-query and are replaced by a value appropriate to the
SQL database engine under test when the meta-query is used
to generate test commands. Query list elements define a list
of values to be inserted in place of the query list element
when generating the test commands from the meta-query.

9 Claims, 7 Drawing Sheets

Place replacament ej

valug in oulput
buffer

OO

L8V HOldd

L Ol

5,664,173

Sheet 1 of 7

Sep. 2, 1997

U.S. Patent

N# eulbu3 921 Zi euibu3 L # aujbu3
8¢c| 9seqele(aseqeje(vel aseqeleQ
(0Dgao "b9)
|dV eseqeje(
44!
13|1j04d

B OIGBL | faeeerermeemmemrme

o
-
-
l___._._l
n
oy
L]
L]

9jqe
di10.LS31L

9|qe L
SHIAIKEA

L}

l'.l_
[]
™
S
ol
L

a|qel
SLdONMNY

S TR 1 o|qel
AHINOLYD AHODILYD

ojqeL
Od4NINNY

A 001

vOL

¢ 9l

5,664,173

o N# 8uIBu3

-

S az1 aseqeleq

@ 124"
=

P

(08Q0 *6°9)
|dV 8Seqeleq

I~

N

N

e
A 10]1j0.d

o Kionp

s p

paj}sal aq 0}

auibus aseqejep e J¢

xejuAg ebenbuej-els
Ul sajejdwa| Asonp

U.S. Patent

L# auibug
aseqele(

5,664,173

AS1d AS1d
1 12207 18007 j

00€
g0¢

e~ f'v
v NSIa g JoAug L# 18A1Q
o > (200 suibug eseqejeq auibu3 sseqeleQ
O |
@ 14012
7

9¢l g \ﬁ

bel

2 N# 19ALIQ _ (08a0 o)
— euibu3g eseqeieQ ldV eseqele(RN
3l cel
o)
7

1814014 Alend

& Ol

U.S. Patent

U.S. Patent Sep. 2, 1997 Sheet 4 of 7 5,664,173

400 Connect through |
\ AP| to desired FIG. 4

engine driver

402 Generate test
data in columns

of test tables

412

404 N = # of
\ supported
data types

414

Generate test

commands from

next template
406

K; query patterns

Apply generated
commands to

database API

Record and

analyze results

returned from
database API

M= #of
query patterns

422

Done

U.S. Patent Sep. 2, 1997 Sheet 5 of 7 5,664,173

o500

s

Put query pattern

in input buffer and
empty output buffer

002

\ Invoke
reentrant
_ Darser

U.S. Patent Sep. 2, 1997 Sheet 6 of 7 5,664,173

.
o504
[75 FIG. 6

- tokens in
input buffer

506

NN N

Generate complete 508

SQL command
and clear. output
buffer

510 Y
L> Get next
- oker -

512

514
Place replacement éj

value in output
buffer

Is token
a query
element?

516

Is token
a query list
element?

518

Copy token to
output bufter

U.S. Patent Sep. 2, 1997 Sheet 7 of 7 5,664,173

FIG. 7 O

Separate

list elements

K = # of
list elements QJ
| 534
0 A 5
| Y

536
Clear output
buffer (J

Replace list - 538
in input buffer

with next
element value

Invoke

540
reentrant /
narser

942
éj

5,664,173

1

METHOD AND APPARATUS FOR
GENERATING DATABASE QUERIES FROM
A META-QUERY PATTERN

FIELD OF THE INVENTION

This invention relates to the testing of database software
systems and in particular to the testing of database engine

drivers in an Open DataBase Connection (ODBC) database
environment by the automatic generation of test commands
from a meta-query pattern.

PROBLEM

The computing structures and methods of the present
invention are built upon open standard database Application
Program Interfaces (APIs—also referred to herein as data-
base management interface means) such as Microsoft’s
ODBC or X/Open’s DATA MANAGEMENT: SQL CALL
LEVEL INTERFACE (X/Open Preliminary Specification
P303 ISBN 1-85912-015-6 - was previously publication
5203 - will become publication C451 available from
X/Open Company Ltd, Berks, United Kingdom). These
standards permit client/server database application programs
to be designed in accord with a common, standardized AP
while utilizing any underlying database engine which con-
forms to these standards for the permanent physical storage
of the managed information. End user installations using the
present invention may therefore utilize any presently
installed database management subsystem. The SQL
(Structured Query Language) has been widely adopted as a
de facto standard interface for the specification of database
queries (and related data management commands). The
ODBC API therefore enforces a standardized SQL query
language and performs any translations necessary for opera-
tion of a query upon a specific database engine (database
management subsystem). This hierarchical API structure
permits the application programmer to adhere to a single
database/query architecture and yet easily adapt (port) the
application program to the unique requirements of a par-
ticular database engine through the ODBC API library
functions. |

In testing such a standard database API, a test process
must generate a large number of test commands for each

database engine supported by the APL For example, a large
set of test commands is applied to Microsoft’s ODBC API

in order to test its use in conjunction with the dBase database
engine. Yet another large set of test commands is needed to
test ODBC when used in conjunction with the Access or
Paradox database engines, ctc. Though there is substantial
similarity in these plural sets of test commands, there are
invariably minor differences in syntax or semantics between
the queries generated for each unique database engine. For
example, some database engines support atomic data types
which are unique to the engine. Or, for example, the size
limits for certain data types may vary among various data-
base engines. In view of these differences, prior test methods
and tools for generating test commands for database API
subsystems have created large sets of test commands and
commands and stored them in a query database to be
retrieved when the corresponding database engine is tested
with the ODBC APL Each test command is “hard-coded” for
the specific database engine to which it corresponds. The
query database which stores these commands can theretfore
be quite large. As such, as with any large database, access to
the database for purposes of extracting test commands to
perform a particular test sequence can be quite time con-
suming. Adding, deleting or modifying test commands

10

15

20

25

30

35

45

50

35

65

2

stored in the large query database can also be time consum-
ing due to re-indexing operations associated with the
changes in the query database.

An additional problem with the query database techniques
taught by prior test products and methods arises from the
fact that the query database is itself another database which

must be operated in the same computing platform on which
the test commands are being applied to the ODBC APL
Whatever DBMS package is used for the storage of the test
commands in the query database must be available on, or
ported to, the computing platform on which the ODBC/
database engine combination is being tested. This porting
effort may add a substantial workload to the ODBC test
efforts if the DBMS selected for the query database storage
is not presently available on the computing platform pres-
ently being tested.

In view of the above discussions, it is dear that there exists
a need for methods and apparatus for managing and manipu-
lating test commands to be used in testing an ODBC/
database engine combination which improves speed of
access to the test commands, eases the modification of the
commands, and reduces the storage requirements for the
storage of the test commands.

SOLUTION

The present invention solves the above identified prob-
lems and other problems to thereby advance the state of the
useful arts by providing methods and associated apparatus
for generating SQL test commands from a query pattern
(also referred to herein as query template, meta-query, or
simply meta-language statement). The query pattern is
formed according to the syntax of a meta-language of the

present invention to define a set of SQL. test commands in a
concise syntactic statement. Each meta-language test com-

mand pattern (a meta-query) is parsed by the methods of the
present invention to generate all test commands in the set
defined by the meta-query. The SQL test commands so
generated are then applied to the database engine under test.

The meta-language of the present invention permits test
commands to be expressed in a concise, compact meta-
language syntax. Storage and modification of the concise,
compact meta-queries is simpler, faster, and requires sig-
nificantly less storage capacity as compared to the prior
techniques wherein all individual test commands are stored

in a test database. The meta-queries are stored in a standard
text file and may therefore be accessed or modified by any

of several well known techniques for viewing and modifying
text files.

The meta-language of the present invention expresses the
meta-queries according to the rules of a grammar definition.
The grammar definition includes “query elements” and
“query list elements.” The query elements serve as variable
place holders in the SQL test commands specified by the
meta-query. When the meta-query is processed to generate
test commands, the query element placeholder is replaced by
a variable value appropriate for the database engine being
tested. Query list elements provide a list of values to be
substituted into the generated test commands as each test
command is generated. When a query list element is speci-
fied in a meta-query, at least one query is generated for each
element in the query list element. If multiple query list
elements are specified in a meta-query, then a test command
is generated for each unique combination generated by
selecting one of the elements in each of the multiple query,
list elements.

The syntax of the meta-language is clearly and completely
defined by a simple BNF style specification as compared to

5,664,173

3

a complex database structure used by prior methods to store
and retrieve the set of test commands appropriate to the
database engine under test. The BNF definition defines the
rules for construction and generation of meta-language
commands the semantic interpretation of which is used to
- generate a set of SQL test commands.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a typical test environment
known in the art for testing a database API (e.g. Microsoft’s

ODB();

FIG. 2 is a block diagram of the database API test
environment of the present invention which utilizes a meta-
language syntax to represent large numbers of test com-
mands;

FIG. 3 is a block diagram of a computing environment in
which the test environment of the present invention oper-
ates;

FIG. 4 is a flowchart describing the operation of the query
profiler in accord with the methods of the present invention;

FIG. 5 is a flowchart which depicts addition detail of the
method shown in FIG. 4;

FIG. 6 is the first half of a flowchart of the reentrant parser
of the present invention which generates test commands
from meta-language statements; and

FIG. 7 is the second half of a flowchart of the reentrant
parser of the present invention which generates test com-
mands from meta-language statements.

DETAILED DESCRIPTION OF THE
INVENTION

OVERVIEW:

FIG. 1 is a block diagram of an approach to testing the
database API (such as Microsoft’s ODBC) in conjunction
with a chosen database engine. Query profiler 120 generates
test SQL commands and applies the generated test com-
mands to the database API 122 to be tested. The commands
generated are intended to test the database API 122 for
proper operation in conjunction with one of the plurality of
database engines 1 through N (124, 126, and 128). In accord
with the known methods for implementing query profiler
120, test database 130 is constructed and maintained to
contain all possible query commands and associated options
for the generation of all test SQL queries applicable to all
database engines 124, 126, and 128 associated with database
API 122, | |

The precise structure of test database 130 may be specific
to each database API 122 or specific to the needs of the
database engines 124, 126, and 128 to be used in conjunction
with the API 122. Therefore. the detailed structure of test
database 130 is not relevant to an overall understanding of
the operation of known prior techniques. Tables 100-118 arc
intended only as an exemplary database structure to dem-
onstrate the complexity of prior approaches. The various
tables and relationships depicted in FIG. 1 are used to define
and store the various commands needed to setup a particular
ODBC environment for testing a particnlar ODBC driver, to
store the various command options and command
parameters, and to store the test commands themselves,
among other information. The complex of the test database
grows dramatically as additional options, parameters, con-
figurations and environments are added to the testing of each
ODBC driver.

FIG. 2 is a block diagram of a query profiler 200 which
utilizes the structures and methods of the present invention.

10

15

20

25

30

33

45

50

55

65

4

Database API 122 and the database engines 124, 126, and
128 are identical to those of FIG. 1. Query profiler 200 of
FIG. 2 retrieves and processes the meta-language statements
(query templates) from the query templates file 202. Each
meta-language statement in the query templates file 202 may
define a plurality of test commands to be generated by the
query profiler 200. The query templates file 202 is a simple
text file which may be easily constructed and maintained by
any of several well known tools for manipulating text files.
The storage space required to store the query templates file
202 is significantly reduced as compared to the storage
requirements for equivalent the test database 130 of FIG. 1.
META-LANGUAGE SYNTAX AND SEMANTICS:

The meta-language of the present invention may be
viewed as a set of grammatical rules for constructing state-
ments used by the query profiler 200 of FIG. 2 to generate
test SQL commands. The meta-language is substantially
similar to the well known SQL query language with ele-
ments added to define rules for the construction of actual
SQL statements. A typical SQL query command, for
example, consists essentially of the following syntax:

SELECT column FROM tables WHERE condition

where: column is replaced by one or more column names,
tables is replaced by one or more table names, and condition
is replaced by a logical expression which must evaluate to
true for each row to be selected from the tables. The result
of the SQL query is a table constructed of the identified
columns and the rows selected by virtue of the logical
expression evaluating true for those rows. Some database
engines provide for additional elements to be named in the
identifying columns or tables or in the logical condition
expression. For example, parameters which further control
the search capability in the engine’s data management or
specific limitations or additions relating to types of sup-
ported data are frequently added to the features of a specific
database engine. Such additional elements are frequently
unique to the specific database engines supported by the
database APIL To thoroughly test a database API (such as
Microsoft’s ODBC) requires testing not only the features
common to all supported database engines, but also requires
the testing of features unique to each supported database
engine. Testing these database engine specific features in
conjunction with the database API requires the creation of a
large number of specialized command options.

The present invention defines a meta-language syntax and
grammar which builds upon the syntax of standard SQL
commands. The meta-language syntax adds variable ele-
ments to the SQL command syntax. When “parsed” by the
query profiler 200 (of FIG. 2) of the present invention, these
variable elements in the meta-language commands are
replaced by actual values and the resultant SQL commands
are thereby generated from the meta-language statements
(without the variable element syntax embedded). The gen-
erated SQL commands are then applied to the database API
122 to test its proper operation in conjunction with one of the
database engine drivers (124, 126, or 128). The variable
elements of the meta-language statement can specify one or
more actual values to use in the generation of test SQL
commands and may therefore compactly represent a large
volume of generated test SQL commands. Such large vol-
umes of test SQL comimands previously required significant
mass storage capacity and associated complexity to store
and retrieve the several SQL command sets required to test
the database API 122 operation.

Processing of the meta-language statements by the query
profiler 200 (of FIG. 2) automatically generates the test SQL

5,664,173

S

commands represented by the meta-language statements for
every data type supported by the specific database engine
driver under test (124, 126, or 128 of FIG. 2). The query
profiler 200 detects the data types supported by the database

engine through standard function calls of the database API
122. Such interface function calls to the API are well known

to those of ordinary skill in the art and are clearly described
in the public documentation available with the API (such as

Microsoft’s ODBC database API). The query profiler 200
then loops through the processing of the meta-language
statements to generate test SQL commands once for each
supported data type.

The variable element of the meta-language adds “query
elements” to the SQL query command syntax which are
replaced in generation of the test commands by actual values
appropriate to the database engine (124, 126, and 128 of
FIG. 1) under test with the database API 122 of FIG. 2. The
query elements are identified by query element identifiers
(name strings for example) and are delimited in the meta-
language statement by angled braces (<’ preceding the
query clement identifier and “>” following the query ele-
ment identifier). The following Table 1 provides exemplary
query clements presently contemplated in the best known
mode of the present invention. One of ordinary skill in the
art will readily recognize that this list may be extended to
include other query elements which hold the place of
language elements in the generated SQL queries and are
unique to the database engine drivers.

TABLE 1

Query Element
<qualifier>

Replacement Information

The current qualifier for the database engine driver
under test (1.e. the ODBC connection option -
SQL_ CURRENT __QUALIFIER)

Name of a table m test data for the SQL command
(where N is a number from 1 through the number of
tables in the test data)

Name of a column m a table 1n the test data for the
SQL command (where N 1s a number from 1 through
the number of columns in the associated table)

Name of an ahas for a column in the test data for the
SQL command

A constant data value for use in the SQL command
Name of generated column (1.e. one that doesn’t
currently exist in the created table and used in the
“ALTER TABLE” queries so that the colummn name
won’t conflict with an existing column name)

Data type of the <column name> element

<tableN>

<columniN>

<alias>

<data>
<column name>

<column def >

The meta-language (query templates/query patterns) of
the present invention also includes “query list elements”
which, when used in a meta-language statement, cause the
generation of a plurality of SQL commands; one for each
clement in the query element list. This feature of the
meta-language permits the compact representation of a large
set of test commands in a concise, single, meta-language
statement. This representation of a collection of test com-
mands is simpler to maintain or modify and requires sig-
nificantly less storage than the methods employed in the past
to test a database APL.

A query list element provides a list of alternate values to
be used in generating test commands from the meta-
language statement (query template). Each of the alternate
values in the query list element 1s used to replace the query
list element in the generation of one (or more) test com-
mands. In other words, a query list element that indicates
four alternate values will generate (at least) four test
commands, (at least) one each for each of the four alternate
values in the query list element. If multiple query list

10

15

20

25

30

35

40

45

50

35

65

6

elements are included in a meta-language statement, then the
query profiler (200 of FIG. 2) will generate a test command
for each combination of the elements in all the query list
elements of the statement. |

Query list elements are replaced in generation of the test
command by the alternate values supplied in the query list
element when test commands are generated to test the
database API 122. The query list elements are comma
separated values delimited by a pair of square braces (a ““|”
preceding the list and a “]” following the list). The following
Table 2 provides exemplary query list elements presently
contemplated in the best known mode of the present inven-
tion. One of ordinary skill in the art will readily recognize
that this exemplary list may be extended to include other
query list elements which hold the place of language ele-
ments in the generated SQL queries.

TABLE 2

Query List Element Replacement Information

[=<,<=>>=,1=1<,1> Generates eight test commands; one with each
] of the eight listed logical test (comparison)
operators (as used in the conditton clause)
Generates two test commands; one with each
of two Microsoft SQL Server syntax oufer join

operators

[*==*]

[—+,*/,%] Generates five test commands: one with each
of the five listed arithmetic operators
[SQL__DATE, Generates two test commands: one with each

SQL_TIME__STAMP] of the two listed standard data types

The following meta-language statement examples provide
further clarification of the power and syntax of the meta-

language for the specification of large numbers of test SQL
commands. In particular it is to be noted that the meta-
language may be applied to many SQL commands (not
merely the “SELECT” command). |

SELECT <tablel><columnl> FROM <tablel><table2> WHERE
<table>.<columnl> [=,<,<=>>=,!=1< !>] <table2>.<columnl>

This exemplary meta-language statement generates eight
queries selecting rows from column 1 of table 1 (in the test
data) where the column 1 value in table 1 of each row
compares using the selected one of eight comparison opera-
tors with the same row and column of table 2. The eight

generated queries are:

SELECT <tablel>.<columml> FROM <tablel><table2> WHERE
<tablel>.<columnl> = <table2>.<columnl>

SELECT <tablel>.<colummi> FROM <tablel> <table2> WHERE
<table1><columnl> < <table2>.<columnl>

SELECT <tablel>.<columnl> FROM <tablel><table2> WHERE
<tablel>.<columnl> <= <table2>.<columnl>

SELECT <tablel>.<columnl> FROM <tablel><table2> WHERE
<tablel><columnl> > <table2><columnl>

SELECT <tablel>.<columnl> FROM <tablel> <table2> WHERE
<tablel>.<columnl> >= <table2>.<columnl>

SELECT <tablel>.<columnl> FROM <tablel><table2> WHERE
<tablel>.<columnl> != <table2>.<columnl>

SELECT <tablel>.<columnl> FROM c<tablel><table2> WHERE
<table1><columnl> !< <table2>.<columnl>

SELECT <tablel>.<columnl> FROM <tablel><table2> WHERE

<tablel>.<columnl> !> <table2>.<columnl>

~ In addition, the query profiler 200 of FIG. 2 will generate
these eight test commands for all data types supported by the
selected database engine driver (124, 126, or 128 of FIG. 2).
For example, Microsoft Access version 2.0 supports 135
distinct data types. Therefore, this exemplary meta-language

5,664,173

7

statement generates 8%15 or 120 test commands when
testing the database API 122 in conjunction with a Microsoft
Access database engine driver.

As a further example, consider:

CREATE INDEX <table 1 > ON <table 1 > (<column name>
ASC) WITH IGNORE NULL

This exemplary meta-language statement generates a new
table index with a column name appropriate to the data type
currently being processed by the query profiler 200. As
noted above, Microsoft Access, for example, supports 15
data types and therefore, this meta-language statement gen-
erates 15 SQL commands when testing the database API 122
in conjunction with the Microsoft Access database engine
driver.

QUERY PROFILER:

Query profiler 200 of ¥FIG. 2 is operable on a data
processing system to parse the meta-language statements
and to generate test SQL. commands for application to the
database API 122. FIG. 3 is a block diagram depicting a
typical computing environment in which query profiler 200
operates. Data processing system 310 provides the central
processing, memory, and mass storage components for
operation of query profiler 200, database API 122, and
database engine drivers 124 and 126. Database engine
drivers 124 and 126 store and retrieve information on local
disks 300 and 302. Data processing system 310 may be
connected to other data processing systems 308 over net-
work attachment 306. Additional database engine drivers
128 and local disks 304 may reside within the data process-
ing system 308. Database API 122 may interact with a
remote database engine driver 128 through any of several
well known network computing architectures. Further, one
of ordinary skill in the computing arts will readily recognize
that the computing environment depicted in FIG. 3 is only
exemplary of one such architecture in which the structures
and methods of the present invention may operate. The
present invention is equally applicable to computing envi-
ronments without networked connections to other data pro-
cessing system or to distributed computing environment
utilizing other topological configurations or connectivity
technologies. |

FIG. 4 is a flowchart depicting the methods of the present
invention as implemented by the query profiler 200. Element
400 of FIG. 4 invokes functions in the database API (122 of
FIG. 2) required to associate the test procedure with a
particular database engine driver module under test (124,
126, or 126 of FIG. 2). Element 402 then generates test data
in tables created and managed by the database engine driver
under test. This test data is used by the selected database
engine 124, 126. or 128 through the database API 122 at the
direction of the query profiler 200 in its interpretation of the
meta-language statements. Since the query profiler generates
the test data, it can predict the expected result of each SQL
command generated from the meta-language statements and
applied to the database API and engine. The specific form of
the generated tables is a matter of design choice made by the
test engineering staff in creating the test procedures. One or
more tables may be created and each table may have one or
more columns as desired by the test engineers to adequately
test the database API interface to the database engine driver.

Elements 404 and 406 initialize for the Iooping functions
performed by elements 408—420. The test SQL commands
generated for testing the API interface to the engine are

generated for each data type supported by the underlying
database engine. Element 404 sets the variable “N to the

number of data types supported by the selected database

10

1S5

20

25

30

35

45

50

55

60

65

8

engine. Element 406 loads all the query patterns from a text
file in which they are stored. The query patterns are previ-
ously designed by the test engineers to compactly specify
the voluminous test commands required to adequately test
the interface between the database API and a database
engine driver module. As discussed above, the query pat-
terns are written in simple textual form in the syntax of the
meta-language discussed above. Element 406 serves to read
the text file storing the pre-defined query patterns in prepa-
ration for parsing the meta-language statements and gener-
ating the specified SQL commands therein.

Elements 408422 are repetitively operable for each data
type supported by the selected database engine driver. Ele-
ment 408 tests whether the counter variable “N” (indicating
the number of supported data types) has been decremented
to zero. On each 1iteration of the loop (elements 408-422),
element 422 1s operable to decrement the counter variable
“N.” Elements 410—420 are therefore operable to generate
the test commands specified by all query patterns for a single
data type supported by the selected database engine driver.

Element 410 sets the variable “M” to the number of query
patterns pre-defined by the test engineers in the text file. In
other words, the number of records to be processed in the
meta-language file. Each record provides another query
pattern in the meta-language syntax described above. Each
record is therefore processed in turn to generate all the test
SQL commands required to test the database API in con-
junction with the selected database engine driver.

Elements 412-420 are repetitively operable for each
record (meta-language statement or query pattern) retrieved
from the text file. Element 412 tests whether the counter
variable “M” (indicating the number of meta-language state-
ments in the text file) has been decremented to zero. On each
iteration of the loop (elements 412-420), element 420 is
operable to decrement the counter variable “M.” Elements
414-418 are therefore operable to generate the test com-
mands specified a single query patterns for a single data type
supported by the selected database engine driver.

Element 414 parses the meta-language statement to pro-
cess all query elements and query list elements. Parsing of
the meta-language statement includes locating all query
elements and replacing them by values appropriate to the
particular data type presently being processed and as appro-
priate for the selected database engine driver. Additionally,
the parsing process locates any query list elements in the
meta-language statement and generates one SQL command
for each element in the list. Each of the generated SQL
commands are thereby generated by substitution of actual
values for the variable elements of the meta-language state-
ment.

Element 416 then applies the SQL commands generated
by element 414 to the database API 122. The SQL com-
mands so applied are in turn transformed and transferred to
the selected database engine driver 124, 126, or 128 of FIG.
2 for actual processing upon the test data stored on the mass
storage devices (300, 302, and 304 of FIG. 3). Element 418
captures, records, and analyzes the results of the SQL
command processing returned by the database engine driver.
Processing of these results is discussed below in additional
detail.

As noted above, element 420 is next operable to decre-
ment the Loop counter variable “M” and element 422
decrements the loop counter variable “N” to control the
iterative looping of the method. When element 412 deter-
mines that all records in the meta-language text file have
been processed, it returns control to element 422 to process
another supported data type. Likewise, when element 408

5,664,173

9

determines that all supported data types have been
processed, the method completes processing.

FIGS. 5-7 combine to provide a flowchart providing
additional detail of the operation of element 414 of FIG. 4
which generates all SQL commands from a single query
template (meta-language statement). Element 500 of FIG. 5
places the query pattern (meta-language statement) to be
parsed into a memory input buffer. Element 502 of FIG. 5
then initially invokes the reentrant parser to parse the tokens
of the meta-language statement. Tokens in the meta-
language statement (query pattern or template) are, in their
simplest form, fields of non-space characters separated by
spaces. Each token is therefore either a query element (if it
is delimited by angle braces), or a query list element (if it is
delimited by square braces), or is a constant textual string
which forms a constant portion of the desired SQL command
to be generated. There may be a plurality of query elements
or query list elements in a single meta-language statement.
In addition, the elements of a query list element may
themselves be other query elements or query list elements
(i.. nested variable portions of the query template). For this
reason, the parser of the query profiler of the present
invention is reentrant so as to permit parsing of nested
variable elements within the template.

FIG. 6 depicts the details of the reentrant parser of the
query profiler. The parser is entered in a reentrant manner:
i.e. saving previous status and allocating local variables on
a stack. Element 504, sets the counter variable “J” to the
number of tokens found in the input buffer counter varible
J is provided as a parameter to the reentrant function.

Elements 506 and 520 are operable to loop on the invocation
of elements 510-518 (and 530-542 of FIG. 7 below) for
each token found in the input buffer. If element 506 deter-
mines that all tokens in the input buffer have been processed,
element 508 is operable to generate the completed SQL
command in the output buffer. The completed command 1s

then applied to the database API (122 of FIG. 2) as discussed
above with respect to FIG. 4. If further tokens remain to be

processed, element 510 is operable to get the next token
from the input buffer for further processing.

Element 512 determines if the token to be processed is a
query element type of token (i.e. delimited by angle braces).
If so, element 514 is operable to copy the replacement value
for the query element (as discussed above) into the output
buffer. This replacement value stands in place of the query
element in the SQL command being generated from the
query template. Processing then continues at element 520 by
looping through the process.

If the token is not a query element, the element 512
determines whether the token is a query list element (i.e.
delimited by square braces). If not, the token must be a
constant portion of the query pattern and so is simply copied
to the output buffer to become a constant part of the
generated SQL command. If the token is a query List
element, processing continues at element 530 of FIG. 7.

10

15

20

25

30

35

45

30

10

Element 530 of FIG. 7 separates the query list elements into
the individual values (the comma separated values of the
list). Element 532 sets the counter variable “K” to the
number of value elements in the list. It element 534 deter-
mines that there are no more values in the list to be
processed, then processing continues by returning to ele-
ment 520 of FIG. 6.

For each value in the list, elements 534-542 are invoked
to generate an SQL command in the output buffer. Element
536 first clears the output buffer generated up to this point
(by earlier operation of elements 506-520 of FIG. 6). Next,
element 538 creates a new input buffer with the current input
buffer but with the query list element (now being processed)
replaced by the next value from the list Element 540 then
invokes the reentrant parser function to re-parse the new
input buffer with the currently processed query list element
replaced by its next value from the list. After processing of
the revised meta-language statement (the new input buffer)
is complete, and the associated SQL commands are
generated, processing continues in the present invocation of
the parser with element 542 decrementing the loop count
variable “K” to indicate another value in the list is pro-
cessed. Upon completion of the processing of the present
query list element, processing continues at element 520 if
FIG. 6 to process the remaining tokens of the meta-language
statement.

Processing continues in this manner for each value in the
query list element until all SQL commands represented by
the query pattern (meta-language statement) have been
generated. One of ordinary skill in the art will recognize that
other forms of recursive of reentrant designs of the method
of the present invention may achieve the same purpose. Such
design choices for reentrant or recursive methods are well
known to those of ordinary skill in the software arts. In
addition, the methods of the present invention may be
simplified by restricting the meta-language syntax to pro-
hibit the nesting of, or even a plurality of, query list
elements. Such a design choice eliminates the need for
recursion in the processing of the meta-language. Again,
such design choices are well known to those of ordinary skill
in the software arts.

BNF DESCRIPTION OF GRAMMAR RULES:

The meta-language of the present invention may be
understood as a set of grammatical rules for the formation of
legal statements within the grammar. A BNF format descrip-
tion is a common format in which to express such rules. The
following BNF rule description includes the entire SQL
standard language grammatical rules from which the rules of
the present invention are an extension. The extensions to the
SQL grammar defined by the rules of the present invention
are highlighted in bold characters to distinguish them from
the standard rules which comprise the standard SQL lan-
guage. For added clarity, the enhancements to the SQL BNF
grammar rules all have identifiers that begin with the char-
acters “QP”.

135

20

25

35

5,664,173
11 12

Elements used in SQL Statements:

all-function ::= {AVG | MAX | MIN | SUM} (expression)
approximate-numeric-fiteral .= mantissaEexponent
approximate-numeric-type .= {approximate numeric types}
arqument-list ;= expression | expression, argument-list
base-table-identitier .. = QP-base-{able-name
base-table-name .= base-table-identifier

| owner-name.base-table-identifier

| qualifier-name qualifier-separator base-table-identifier

| qualifier-name qualifier-separator [owner-name].base-table-identifier
between-predicate .=

expression [NOT] BETWEEN expression AND expression
binary-literal ::= {implementation defined 3
binary-type ::= {binary types}
bit-literal ::= 0 | 1
bit-type ..= {bit types}
boolean-factor ::= [NOT] boolean-primary
boolean-primary .= predicate | { search-condition)
boolean-term ::= boolean-factor [AND boolean-term]
character ::= {any character in the implementor s character set}
character-string-literal .: = '{Character}...
character-string-type .:= {character types}
column-alias ::= QP-alias
column-identifier :: = QP-column-identifier

16

10

15

20

25

35

40

45

5,664,173
13 14

1001 /006

column-name ::= [table-name.lcolumn-identifier

column-name ::= [{table-name | correlation-name}.\column-identifier
comparison-operator ::= < | > | <= | »>=| = | <>
comparison-predicate ::= expression comparison-operator expression

comparison-predicate ::= expression QP-comparison-list expression
comparison-predicate ..= expression QP-outerjoin-ist expression
comparison-predicate .. =

expression comparison-operator {expression | (sub-query)}

correlation-name .= QP-alias

cursor-name :; = (QP-cursor-name
data-type ::= character-string-type
data-type .=

character-string-type

| exact-numeric-type

| approximate-numeric-type
data-type ::=

character-string-type

| exact-numeric-type

| approximate-numeric-type

| bit-type

| binary-type

| date-type

| time-type

| timestamp-type
date-separator .= -
date-type .= {date types}
date-value :: =

years-value date-separator months-value date-separator days-value
date-vajue ;=

QP-sql-date-time-ist -

days-value .= digit digit
digit :=0|1|2|3|4|5|6|7|8]9
distinct-function ::=

{AVG | COUNT | MAX | MIN | SUM} (DISTINCT column-name)
dynamic-parameter ::= 7
emnply-string .=
escape-character .= character
exact-numeric-literal .=

[+ |-] { unsigned-integer].unsigned-integer]

| unsigned-integer.

| .unsigned-integer }
exact-numeric-lype .= {exact numeric types}
exists-predicate ::= EXISTS (sub-query)
exponent .:= [+ |-] unsigned-integer
expression .= term | expression {+ |-} term
expression ;.= term | expression QP-math-operationist term

17

5,664,173
15 16

1001 /006

factor .= [+ |-)primary
hours-value ::= digit digit
index-identifier ::= QP-index-name
index-name ::= [index-qualifier.lindex-identifier
index-qualifier ;.= QP-index-qualifier
in-predicate ::= expression [NOT] IN {(value {, value}...) | (sub-query)}
insert-value .=

dynamic-parameter

| literal

| NULL

| USER
keyword .=

(see list of reserved keywords)
iength .:= unsigned-integer
letter ::= lower-case-letter | upper-case-letter
fike-predfcate .= axprassion [NOT] LIKE pattern-value
like-predicate :

express:on [N OT] UIKE pattern-vafue [ODBC-fike-escape-clause]
iiteral ::= character-string-literal
fiteral ::= character-string-literal | numeric-literaf
literal .= character-string-literaf

| numeric-fiteral

| bit-literal
| binary-literal
| ODBC-date—time-exten sion
fower-case-letter .
I E}Ib\C\dIelflglhlmlklllmlnlolp\qlrISItIUlv\WI
x{y]|z

mantissa ::= exact-numeric-literal
minutes-value .= digit digit
months-value .= digit digit
nuli-predicate ::= column-name 1S [NOT] NULL
numeric-literal ::= exact-numeric-literal | approximate-numeric-literal
QDBC-date-literal :: =
ODBC-std-esc-initiator d 'date-value’ ODBC-std-esc-terminator
| ODBC-ext-esc-initiator d 'date-value' ODBC-ext-esc-terminator
ODBC-date-time-extension :; =
ODBC-date-literal
| ODBC-time-literal
| ODBC-timestamp-literaf
ODBC-like-escape-clause ;.=
ODBC-std-esc-initiator escape 'escape-character’
ODBC-std-esc-terminator
| ODBC-ext-esc-initiator escape 'escape-character’
ODBC-ext-esc-terminator

18

10

15

25

39

45

5,664,173
17 18

1001 /006

ODB C-time-—hteral

ABTaiInia - _. . - TV - — :
t L FJL - 4 ...rf' L I F ST L O o =171 vyl

| ODBCm-esc-:nma tor t 'time-value' ODBC-ext-8sc-terminator
ODB C—t:mestamp—htera!

"
TR : I ATET=Tm

AaTale p -,
wnlled o PLLILIG). -

| ODBC—ext-esc-mmator ts ‘timestamp-vaiue’ ODBC-ext-esc—termmator
ODBC-axt-esc-initiator ::= {
ODB C—axtesc-tenninator =}
ODBC-outer-join-extension ;.=
ODBC-std-esc-initiator Oj outer-join ODBC-std-esc-terminator
| ODBC-ext-asc-initiator 0j outer-join ODBC-ext-esc-terminator
ODBC-scalar-function-extension .=
ODBC-std-esc-initiator In scalar-function ODBC-std-esc-terminator
| ODBC-ext-esc-initiator fn scalar-function ODBC-ext-esc-terminator
ODBC(C-std-esc-initiator .:= QODBC-std-esc-prefix SQL-esc-vendor-clause
ODBC-std-esc-prefix .= —(*
ODBC-std-esc-terminator .= *}—
order-by-clause ::= ORDER BY sort-specification [, sort-specificationy...
ouler-foin ::= table-name [correfation-name] {LEFT | RIGHT | FULL}
OUTER JOIN{table-name [correlation-name] | outer-join} ON search-
condition

.' -r"l-

owner-name .= QP-current-Qualifior

pattern-value ::= character-string-literal | dynamic-parameter
pattern-vaf ue .= character-string-literal | dynamic-parameter | USER
precision .= unsigned-mteger
predicate ::= comparison-predicate | like-predicate | null-predicate
predicate :
benveen—predfca te | comparison-predicate | exists-predicate
| in-predicate | like-predicate | nuli-predicate | quantified-predicate
primary .= column-name
dynamic-parameter
literal
(expression)
primary .= column-name
dynamic-parameter
literal
| sei-function-reference
- | USER
| (expression)
primary .:= column-name
| dynamic-parameter
| literal
| ODBC-scalar-function-extension
| set-function-reference
USER
(expression)

19

10

15

20

25

35

40

45

5,664,173
19 20

1001 /006

procedure ::= procedure-name | procedurs-name (procedure-parameter-iist)
procedure-identifier :: = QP-procedure-identifier
procedure-nams ;= procedure-identifier

| owner-name.procedure-identifier

| qualifier-name qualifier-separator procedure-identifier

| qualifier-name qualifier-separator [owner-name).procedure-identifier
procedure-parameter-list ::= procedure-parameter

| procedure-parameter, procedure-parameter-list
procedure-parameter ::= dynamic-parameter | litera! | empty-string
ref-table-name .- = base-table-identifier
qualifier-name ::= QP-cument-qualifier
qua!ifier-separator .= {implementation-defined}
quantified-predicate :.= expression comparison-operator {ALL | ANY}

(sub-query)

query-specification .=

SELECT [ALL | DISTINCT] sefect-ist

FROM table-reference-list

[WHERE search-condition)

[GROUP BY cofumn-name, {column-namel]...]

[HAVING search-condition)

ref-table-name :.= bass-table-identifier
| owner-name.base-table-identifier

| qualifier-name qualifier-separator base-table-identifier

| qualifier-name qualmer-s eparator [owner-name).base-table-identitier
referenced-columns ::= (column-identifier |, column-identifier}...)
referencing-columns ::= (column-identifier [, column-identifier]...)
scalar-function ::= function-name (argumeni-ist)
scale ::= unsigned-integer
searchi-condition ::= boolean-term [OR search-condition)
seconds-fraction ::= unsigned-integer
seconds-value ::= digit digit
select-list ::= * | select-sublist [, select-sublist
select-sublist ;.= expression
select-sublist ::= expression [[AS] column-alias]

| {table-name | corre!aﬁon-name}.*
set-function-reference ::= COUNT(*) | distinct-function | ali-function
sort-specification :: {uns:gned-mteger | column-name } [ASC | DESC]
SQL-—esc-vendoraciause = VENDOR(Microsoft), PRODUCT(ODBC)
sub-query ::

SELEGT [ALL | DISTINCT] sefect-iist

FROM table-reference-list

[WHERE search-condition}

[GROUP BY column-name [, column-name]...}

[HAVING search—condmon]

table-idantifier :: = QP-base-tablo-name
fable-name ::= table-identifier

10

15

25

30

35

45

5,664,173

21

1001 /006

| owner-name.table-identifier

| qualifier-name qualifier-separator table-identifier

| qualifier-name qualifier-separator [owner-name).table-identifie

table-reference ::= table-name

table-reference ::= table-name [correlation-name]
table-reference ::= table-name [correlation-name)

| ODBC-outer-join-axtension

table-reference-list .= table-reference [table-referencel..

term .= factor | term {*|/} factor
time-separator ..= .

time-type ::= {time types}
time-value .=

hours-value time-separator minutes-value time-separator

seconds-value
timestamp-separator .=
(The blank character.)

timestamp-type .= {timestamp types}

timestamp-value ::= date-value timestamp-separator

time-value|.seconds-fraction]

timestamp-value :: = QP-sqi-date-ime-ist

unsigned-integer ::= {digit}...
upper-case-letter ::=
A|IBI|C|D|E|F|G]|H
NIO|IP]Q|R|S|T|U|V
user-defined-name ;= letter[digit | letter
user-name ;= user-defined-name

llll'JI

W

value ::= literal | USER | dynamic-parameter
viewed-table-identifier ::= user-defined-name
viewed-table-name :: = viewed-table-identifier

| owner-name.viewed-table-identifier

| qualifier-name qualifier-separator viewed-table-identifier
| qualifier-name qualifier-separator [owner-name).viewegd- table-identifier

years-value .= digit digit digit digit

function-name ::= ODBC-string-functions |

ODBC-numeric-functions |

ODBC-time-and-date-functions |

ODBC-system-functions |
ODBC-converit-function

ODBC-string-functions ::= ASCII (string-exp) |

CHAR(code) |

CONCAT(string-axp1,string-exp2) |
DIFFERENCE(string_exp1,string_exp2) |

INSERT (string exp1,start,fength,string_exp2) |

LCASE(string exp) |

21

22

10

15

20

25

30

35

40

45

1001 /006

23

5,664,173

LEFT(string exp ,count) |

LENGTH(string exp) |

LOCATE(string exp1, string exp2[,start]) |
LTRIM(string exp) |

REPEAT (string _exp, count) |
REPLACE(smng exp1, string_exp2, string exp3) |
RIGHT (string_exp ,count) |
RTRIM(string_exp) |

SOUNDEX(string exp) |
SOUNDEX{count) |

RIGHT (string exp ,start, length) |
RTRIM(string exp)

string_exp ::= QP-column-identifier |

QP-sqgl-char-list |
string-literal |
ODBC-string-functions

string exp1 .

String exp2 ::
length ::

‘= Slring exp

= $tring exp

= QP-data-element |

QP-sqi-numeric-list |
number |
QDBC-numeric-functions

start :>= QP-dala-element |

number |
QP-sql-numeric-ist |
QDBC-numeric-functions
QP-data-element |
number |
QP-sqi-numeric-list |
ODBC-numeric-functions

count ::=

ODBC-numeric-functions ::= ABS(numeric exp) |

ACOS(float exp) |
ASIN(float_exp) |
ATAN(float exp) |
ATANZ(float exp1, float exp2) |

CEILING(nhumeric_exp) |

CQS{ffoat exp) |

COT(float exp) |

DEGREES (numeric exp) |
EXP(float exp) |
FLOOR(numeric_exp) |

LOG(float exp) |

LOG10(float exp) |
MOD(integer_exp1, integer exp2) |

22

10

15

20

25

35

40

45

_ 5,664,173
25

1001 /006

PI) | - o
POWER(numeric exp, integer exp) |
RADIANS(numeric exp) |
RAND([integer exp]) |
ROUND(numeric_exp, integer exp) |
SIGN(numeric exp) |

SIN(float exp) |

SQRT(ffoat exp) |

TAN(float exp) |

TRUNCATE(numeric exp, integer exp)

numeric_exp ::= QP-data-element |
QP-column-identifier |
QP-sqi-numesic-ist |
number |
ODBC-numeric-functions

float_exp ::= QP-daia-element |
QP-column-identifier |
QP-sqgl-numeric-list |
number |
ODBC-numeric-functions

integer exp ::= QP-data-element |
QP-column-identifier |
QP-sql-numericist |
number |
ODBC-numeric-functions

ODBC-time-and-date-functions ::= CURDATE() |
CURTIME(|
DATETIME(date exp) |
DAYOFMONTH(date exp) |
DAYOFWEEK(date exp) |
DAYOFYEAR(date exp) |
HOUR(date_exp) |
MINUTE(date exp) |
MONTH(date exp) |
MONTHNAME(date exp) |
NOW(|
QUARTER(date_exp) |
SECOND(date exp) |

TIMESTAMPADD (interval, integer exp, timestamp exp) |
TIMESTAMPDIFF (interval, timestamp expt , timestamp exp2) |

WEEK(date exp) |
YEAR(date exp)

23

26

10

15

20

25

30

35

43

5,664,173
27

1001 /006

date exp ::= QP-data-element |
QP-column-identifier |
QP-sql-date-time-list |
number |
ODBC-time-and-date-functions

timestamp exp ;.= QP-data-element |
QP-column-identifier |
QP-sql-date-time-list |

ODBC-time-and-date-functions

interval ::= SQL_TS! FRAC_SECOND |
SQL TSI SECOND |
SQL TSI MINUTE |
SQL TSI HOUR |
SQL_TSI DAY |
SQL_TSI WEEK |
SQL_TSI_ MONTH |
SQL TSI QUARTER |
SQL_TSI_YEAR |

ODBC-system-functions ::= DATABASE() |
IFNULL(exp, vaiue) |
USER() |

exp = column-name

exp == column-name QP-math-operation-list column-name

value ::= QP-data-element

ODBC-convert-function ::= CONVERT(QP-column-identifier , QP-sql-data-lype-list-elernent)
ODBC-convert-function :: = CONVERT(value-exp, data-type)

ODBC-data-type ::= SQL CHAR |
SQL VARCHAR |
SQL_LONGVARCHAR |
SQL DECIMAL |
SQL NUMERIC |
SQL SMALLINT |
SQL_INTEGER |
SQL REAL |
SQL_FLOAT |
SQL DOUBLE |
SQL TINYINT |
SQL BIGINT |

SQL BINARY |
SQL VARBINARY |

24

5,664,173
29

1001 /006

SQL LONGVARBINARY |
SQL_DATE |
SQL TIMESTAMP

ODBC-char-type ::= SQL CHAR |
SQL VARCHAR |
SQL LONGVARCHAR

ODBC-numeric-type ::= SQL DECIMAL |
SQL_NUMERIC |
SQL_SMALLINT |
SQL INTEGER |
SQL_REAL |
SQL FLOAT |
SQL DOUBLE |
SQL _TINYINT |
SQL BIGINT

ODBC-binary-type ::= SQL BINARY |
SQL VARBINARY |
SQL LONGVARBINARY

ODBC-date-time-type ::= SQL DATE |
SQL TIMESTAMP

QP-unction-name .= ASCIi()

QP-procedure-identifier .= <index-qualifier QFP-number>
QP-index-qualifier ::= <index-qualifier QP-number>
QP-cursor-name .= <cursor QP-number>

QP-index-name .= <create table QP-number>
QP-current-qualifier .= <qualifier >
QP-base-table-name .= <table QP-number>-
QP-table-extension .= <ext>
QP-column-identifier ::= <column QP-number >
QP-alias ;.= <alias number>
QP-data-elemeant = <data QP-number >
QP-column-name .= <column name>
QP-column-definition ::= <column def>
QP-list ::= [QP-comparison-ist |
QP-outer-join-ist |
QP-math-operation-list |
~ QP-sql-data-type-list |
QP-sqi-date-fime-list |
QP-sql-numeric-ist |
QP-sqi-char-list |
QP-clause-ist]

25

10

15

20

25

35

40

45

5,664,173
31

1001 /006

QP-clause-list :: = QP-clause-ist-elernent

QP-clause-list-element ::= QP-clause-list-element |
HAVING |

GROUP-BY |

ORDER-BY
QP-comparison-ist ::= QP-comparison-list-element
QP-outer-joindist :: = QP-outer-join-ist-element
QP-math-operationist :: = QP-math-operation-ist-element
QP-sqi-Gata-lype-ist :: = QP-sqi-data-type-list-element
QP-number::=0|1|2|3|4[5|6]|7]8]9]10..
QP-comparison-list-element :.= comparison-ist-element |

=| <} <=|>]>=|1=]1< |
QP-outer-join-list-element :: = outer-join-ist-element |
* — I e
QP-math-operation-element ::= QP-math-operation-element |
-t+ /%
QP-sql-data-lype-list-element :: = QP-sql-data-type-list-element |
ODBC-data-type

QP-sql-date-time-ist :: = ODBC-date-time-type
QP-sql-numevic-ist ::= ODBC-numeric-type
QP-sqi-char-list ::= ODBC-char-type
QP-sql-binary-list :: = ODBC-binary-type

SQL Statements:

statement : = alter-table-statement |

create-index-statement |
create-table-statement |
creats-view-statement |
defete-statement-positioned |
delete-statement-searched |
drop-index-statement |
drop-table-statement |
drop-view-statement |
grant-statement |
inseri-statement |
revoke-statement |
select-staternent |
select-for-update-statement |

update-statement-positioned |

update-statement-searched |

after-table-statement :: =
ALTER TABLE base-table-name

26

32

10

15

25

35

45

5,664,173
33 34

1001 /006

{ ADD column-identifier data-type
| ADD (column-identifier data-type [, column-identifier data-type]...)

}

alter-table-statement :: =
ALTER TABLE base-table-name

{ ADD column-identifier data-type
| ADD (column-identifier data-type [, column-identifier data-typej...)
| DROP [COLUMN] column-identifier [CASCADE | RESTRICT]

}

create-index-statement .=
CREATE [UNIQUE] INDEX index-name
ON base-table-name
(column-identifier [ASC | DESC]
[, column-identifier [ASC | DESC]]...)

create-table-statement .=
CREATE TABLE base-table-name

(column-element [, column-element] ...)
column-element ::= column-definition | table-constraint-definition
column-definition ::=

column-identifier data-type

[DEFAULT default-value]

[column-constraint-definition| column-constraint-agefinition]...]

column-constraint-definition .:=
NOT NULL

| UNIQUE | PRIMARY KEY
| REFERENCES ref-table-name referenced-columns
| CHECK (search-condition)

table-constramt-definttion ::=.
UNIQUE (column-identifier {, column-identifier] ...)
| PRIMARY KEY (cofumn-identifier
[, coflumn-identifier] ...}
| CHECK (search-condition)
| FOREIGN KEY referencing-columns REFERENCES
ref-table-name referenced-columns

create-view-statement .. =
CREATE VIEW viewed-table-name
[(column-identifier [, column-identifier]...)]
AS query-specification

delete-statement-positioned .=
DELETE FROM table-name WHERE CURRENT OF cursor-name

27

5,664,173
35 36

1001/006

delete-statement-searched :: =
DELETE FROM table-name [WHERE search-condition]

drop-index-statement .. =
DROP INDEX index-name

drop-table-statement ;. =
DROP TABLE base-table-name
[CASCADE | RESTRICT]

drop-view-gtatement .. =
DROP VIEW viewed-lable-name
[CASCADE | RESTRICT 1

grant-statement .. =
GRANT {ALL. | grant-privifege [, grant-privilege]... }
ON fable-name
TO {PUBWIC | user-name |, user-namel]... }
grant-privilege ::=
DELETE
| INSERT
| SELECT
| UPDATE [(column-identifier [, column-identifier]...)]
| REFERENCES [{ column-identifier
[, column-identifier]...)]

inseri-statement .. =
INSERT INTO table-name [(column-ideritifier |, column-identifier]...)]
VALUES (insen-valuel, insert-value]...)

insert-statement .=
INSERT INTO table-name [(column-identifier [, column-identifier]...)]
{ query-specification | VALUES ({insert-value [, insert-valuel]...)}

revoke-statement .. =
REVOKE {ALL | revoke-privilege [, revoke-privilege]... }
ON table-name -
FROM {PUBLIC | user-name [, user-namej... }
[CASCADE | RESTRICT |}
revoke-privilege .=
DELETE
| INSERT
| SELECT
| UPDATE

| REFERENCES

28

10

15

25

30

35

40

J,664,173
37

1001/006

select-statement ::
SELECT [ALL | DISTINCT] seIect-!:st
FROM table-reference-list

[WHERE search-condition]
[order-by-clause]

select-statement :: =
SELECT [ALL | DISTINCT] sefect-fist
FROM table-reference-list
[WHERE search-condition)
[GROUP BY cofumn-name |, column-name]]
[HAVING search-condition)
[order-by-clause]

select-statement ::
SELECT [ALL | DISTINCT] select-ﬂst
FROM table-reference-list

[WHERE search-condition]

[GROUP BY column-name [, column-name)...]
|HAVING search-condition]

[UNION [ALL] select-statement]...
|order-by-clause)

select-for-update-statement :: =

SELECT [ALL | DISTINCT] select-list
FROM table-reference-list

[WHERE ssarch-condition]
FOR UPDATE OF [column-name [, column-name]...)

upaate-statement-positioned :: =
UPDATE table-name
SET column-identifier = {expression | NULL}

[. column-identifier = {expression | NULL}]...
WHERE CURRENT OF cursor-name

update-statement-searched
UPDATE fable-name

SET column-identifier = {expression | NULL }

[, column-identifier = {expression | NULL}]...
[WHERE search-condition)

5,664,173

39

While the invention has been illustrated and described in
detail in the drawings and foregoing description, such illus-
tration and description is to be considered as exemplary and
not restrictive in character, it being understood that only the
preferred embodiment and minor variants thereof have been
shown and described and that all changes and modifications
that come within the spirit of the invention are desired to be
protected.

What is claimed is:

1. Computer interpretable grammatical rules for generat-
ing a plurality of queries in a grammar for testing a database
engine driver, said grammatical rules comprising:

static elements for generating constant portions of said

plurality of queries. wherein said static elements are
copied to a buffer associated with a computer to gen-
erate said plurality of queries from said grammatical
rules; and

variable elements selected from at least one of a group
consisting of: a query element and a query list element,
for generating database engine driver specific portions
of said plurality of queries, wherein said variable
elements are replaced in said buffer by values specific
to a particular database engine driver to generate said
plurality of queries from said, grammatical rules.

2. The grammatical rules of claim 1 wherein said query
element is enclosed by a start delimiter and an end delimiter.

3. The grammatical rules of claim 2 wherein said start
delimiter is a less-than character (<) and said end delimiter
is a greater-than character (*“>"), and a comma character
(*“,”) separates adjacent ones of said plurality of values in
said query clement.

4. The grammatical rules of claim 1 wherein said query
ist element is enclosed by a start delimiter and an end
delimiter.

5. The grammatical rules of claim 4 wherein said start

delimiter is a left square brace character (“[”), and said end
delimiter is a right square brace character (“]”), and a

comma character (*,”) separates adjacent ones of said plu-
rality of values in said query list element.
6. A computer operable method for testing a database
driver, said method comprising:
parsing a meta-language statement into at least one meta-
language statement token each comprised of at least
one token element where any one of said at least one
meta-language statement token that is comprised of
more than one token element is a variable token ele-
ment delimited by a pair of variable token element
delimiters and said variable token element is a type

10

15

20

25

30

33

45

40

selected from at least one of a group consisting of: a
query element and a query list element;

expanding said meta-language statement into a plurality
of meta-language test queries comprised of one of said
plurality of meta-language test queries tor each unique
combination of said at least one token element in each
of said at least one meta-language statement token;

generating a plurality of data type specific test queries
from said plurality of meta-language test queries by
direct substitution of a data type specific database
driver query element for each substitutable one of said
at least one token element in each of said plurality of
meta-language test queries;

repeating said step of generating for each data type

supported by said database driver; and

applying said plurality of data type specific test queries to

said database driver.

7. A method according to claim 6 wherein said pair of
variable token element delimiters for said query element
include a less-than symbol (*<”) as a start delimiter and a
oreater-than symbol (*>") as an end delimiter, and individual
tokens of said query element are separated by a comma
symbol (“,”).

8. A method according to claim 6 wherein said pair of
variable token element delimiters for said query list element
include a left square brace symbol (“[”) as a start delimiter
and a right square brace symbol (“]”) as an end delimiter,
and individual tokens of said query list element are sepa-
rated by a comma symbol (*,”).

9. Arule-based test apparatus for generating a plurality of
test commands to test a database engine driver, said appa-
ratus comprising:

a memory;

a processor connected to said memory;

a plurality of rules, stored in said memory, wherein each
of said plurality of ruies is encoded in a meta-language
syntax used to represent a plurality of test commands
that are executable on corresponding ones of a plurality

of database engine drivers; and

processing means, operable in said processor, for parsing
a meta-language statement input and for generating
each of said plurality of test commands according to
said plurality of rules and for applying each of said
plurality of test commands to said database engine
driver.

	Front Page
	Drawings
	Specification
	Claims

