United States Patent 9

Tyler et al.
[S4] METHOD AND APPARATUS FOR |
REDUCING STORAGE REQUIREMENTS
FOR DISPLAY DATA
[75] Inventors: William B. Tyler, Carmel; Nicholas J.
Foskett, Mountain View; Soon Y.
Kong, Cupertino; Richard N. Fall,
Palo Alto; Ronald S. Gentile, Atherton,
all of Calif.
[73] Assignee: Adobe Systems Incorporated, San
Jose, Calif.
[21] Appl. No.: 484,344
22] Filed: Jun. 7, 1995
Related U.S. Application Data
[63] Continuation-in-part of Ser. No. 974,204, Nov. 10, 1992.
[S1] It CLO e eeeeceecememsensesesssssesans GO6K 15/00
[52] U.S. Cl eevereeennrereessennssennens 395/117; 395/115
[58] Field of Searchevveenievenrensnernes 395/114, 112,
395/115, 116, 117, 509, 520, 521, 523;
382/232, 233, 235, 236; 358/450, 444,
540, 426, 261.3, 261.4, 432, 433
[56] References Cited
U.S. PATENT DOCUMENTS
5,034,804 7/1991 Sasaki €t al. wooeeveeeerreecmeemreesennns 358/41
5,150,454 9/1992 Wood et al.cceeeeccevencccrnnnees. 395/114
5,151,949 9/1992 Miyata ..cccececiciveccsnssnnacansseoresses 382/56
5,199.803 4/1993 Shimizu et al.ccccevirvereneeene 400/121
5207517 5/1993 JH0 .cccceerrrecereenreceseoreorracasneeccasens 400/121
5,208,676 5/1993 INUL .cceeeeeeeeeenererseneccssessossansescsss 358/296
5,241,397 8/1993 Yamadacceevvivcceecascosansssanee 358/296
5270,728 12/1993 Lund et al.cccererareerrccconcenanes 346/1.1
5272,768 12/1993 Bauman et al.cccccceerereennes 395/110
5,276,780 1/1994 Sugiuracccceeerscssserecsecsrnanns 395/116
5205233 3/1994 Ota ..ccccceereirrnsrrnrencesccsscsenacsannnes 395/115
5299292 3/1994 Kadowaki et al.cccovseerverenes 395/108
5,347,368 9/1994 Mochizukiecececeiereenercrcrnecens 3581296

39““‘m

US005638498A

(111 Patent Number: 5,638,498
451 Date of Patent: Jun. 10, 1997
5,354,135 10/1994 Sakagami et al.ccccevirennnn. 400/124
5,355,441 10/1994 Kawal €t al.ccovevenseeernseneeses 305/115
5,374,943 12/1994 Lehmann et al.ceeemrenmneeccennen 347/9
5,377,312 12/1994 Kobayashicceecceseesecseecrancen 305/116
FOREIGN PATENT DOCUMENTS
0320014A2 6/1989 European Pat. Off. 15772
0475601A2 3/1992 European Pat. Off. 15772
0475601A3 3/1992 European Pat. Off. 15772
OTHER PUBLICATIONS

Okada, Yoshiyuki et al., “Adaptive Coding for Text and
Dithered Continuous—Tone Images,”, Fujitsu Sci. Tech, Jun.
1987, pp. 101-109.

Mintzer, Fred, “Integrating Image Into Computers for Pub-
lishing, ” IEEE, Conference Record vol. 2, Nov. 15-18,
1987, pp. 19.6.1-19.6 4.

Primary Examiner—Arthur G. Evans
Attorney, Agent, or Firm—TFish & Richardson P.C.

[57] ABSTRACT

A method and apparatus for reducing storage requirements
for display data on a computer system. Data objects to be
displayed are organized into display lists and each data
object includes an object type, such as text, graphic, and
image. The data objects are rasterized into an uncompressed
band buffer and divided into non-intersecting bitmap regions
each identified with one or more object types. Each non-
empty region is assigned a compression algorithm depen-
dent upon the type of the region and specified compression
constraints. The regions are combined with each other into
larger regions if appropriate, and each region is compressed
using its assigned compression algorithm into a compressed
band buffer, thus reducing the required storage space for the
data objects. The compressed data is decompressed in scan
line order with a selected decompression algorithm corre-
sponding to the assigned compression algorithms to produce
uncompressed output data. The uncompressed output data 1s
supplied to an output display device for display.

60 Claims, 18 Drawing Sheets

U.S. Patent

Jun. 10, 1997 Sheet 1 of 18 5,638,498

COMPUTEM

5,638,498

J—_—_--—---——

92 -
® "
“ "
3 o
g
e |m T e e e e e e e e e e e T ST TS |
| | |
m oz 7 aunhy,
- _ .
—AN " |
— |
- (R T T
. __ _
m " WVH "
_ |
s K o O H31NdINOD
m r 0€ 8c | m
" FE ct | | cl
| . |
“ LE bz
_ T
| |

U.S. Patent

U.S. Patent

Jun. 10, 1997 Sheet 3 of 18 5,638,498

gure 3
@)

RASTERIZE AND
COMPRESS INPUT
DATA OF A PAGE 44
BASED UPON

RASTERIZED OBJECT
TYPES AND STORE

I

DECOMPRESS
BASED UPON
COMPRESSION }—46
ALGORITHM AND
DISPLAY

YES ANOTHER 48
PAGE?

NO

SO

U.S. Patent

5,638,498

Jun. 10, 1997 Sheet 4 of 18

SET COMPRESSION
LEVEL TO LOWEST
LEVEL

REPRESENT ALL BANDS
AS COMPRESSED FORM 156
OF WHITESPACE

. 69
 CREATE AN EMPTY 58 @
COLLECTOR PER BAND
- YES
60 0
/7 ENDOF T\ YES pispLAY X7
PAGE? LIST EMPTY?
NO

DISPLAY
LIST STORAGE
EXHAUSTED?,

NO

RETRIEVE INPUT |
OBJECT 64

STORE TYPE AND
BOUNDING BOX OF INPUT
OBJECT IN COLLECTOR

FOR BANDS SPANNED BY
OBJECT

ADD INPUT OBJECT | _g8
TO DISPLAY LIST

U.S. Patent Jun. 10, 1997 Sheet 5 of 18 5,638,498

SELECT A BAND, "A",
HAVING DISPLAY LIST
ENTRIES

44

e

75

1S AN

UNCOMPRESSED
BAND BUFFER
AVAILABLE?

74
S BAND A DATA |

COMPRESSED
STATE?

DECOMPRESS
BAND DATA INTO
UNCOMPRESSED
BAND BUFFER

RASTERIZE DISPLAY LIST
ENTRIES OF BAND A
INTO UNCOMPRESSED
BAND BUFFER

/8

77

SET A=THE BAND ID
OF BAND IN
UNCOMPRESSED
BAND BUFFER

ATTEMPT TO
COMPRESS
BAND A DATA

82
COMPRESSED \, NO
DATA FITS?
YES

84

ALL DISPLAY
LISTS WITH
ENTRIES
PROCESSED?

YES
86
AT END OF NO
PAGE?
YES

T

FIGURLE 4B

NO

U.S. Patent Jun. 10, 1997 Sheet 6 of 18 5,638,498

$igure 4c
N ©
90 92

. NO
HIGHER LEVEL
v FAILURE

OF COMPRESSIOCN
AVAILABLE?
YES 93
ADVANCE TO NEXT
HIGHER COMPRESSION 94
LEVEL

ANY
COMPRESSED BANDS
NOT AT CURRENT

COMPRESSION
LEVEL ?

YES

SELECT A BAND B'AT A
LOWER COMPRESSION
LEVEL

98

DECOMPRESS BAND B
INTO UNCOMPRESSED
BAND BUFFER 100

ATTEMPT TO
106 COMPRESS BAND B
- DATA AT CURRENT 102

COMPRESSION LEVEL

RECOMPRESS
BAND B AT

PREVIOUS
LOWER NO &ompressen 104
COMPRESSION BAND B FITS?
LEVEL

YES 108

POLICY TO YES
RECOMPRESS
ALL BANDS?

5,638,498

Sheet 7 of 18

Jun. 10, 1997

U.S. Patent

R k- - F " 4 - F F F

by S e oy e

rrrrrrrrrrrrrrrrrrrrrr

o

L

Ay, e R

W W

A

'

e v W RAR AR i

-

+ >

£

L

r % " FET TR

L, S

T - =

A R A

e

lllllllllllllllllll

- . -
Fga1,7,7 1 _E_ % & m_E_& Ly

¥ E E_ 7 1 T 7 7 mwr -
L N N W N]L

-.-.Iu-.a.il.—.._l.—.

LI NN B N N I
- R * - = oa

omon ke om ke k

.-.- m m.'. ﬁ m. .HL u-h rLu

I-.l-l..-l.ll.t.l.nw-.l..l..-ltl-I_.l-..-_tlll"...-lthr_“
ammads.
.

:
»

]
kA a oy ol
i

L

T)
na ko ko

lllll

LR NN N
[y

] = 1 1 1 %
% & bk 4 4 B BB %

L

W R

] .h:i:il

AT W LW RS e

N N

eu

LA AR AEE

L I e T AR . RO N P N O L o U R it el e
. SN N N R R B - -
A d P FAF &L A AT -.l.---i.-!.-.-.l1l1|rlriui-n-.uqr--‘--.i.l.l.-rnrn.lrr-r.-..a..l..a..-..- R -.-.--.1-..;.vrv-.;..“......r”-..r.ra..-. I A I AT IE BT
llllllllllllllllllllllllllllll L--- -----r-11l - .-III III IIIII1I I.-.-.-. i I1II.I - 4 ' ' LR L LI I L L L L
- L] L e e e A T iy e gt e e e e e R R R ETE E M m m aw

mnt. W Y'Y

"y

S S

i i d

1

r 'I"'

Wbty AAGL ARS. A TORE E

lllllllllllllll

1
-I
)
]
.
-I
.

u
L
.
e
L
L]
L]
*

[- = - a n
l-llll.l

R S s

e -TEP o,

SAAE AP M e

r o+
=

M

LA B L
M AR
wais S

e
e’

-
L]
- .

v
4

S

1 a I FF4wrr+t %% 4+ K"

= B L J 4 @ ® ®m Jg 5 m 55 ® 55wt 4178 48 5k kAN

"= g b op g p g ch s AR R LR

L R NN

o4 d_d_L

=1 w1 o1

[l St i)

5,638,498

Ay A4 1OIA

: alay os|e sI Ixa |

_ I
| welqo s |
m__, vzl AA
3 ————] ‘A

A/ cli

U.S. Patent

5,638,498

Iy ,mVN oLZ L€}

LEL

1

Sheet 9 of 18

Jun. 10, 1997

U.S. Patent

U.S. Patent

Jun. 10, 1997 Sheet 10 of 18 5,638,498

66

. Figure 5

134

EW OBJEC 136
CAN COMBINE VES
EASILY WITH COMBINE LIKE
OBJECT OF SAME
TYPE?

NO
140

- ENOUGH
STORAGE IN
COLLECTOR TO ADD
OBJECT'S INFQO?

w

FORCE OBJECT
COMBINATIONS TO
FREE STORAGE

YES

ADD OBJECT TYPE

AND BBOX INFO TO
COLLECTOR

U.S. Patent Jun. 10, 1997 Sheet 11 of 18 5,638,498

148
< o

150

RETRIEVE
BOUNDING BOX
COORDINATES OF
NEW OBJECT AND
STORED OBJECT

REPLACE ANY BBOX
COORDINATES OF STORED 152
OBJECT WITH CORRESPONDING

BBOX COORDINATES OF NEW
OBJECT IF CONDITIONS MET

156

COMPUTE THE COST OF
COMBINING COLLECTED
OBJECTS WITH OTHER
COLLECTED OBJECTS OF THE
SAME TYPE

158

SELECT BOUNDING BOX
COORDINATES OF THE OBJECT PAIR
HAVING THE SMALLEST COST OF

160
COMBINATION '

REPLACE THE TWO SELECTED
OBJECTS WITH A NEW COMBINED
OBJECT HAVING THE SAME TYPE

AND EACH BBOX COORDINATE 162
FROM ONE OF THE TWO OBJECTS

168 YES

MORE
COMBINATIONS
POSSIBLE?

164

DESIRED

NUMBER OF
COMBINATIONS
DONE?

NO

166

U.S. Patent Jun. 10, 1997 Sheet 12 of 18 5,638,498

Gy

USING COLLECTED OBJECT DATA,
FIND A SET OF NON-INTERSECTING
RECTANGULAR REGIONS THAT
COVERS ALL OBJECTS IN BAND

Figure 8

182

80

ASSIGN EACH REGION AN EMPTY
SET OF TYPES AND SET EACH
REGION'S "MARKED" FLAG TO FALSE

184

186
NO

| < NUMBER OF
OBJECTS IN
BAND?

FOR THE SET OF REGIONS
COVERING OBJECT(),
ADD THE TYPE OF
OBJECT(i) TO EACH
REGION AND SET EACH
REGION'S MARKED FLAG
TO "TRUE"

ASSIGN THE BEST
COMPRESSION
ALGORITHM TO EACH

REGION BASED ON THE
TYPE OF EACH REGION
AND OTHER FACTORS

COMBINE ANY ELIGIBLE
196 REGIONS BASED ON
CRITERIA

198

200 ATTEMPT TO COMPRESS BAND

DATA FROM REGIONS INTO
COMPRESSED BAND BUFFER
ACCORDING TO ASSIGNED
ALGORITHMS

U.S. Patent Jun. 10, 1997 Sheet 13 of 18 5,638,498
212

(203 . ALGORITHM TABLE /204

201 <—ALG ENTRY 1 [[ZW) [PARAMETERS 2
?:ALG ENTRY 2 (DCT-BASED) [PARAMETERSZ)
ALG ENTRY 3 (LZW) [PARAMETERS3]
ALG ENTRY 4 (DCT-BASED) [PARAMETERS4]
ALG ENTRY 5 (LZW AND DPCM) [PARAMETERSS]
ALG ENTRY 6 (LZW AND DPCM) [PARAMETERSS]
ALG ENTRY 7 (PDR) [PARAMETERS?]

202 —

ﬁ'gure Sa

INDEXING TABLE /205
TEXT IMAGE GRAPHIC ,208 209
NO NO NO (OALegéTHM ASSIGNED)

YES NO NO _~(Q=0,CR=20,ALGENTRY 1)
2138~ _.(Q=2,CR=5.0, ALG ENTRY 3) [-207a
213b \

211

(Q=4,CR =10.0, ALG ENTRY 5

NO NO YES/ (Q=0,CR=2.0, ALG ENTRY 1)
213c” (Q=0,CR=3.0, ALGENTRY 3) L 5p7
(Q =4, CR = 8.0, ALG ENTRY 6)

NO YES NS/(Q =0, CR = 4.0, ALG ENTRY 2)
213 — »{(Q=1,CR=7.0, ALG ENTRY 4)
~~—=(Q =3, CR =9.0, ALG ENTRY 5)

YES NO YES (Q=0,CR=20,ALGENTRY 1)
(Q =3, CR = 5.0, ALG ENTRY 5)
(Q =5, CR = 6.0, ALG ENTRY 6)

NO YES YES (Q=0,CR=2.0,ALG ENTRY 6)
~ (Q=2,CR =25, ALG ENTRY 2)
(Q =3, CR =5.0, ALG ENTRY 7)

YES YES NO _(Q=0,CR=20,ALGENTRY 6)
213 (Q =1, CR = 3.0, ALG ENTRY 5) ~207b
(Q =4, CR =45, ALG ENTRY 2)

YES YES YES (Q=0,CR=1.5 ALG ENTRY 5)

(Q=2,CR = 2.0, ALG ENTRY 4)
Figure 8b

Jun. 10, 1997 Sheet 14 of 18 5,638,498

o
' 182

s

U.S. Patent

CREATE ARRAY OF ALL X
COORDINATES THAT DESCRIBE 219

LEFT OR RIGHT EDGES OF ‘
?’zgure 9

BOUNDING BOXES IN BAND

SORT ARRAY OF X COORDINATES
IN ORDER OF INCREASING X AND
REMOVE DUPLICATE VALUES; | 514
nX = NUMBER OF VALUES IN
RESULTING ARRAY

CREATE ARRAY OF ALL Y
COORDINATES THAT DESCRIBE 216
TOP OR BOTTOM EDGES OF '

BOUNDING BOXES IN BAND

SORT ARRAY OF Y COORDINATES
IN ORDER OF INCREASING Y AND
REMOVE DUPLICATE VALUES; 218
nY = NUMBER OF VALUES IN
RESULTING ARRAY '

DIVIDE BAND INTO (nX-1)(nY-1) 220

RECTANGULAR REGIONS

oy

221
A REGION DATA STRUCTURE
222 ~~\MASTER FLAG 294
SLAVE FLAG—"]
226 ~~MARKED FLAG ﬁg ure 9(1
X INDEX~— 228

230 ~~Y INDEX
OBJECT TYPES— 232

U.S. Patent Jun. 10, 1997 Sheet 15 of 18 5,638,498

240 ,
(e 196

g

FOR EACH ROW OF REGIONS,
COMBINE ADJACENT REGIONS
HAVING THE SAME COMPRESSION
ALGORITHM

COMBINE PAIRS OF NON-EMPTY
REGIONS WITH EMPTY REGIONS
SEPARATING THE PAIR IF
HARDWARE CONSTRAINTS
VIOLATED ON THAT ROW OF
REGIONS

248

FORCE
YES COMBINATIONS OF
ADDITIONAL
REGIONS WITHIN
ROW

HARDWARE
CONSTRAINTS

STILL VIOLATED
IN A ROW?

NO

COMBINE VERTICALLY

ADJACENT REGIONS WHEN
POSSIBLE AND COST WITHIN
LIMITS

&
hgure 10

U.S. Patent

DESIGNATE AND MARK
LOWER LEFT REGION AS
MASTER AND REST OF
REGIONS IN GROUP AS
SLAVES

260

AUGMENT THE OBJECT
TYPE OF THE MASTER
WITH ALL THE OBJECT
TYPES OF THE SLAVE
TILES

MARK MASTER WITH
THE BOUNDARIES OF
SET OF SLAVES

CAUSE ALL
SLAVES TO POINT
TO MASTER

(oD 270

277

278

Figure 12

YES

Jun. 10, 1997

268

Sheet 16 of 18

Figure 11

262

242
e

264

266

274

276

READ ATTRIBUTES FOR A
NON-EMPTY REGION

FROM REGION BUFFER

CREATE REGION DESCRIPTOR
FOR NON-EMPTY REGION
USING ATTRIBUTES

ATTEMPT TO COMPRESS
ON-EMPTY REGION FROM
UNCOMPRESSED BAND
BUFFER SPECIFIED BY
ATTRIBUTES

YES

ANOTHER
REGION IN REGION
BUFFER?

NO
281

282

5,638,498

U.S. Patent

5,638,498

Jun. 10, 1997 Sheet 17 of 18
290

LOAD A NUMBER OF REGIONS
DESCRIPTORS INTO
DECOMPRESSION BUFFER

‘gure 13

292
L 46

DETERMINE REGIONS
CROSSED BY NEXT
SCAN LINE 300

OUTPUT BACKGRQOUND
PIXELS TO DISPLAY
UNTIL SCAN LINE
POINTER POINTS TO

START OF REGION OR
END OF SCAN LINE

298

SCAN LINE

POINTER AT A
REGION?

GET DECOMPRESSION
STATE FOR REGION VES

DECOMPRESS AND
OUTPUT REGION DATA
UNTIL SCAN LINE
POINTER POINTS TO
END OF REGION

POINTER AT END
OF SCAN LINE?
YES 312
COMPLETED LOAD ADDITIONAL
ANY REGIONS? HEGlON DESCRIPTORS
3 14 |
NO POINTER AT YES 316
END OF PAGE?

POINTER AT 302

START OF
REGION?

NO

306

5,638,498

Sheet 18 of 18

Jun. 10, 1997

U.S. Patent

pEE

L imiah b . i gl . dmigs apEm g —iafal - - T T - minl Y e —-— e W R AR - —a- g e~

pct

T anbif,

9 fe———iM—— g3
26 UOISQT STY
LH) C[Toe

£
9ce

8c g 8ct

gee

J,638,498

1

METHOD AND APPARATUS FOR

REDUCING STORAGE REQUIREMENTS
FOR DISPLAY DATA

CROSS REFERENCE TO RELATED
APPLICATTONS

This application is a continuation-in-part of co-pending
parent patent application 07/974,204, filed Nov. 10, 1992 on
behalf of Ronald S. Gentile, entitled, “Method and Appara-
tus for Processing Data for a Visual-Output Device with
Reduced Buffer Memory Requirements,” assigned to the
assignee of this present application, and which is incorpo-
rated by reference herein.

BACKGROUND OF THE INVENTION

The present invention relates generally to the display of
data by output devices, and more particularly to a method
and apparatus for reducing memory storage requirements
when displaying data on an output display device.

A computer system can output data to a wide variety of
output display devices. Output display devices such as laser
printers, plotters, and other printing devices produce an
image or “visual representation” onto a sheet of paper or the
like, while output display devices such as computer moni-
tors develop visual representations on a computer screen.

Many output display devices receive display data in the
form of a “bitmap” or “pixel map” and generate visual
representations from the display data. A pixel is a funda-
mental picture element of a visual representation generated
by a display device, and a bitmap is a data structure
including information concerning a number of pixels of the
representation. Bitmaps that contain more than on/off infor-

mation are often referred to as “pixel maps.” As used herein,
both bitmaps and pixel maps are referred to as “bitmaps.”

A printer can print dots on a piece of paper corresponding
to the information of a bitmap. Alternatively, a computer
monitor can illuminate pixels based upon the information of
the bitmap. A “raster” output device creates a visual repre-
sentation by displaying the array of pixels arranged in rows
and columns from the bitmap. Most output devices, other
than plotters, are raster output devices. Typically, a “page”
of pixels corresponding to a printed or displayed page is
received and stored in memory before the pixels are dis-
played by the output display device.

A visual representation can contain a number of image
types, including text, graphics, photographic images, etc.
Data of these types can be efficiently stored in files with
other image information as high level “objects.” An
“object”, as referred to herein, is the data and attributes
defining a particular visual representation. The objects can
be edited or otherwise manipulated using an application
program (“software”) running on a computer. When display-
ing the objects with an output display device such as a
printer or display screen, the objects are typically first
rasterized (or “rendered”) into bitmaps. The output display
device stores display bitmap data in memory before display-
1ng the data.

A problem in the prior art methods of providing bitmaps
to output display devices is that a large amount of storage
space is required to store the bitmnap before it is displayed.
The requirements for storage space have become greater as
the desire for high-resolution representations with more
realistic attributes has become more prominent. For
example, using a laser printer capable of printing black-and-
white images at a resolution of 600 dots per inch (dpi). a

10

15

20

25

30

35

40

45

50

35

65

| 2

typical displayed page requires about 3.8x10° bytes of
memory. When printing a page of color pixels, for example,
having 8 bits per color per pixel, the memory requirement
increases to about 121x10° bytes of memory. With such
memory requirements, a significant portion of the cost of
manufacturing an output display device such as a laser
printer is the cost of the required memory.

A method that has been used to reduce the memory
requirements for displaying high-resolution images involves
the compression of the bitmap data according to a compres-
sion method or algorithm. A compression algorithm can
significantly reduce the space needed to store bitmaps by
removing information from bitmaps or other objects. Some
compression algorithms are “lossless”, meaning that they
compress data and reduce storage requirements with no loss
of essential information. This type of compression is often
used with text objects and the like, since text character codes
often include extra information unrelated to the identity of
the text characters. Other types of compression algorithms
are “lossy”, meaning that they compress data with some loss
of information. These types of compression algorithms are
typically used with image bitmap data, since the loss of
information can often be noticeable in a high resolution
image. When the compressed bitmap 1s to be displayed, it is
decompressed using a corresponding decompression algo-
rithm and sent to the print engine, monitor, or other output
display device.

A problem with the compression method of the prior art
occurs when different types of objects are to be displayed by
an output display device. For example, a page of data can
include text objects such as words or paragraphs, graphics
objects such as bar charts or geometric shapes, and 1mage
objects such as a digitized photograph. A compression
algorithm that is good for text objects may, for example, be
less than adequate for image objects, and vice versa. For
example, lossy compression techniques may be adequate for
image objects in that they can highly compress the image
object data, but may be less than adequate for text objects,
where the lost data would be apparent. A lossless compres-
sion technmique is good for text objects, but may not
adequately compress image objects. Thus, the selection of a
single compression algorithm will almost always result in a
less-than-optimal compression of mixed object types.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus
for storing display data with reduced storage requirements.
The present invention compresses multiple types of data
objects using compression mechanisms that are optimized
for each type of object according to user constraints. The
compressed objects are then decompressed using a related
decompression mechanism and sent to the output display
device for display.

The apparatus of the present invention includes a digital
output processing system with selective object compression
and decompression. A rasterizer converts data objects into
bitmap objects of various types. A compressor compresses
the bitimap objects with a selected compression mechanism.
The particular compression mechanism selected is
dependent, at least in part, on the type of the particular
bitmap object being compressed. For example, if the bitmap
object is a text type, a graphics type, or an image type, then
a compression mechanism best suited to text, graphics, or
image data, respectively, 1s selected. The selection of com-
pression mechanism also depends on the size of the avail-
able memory to store the compressed data and overall page

3,633,498

3

analysis. The compressor produces compressed bitmap
regions and stores the compressed bitmap regions in digital

read/write memory associated with an output device. A
decompressor then decompresses the compressed bitmap
regions with a selected decompression mechanism deter-
mined by the selected compression mechanisms. The
decompression mechanism for a particular compressed bit-
map region is dependent upon the compression mechanism
used to compress the bitmap region. The decompressor then
supplies the uncompressed bitmap regions to an output
display device for display. Suitable output display devices
include printer devices and display screens.

The data objects input to the apparatus of the present
invention are organized into at least one page that has
multiple sections, called “bands.” The bands preferably have
a display order on the page, and bands of the page are
displayed by the output display device in the display order.
The data objects are stored in display lists corresponding to
the bands of the page. Preferably, the bitmap objects and
other background data in the band are rasterized and divided
into non-intersecting bitmap regions which cover the band.
The regions are designated as either empty regions covering
no objects, or non-empty regions covering objects. The
bitmap regions can be combined into larger regions accord-
ing to specified constraints. Only the non-empty bitmap
regions are preferably compressed by the compressor
according to the assigned compression algorithms. The
decompressor decompresses one page at a time by deter-
ining where an outpuf scan line intersects regions on that
scan line and decompressing the compressed regions when
the scan line intersects the regions. The decompressor out-
puts background data to the output device when the scan line
does not intersect the compressed regions.

In another aspect of the present invention, a method for
providing a digital output with selective object compression
and decompression includes steps of receiving output data
having a type and compressing the output data with a
selected compression algorithm chosen from a set of com-
pression algorithms to produce compressed oufput data. The
selected compression algorithm for the output data is depen-
dent upon the type of the output data and meets a user’s
specified constraints for compression. The compressed out-
put data 1s stored in digital read/write memory and is
decompressed with a selected decompression algorithm to
produce uncompressed output data. The decompression
algorithm is chosen from a set of decompression algorithms
and is dependent upon the compression algorithm used to
compress the compressed data. The uncompressed oufput
data i1s then supplied to an output display device.

The output data i1s stored as objects in display lists
including an object type and an object location on a page of
data. The display lists correspond to multiple bands into
which the page is organized. The objects of one of the
display lists are rasterized as bitmap objects in an uncoms-
pressed band and stored in an uncompressed band bufter.
'The band is partitioned into non-intersecting bitmap regions,
where each bitmap region has at least one type correspond-
ing to the type(s) of the object(s) which the region covers,
or an empty type if no object 1s covered. A compression
method is assigned to each region based on the types of the
regions and any user constraints that include the compres-
sion ratio of the compression method and visual quality of
the data after being compressed and decompressed. Adjacent
regions and regions which include empty regions between
them. and having the same assigned compression method,
are preferably combined into larger regions. The non-empty
regions of the uncompressed band are then compressed and

10

15

20

25

30

35

40

45

50

55

60

4

stored in a compressed band buffer of the digital read/write
memory. This step includes checking if the compressed
regions fit in the compressed band butfer when compressed.
If the band doesn’t fit when compressed, previously-
compressed bands are decompressed and recompressed to
provide more storage space for the compressed band.
Another band of the page is then rasterized and compressed.
Once all the bands of the page are compressed, a page of
compressed data is decompressed in scan line order and
supplied to the output device. Background display data is
provided to the output device for portions of the page that
are not included by compressed regions.

An advantage of the present invention is that object data
is compressed with compression mechanisms suited for each
type of object included in display data. This allows much
greater optimization of compression in that a compression
mechanism can be chosen for each object type that provides
the optimal tradeoff between image quality and level of
compression. This permits a dramatic reduction in memory
space requirements with minimal loss of image quality. In
addition, only areas of a page that include object display data
are compressed, so that “whitespace” or background arecas
do not have to be compressed and stored in memory. This
allows an even greater reduction in memory space require-
ments for the display data. With less memory requirements
for storing displayed data, the cost to produce an output
display device can be drastically decreased.

These and other advantages of the present invention will
become apparent to those skilled in the art upon a reading of
the following specification of the invention and a study of
the several figures of the drawing. |

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system for
displaying a page having objects of different types in accor-
dance with the present invention;

FIG. 2 1s a block diagram of an output device suitable for
use with the present invention;

FIG. 2a is a block diagram of a digital processor as shown
in FIG. 2;

FIG. 3 is a flow diagram illustrating the process of
displaying data with reduced storage requirements accord-
ing to the present invention;

FIG. 4a is a flow diagram illusfrating the first portion of
the rasterize and compress input data step of FIG. 3;

FIG. 4b 1s a flow diagram illustrating the second portion
of the rasterize and compress input data step of FIG. 3;

FIG. 4c is a flow diagram illustrating the third portion of
the rasterize and compress input data step of FIG. 3;

FIG. 44 is a diagrammatic illustration of a page of objects,
the page being divided into bands;

FIQ. 4e is a diagrammatic illustration of a band including
objects;

FIG. 4f is a diagrammatic illustration of the band of
objects of FIG. 4e that has been partitioned into non-
intersecting regions;

FIG. 5 is a flow diagram illustrating a step of FIG. 4a in

which input object type and bounding box information is
stored in collectors associated with bands;

FIG. 6 is a flow diagram illustrating a step of FIG. § in

* which like objects in a collector are joined;

65

FIG. 7 is a flow diagram illustrating a step of FIG. 5 in
which object combinations in a collector are forced to free
storage;

5,638,498

S

FIG. 8 is a flow diagram illustrating a step of FIG. 45 in
which a band is compressed;

FIG. 8a is a table of algorithm entries referenced by the
process of FIG. 8 to assign algorithms to regions;

FIG. 8b is a table of indexes into the algorithmn table of
FIG. 8a for assigning algorithms to regions;

FIG. 9 is a flow diagram illustrating a step of FIG. 8 in
which non-intersecting rectangular regions are designated in
the band to be compressed;

FIG. 9a is a diagrammatic illustration of a data structure
describing a region of FIG. 9;

FIG. 10 is a flow diagram illustrating a step of FI(. 8 in
which eligible regions are combined,;

FIG. 11 is a flow diagram illustrating steps of FIG. 10 in
which regions are combined;

FIG. 12 is a flow diagram illustrating a step of FIG. 8 in
which a band is attempted to be compressed;

FIG. 13 is a flow diagram illustrating a step of FIG. 3 in
which the compressed data is decompressed and displayed;
and

FIG. 13a is a diagrammatic illustration of a band and the
scanning of the band to decompress data.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention is well-suited for reducing the
storage space requirements for rasterized data that is to be
sent to an output display device. However, the present
invention can also be used to generally reduce storage
requirements when storing data of different types for a
variety of purposes.

A number of terms are used herein to describe images and
related structures. “Visual representation” refers to the
image produced by an output device on a sheet of paper,
display screen, etc. The term “image” is used to describe a
type of visual representation or “object type.” “Pixel” refers
to a single picture element of a displayed visual represen-
tation. Taken collectively, the pixels form the representation.
“Bitmap” refers to bits stored in digital memory in a data
structure that represents the pixels. As used herein, “bitmap”
can refer to both a data structure for outputting black and
white pixels, where each pixel either is on or off, as well as
a “pixel map” having more information for each pixel, such
as for color or gray scale displays. “Raster”, as used herein,
refers to the arrangement of pixels on an output device that
creates a visual representation by displaying an array of
pixels arranged in rows and columns. Raster output devices
thus include laser printers, computer displays, video
displays, LCD displays, etc. “Render” and “rasterize” refer
to the creation of an object bitmap from object primitives,
such as a character outline or object in a display list. Both
object primitives and object bitmaps are referred to as
“objects” herein, where an “object” includes type and loca-
tion information as well as data describing a visual repre-
sentation which is to be derived from the object.

In FIG. 1, a computer system 10 suitable for reducing
storage requirements in the display of visual representations
includes one or more digital computers 12, a communica-
tions bus 14. a printer 16. a display 18, or other output
display device 20. The output of devices 16, 18, or 20 is a
visual representation on a displayed page 22. Digital com-
puters 12 can be personal computers (such as an IBM-PC
AT-compatible or Apple Macintosh personal computer),
workstations (such as a SUN or Hewlett-Packard
workstation), etc. Computers 12 typically each include a

10

15

20

25

30

35

45

30

55

65

6

microprocessor, a memory bus, random access memory
(RAM), read only memory (ROM), peripherals such as input
devices (keyboard, pointing device, voice recognizer, €tc.),
and storage devices (Hloppy disk drive, hard disk drive, etc.).
In an alternate embodiment of the present invention, display
data can be sent to other memory devices or storage devices
instead of being sent to output display devices.

Printer device 16 is an output display device that can
produce a printed visual representation of a displayed page
22 on a piece of paper, a transparency, etc. In the present
embodiment, printer device 16 is a raster device which
creates the visual representation with a plurality of printed
dots arranged in rows and columns corresponding o a
bitmap. That is, a bitmap can be input to the printer device
16 and the bits of the bitmap can be displayed as pixels.
Alternatively, higher-level objects can be sent to the printer
16, and the printer can perform the rasterization process.

Display 18 is an output display device that displays visual
representations on a screen. Display 18 can include a cath-
ode ray tube (CRT), which is typically operated as a raster

device. Other types of displays include LCD screens, elec-
troluminescent displays, etc.

Other output display device 20 is any other form of device
used to display a visual representation, in either a temporary
or permanent form. Other output display devices include
projection devices, plotters, etc.

To display visual representations on an output display
device, such as printer device 16, display 18, or other output
device 20, one or more types of procedures can be imple-
mented. One procedure is to input data objects, and then
rasterize bitmaps from the objects. For example, the object
of a text character can include associated information which
specify how the character is to be displayed, such as
positional coordinates, size, font, etc.

A well known page description language for specifying
objects and related information is the PostScript® language
by Adobe Systems, Inc. of Mountain View, Calif. The object
can, for example, include a bitmap describing a text
character, or the object can reference or point to stored
character outlines which describe the shape of a character
and includes other rasterizing information, such as font and
size. A well-known character outline format is the Type 1®
format, by Adobe Systems, Inc. In addition, objects such as
graphical shapes can be stored as graphic primitives, which
are basic shape objects used to form more complex graphical
shapes. From the objects, the computer 12 or output device
16, 18 or 20 can rasterize a bitmap and either send the
bitmap to a memory cache or other storage arca that is
accessible for display or store the bitmap for later use.

The process of the present invention, as described below,
provides a technique for manipulating bitmaps derived from
objects so that less storage space is required when displaying
the objects. As referenced herein, a “page description lan-
guage” or “PDL” file is a file or similar storage unit which
includes objects stored in a page description language such

as PostScript or Portable Document Format™ (PDF™) by
Adobe Systems. |

Displayed page 22 includes visual representations pro-
duced by one of the output display devices 16, 18, and 20.
Herein, a “page” of displayed data refers to a block or group
of visual representations that can be viewed by the user as
a unit. For example, a page of displayed representations
from a printer device 16 can be the representations shown on
a single sheet of paper (or more sheets, if a page is defined
to span multiple sheets of paper). On a display screen 18, a
page can comprise the representations shown at one timne on

5,638,498

7

the screen, or can comprise a grouping of representations of
which only a portion can be viewed at a time. In page
description interpreters such as the PostScript interpreter, a
page of data is typically interpreted, processed and sent to an
output display device before the next page is processed.

In the described embodiment, displayed page 22 includes
several different types of visual representations. Herein,
“types” of visual representations are the same as the “types”
of the data objects from which the representations are
derived. In the described embodiment, three types of data
objects are addressed: text objects, graphics objects, and
image objects. Other types of objects can also be defined and
processed in alternate embodiments of the present invention.
In the present embodiment of the invention, the type of an
object can be defined by the commands, data, and operations
used to display the object and the object’s ability to be
compressed/decompressed more efficiently and with less
loss of quality using particular compression algorithms as
opposed to other algorithms. For example, specific types of
data (character codes), procedures, character outlines, etc.
are used to describe a text object, which is known to
compress more efficiently using particular algorithms. Thus,
the type “text” is defined in view of these factors. Object
types can be defined in other embodiments based on, for
example, the final appearance of the displayed object, the
resolution of the object as displayed, or other criteria.

Text representation T is derived from a bitmap that, for
example, was rasterized from text objects. For example, a
character code in a text file can used to index a character
drawing procedure which defines a text object, as is well
known to those skilled in the art. Graphics representation G
is derived from a bitmap that was rasterized from coded

graphics objects, such as trapezoids and lines. These primi-
tive graphics objects can be sized and shaped to describe the
graphics object. Image representation I is typically not
derived from any coded objects, since its original form is a
bitmap, also referred to as an object. Scanned images,
digitized photographs, etc., are data objects of the image
type which are in bitmap form and can usually be displayed
by an output display device directly or with a transtormation
of coordinates.

Visual representations T, (5, and I may all be displayed,
and even overlap each other, on a single page of displayed
data. These types of objects are each compressed into a band
buffer using an optimized compression algorithm for each
type of object, as described below in greater detail.

FIG. 2 is a block diagram of an output display device
which. as an example, will be described as printer device 16.
Printer device 16 preferably includes a buffer 24, a digital
processor 26, RAM 28, ROM 30, IO interface 32, and print
engine 34. Buffer 24 is a memory buffer used to buffer data
received from computer 12. Printer device 16 may process
input data at a different rate than the rate the data is output
from a computer 12; buffer 24 is used to interface these rates.

Digital processor 26 includes one or more digital inte-
grated circuits used to control the operation of printer device
16. Using instructions retrieved from memory, processor 26
controls the reception and manipulation of input data and the
output and display of data on output devices. In the
described embodiment, a function of processor 26 is to
rasterize object data into bitmaps. Therefore, in the present
invention, printer device 16 performs the rasterization pro-
cess. This is typical of PostScript printers.

Processor 26 preferably reads commands and data in a
page description language. such as PostScript, from buffer
24 and interprets/executes the commands to rasterize a

10

15

20

25

30

35

40

45

30

55

60

65

8

bitmap. The processor then compresses the rasterized bit-
maps according to the object types of the bitimaps and
decompresses the bitmaps before sending them to the print
engine to be displayed. The processor makes use of other
components in the printing device, such as RAM 28 and
ROM 30. Digital processor 26 is described in greater detail
with respect to FIG. 2a.

Bus 27 is used by digital processor 26 to access RAM 28
and ROM 30, which are memory components used to store
data required by the printer device 16 to process and display
output data. RAM 28 is used by processor 26 as a general
storage area and as scratch-pad memory, and is preferably
used to store input data and the compressed data produced
by the present invention. RAM 28 can be implemented with
one or more memory chips. ROM 30 can be used to store
instructions followed by processor 26 as well as character
outlines and object primitives used to display visual repre-
sentations in a specific format. For example, when rasteriz-
ing text objects such as characters, the characters” associated
character outlines can be referenced in ROM 18 when
bitmaps of the characters are rasterized to be displayed as
text representations by the printer device.

I/O interface 32 1s used to interface the bitmap data
generated by the microprocessor with the print engine 34.
Output bitmap data can. for example, be sent to I/O interface
32 via bus 27. VO interface 32 provides the bitmap data to
print engine 34, which uses the bitmap data to produce a
display page 22 as shown in FIG. 1. The print engine of a
laser printer, as is well known to those skilled in the art,
typically includes such components as a toner mechanism
for applying a visual representation to a piece of paper,
feeding mechanisms, and other components required to
produce a displayed page. If an output device such as a
display screen is being used, the print engine can be a CRT
or other actual screen which displays visual representations
derived from the bitimap. Alfernatively, output bitmnap data
can be sent directly to print engine 34 from processor 26 via
direct line 31.

The components shown in printing device 16 in FIG. 2
can alternatively be included in computer 12 rather than
print device 16 or any other output display device. For
example, the digital processor 26. RAM 28, ROM 30, and
I/O 32 can be included in computer 12 and can provide
output bitmaps to print engine 34 located in the output
display device. RAM 28, used to store compressed data, can
be associated with the actual output display device that
displays the visual representation and be located external to
the output display device.

'The compression of displayed data, as described below, is
implemented by digital processor 26 and can be accom-
plished on computer 12; the decompression of this data can
then be implemented on an output device 16, 18, or 290.
However, in such an embodiment, standard compression
algorithms would preferably be used by computer 12 so that
an output device could readily decompress data from. any
computer sending it data (or a description of the used
compression algorithm would be sent with the compressed
data so that the output device could understand the com-
pression algorithm and decompress the data). If all com-
pression and decompression takes place in the output device,
as shown 1n FIG. 2, standard or non-standard compression
algorithms can be used.

In an alternate embodiment, computer 12 can send com-
pressed data to a storage device (not shown), such as a hard
disk drive, floppy disk, PCMCIA card, magnetic tape, etc.,
for storage prior to displaying the data.

5,638,498

9

FIG. 2a is a block diagram of digital processor 26 shown
in FIG. 2. In the described embodiment, processor 26
includes a CPU 36 and an application specific integrated
circuit (ASIC) 38. The CPU is preferably a general purpose
microprocessor which controls the operation of printer
device 16. CPU 12 can be a single-chip processor or can be
implemented with multiple components.

In the described embodiment, ASIC 38 is an integrated
circuit designed to perform the compression and decompres-
sion operations. ASIC 38 uses compression algorithms that
are preferably implemented in hardware in the ASIC. The
compression algorithms are selected by software routines
implemented by CPU 36 to compress bitmaps so that the
bitmap will require less space to be stored. ASIC 38 also
uses decompression algorithms for decompressing the com-
pressed bitmaps back to their original size and form using
parameters specified in the compressed data. In other
embodiments, compression and decompression can be per-
formed by software or by other hardware components in the
computer system. A RAM 39 can also be implemented
locally to ASIC 38 to store structures and data used during
compression and decompression.

Many compression/decompression algorithms are known
to those skilled in the art and some are described below. The
present invention utilizes multiple compression algorithms
to achieve a more efficient reduction in required storage
space for a bitmap that is to be displayed with minimal ioss
of display quality, as described below.

FIG. 3 is a flow diagram illustrating the process 40 of
displaying data with reduced storage requirements accord-
ing to the present invention. The process begins at 42. In step
44, a single page’s content of input data is rasterized and

10

15

20

23

30

compressed based upon rasterized object types. Step 44

entails several individual steps, including creating display
lists of objects from input data, rasterizing the objects within
the display lists into bitmap objects in bands, compressing
the bands according to the types of objects located in the
bands, and storing the compressed bands in memory. This
process is described in greater detail with respect to FIGS.
da, 4b, and 4¢c. By compressing the rasterized data, the
amount of memory required to store the data can be signifi-
cantly reduced.

In step 46, the digital processor decompresses the com-
pressed bands that have been stored in memory and sends
the decompressed data, one band at a time, to the display
engine. This is accomplished using decompression algo-
rithms and information stored in each compressed band.
Data in a band is sent directly to the display engine to be
displayed as soon as it has been decompressed. The page has
been completely displayed when all compressed bands have
been displayed. In an alternate embodiment of the present
invention, the compressed band is decompressed and stored
in a different memory or storage arca for multiple uses,
including display. The process of decompressing and dis-
playing the bands of data is described in greater detail with
respect to FIG. 13. In next step 48, it is determined whether
another page of data is to be displayed. If so, the process
returns to step 44 to rasterize, compress, decompress, and
display the next page’s worth of data in steps 44 and 46. If
there are no more pages to display, then the process is
complete as indicated at 49.

Preferably, a page of data can be compressed simulta-
neously with the display of a previous page in a document
or other group of pages. For example, as data from the first
page 1s still being decompressed or displayed in step 46, the
second page in the document can be rasterized and com-

35

45

S0

35

65

10

pressed in step 44 simultaneously. Similarly, multiple pages
can be decompressed simultaneously. For example, multiple
tandem decompression engines can decompress multiple
pages wherein each decompression engine decompresses
and displays a certain color or shade on a side of a page.
Each page can be passed through the pipeline of decom-
pression engines, where each decompression engine
receives the next page in the pipeline when it finishes with
its current page. Such a process can also be used with the
compression and rasterization of the present invention. In an
alternate embodiment, instead of compressing, decompress-
ing and displaying output display data on a page-by-page
basis, each “band” or other portion of a page can be
sequentially compressed, decompressed and displayed.

FIG. 4a is a flow diagram illustrating a first portion of the
rasterize and compress input data step 44 of FIG. 3. The
process begins at 52 and implements three initialization
steps 54, 56, and 58. In step 54, the compression level used
for compressing data in the present invention is set to the
lowest available level. The compression “level” determines
the compression ratio for compressing data, where a lower
level typically corresponds to a lower compression ratio
(i.e., a lower amount of compression) as described herein, In
next step 56, all bands on the current page are represented
as a compressed form of whitespace. Whitespace (or “back-
ground” data) refers to white or unmarked arcas of a page
that do not include any object data to be displayed in those
areas. A page is partitioned into a number of bands, where
each band is analyzed and compressed separately. An
example of bands 112 of a page 110 are shown in FIG. 44
and are described in further detail below. The compressed
whitespace data is stored in the compressed band buffer, as
described below. In step 58, an empty collector is created
and 1nitialized for each band 112 of the current page 110 so
that every band has an associated collector. A “collector”, as

referred to herein, is a data structure or other storage arca
and/or associated instructions that store data associated with

that collector’s associated band. Data stored in the collector
is used to compress objects included in the associated band.

In next step 60, the process determines whether the end of
the page has been reached, i.e. whether all input data for the
page has been added to display lists. The end of the page can
be detected, for example, by receiving an end-of-page
command or indicator from the page description language
file. If it is not the end of the page, then step 62 is
implemented, in which the process checks whether the
display list storage is exhausted. Input objects are stored in
display lists, which are portions of available memory, such
as RAM 28 and/or additional memory. This available stor-
age may become full before all input objects of a page are
stored in display lists. If this occurs, the input objects in a
selected band’s display list are immediately rasterized and
the band 1s compressed, which allows those input objects to
be removed (or written over) in the display list. This frees
space in the display list to store additional input objects. This
procedure is known as “cycling”, since portions of the
compression method of the present invention are cycled to
free space in a display list. A band may be compressed
having only a portion of its input objects and then decom-
pressed to allow additional input objects to be added
(rasterized) into the band, as described below. If display list
storage is exhausted, the process continues to node 71 of
FIG. 4b to compress the (possibly incomplete) band, as
detailed below.

It the display list storage is not exhausted, step 64 is
implemented, in which an input object is retrieved. The input
object is preferably received by the digital processor 26 in

5,638,498

11

buffer 24 (as shown in FIG. 2) from computer 12. The input
object can be in several difterent forms and formats. For
example, the input object can be in the PostScript® language
or in a different page description language as part of a page
description file. In the described embodiment, the input
object generally is an “object primitive” or “‘graphic
primitive,” which is a basic graphical object that has an
object type. For example, the object can be a character or a
word bitmap or code having a text type. The object can also
be a trapezoid, line, or other primitive shape from which
other, more complex, shapes are constructed; such a shape
can be considered to have a graphics type. The object could
also have an image type, i.e. the object can be an image
segment bitmap having pixels of defined location and color,
it appropriate. In general, herein, “object” refers to the type,
bounding box, and description data of an input object, and
can refer to objects in bitmap form or in non-bitmap form.

In step 66, the type and the bounding box (size and
location) of the input object are stored in the appropriate
collectors for the bands spanned by the object. The type of
the object is one of several types that have been previously
defined. For example, text, graphics and image types are
described herein; additional types can also be provided. The
type of an object can be determined from the input data
describing the object. For example, if the input object has
been specified in language such as PostScript, the type of an
input object is evident from the commands of the PostScript
file. PostScript can specify the type of a object in the context
of the commands pertaining to the object, and a PostScript
interpreter can be used to identify this type. For example, a
SHOW (X) command is known to display text characters, so
the object X is known to be of text type. When the input
object was originally output by, for instance, a word
processor, spreadsheet, or other PostScript-generating
program, these commands were created in the PostScript
file. If the input object was originally output by a graphics
object type editor or drawing program such as Adobe
IHlustrator®, graphics-type commands (MOVETO,
LINETO, FILL, etc.) inform the PostScript interpreter that
the data has a graphics type. If the object was originally
output from an image bitmap editor or program such as
Adobe PhotoShop™, then the data can be identified from
image type commands in the file, as is well-known to those
skilled in the art. A PostScript interpreter can handle all of
the other commands and information in a PDL file, and
provide just the input objects to the present process in step

64.

The location and size of the object is also stored in
collectors. In the described embodiment, the location/size of
an object is stored as bounding box coordinates. A bounding
box is a rectangle or other polygon whose sides are posi-
tioned at or just outside the edges of the object so that the
object 1s completely enclosed by the rectangle. Four sets of
X, vy (e.g., horizontal, vertical) coordinates are preferably
stored as the location/size of the object, where each set of
coordinates describes one of the four corners of the bound-

ing box. Alternatively, two sets of coordinates for opposite
corners of each bounding box can be stored as the location

of the object. Other methods can also be used to describe the
bounding box, such as storing one comer and the width and
height of the box, efc.

The appropriate collector(s) to store an object’s type and
bounding box is determined by examining the bounding box
coordinates of the object to determine which bands the
object spans. As shown in FIG. 44, a page 110 of data is
preferably partitioned into a number of bands 112, which are
portions of a page having a predetermined size. The bands

10

15

20

25

30

35

40

45

50

35

60

65

12

of FIG. 4d are shown as horizontal sections of a page;
however, in other embodiments, bands can be defined as
other areas of the page. Each band is processed and com-
pressed sequentially; this allows a smaller amount of data to

be processed at one time so that the entire page of data does
not have to be stored in memory. In the preferred

embodiment, the page 110 is partitioned into 10-12 bands of
equal size (e.g. 256 rows or scan lines for each band),
although, in other embodiments, the number and size of
bands can depend on the page size, resolution of displayed
representations, the size of the available uncompressed band
bufter (see below), etc. Herein, “horizontal” and “X coor-
dinate” refer to a dimension parallel to a scan line in the
display of output data on an output display device, as
described with reference to FIG. 13. This dimension is
shown as the “left-right” dimension in FIG. 44. “Vertical” or
“Y coordinate” correspondingly refers to the dimension
perpendicular to the horizontal dimension, and is shown as
the “up-down” dimension in FIG. 4d.

A number of objects are shown displayed on page 110.
Both the type and the bounding box of each object is stored
in the appropriate collectors. Object 114 has a text type and
has a overall bounding box 120. Object 116 is a graphics
object having a graphics type and has an overall bounding
box 122. Object 118 is an image object having an image type
and an overall bounding box 124.

For an object that spans only one band, the overall
bounding box of the object is stored in the associated
collector of the band. However, an input object can span
more than one band as well. For example, text object 114
spans bands 113, 115, and 117; graphical object 116 spans
bands 115, 117, and 119; and image object 118 spans bands
121, 123, and 125. In these cases, a “clipped” portion of the
overall bounding box of the object is stored in a band’s
collector, where the stored bounding box is the intersection
of the overall bounding box with the band. That is, objects
which overlap multiple bands are preferably divided into
multiple objects that each fit in one band and collector. For
example, text object 114 is clipped such that only the
coordinates of a bounding box in band 113 for object 114 are
stored in the collector of band 113. Text object 114 is clipped
again so that only the coordinates of text object 114 within
band 1135 are stored in the collector for band 115, and so on.
Methods for clipping objects are well known to those skilled
in the art. Alternatively, clipping can be performed at a later

stage 1n the process before or during rasterization step 78 of
FIG. 4b.

After the type and bounding box of the object(s) have
been stored in the appropriate collector(s), step 68 is imple-
mented. In step 68, the input object is added to the appro-
priate display lists. For each band 112, an associated dispiay
list 1s created (or was previously created), and the current
input object is added to the appropriate display list or lists,
i.e., the data describing the appearance and content of the
object 1s added to the appropriate display list. If an object
overlaps more than one band, just the object data included
in a band is stored in the display list associated with that
band by a clipping process. Alternatively, all of the object’s
descriptive data is stored in each display list associated with
overlapped bands, and the object can be “clipped” betore or
during the rasterization step 78 of FI(. 4b. Thus, all of the
object data on the page is grouped into the appropriate
bands. This is desirable for data that is stored in a page
description language such as PostScript, since the data of
such a page description language is typically not stored in
display order. The location (coordinates) of each object,
known from the description in the page description file,

5,638,498

13

determines the appropriate display list(s) on the page for that
object. As input data is received, each object is placed in its
appropriate display list, possibly grouped with other objects
displayed in the same bands and thus stored in the same
display lists.

In an alternate embodiment, display lists do not have to be
built. In a page description language where data is stored and

input in sorted display order, the data can be directly
organized into bands and rasterized as described below.

After step 68, the process returns to step 60, where the
process checks whether the end of the page has been
reached. If not, steps 62—-68 arc again implemented for
another input object. When the end of the page is reached,
step 70 is implemented, in which the process checks whether
all display lists are empty. If true, this indicates that no
objects were found to be displayed on the current page and
thus no objects were stored in display lists, and the process
is complete at 69. If the display lists are not empty, then the
process continues to node 71 of FIG. 4b, which continues to
step 72.

FIG. 4b is a flow diagram that continues the process 44 of
FIG. 4a. From node 71, the process continues to step 72,
where a current band “A” is selected which has display list
entrics. Preferably, bands are selected in display order, i.e.,
the order that an output device displays the bands, typically
starting from the top of the page going to the bottom of the

page. If a band has no display list entries, it is skipped. In an
alternate embodiment, the display lists can be retrieved in

reverse display order, i.e., in the opposite order that the
objects are displayed by an output device, so that the display
list at the bottom of the screen would be retrieved first,
followed by the next bottommost display list in the next
iteration, etc. Reverse display order allows the last display
list that is retrieved and rasterized to be sent directly to the
display engine to be displayed without having to be com-
pressed and stored, as described below. However, the time to
compress the data is typically short enough so that display
list retrieval order does not largely affect the time to display
data in the described process.

In next step 74. the process checks whether the band “A”
data is in a compressed state. The location in the compressed

band buffer and state of the data (1.e., “compressed” or “not

compressed”) for the current band can be retrieved from a
“band record”, for example, that stores such information for
each band from the compression process (detailed below). If
the band A data 1s not in a compressed state, then the process
continues to step 78, described below. Band A data typically
15 in a compressed state in two circumstances. Band A may
be a newly selected band, in which only the whitespace
“background” data for the band was compressed in step 56
of FIG. 4a. This whitespace data is in a compressed state
stored in the compressed band bufier. Band A can also have
been previously compressed in a “cycling” loop. If the
display list storage was exhausted in step 62 of FIG. 4a, then
band A may have been previously selected and compressed.
If so, it may already stored as compressed data in the
compressed band buffer including some input objects and
must be decompressed (in step 76) to add (rasterize) any
additional input objects to the band.

If the band A data is 1n a compressed state, then step 75
is implemented, in which the process checks whether there
is an available section of the uncompressed band buffer to
store the current band. As described below, the uncom-
pressed band buffer is used to store an uncompressed band.
If it is currently full from storing one or more other bands,
then the process continues to step 77, in which band A (the

10

15

20

25

30

35

40

45

50

35

65

14

current band) is set to a band that currently occupies a
section of the uncompressed band buffer. The process then
continues to node 97 to compress that band by the process
of the present invention to free the uncompressed band
buffer. This process is described below. Once that band is
compressed, the uncompressed band buffer is available, and
the process returns to step 72 (as described below) to again
select the original band A (or, alternatively, another band).

If there 1s a storage section of the uncompressed band
available in step 75, then the process continues to step 76, in
which the band A data (in the compressed band buffer) is
decompressed into a storage section of the uncompressed
band buffer using a decompression algorithm corresponding
to the algorithm used to compress the data. Decompression
is described in greater detail below with reference to FIG.

12.

The uncompressed band buffer is a memory storage

preferably included in RAM 28 that can store at least one
band of uncompressed data. In the preferred embodiment,

the uncompressed band buffer can store two or more bands’
worth of uncompressed data. Each portion of the uncom-

pressed band buffer that can store a band’s worth of data is
referred to as a “storage section” of the uncompressed band

buffer. For example, the current band A is preferably stored
in a first storage section of the uncompressed band buffer.
The current uncompressed band is later compressed and
stored in the compressed band buffer preferably before a

new band is written into the uncompressed band buffer, as
described below. In an alternate embodiment, multiple
uncompressed band buffers can also allow rasterizing and
compressing of different bands to be performed simuita-

neously.

After step 76, or if the band data is not in a compressed
state in step 74, then step 78 is implemented. All the display
list entries (objects) of band A are retrieved from the display
list for band A, rasterized into bitmaps, and stored in the
storage section of the uncompressed band buffer which
holds the decompressed data from step 76. This storage
section of the uncompressed band buffer thus includes
decompressed whitespace data (and any previously-
compressed rasterized input objects) for the band from step
76, and has rasterized bitmap objects added to it in step 78.

The process of rasterizing an object into a bitmap object
is well-known to those skilled in the art. For example, if a
text object is to be rasterized, procedures and character
outlines stored in ROM 30 can be referenced and used to
create the rasterized bitmap of the characters of the text
object. If a graphics object is to be rasterized, then the
graphics primitives making up the graphics object are ras-
terized according to established methods and combined to
form the rasterized graphics bitmap. An immage object may
already be in bitmap form and thus may not need to be
rasterized in cases where a 1-1 correspondence exists
between image pixel space and output device pixel space. In
cases where such a correspondence does not exist, a trans-
lation between image and device spaces can be performed in
the rasterization step as is well-known to those skilled in the
art. The image bitmap object is stored with all the other
bitmap objects in the uncompressed band buffer.

In next step 80, the process attempts to compress the
rasterized data of band A that is stored in the uncompressed
band buffer. This step involves dividing the bitmap objects
into non-intersecting regions, assighing types to the regions,
assigning appropriate compression algorithms to the
regions, and attempting to compress the region data into a
compressed band buffer at the current compression level.

Step 80 is described in greater detail below with reference to
FIG. 8.

3,638,498

15

In step 82, the process determines whether the com-
pressed data for band A fits in the available memory of the
compressed band buffer. The compressed band buffer 1s
preferably implemented in RAM 28 or similar memory.

Since only a specific amount of memory is allocated in the
compressed band buffer for all compressed bands, there is

the possibility that the compressed data requires more stor-
age space than the available allocated amount of memory.

Note that, in the described embodiment, the process preter-
ably compresses and stores a small portion of uncompressed
band data before compressing and storing the next portion of
uncompressed band data. If the process writes compressed
data to the compressed band buiter and runs out of storage
space when data still needs to be compressed and stored,
then the current band has overflowed the available storage
space and does not fit. In the preferred embodiment, the
process continues to compress data and counts the number
of bytes of compressed data produced, but does not write the
compressed data to the compressed band buffer. This allows
the processor to determine the actual storage requirement of
the compressed band. Alternatively, the processor can com-
press and write the overflowed data into the compressed
band buffer over previously-compressed data for this band
until no more data is available and the amount of overflowed
data 1s known.

Since the compressed band data does not fit, the process
continues to node 83 of FIG. 4c¢, described below. In
alternate embodiments, the processor can calculate or
assume that a certain amount of space is required without
having to continue to compress overflowed data to find the
precise storage requirements. For example, the processor
can assume that a certain amount of storage space is required
for the current band based on the compression algorithm (the
compression ratio) used and how much data was stored
before overflow, or by multiplying the available space by a
predetermined number.

In alternate embodiments, the current band can also be
considered not to “fit” if it was not compressed within a
user’s constraints. For example, if the compression was not
as efficient as expected, the band data would be using more
storage space than desired and could be considered not to
“fit”, even though there is sufficient memory to store it.

If the compressed band A does fit in the available memory
space of the compressed band buffer, then step 84 is
implemented, in which the process checks whether all
display lists have been processed for the page, i.e., whether
the display lists are empty. H there is another display list to
rasterize and compress, then the process returns to step 72.
If all display lists have been rasterized and compressed, then
the process continues to step 86, where the process checks
if the last compressed display list was at the end of the page.
The case where all display lists have been rasterized and
compressed but the end of the page has not been reached can
occur when display list storage is exhausted before all input
data of a page is added to display lists, as checked by step
62 of FIG. 4a. If this is the case, then more input objects
from the current page need to be added to display lists. Thus,
if the last compressed display list is not at the end of the
page, then the process continues from step 86 to node 87 of
FIG. 4a. where another input object is retrieved and added
to a display list. If the end of the page has been reached in
step 86, then the process is complete at 88.

FIG. 4c¢ is a flow diagram illustrating the continuation of
the process 44 shown in FIGS. 4a and 4b. The process
arrives at node 83 when the rasterized data compressed in
step 80 does not fit in available storage space in the
compressed band buffer. From node 83, the process contin-

10

i5

20

25

30

35

40

45

50

55

60

65

16

ues to step 90, in which the process determines if a higher
level of compression is available, i.e. it a compression level
(algorithm) is available that will reduce the storage require-
ments of the band data more than the previously-used

compression level. Preferably, compression algorithms are
ranked by number based on compression ratio and provided
in a hierarchy of compression levels for each object type,
where typically the more lossy compression algorithms for
an object type are provided at higher levels of the hierarchy.
If there is no higher compression level, then a “failure™
result is indicated in step 92, indicating that there is not
enough memory available to store the band data. The
process is then complete as indicated at 93. As a practical
matter, a number of compression levels, known compression

ratios, and a large enough compressed band buffer are
provided so that the possibility of failure is very remote or

even non-existent.

If a higher level of compression is available in step 99,
then step 94 is implemented, in which the next higher
compression level is selected. For example, a compression
level magnitude can be incremented. In step 96, the process
checks if any previously-compressed bands have not been
compressed at the current compression level. This can be
accomplished by checking the compression level informa-
tion stored in the band record. If all previously compressed
bands are at the current compression level, then they have ali

been recompressed (according to steps 98—-106 below) at the
new compression level. The process then continues to node

97 of FIG. 4b, which implements step 80 to compress the
band A data at the current compression level.

If any of the previously-compressed bands have not been
compressed at the current compression level, then step 98 is
implemented. A previous band “B” that 1s stored in the
compressed band buffer and was previously compressed at
a lower compression level is selected. The selection of
previous band B can be determined by several factors. In the
described embodiment, the first compressed band in the
compressed band buffer is chosen. In other embodiments.
different bands can be chosen depending on how many
bands are to be reanalyzed and recompressed in the imple-
mented embodiment (described below). For example, only
the single band just previous to the current band A can be
chosen.

In step 100, the selected band B 1s decompressed into the
uncompressed band buffer using information stored in the
band. Preferably, band B is decompressed into a “second™
band storage section of the uncompressed band buffer so that
both band A and band B are simultaneously stored in
different storage sections of the uncompressed band buffer.
To decompress band B, decompression parameters from the
compression band buffer are retrieved. These parameters
include the compression algorithms used to compress each
region in the band and other parameters, as described in
greater detail with respect to FIGS. 8 and 12. The process
decompresses the previous band B, region by region, back
into the second storage section of the uncompressed band
buffer based on the decompression algorithms associated
with the compression algorithm used for each region. The
decompression algorithms perform the reverse operation of
their associated compression algorithms. Note that an entire
region is decompressed at a time from the compressed band
buffer to the uncompressed band buffer, which is different

from scan line decompression to a output display device as
described with reference to FIG. 13.

In step 102, the process attempts to compress band B data
into the compressed band buffer at the current compression
level. This is accomplished similarly to step 80 of FIG. 45,

and is described in greater detail with reference to FIG. 8.

13,638,498

17

In next step 104, the process checks if band B fits in the
compressed band buffer. This step is accomplished similarly

to step 82 as shown in FIG. 4b. Compressed band B typically
fits at the cuxrent compression level, since band B already
had fit using the previous compression level, and since the
compression algorithm at the current compression level
usually achieves a higher compression ratio (perhaps by
being more lossy than the previous compression level) to
allow band B to fit in a smaller space. However, band B may
not fit at the current compression level due, for example, to

the data of band B not being particularly suited to the current
compression algorithm, e.g., a text-based compression algo-
rithm being used on image data. If band B does not fit, then
step 106 is implemented, in which band B is recompressed
at the previous, lower compression level which is already
known to compress band B sufficiently. The process then
returns to step 90 to attempt to set the current compression
level to the next higher level.

If compressed band B does fit in the compressed band
buffer in step 104, then step 108 is implemented, in which
the implemented policy is checked. In the preferred
embodiment, the policy is to recompress all previous bands
at the current compression level. This policy allows all data
of the same type will appear at about the same quality on the
entire displayed page, since all of the bands were com-
pressed at the same compression level having about the
same Iossiness. Thus, after step 108, the process returns to

step 96 to compress another previous band B until all
previous bands are compressed at the current compression
level. After all previous bands have been recompressed,
current band A is compressed at the current compression
level, as shown in FIG. 4b. If band A fits, then the process
rasterizes and compresses the next display list as shown in
FIG. 4b.

Alternatively, a policy can be implemented in which only
just enough previous bands are recompressed to allow the

current band A to fit in the compressed band buffer. This
policy recompresses previous bands at the higher level to
free up more room for the current band A, and may in some
instances require less processing time than the method of
recompressing all previous bands (depending on how many
previous bands have to be recompressed at this stage for
other bands). However, in such an implementation, the
quality of displayed objects may vary due to different
compression levels being used on different bands. For
example, defects might be visible between a portion of an
image object in one band that was compressed with one
compression algorithm and the remaining portion of the
image object in an adjacent band that was compressed with
a different compression algorithm. If this policy 1s used,
then, after step 108, the process continues to node 97 of FIG.
4b, which causes band A to be compressed at the new
compression level and checked if it fits. Alternatively, the
process can determine when enough storage space has been
freed by comparing the saved space from the recompression
of band B to the known additional space needed for the
current band A.

The process of rasterizing and compressing output data as
described in FIGS. 4a, 4b, and 4¢ can be implemented in
software and/or hardware. In one embodiment, the objects of
the input data can be rasterized and the display lists, data
structures, etc. can be stored through the use of software,
while the compression/decompression can be implemented
in hardware using gates, an ASIC (as shown in FIG. 2a), etc.
In other embodiments, the entire process can be imple-
mented using software (or hardware). In many instances,
however, a full implementation 1n software currently causes
output data to be displayed too slowly for many applications.

10

15

20

25

30

35

45

50

55

65

18

FIG. 5 is a flow diagram illustrating step 66 of FIG. 4a,
in which the type and the bounding box of an input object
are stored in the appropriate collectors for the bands spanned
by the object. The process begins at 130, and, in a step 134,
the process checks in step 134 if the new object can combine
easily with a stored object of the same type that 1s stored in
the coliector. The objects stored in the collector are each
examined and compared to the new object to determine
whether the objects can be easily combined. An *easy”
combination can be indicated by a number of conditions. In
the preferred embodiment, if the bounding boxes of the new
object and a stored object have equal or nearly equal Y
coordinates for the top and bottom edges of the bounding
bozxes, the bounding boxes are no more than a small distance
apart in X coordinates, and the objects have the same type,
then the two objects are “like” objects and can be easily
combined. These conditions also apply to objects having the
same type and having equal or nearly equal X coordinates
for the left and right edges of the bounding boxes and which
are no more than a small distance apart in Y coordinates.
Additionally, two objects meet the “easily combined” crite-
ria if a bounding box of one object is positioned entirely
within another object’s bounding box, and if the objects
have the same type.

If the objects can be combined easily, then step 136 is
implemented, where the like objects are combined, and the
process is complete at 146. This combination step is
described in greater detail with respect to FIG. 6. If the
objects cannot be combined easily, then the process checks
in step 140 if sufficient storage is available in the appropriate
collector to store the type and bounding box information of
the new object. If there is sufficient storage, then the process
adds the object to the collector in step 144, as detailed below.
If there is not enough storage, then step 142 in implemented,
in which a number of object combinations are forced to fiee
storage in the collector. Combining objects frees storage,
since two combined objects are treated as one object that
requires only one set of type and bounding box information
instead of two separate sets. The process of forcing object
combinations is described in greater detail with respect to
FIG. 7. After object combinations have been forced, storage
is freed in the collector and step 144 is implemented.

In step 144, the type and bounding box of the new object
is stored in the appropriate collector(s). After the object

information has been added, the process is complete as
indicated at 146.

FIG. 6 is a flow diagram illustrating step 136 of FIG. 3,
in which like objects are combined within a collector. The
process begins at 148, and, in step 150, the bounding box
coordinates are retrieved for the new object and the stored,
“like” object. For example, in the described embodiment, a
bounding box has four coordinates. The coordinates of the
objects’ bounding boxes can be specified as:

For the stored object:

X,=X coordinate of left edge of bounding box
X=X coordinate of right edge of bounding box
Y =Y coordinate of top edge of bounding box

Y =Y coordinate of bottom edge of bounding box
and for the new object:

X',=X coordinate of left edge of bounding box
X' =X coordinate of right edge of bounding box
Y' =Y coordinate of top edge of bounding box

Y' ;=Y coordinate of bottom edge of bounding box
In next step 152, any bounding box coordinate of the
stored object are replaced with the corresponding bounding

5,638,498

19

box coordinate of the new object if predetermined condi-
tions are met. In the described embodiment, these conditions
are as follows:

Replace X, with the minimum of (X;, X',)
Replace X, with the maximum of (X,, X'5)
Replace Y, with the maximum of (Y, Y',)

Replace Y, with the minimum of (Y5, Y'5)

Thus, a stored object’s coordinate in the collector is
replaced with a corresponding new object coordinate only if
the new object has a smaller or larger coordinate, as appro-
priate. Once these replacements have been accomplished,
the process 1s complete as indicated at 154.

For example, in FIG. 4e, a band 112 of a page 110 is
shown. Text object 124 has been previously stored in the
collector of band 112. Text object 126 is a new object that
is to be stored in the collector of band 112 as well. In step
134 of FIG. 5, new object 126 is found to be adjacent to text
object 124 and has the same type (text) as object 124.
Objects 124 and 126 therefore qualify as “like” objects, and
‘are combined in the process of FIG. 6. Both objects have the
same left and right (X) coordinates (i.e., X,;=X';, X=X'5),
and the bottom Y coordinate of object 124 is the same as or
is nearly equal to the top Y coordinate of object 126. In step
152, coordinates X; and X, remain the same, coordinate Y.,
remains the same, and Y, is replaced by Y',. The new,
combined object 135 thus has a bounding box having a left
side at X, a top side at Y, a right side at X, and a bottom
side at Y'. |

FIG. 7 is a flow diagram illustrating step 142 of FIG. 5,
in which a number of object combinations are forced to free
up storage in the collector for the new object. Preferably,
only objects of the same type are forced into combinations
in this process 142. In the described embodiment, the
number of combinations is an adjustable parameter that is
greater than or equal to 1 which the user can set before the
process of the present invention is implemented. For
example, a minimum of 2 combinations can be selected. The
inimum number of forced combinations can depend on the
specific applications of the user.

The process begins at 156, and in step 158, the process
examines stored objects having the same type in a collector
for combining purposes. In one embodiment, each object’s
bounding box and type is compared to every other object’s
bounding box and type in the collector, which can be
accomplished according to one of several well-known meth-
ods. For each collected object, the cost of combining the
object with each other collected object of the same type is
computed. The “cost” of combining two objects is depen-
dent on the area of the resulting combined object, the
separation distances between the objects, the sizes of each
object, and even other parameters, such as time required to
perform the combination, etc. An example of a cost function
used for computing the cost of combining objects is as
follows:

Ay

C= D’Ll(Au — Ap ——Aq +Af) + {Izm

+ 03857 + Olgsy?

where
o, O, O, and O, are tuning parameters,
A,=the area of the bounding box that would result from
doing the combination,
A =the area of the first bounding box in the proposed
combination,

A =the area of the second bounding box in the proposed
combination,

10

15

20

25

30

35

40

45

30

35

60

65

20

A~=the areca of the intersection of the boxes that are
proposed to be combined,

S,=the minimum separation of the boxes in the X direc-

tion (zero if X coordinates overlap at all), and

S, =the minimum separation of the boxes in the Y direc-

tion (zero it Y coordinates overlap at all).

This function provides the cost, C, which is used in later
steps. The first term of the function provides all the area that
would be included in the combined object which is not
included in the original two objects, i.e., the extra
whitespace that would have to be included. Preferably. as
little whitespace as possible should be included in a com-
bined object, since compressing whitespace is wasteful of
time and memory (as explained below). The second term of
the function is similar to the first but provides a ratio to
compare areas. The third and fourth terms provide the
separation of the two boxes is X and Y directions, respec-
tively. The tuning parameters o,, etc. can be used to empha-
size particular terms of the function. For example, if a user
believes that the first term of the function (i.e. the ¢, term)
1s more important in determining cost than the other terms,
then the parameter o, can be increased in value and the
parameters o,, 05, and o, can be lowered in value. A wide
variety of other functions can also be used in other embodi-
ments to provide a cost number reflecting these and/or other
cost parameters.

In step 160, the process selects the bounding box coor-
dinates of the object pair having the smallest cost of com-
bination as computed above in step 158. The bounding box
coordinates for the two objects are retrieved as described in
step 150 of FIG. 6. In an alternate embodiment, in step 158,
the cost of combining an object with another object can be
calculated for different pairs of objects until a cost C of
combination results that is less than or equal to a designated
threshold. Thus, in step 160, the object pair that first met this
threshold would be selected. This alternate method can save
computing time over the embodiment described above, since
costs of object combinations are calculated only until the
threshold 1s met, not for all the object combinations in the
collector.

In next step 162, the two selected objects are replaced
with a new combined object having the same type as both
the objects and having each bounding box coordinate from
one of the two objects. The coordinates of the combined
object are preferably determined using the method as
described above in step 152 of FIG. 6. In step 164, the
process checks whether the desired number of combinations
have been completed. As explained above, a predetermined
number of combinations can be set before the process
begins. I the desired number of combinations has been
completed, then the process is complete at 166. If not, then
the process continues to step 168, where it is checked
whether more combinations of objects are possible. More
combinations are possible if there are at least two objects in
the collector for at least one object type. If more combina-
tions are possible, the process returns to step 158 to compute
the cost for two objects having the same type as already
computed, or for two objects have a type different from the
type of any objects already combined. If no more combina-
tions are possible, the process is complete as indicated at
166.

FIG. 8 is a flow diagram illustrating step 80 of FIG. 4b,
where the process attempts to compress the data of band A.
This is accomplished by dividing the band objects into
non-intersecting regions, assigning compression algorithms
to the regions, and attempting to compress the band, as
described betow. The process begins at 180. In step 182. a

5,638,498

21

set of non-intersecting rectangular regions that covers all
objects in the band is found. This is accomplished using the
type and bounding box information stored in the collector
associated with the band, and is described in greater detail
below with reference to FIG. 9.

FIG. 4f is a diagrammatic illustration of band 112 of FIG.
4e being divided into non-intersecting regions. A number of
non-intersecting regions 128 are provided over and sur-
rounding objects 127, 135, and 137 as a result of step 182.
A “region,” as referred to herein, is a non-overlapping
rectangular area in a band that “covers” (i.e. includes) some
data portion of the band. Some of regions are empty regions
129, which include only whitespace and cover no objects
(1.e., include no object data). Other regions 128 are non-
empty regions 131, which cover one or more objects. All
regions are preferably stored in a separate “region buffer” of
memory (such as RAM 28). Each region is defined by a data
structure which includes the coordinates of the region, the
type(s) of the region, and other information as described
below and with reference to FIG. 9a.

Referring back to FIG. 8, steps 184-188 assigh object
types to the non-intersecting regions 128 found in step 182.
In initialization step 184, each region is assigned an empty
set of types and each region’s “marked” flag (also preferably
stored in the data structure) is set to false. The marked flag
is used to distinguish whether a region has an empty type or
not. An empty type indicates that the region covers only
whitespace and no objects in the band. In iterative step 186,
a counter “1’ is 1nitialized to O and is compared to the
number of objects in the band. Each object in the band is
uniquely numbered and considered OBJECT(3). K i is less
than the number of objects in the band, then step 188 is
implemented.

In step 188, for the set of regions covering OBJECT (i),
the type of OBJECT(i) is added to each covering region, and
each region’s marked flag is set to “true.” Since non-
intersecting regions that cover the objects were found in step
182, all regions in the band either cover an object with the
entire area of the region, or do not cover an object at all.
Only regions that cover OBJECT(i) are processed in step
188; the coordinate data stored in the region data structures
221 and X- and Y-arrays can be used to determine these
covering regions. If the type of OBJECT(3) is the same as a
type that 1s already stored 1n a covering region, then no new
type is added to that region. Aregion may cover two or more
types of objects and thus may be assigned two or more
different object types over different iterations of steps
186-188; a region having more than one object type is
considered to have a “complex” type. The “marked” flags of
the covering regions are set to true, indicating that these
regions have been marked with a non-empty type. The
process can later examine the marked flag to distinguish
regions that have non-empty types and regions that have
empty types, where a “true” flag indicates the region has a
non-empty type.

For example, in FIG. 4f, region 133 covers both text
object 135 and graphics object 127. For example, object 135
is OBJECT(1) (i.e., i=1) and object 127 is OBJECT(2) (i.c.,
i=2) 1in the loop of iterative step 186. Region 133 is a region
covering a portion of OBJECT(1) and a portion of OBJECT
(2). Thus, the type of OBJECT(1) (i.e.. text) will be added
to region 133 when i=1, and the type of OBJECT(2) (i.c..
graphics) will be added to region 133 when i=2. Region 133
therefore has both text and graphics types, i.e., a “text-
graphics” complex type.

After step 188, the process returns to step 186 to incre-
ment counter 1 to the next object in the band. Step 188 then

10

15

20

23

30

35

45

50

35

65

22

processes the regions covering the next OBJECT(i). Once
every object has had each covering region processed, then i
will be greater than the number of objects in the band in step
186. The process then continues to step 194, where a “best”
compression algorithm is assigned to each region based on

the type of each region and other factors. The “best”
compression algorithm for a region is estimated to produce -
the best compression ratio for the combination of object
types included in the region without sacrificing the quality of
the displayed image derived from the region. Preferably,
algorithms are assigned based on the current compression
level and the type of the region. |

In the preferred embodiment, algorithms to assign to
regions are referenced in tables stored in memory, as
described below with reference to FIGS. 8a and 8b. The
current compression level and object types of a region are
provided to the tables to retrieve the corresponding “best”
algorithm for that region. User constraints of quality and
desired compression ratio can aiso help determine the
assigned algorithm using these tables. For example, a com-
pression algorithm that provides excellent visual guality for
one of multiple types of aregion may not achieve a sufficient
compression ratio for the other type. There thus may be a
tradeoff between visual quality and compression ratio for
different types (such as text and image types) which can be
determined by user constraints, The compression algorithm
assigned to a region 1s preferably stored in the data structure
of that region, as shown below in FIG. 9a.

In other embodiments, other constraints can help deter-
mine which compression algorithms are assigned, especially
for regions having combined (multiple) types such as text
and graphics or graphics and image. User constraints can
include overall page characteristics and time to compress (or
decompress) the region. Constraints of overall page charac-
teristics can determine whether similar algorithms are to be
used over the entire page to provide a uniform quality image,
or can determine a particular minimum compression ratio to
be used over the entire page based on the available storage
space for the entire page. The process can examine different
compression ratios of bands and/or regions of the page that
have been compressed, and can estimate ratios for bands yet
to be compressed by examining data in collectors and in the
band record. For example, a region can be assigned the same
compression algorithm as a region across a band boundary.
The time to compress or decompress a region can be
different depending on the algorithm used and may be of
concern to a user in a particular application.

In an alternate embodiment, a region having a complex
object type can be assigned a single type, where the single
type is one of the types of the region. In such an
embodiment, for example, the commands associated with an
input object (received in step 64 of FIG. 4a) could include
information on how the object is displayed in relation to
other objects. For example, the input object data could
include information specifying if each object is transparent
or opaque when displayed, and the “layering” of the objects
on the screen, 1.e., which objects are displayed over other
objects. Using this information, step 194 can determine
which single object type should be assigned to a region
having a complex type based on the layering and transpar-
ency of the objects.

In next step 196, the regions are examined and any
eligible regions are combined with other regions based on
specified criteria. These combinations are accomplished
primarily to reduce storage space requirements of the
regions according to, for example, limitations of hardware
implementing the process. The combination of regions in

J,638,498

23

this step is described in greater detail below with respect to
FIG. 10. In next step 198, the regions of the current band are
attempted to be compressed into the compressed band buifer
according to the assigned algorithms for the regions. Dif-

ferent compression algorithms can be used on different
object types 1n a band to store rasterized bitmaps in rela-

tively small storage space compared to the storage space
needed if no compression or if a single compression algo-
rithm were used. The steps of compressing the regions and
storing them in the compressed band buffer is described in
oreater detail with respect to FIG. 12. As explained above
with reference to FIG. 4b, the band data may not fit in the

available space in the compressed band buffer. After the
band is attempted to be compressed, the process 1s complete
as indicated at 200.

It should be noted that, in the described embodiment, the
assigning of a compression algorithm to objects (step 194)
and object combinations (step 196) are performed on ras-
terized object bitmap data in the uncompressed band buffer.
Alternatively, compression algorithm assignments and

object combinations can be assigned betore objects are
rasterized and stored in the uncompressed band buffer, such
as before step 78 of FIG. 4b. Also, assigning algorithms and
combining can be performed at any time after the band
display hist has been built but before performing the actual
compression of the band.

FIG. 8a shows an example of an algorithm look-up table
that can be used to provide algorithm assignments to a
region in step 194 of FIG. 8. In the described embodiment,
the algorithm look-up table is stored in ROM 30 and can be
utilized in conjunction with indexing table 205 (described
below) to determine what combination of available com-
pression algorithms to assign to a region. A number of
algorithm entries 201 is provided in table 202, where each
algorithm entry 201 includes an identifier 212, one or more
specified compression algorithms 203, and compression
parameters 204. Preferably, an algorithm entry 201 is
accessed using algorithm identifier 212, and the algorithm(s)
203 and parameters 204 are then provided and assigned to
the region. For example, if algorithin entry 1 is accessed,
then the compression algorithm I.ZW is to be assigned with
the corresponding parameters listed in field 204. It algorithm
entry S is accessed, then the compression algorithm LZW is
to be cascaded with a Differential Pulse Code Modulation
(DPCM) process and assigned with the parameters in field
204. Cascaded algorithms operate by “pre-processing™ the
data using one algorithm (such as DPCM), and then com-
pressing the pre-processed data with the other algorithm
(such as .ZW). Cascaded algorithms can be used to achieve
different compression ratios than when using an algorithm
alone. The algorithm entries 201 are accessed by the index-
ing table 205, described below with reference to FIG. 8b.

Some algori entries 201 have the same algorithms
listed 1n field 203 but have different parameters listed in field
204. Compression parameters are provided to adjust the
compression process, and are well known to those skilled in
the art. For example, in a DCT-based algorithm, a set of
guantization coefficients, a threshold to shift coefficients,
etc., can be specified; in LZW, a pointer width can be
specified; etc. Different parameters can provide different
compression ratio and compression qualities to different
algorithm entries. For example, algorithm entry 1 assigns
LZW with PARAMETERS 1. while algorithm entry 3
assigns LZW with PARAMETERS 3. Entry 1 may compress
text at one compression ratio and quality, while entry 3 may
compress text at a different compression ratio and quality.

It has been found that certain compression algorithms
compress certain types of regions more efficiently than other

10

15

20

25

30

35

40

45

S0

35

60

65

24

types of algorithms. Thus, the described embodiment as
shown in table 202 provides the LZW compression algo-
rithm for text regions, the LZW compression algorithm for
oraphics regions, and a discrete-cosine-transform based
(DCT-based) compression algorithm (such as JPEG) for
image regions. A Pixel Depth Reduction (PDR) algorithm
can also be provided for cases when a deterministic com-
pression ratio is needed, i.e., a compression ratio that is

exactly known prior to compressing (other types of com-
pression ratios are estimated). These algorithms, or cascaded

multiple algorithms, can also be assigned to complex object
types depending on user constraints, as described below.

Other standard compression algorithms, such as Wavelet,
RLE, Huffman, etc., or even non-standard algorithms, can be

assigned to different object types and quality levels. Other
types of algorithms can be cascaded, as well. For example,

LZW or Huffman coding can be cascaded with a Run-
Length Encoding (RLE) algorithm. The implementation of
these compression algorithms (and decompression of data
compressed with these algorithms) is well-known to those
skilled in the art.

FIG. 82 shows an example of an indexing table 203 which
can be used in step 194 of FIG. 8 to assign an algorithm
entry 201 (as shown in table 202 in FIG. 8a) to each
non-empty region of the current band. Indexing table 205 is
stored in ROM 30 (or RAM 28) and can be utilized to assign
an algorithm entry 201 according to object type and com-
pression level. Indexing table 205 includes entries for dif-
ferent combinations of object types 206, which are text,
graphic, and image in the described embodiment. For each
possible non-empty combination of object types, there is an
entry group 207. Thus, there are seven different entry groups
207 in the described embodiment, one group for each
non-empty combination of three object types.

Each entry group 207 includes one or more index entries
213. In the table 205, three entries 213 are shown in each
entry group 207, but any number of entries 213 can be
included in other embodiments. An entry 213 points to an
algorithm entry 201 in algorithm table 202 which is to be
assigned to a region. Preferably, each entry includes three
fields: an algorithm entry field 211, a quality field 208, and
a compression ratio field 209. The algorithm entry field 211
stores a pointer (such as an identifier) to an algorithin entry
201 in the algorithm table, which is described above in FIG.
8a. This pointer provides the actual compression algorithm
or {(cascaded) algorithm combination to be assigned to a
region. The quality ficld 208 indicates the estimated quality
(or lossiness) of compressed data when compressing the
region using the algorithm entry in field 211. In the
described embodiment, the quality field indicates the mini-
mum current compression level that is required to assign the
algorithm entry in field 211 to a region. The current com-
pression level is determined above in steps 34 and 94 of
FIGS. 4a and 4c. The compression ratio field 209 indicates
the estimated resulting compression ratio when compressing
the region using the algorithm entry in field 211. For
example, a compression ratio of “2” indicates that the data
1s estimated to be compressed at a 2:1 ratio. Typically, the
oreater the required compression level {(worse quality) in
field 208, the more lossy the algorithm and the greater the
compression ratio in field 209.

Any one entry 213 in entry group 207 may be selected for
a region if the region meets the constraints of object types
206 and compression level 208 for that entry 213. In
addition, constraints of compression ratio may also be used
to select an entry 213 in a group 207 for a region.

For example, if a region R has an object type of text only,
then the process examines the object types 206 and selects

5,638,498

25

group 207a which corresponds to the object type “text.”
Three index entries 213a, 213b, and 213¢ are included in
group 207a. Assuming the current compression level is 1,
only the first entry 213a can be selected, since its quality
field is 0, and only entries having a quality field 208 less than

or equal to the current compression level can be selected.
The first entry 213a includes a pointer 211 to algorithm entry
1 in table 202 of FIG. 8a and indicates in field 209 that the
estimated compression ratio for algorithm entry 1 is 2.0.
Algorithm entry 1 provides a LZW algorithm (and
parameters) to be assigned to region R, which is suitable for
text compression.

If the current compression level were 2 in the above
example, then either the first entry 213a or the second entry
2135 could be selected for region R. Entry 213a provides a
compression ratio of 2.0, and entry 2136 provides a com-
pression ratio of 5.0. Thus, user constraints can dictate
which entry to select. If higher quality is desired, then entry
213a can be selected; if higher compression ratio is desired,
then entry 2135 can be selected. If region R has a complex
type. such as text-image, then an entry 213 from group 2075
would be selected in a similar fashion.

FIG. 9 is a flow diagram illustrating step 182 of FIG. 8,
in which a set of non-intersecting rectangular regions that
covers all objects in the current band is found. The described
process of FIG. 9 is only an example, since there are many
possible methods to provide non-intersecting regions from
object bounding boxes. The process begins at 210, and, in
step 212, an X-array is created having all X coordinates that
describe left or right edges of object bounding boxes in the
band. The left and right edges of the band are also inciuded
as X coordinates in the X-array. For example, X coordinates
139 as shown in FIG. 4f are stored in the X-array.

In step 214, the X-array is sorted in the order of increasing
X coordinates, and duplicate X coordinate values are
removed from the array. The resulting array thus includes
nX values. In step 216, a Y-array is created having all Y
coordinates that describe top or bottom edges of object
bounding boxes in the band. The top and bottom edges of the
band are also included as Y coordinates in the Y-array. For
example, Y coordinates 141 as shown in FIG. 4f are stored
in the Y-array. In step 218, the Y-array is sorted in the order
of increasing Y coordinates, and duplicate Y coordinates are
removed from the array.

Finally, in step 220, the band is divided (or “partitioned™)
into (nX-1XnY-1) rectangular, non-intersecting regions.
Each region can be labelled as R, ;, where 0=i<nX~-1 and
0=j<nY-1. The extent of the coordinates (X,Y) of region R;;
is thus X;=X<X,,, and Y;=Y<Y,,,, where X is the ith X
coordinate in the X-array (0=i<nX), and Yj is the jth Y
coordinate in the Y-array (0=j<nY). Note that, since discrete
pixels are being displayed, two regions do not have the same
coordinates on an adjacent edge. Thus, one region would
have a right edge X coordinate of X.~1, and an adjacent
region to the right would have a left edge X coordinate of X,
The process is then complete at 223.

As shown in FIG. 9a, each region R;; created in step 220
preferably includes a data structure 221 stored in the region
buffer. The region data structures are preferably ordered in
“raster display order” (i.e. scam line order) in the region
buffer according to the top left corners of the regions so that
the decompressor can retrieve the regions in this order, as
described below with reference to FIG. 13. The data struc-
ture 221 of the described embodiment includes a namber of
fields which include master flag 222, slave fiag 224, marked
flag 226, X index 228, Y index 230, and object types 232.
Other forms of data structure 221 can be used in other

10

15

20

25

30

35

45

50

33

a5

26

embodiments. Master flag 222 and slave flag 224 are used to
implement region combinations, and are detailed below with
respect to FIGS. 10 and 11. Marked fiag 226 is used to mark
whether a region has a non-empty type or an empty type
(true or false, respectively), as described above.

X index 228 and Y index 230 describe the location of the
region in terms of indexes (offsets) into the X-array and
Y-array, respectively, and preferably range from 0 to the
number of regions in their respective directions. These
indexes specify a region by the region’s lower left coordi-
nates. For example, an (X index, Y index) of (1, 2) specify
the region R, ,, which is second from the left edge of the
band and third from the top edge of the band; the coordinates
of region R, , range from the second X coordinate in the
X-array to the third coordinate in the X-array (minus 1), and
from the third Y coordinate in the Y-array to the fourth Y
coordinate in the Y-array (minus 1). These indexes apply
when the region is neither a master or slave. If the region is
a master, X index 228 indexes the coordinates of the
diagonally opposite slave region. If the region is a slave, the
X and Y indexes 228 and 230 index the coordinates of the
slave’s master region.

Object type field 232 specifies all the object types which
the region covers. In the described embodiment, this is
implemented as a series of bits, where one bit is included for
each possible object type (not including the “empty” type).
I a bit is on for a certain type, then the region covers an
object of that type. Data structure 221 aiso stores other
information needed for compression/decompression of the
regions, such as the location of the region in the uncom-
pressed band buffer and general parameters such as pixel
depth and number of pixels on a scan line for the region,
which are used by the compression process as described
with reference to FIG. 12.

Note that other methods can be used in alternate embodi-
ments to provide a set of non-intersecting regions that cover
the band. For example, a method utilizing linked lists instead
of the preferred coordinate array method described above
can be used. In the linked lists method, each region can
initially correspond to each object (as specified in the
collector for the band) and can have a data structure includ-
ing a bounding box and type description. Each of these
region data structures can be included in a linked list, as is
well known to those skilled in the art. I two regions intersect
each other, then those regions are removed from the linked
list and are divided into non-intersecting regions, and these
non-intersecting regions are inserted into the linked list in
place of the intersecting regions. Methods of manipulating
linked lists as such are well known to those skilled in the art.
Each two adjacent regions in the linked list can be similarly
examined and replaced with non-intersecting regions when
appropriate,

FIG. 10 is a flow diagram illustrating step 196 of FIG. 8,
in which regions are combined based on specific criteria.
The process begins at 240, and, in a step 242, each row of
regions is examined. A “row” of regions refers to all the
regions in a horizontal row of the band (those regions having
the same Y coordinates). A region’s assigned algorithm is
preferably compared to the assigned algorithms of the
regions to the left and to the right of that region. In each row,
adjacent regions that have been assigned the same compres-
sion algorithm are combined. Two regions can be considered
“adjacent” if there are no intervening regions between the
two regions. A method for combining regions is described in
greater detail with respect to FIG. 11. Preferably, two
regions are combined, and the combined region can then be
combined to additional adjacent regions if the algorithms are

5,638,498

27

the same. This is the least “costly” combination of regions
that can be accomplished, since no compromises in quality
are made and storage space is saved. Thus, this combination
is preferably performed prior to other region combinations,
which are detailed below.

In next step 244, pairs of non-empty regions having the
same assigned compression algorithms are combined with
empty regions separating the pairs if hardware constraints
are violated on that row of regions. The hardware constraints
of the described embodiment typically include a limit to the
number of regions that can exist on a horizontal scan line.
This limit is dictated primarily by the amount of available
memory, e.g., in the ASIC 38. Thus, if there are more regions
in arow than the limit allows, the hardware constraints have
been violated. In step 244, intervening empty regions are
included in a combined region to reduce the number of
regions in a row. since all adjacent regions with like com-
pression algorithms were already combined in step 242. For
example, as shown in FIG. 4f, if region 243 were assigned
the same compression algorithm as region 137, and it was
determined that there were too many regions in that row of
regions, then the pair of regions 243 and 137 would be
combined with empty region 245 to form a combined region.
The method of combining regions is described in greater
detail with respect to FIG. 11. Again, combined regions can
continue to be combined with additional regions if the
required conditions are met. The combinations performed in
step 244 are more “costly” than the combinations of step
242, since empty whitespace (background) data is being
included in a region. This causes empty space to be com-
pressed and stored in the compressed band buffer, which is
inefficient. Ideally, only regions having object data and no
empty space are desired so that only object data is com-
pressed into the compressed band bufier.

In next step 246. the process checks whether the hardware
constraints are still violated in any row of regions in the
current band. If so, then step 248 is implemented, in which
additional region combinations are forced within the violat-
ing row. Preferably, regions having a small “cost” of com-
bination are combined first. This forced region combination
cost is preferably based on the estimated amount of com-
pressed storage required for the combined regions in excess
of the estimated amount of compressed storage required for
the individual regions. For example, if two regions R1 and
R2 are estimated to require B1 and B2 bytes of storage,
respectively, when separately compressed, and are estimated
to require B bytes when combined and compressed, the cost
of the combination is B—~(B1+B2). This cost can sometimes
be negative, since there is a certain amount of incompress-
ible storage “overhead” associated with each region; com-
bining the regions allows the overhead to be shared in one
combined region. |

In this step 246, even regions having different assigned
compression algorithms may have to be combined in order
to reduce the number of regions. Thus, this step has the most
costly and least desirable type of region combinations, since
some object types may not be compressed with an efficient
algorithm as a result. If necessary, algorithm assignments
can be changed if regions having two different types are
combined. For example, if a text and image regions have to
be combined in this step. then the assigned compression
algorithms can be changed to an algorithm that provides
better quality to a text-image complex object type. The
region combinations can be performed as described with
reterence to FIG. 11.

After step 248, the process returns to step 246 to check if
hardware constraints are still violated on any row of the

10

15

20

235

30

35

40

45

50

55

60

65

28

band. If they still are, then step 248 is repeated as often as
necessary. Once the hardware constraints are no longer
violated, step 250 is implemented, in which vertically adja-
cent regions are combined when possible and when the
“cost” is within limits. The “cost” here may be specified
similarly as in step 246. The vertical combinations are
accomplished as described with reference to FIG. 11. The
vertical combinations are preferably accomplished after all
horizontal combinations are completed in steps 242, 244,
and 248.

FIG. 11 is a flow diagram illustrating the method of

'combining regions in steps 242, 244, 248, and 250 of FIG.

10. It 1s assumed that a group of two or more regions are
desired to be combined. The method starts at 260, and in a
step 262, the lower left region of the group of regions is
designated the master region. The rest of the regions in the
group are designated slave regions of the master region. This
is accomplished in the data structure 211 of FIG. 92 by
setting the master flag to true for the master region and
setting the slave flag to true for each of the slave regions.

In step 264, the object type of the master region is
augmented with all the object types of the slave regions. In
the described embodiment, this is accomplished by setting
the bits in the object type field 232 of the master region to
all types included in the slave regions. Any duplicate object
types are ignored. In step 266, the master region is marked
with the boundaries of the set of slave regions. In the
preferred embodiment, the master region’s X-index and
Y-index are set to the indexes of the slave region furthest
diagonally opposite to the master region (i.e., the slave
region that is furthest to the right and above the master). In
step 268, cach slave region is set to point to the master
region. In the data structure 221 of FIG. 9a, this is accom-
plished by setting the X-index and Y-index of each slave to
the indexes of the master region.

For example, if two horizontally adjacent regions are to be
combined, the leftmost region is the master and has an
X-index and Y-index of the slave region on the right (that
slave region 1is considered diagonally opposite to the
master). The region to the right is the slave region and has
an X-index and a Y-index of the master region. Since the
slave includes the location (coordinates) of the master, and
the master includes the location (coordinates) of the opposite
slave, the entire area of the combined region is known. Note
that, in other embodiments, other methods of combining
regions can be used.

FIG. 12 is a flow diagram iliustrating step 198 of FIG. 8,
in which the band is attempted to be compressed into the
compressed band buffer according to the assigned algo-
rithms in the band. The compression can be implemented by
ASIC 38, or, alternatively, by a software process. The
process starts at 274, and, in step 276, the attributes for a
selected non-empty region in the band are read from the data
structure 221 in the region buffer. The “attributes” for a
region include relevant information stored in the region’s
data structure used for compressing the region. This includes
the identification of the compression algorithm assigned to
the region, the location of the region in the uncompressed
band buffer, the size of the region, the width of a scan line,
pixel depth (number of bits 1n a pixel), etc. In the described
embodiment, the first region data structire in a scan line
order of data structures is first retrieved from the region
buffer and its associated region compressed, followed by the
next region in scan line order. The scan line order is the
raster display order in which a scan line pointer displays
pixels on an output display device, as described below in
FIGS. 13 and 13a. The scan line order of regions preferably

5,638,498

29

starts with the region at the top left of a band (determined by
the top left comer of each region), followed by the next

region to the right, and so on 1n a left-to-right, top-to-bottom
order. In addition, the region data structures do not have to

actually be stored in the region buffer in the scan line order;
they can, for instance, be linked 1n the scan line order with
linked lists, as is well known to those skilled in the art.
Regions can be retrieved and compressed in other orders in
alternate embodiments.

In step 277, a “region descriptor” record 1s created for the
region selected in step 276 and is stored at the beginning of
each compressed band in the compressed band buffer (some
information in the region descriptor is added atter compress-
ing the region in step 278). The region descriptor may be
linked with other region descriptors for other regions in the
band, preferably in raster display order. The region descrip-
tors can be used in the compression and decompression
processes, for example, by ASIC 38. Each region descriptor
preferably includes the height H (in pixels) and width W (in
pixels) of the associated region, the location (e.g.,
coordinates) of the region on the page, pointer to the starting
location of the region in the uncompressed band buffer such
as a byte offset (used when compressing), pointers to the
location of the region in the compressed band buffer, such as
a byte offset from the beginning of the band (stored after
compressing the region and used when decompressing),
pointers to the compression algorithm(s). used to compress
the region, and general parameters such as pixel depth and
number of pixels on a scan line for the region. This infor-
mation can be determined from the attributes retrieved from
the region data structure 221 and other system parameters.
In other embodiments, the region descriptors can be stored
in other areas besides the compressed band buffer, or can be
created before the actual compression process.

In step 278, the “compressor” (i.e., a processor and/or any
related software implementing the appropriate compression
algorithm) attempts to compress a non-empty region in the
uncompressed band buffer using attributes from the region
descriptor. The compressor attempts to compress the data for
the current region from the uncompressed band buffer using
the assigned compression algorithm and stores the com-
pressed data in the compressed band buffer.

This compressed data may or may not fit in compressed
band bufter, as described above with reference to FIG. 4b. It
the compression is not successful, i.e., the compressed data
overflows the available storage space, the process is com-

plete at 282. If the compression is successful, then the
compressed region 1s marked as “compressed” in the “band

record”; also, the starting location of the band in the com-
pressed band bufier and the current compression level are
stored in the band record. Step 281 is then performed, in
which the process checks if another region is available to be
compressed. If another non-empty region is available in the
region buffer, then the process returns to step 276 to read
attributes and compress the next region. If another non-
empty region is not available from the region buffer, then the
process is complete as indicated at 282.

It should be noted that only non-empty regions are
compressed and stored in the compressed band buffer.
Empty regions in the band, i.e., “background” areas or pixels
(whitespace), are not compressed or stored, since these
regions do not include any object data. The present invention
thus saves storage space and compression time by compress-
ing and storing only the portions of a page including object
data. Background areas can be displayed with the desired
attributes (brightness, color, etc.) at the time of decompres-
sion and/or display, as described below with respect to FIG.

13.

10

15

20

25

30

35

45

50

55

65

30

The present invention thus implements multiple compres-
sion algorithms to reduce the storage space required by the
rasterized data while maintaining good visual quality when
displaying the data. These compression algorithms have
been optimized to the type of data being compressed in view
of several constraints as described above. Well-known com-
pression algorithms typically can compress one type of
object efficiently; the method of the present invention allows
all types of objects to be compressed with a much greater
reduction in required storage space at acceptable quality
than if a single compression algorithm were used for all
object types.

FIG. 13 is a flow diagram illustrating step 46 of FIG. 3,
in which the compressed data is decompressed based upon
the assigned compression algorithms and the decompressed
data is displayed. In one embodiment, the decompression
method 46 is implemented by hardware such as ASIC 38 as
shown in FIG. 2a. Alternatively, decompression can be
implemented in software.

The process begins at 290. In step 294, a number N of
“region descriptors” (or a similar list of regions) are

retrieved from the beginning of band(s) of data in the
compressed band buffer for the current displayed page of
data. The region descriptors are described with reference to
FIG. 12 and are retrieved in the same order that their
associated compressed regions are stored. The retrieved

region descriptors are stored in a “decompression buffer,”

which can be included in ASIC 38, for example. The number
N of retrieved region descriptors can vary in different
embodiments. Preferably, N is at least one more than the
maximum number of regions that can be provided on a
single row or horizontal scan line as described above with

reference to FIG. 10. This is desired so that at least one
region descriptor is still in the decompression buffer when

the end of a band is reached, as described below.

Next, the process determines the regions crossed by the
next scan line in step 296. The first time this step is
implemented, the “next” scan line is the first horizontal scan
line at the top of the page. A “scan line”, as referred to
herein, is a horizontal line on the page that is traced from left
to right (described with reference to FIG. 13a). This is the
typical direction of displaying pixels in raster output
devices, and the data is typically provided to the output
devices in the scan display order. Depending on the
embodiment, scan lines can also be implemented as hori-
zontal right-to-left lines, vertical, up-to-down lines, etc.
Thus the terms “left”, “right”, “top”, “horizontal”,
“vertical”, etc. refer to left-to-right, top-to-bottom scan lines
and may be changed appropriately in other embodiments.

The next scan line is traced across the width of the displayed
page to determine if any regions on the page are crossed by

the current scan line. This can be accomplished by exam-
ining the height and width of regions and the location of
regions on the page as provided in the region descriptors.
In next step 298, the processor checks if a scan line
pointer is currently within or at the left border of a region.
The scan line pointer is the “front” of the scan line as it is
traced across the width of the page in a displaying process.
When first implementing these steps, the scan line pointer
preferably starts at the top left comer of the page (the page
can be oriented in any direction). The scan line pointer can
either be within a non-empty region or within an empty
region; the empty regions are referred to herein as “back-
ground” areas or background pixels. The background areas
were not compressed and stored in the compressed band
buffer, since there is no object data to store for these areas.
If the scan line pointer is not within or at the left border
of a non-empty region in step 298, step 300 is implemented,

5,638,498

31

in which background pixels on the current scan line are
sequentially output to the display as the scan line pointer is
moved left to right. When the scan line pointer reaches the
starting (left) border of a region, or the end of the current
scan line, no more background pixels are output (until the
scan line pointer moves to another background area). The
background pixels can be “whitespace” pixels, such as the
white background of a white sheet of paper. Preferably, any
attribute, such as color, brightness, etc., of background
pixels can be specified by the user for whitespace pixels.

After step 300, the process checks whether the pointer is
at the start of a region in step 302. If so, then step 304 is
ir plemented as described below. If the pomter is not at the
start of a region in step 302. then the pointer is at the end of
a scan line. Step 3 10 is then implemented, as described
below.

Once the scan line pointer points to aregion, either in step
298 or after displaying background pixels in step 300, then
step 304 is implemented, in which the decompression
“state” is retrieved for the region that is currently pointed to.
The decompression state is information that the “decom-
pressor” (i.e., the process implementing the appropriate
decompression algorithm and parameters for
decompression) requires to decompress compressed data,
such as the current pointer into the compression buffer for
the current region, decode trees, etc., and is well known to
those skilled in the art. The decompression state information
for aregion of compressed data is typically positioned at the
beginning of the compressed region data so that the decom-
pressor can immediately read the state and decompress the
region data. In alternate embodiments, the decompression
state can be referenced by pointers stored at the beginning of
the region. For example, the pointers can point to a
separately-stored table which lists the decompression state
for that region. Structures and data used in compression/
decompression such as decode trees, encode trees, tempo-
rary data, etc. can be stored, for example, in RAM 39 local
to ASIC 38 in the embodiment of FIG. 2a, or can be stored
in the ASIC 38 in alternate embodiments.

When step 304 is implemented at the beginning (top left
corner) of a region, 1.e. the first occurrence of the region for
any scan line on the page, the decompression state is read in
for the first time and stored in a state buffer, implemented,
for example, in ASIC 38 and/or RAM 39 (or 28). When the
scan line pointer points to the same region on later (lower)
scan lines, the decompression state for that region is read in
from the state buffer. The height H1 and width W1 of the
region (shown in FIG. 13a) is also read in; these dimensions
are known from the region determination step 296 described
above. In next step 306, the process decompresses the
contiguous region data from the decompression buffer on the
current scan line and outputs the decompressed region data
to be displayed. An amount of compressed data correspond-
ing to the width of the region is decompressed from the
decompression buffer. When all the currently-contiguous
region data on the current scan line is decompressed and the
scan line pointer reaches the right border of the region, the
process stops decompressing and displaying the region data.
The process stores the location of the compressed band
buifer where it stopped decompressing so that it will be able
to start decompressing the same region data when the next
scan line points to this region. The process preferably stores
this location internally in registers of ASIC 38, but it can be
stored in other memories as well.

In next step 308, the process checks if the scan line pointer
is at the end of the current scan line at the right edge of the
displayed page. If not, the process returns to step 298, where

10

15

20

25

30

33

40

45

50

35

60

65

32

the process checks if the scan line pointer is pointing to
another region, and background and region data is output
accordingly as described above. When the pointer is at the
end of the scan line, the process checks in step 310 if any
region(s) have been completely decompressed and displayed
(“completed”) This can be checked, for example, by deter-
mining whether any end-of-region information has been
retrieved from the decompression bufter. If one or more
regions have been completed, then, in step 312, a number of
new region descriptors equal to the amount of completed
regions are retrieved from the compressed band buffer and
stored in the decompression buffer. By continuing with the
process, new region descriptors atre eventually added in from
each successive band of data on the page (e.g., each band’s
region descriptors can be linked to the next band’s region
descriptors to effectively provide an entire page’s worth of
descriptors).

Note that when the scan line pointer reaches the end of a
band, then potentially multiple regions will have been
completed, since no region extends over a band border. The
maximum number of regions that can be completed at the
end of a band is the maximum number of allowed horizontal
regions. Thus, the maximum number of allowed horizontal
regions can be influenced by the amount of region descrip-
tors that can be loaded at one time into the decompression
buffer. Since it requires time to load additional region
descriptors from the compressed band buffer to the decom-
pression buffer, it is desirable that the decompression buffer
be capable of holding at least one more region descriptor
than this maximum number so aregion can be decompressed
while new region descriptors are being loaded.

If no regions have been completed in step 310, or after
new compressed region descriptors have been loaded in step
3 12, then the process checks if the scan line pointer is at the
end of the page. If not, the process returns to step 296, where
the regions crossed by the next scan line (e.g., the scan line
right under the previous scan line in the described
embodiment) are determined. If the scan line pointer is at the
end of the page, the process is complete at 314. The next
page can then be decompressed and displayed, if desired, by
returning to the start of the process at 290.

In an alternate embodiment, the process 46 of FIG. 13 can
be implemented on a per band basis rather than a per page
basis, such that step 314 would check for the end of a band.
If the end of the band had been reached, the process could
return to step 292 to retrieve region descriptors for the next
band. In a different embodiment, an output display device
may not need to output data in a scan line order. The
compressed region data can be provided to the output device
in other ways for such an embodiment.

The above-described limit to the number of regions which
can be positioned on a single scan line can be dependent on
the decompression process. For example, since a single scan
line may intersect many regions, separate memory space
needs to be allocated to store the decompression state of
each region, the location in the compressed band buffer
where decompression left off for each region, and the size of
each region on the scan line (and any links to following
regions, if a linked list of regions is being implemented).
Memory space is also required for the decompression buffer.
If available memory storage or ASIC registers are scarce,
region information for only a limited number of regions can
be stored due to these storage requirements when decom-
pressing.

In an alternate embodiment, region data can be decom-
pressed and stored to memory or a different storage device
instead of being displayed. For example, the data of a page

5,638,498

33

can be compressed effictently using the different compres-
sion algorithms of the present invention and stored in a
relatively small memory space. At a later time, a larger
memory storage arca may become available, and the com-
pressed data can be decompressed to that memory instead of

to an output display device. When decompressing to
memory, the process of FIG. 13 can be used, if necessary,
without the displaying steps. However, in the preferred
embodiment, data is preferably decompressed to memory on
a per band basis rather than a per page basis, and no scan line
or scan line order is used. Each region can be entirely
decompressed at a time to memory, and the decompression
state does not have to be continually saved and retrieved
each time a scan line intersects the region (as in, for
example, steps 76 or 100 of FIGS. 4b and 4c¢). Likewise, the
decompression of a particular region does not have to be
continually interrupted depending on the path of a scan line.
In addition, multiple decompression processes can be imple-
mented simultaneously in the decompress-to-memory
embodiment, since no sequential scan line display con-
straints apply.

FIG. 13a is a diagrammatic illustration of the process of
decompressing a band as described in FIG. 13. A band 320
of data includes two bitmap regions, 322 and 324. When
displayed, these regions are positioned on a background area
326. A scan line 328 starts at the left edge of the band and
background pixels are output until the left border 330 of
region 322 is reached. The decompression state stored at the
beginning of region 322 is read by the process from the
decompression buffer and the state is stored in the state
buffer. The stze of the height H1 of the region is pixels is
then read from the associated region descriptor so that the
process will know when the decompression for the region is
complete. The width W1 of the region in pixels is also read
and this amount of region data in the compressed band buffer
1s decompressed and output. This moves the scan line
pointer to the right edge of region 322, and the location in
the decompression buffer where the decompression left off
is stored, for example, in RAM 39 or ASIC 38 (this location
can also be stored in RAM 28 or another storage location).
The process then outputs more background data until the
scan line pointer moves to the left border 332 of region 324.
Since this is at the beginning of region 324 (i.c., the first time
the data of the region has been pointed to by the scan line
pointer), the decompression state for this region is stored in
a different arca of the state buffer. The compressed data of
region 324 on the current scan line is then decompressed
similarly to region 322. Once the scan line pointer reaches
the right border 334 of the band, a new scan line 336 starts
at the left border of the band just under the previous scan
line. In FIG. 9a, scan line 336 is shown at an exaggerated
distance under scan line 328 for clarity. Background data is
output until the scan line pointer for scan line 336 reaches
left border 330 of region 322. At this point, the process reads
in the decompression state for this region from the state
buffer, the size W1 of the region, and the location in the
compressed band buffer where the decompression for region
322 left off on the previous scan line 328. The process then
decompresses the data from the compressed band buffer for
region 322. This process continues similarly for all regions
of the page.

While this invention has been described in terms of
several preferred embodiments, it is contemplated that
alterations, modifications and permutations thereof will
become apparent to those skilled in the art upon a reading of
the specification and study of the drawings. For example,
other types of objects besides text, graphics, and 1rnages can

10

15

20

235

30

35

45

S0

35

65

34

be defined and assigned their own types of compression
algorithms that efficiently compress those types. In addition,
other page description languages may inherently present
objects in a display order so that the display lists described
herein are not required. The mapping of objects to compres-
sion algorithms can also entail several possibilities; for
instance, one or more types of objects can be compressed
with many possible algorithms, and, correspondingly, one or
more algorithms can be assigned to many possible types of
objects. The constraints of the user ultimately determine the
compression algorithms used, and these constraints can
include time to compress/decompress or display the data;
storage space available for the display lists, uncompressed
band buffer, compressed band buffer, etc.; the quality of the
resulting displayed visual representation that is derived from
the objects; and other factors, such as overall page
characteristics, hardware/software limitations, etc.
Furthermore, certain terminology has been used for the
purposes of descriptive clarity, and not to limit the present
invention. It is therefore intended that the following

appended claims include all such alterations, modifications
and permutations as fall within the true spirit and scope of

the present invention.
What is claimed is:

1. A data processing system with selective object com-
pression and decompression for processing data objects,
comprising:

a rasterizer that converts data objects into bitmap objects;

means for dividing said bitmapped objects into non-

intersecting regions, each of said regions having a type;

a compressor that compresses said regions with selected
compression mechanisms chosen from a set of com-
pression mechanisms to produce compressed bitmap
object regions, where said type of said bitmap object
region is used to select a compression mechanism for a
particular bitmap object region, said compressor Stor-
ing said compressed bitmap object regions in a
memory; and

a decompressor that selectively decompresses said com-
pressed bitmap object regions with selected decom-
pression mechanisms chosen from a set of decompres-
sion mechanisms to produce uncompressed bitmap
object regions, where the selection of a decompression
mechanism for a particular compressed bitmap object
region is dependent upon said selected compression
mechanism for said particular compressed bitmap
object region.

2. A data processing system as recited in claim 1 wherein
said compressor and decompressor are implemented in an
output device.

3. A data processing system as recited in claim 1 further
including an output device for displaying uncompressed
bitmapped objects received from said decompressor, said
output device is one of the group consisting of a printer
device and a screen display.

4. A data processing sysiem as recited in claim 3 wherein
said data objects are organized into at least one page where
each said at least one page is organized into a plurality of
bands, said bands having a display order on said page,
wherein data objects on said page are displayed by said
output device in said display order and where each of said
non-overlapping regions associated with a data object spans
only a single band.

S. A data processing system as recited in claim 4 wherein
said data objects are stored in display lists, wherein a display
list is provided for each band of said page.

6. A digital output processing system as recited in claim
1 wherein said types include text, graphics, and image types.

),038,498

35

7. A data processing system as recited in claim 1 wherein
each of said regions has a type, and wherein a region type
is derived from all the types of the bitmap objects intersected
by said region.

8. A data processing apparatus as recited in claim 1
wherein aregion type for a particular region may be different
from the type of bitmap object from which said region was
derived.

9. A data processing system as recited in claim 4 wherein
said decompressor further includes means for determining
where an output scan line intersects compressed regions of
a band, said decompressor decompressing said compressed
regions where said scan line intersects said regions.

10. A data processing system as recited in claim 9 wherein
said decompressor further includes means for outputting
background data to said output device when where said scan
line does notintersect aregion including one or more bitmap
objects.

11. A method for providing a digital output with selective
object compression and decompression comprising:

receiving a page of output data including one or more
objects, each object including type and location infor-
mation respectively characterizing the type of the data
from a predetermined plurality of data types and a
location of said object on said page;

storing said type and location information for said objects
in a display list indexed according to said location
information;

compressing each of said objects with a selected com-
pression algorithm chosen from a set of compression
algorithms to produce compressed object data of said
type, where said type information is used to select a
compression algorithm for said compressed object
data;

storing said compressed object data in a memory coupled
to an output device;

when said page of data is to be displayed, identifying a
first object to be displayed from said display list;

decompressing said compressed object data with a
selected decompression algorithm chosen from a set of
decompression algorithms to produce uncompressed
output data, where said type information is used to
select a decompression algorithm;

supplying output data associated with the object to be
displayed to said output device;

identifying a next object to be displayed from said data
stored in said display list; and

repeating the steps of decompressing the compressed
object data, supplying output data and identifying a
next object until all said objects in said page of output
data have been supplied to said output device.

12. Amethod as recited in claim 11 further comprising the
steps of:

dividing said page of output data into bands, and storing
type and location information for each object within a
band in an associated band display list; and

rasterizing one or more objects of said band display list as

bitmap objects of an uncompressed band and storing

the resultant uncompressed band objects in an uncom-

pressed band buffer, wherein each bitmap object has a

type corresponding to said type of said object from
which was rasterized.

13. A method as recited in claim 12 wherein said step of

compressing said object data includes compressing said

uncompressed band objects into compressed band objects

10

15

20

25

30

35

40

45

50

55

60

63

36

and said step of storing said compressed object data includes
storing said compressed band objects in a compressed band
buffer of a memory.

14. A method as recited in claim 13 wherein said step of
compressing said output data includes selecting a set of
compression algorithms which meet compression con-
straints.

15. A method as recited in claim 13 wherein said steps of
decompressing said compressed object data and supplying
said data to said output device includes decompressing said
compressed band objects and supplying decompressed band
objects to said output device.

16. A method as recited in claim 15 wherein said step of
compressing said uncompressed band objects includes
checking when said uncompressed band objects fit in said
compressed band buiter when compressed, and, when said
uncompressed band objects do not fit, decompressing and
recompressing compressed band objects that were previ-
ously compressed.

17. A method as recited in claim 12 further comprising a
step of combining said objects into a single object when a
cost of combining said objects is under a predetermined
threshold, said cost determined by the separation between
the objects.

18. A method as recited in claim 17 wherein said cost of
combining is determined by the amount of background data
that i1s included in a combined resulting object compared to
the amount of data included in said objects that were to be
combined.

19. A method as recited in claim 17 further comprising a
step of forcing combinations of objects to free memory
storage in said compressed band buffer.

20. A method as recited in claim 12 wherein if during the
step of compressing said uncompressed band objects a
number of objects compressed for a given band exceeds a
predetermined number, then multiple objects are combined
into a single object prior to compression to reduce the
number of objects actually compressed for a given band.

21. A method for compressing and decompressing a page
of bitmapped data, organized into a pluralify of bands to be
displayed by an output display device, comprising;

(a) receiving one of the bands that includes one or more

regions, each region having at least one type;

(b) using a type of each region to select a compression
method for each of said regions from a plurality of
avatlable compression methods;

(c) compressing each of said regions of said band accord-
ing to its selected compression methods to create a
compressed band;

(d) storing said compressed band in a compressed band
buffer; and

(¢) decompressing said compressed band in said com-
pressed band buffer and sending said decompressed
band to said output display device for display.

22. A method as recited in claim 21 wherein said step of
receiving a band of data includes storing said band of data
in an uncompressed band buffer, said uncompressed band
buffer being able to store at least one band of data.

23. A method as recited in claim 22 where said regions
include one or more input objects having type and location
information, and said receiving step further includes orga-
nizing and storing said input objects into a plurality of
display lists, where each display list corresponds to one of
said bands of said page and at least one display list includes
said input objects, and rasterizing said objects of one of said
display lists into said uncompressed band buffer.

5,638,498

37

24. A method as recited in claim 23 wherein said steps of
rasterizing said objects of a display list and compressing said
rasterized objects occurs before all of said input objects are
included in said display lists, wherein said rasterizing and
compressing step is accomplished to free display list storage
when display list storage is not available.

25. A method as recited in claim 23 further comprising a
step of dividing said regions into subregions consisting of
non-intersecting rectangles each of which subregions
includes one or more objects of the same type.

26. Amethod as recited in claim 21 further comprising the
step of repeating the steps of receiving a band of data,
selecting a compression method, compression said regions
and storing said compressed band for each band in said page,
and repeating the step of decompressing said compressed
band in display order for each band in said page to be
displayed.

27. A method as recited in claim 25 wherein said subre-
gions are characterized as empty regions if they do not
contain an object or non-empty if they contain one or more
objects, and where adjacent non-empty subregions are com-
bined into a single subregion before compressing said sub-
regions if all the objects contained in the adjacent subregions
are of the same type.

28. A method as recited in claim 22 wherein a compres-
sion method is selected only for said non-empty subregions
and where only said non-empty subregions are compressed
in said compressing step.

29. A method as recited in claim 21 wherein said step of
selecting a compression method includes using pre-defined
constraints to select said compression method, said pre-
defined constraints including an estimated compression ratio
achieved when compressing said region and the visual
quality of said region when displayed after said region is
compressed.

30. A method as recited in claim 21 wherein said step of
storing said compressed band in said compressed band
buffer includes checking when said compressed band fits in
said compressed band buffer and recompressing previously
compressed bands, when necessary, to fit said compressed
band in said compressed band buffer.

31. A method as recited in claim 30 wherein said regions
of said band are compressed at a compression level, and
wherein said step of storing said compressed band in said
compressed band buffer includes selecting a new compres-
sion level, and decompressing and recompressing all previ-
ously compressed bands at a new compression level before
compressing said compressed band at said new compression
level.

32. A method as recited in claim 21 wherein said step of
sending said decompressed band to said output display
includes outputting background display data for portions of
said page not covered by said compressed regions.

33. A method as recited in claim 32 wherein said step of
sending said decompressed bands to said output display
includes determining where an output scan line intersects
said regions of a band such that said compressed regions are
decompressed when said scan line intersects said regions.

34. A system for compressing and decompressing data
comprising:

a memory;

means for storing received data including a plurality of

display lists, said received data including one or more
objects each having a type. said objects organized into
at least one page. said page organized into a plurality of
bands, wherein a display list is provided for each band
of said page;

10

15

20

25

30

35

45

50

55

@5

38

means for identifying a band of data for processing
including means for storing objects from a display list
associated with said identified band in an uncom-
pressed band buffer included in said memory;
means for partitioning said objects into non-overlapping
regions and storing said regions in a region buffer
included in said memory, each of said regions that
include objects characterized by a type selected from
one of the types of one of the objects that said region
COVETS;

means for compressing said regions using said type of
each of said regions to select a compression method
from a plurality of compression method from a plural-
ity of compression methods and storing said com-
pressed regions in a compressed band buffer included
in said memory;

means for decompressing said regions using said type of

each of said regions to select a decompression method
from a plurality of decompression methods and storing
said decompressed regions in said compressed band
buffer; and

an output display device for receiving decompressed data

from said means for decompressing and displaying said
decompressed data.

35. A system as recited in claim 34 further comprising
means for rasterizing at least some of said objects from said
display list into said uncompressed band buffer.

36. A system as recited in claim 34 wherein said means for
partitioning said objects includes storing coordinates of
objects in arrays in said memory and assigning regions to
areas of said band between said coordinates.

37. A system as recited in claim 34 wherein said regions
are characterized as either empty regions covering no

objects, or as non-empty regions covering objects, said
system further including means for combining adjacent
non-empty regions into a single region.

38. A system as recited in claim 37 wherein said means for
combining combines non-empty regions having the same
selected compression algorithm into a single region.

39. A digital output processing system as recited in claim
37 wherein said means for combining combines non-empty
regions having the same type and any empty regions dis-
posed between said non-empty regions into a single region
when there is insufficient space in said compressed band
buffer to store an entire band of data.

40. A system as recited in claim 37 wherein said means for
compressing only compresses non-empty regions.

41. A system as recited in claim 34 wherein said means for
decompressing means further includes means for outputting
background data to said output display device when com-
pressed region data is not being displayed.

42. A system for processing data objects each representing
display data for a display area and each having a data type
and a location in the display area, comprising:

a divider for dividing the display area into a plurality of
non-overlapping non-empty regions, where each region
contains all or part of at least one data object and each
region has a location and aregion type derived from the
data types of the object data in the region;

a plurality of compression mechanisms and decompres-
sion mechanisms, where each compression mechanism
has an associated decompression mechanism;

a compressor that selects one of the compression mecha-
nisms for each of the non-empty regions according to
its region type and then uses the selected compression
mechanism to compress those portions of the object
data found in the region, thereby producing compressed
object data;

J,06338,498

39

a memory coupled to the compressor for storing com-
pressed object data;

a decompressor coupled to the memory that decompresses
compressed object data to produce uncompressed
object data by applying to each compressed object data
a decompression mechanism associated with the com-
pression mechanism used to create the compressed
object data; and

a monitor coupled to the compressor, decompressor, and

memory for detecting when the memory is becoming
full and triggering the decompression of previously
compressed object data and the recompression thereof
to free up space in the memory.

43. The system of claim 42 further comprising an object
data combiner for combining one or more regions of uncom-
pressed object data into a single region of uncompressed
object data, where:

the object data combiner is invoked when the monitor has
detected the memory is becoming full; and

the object combiner combines the uncompressed object
data associated with each region according to pre-
defined criteria, the uncompressed object data for the
combined region to be recompressed by the compressor
resulting in the freeing up of space in the memory.

44. The system of claim 43 wherein the object data
combiner combines regions of uncompressed object data
into a single combined region when a cost of combining the
objects, determined by the separation between the regions, is
under a predetermined threshold.

45. The system of claim 44 wherein the cost of combining
is determined by the amount of background data that is
included in a combined resulting region compared to the
amount of object data included in the regions that were to be
combined.

46. The system of claim 42 wherein the predefined criteria
include combining adjacent regions that are of the same type
and combining non-adjacent regions that are of the same
type if the space separating the non-adjacent regions does
not contain any object data.

47. The system of claim 42 further comprising a display
engine coupled to receive uncompressed object data from
the decompressor.

48. The system of claim 47 where the display engine 1s
one of the group consisting of a laser printer engine, a
plotter, and a CRT.

49. The system of claim 42 further comprising an embed-
ded computer comprising:

a computer processor, and

a program memory coupled to the computer processor;
and

a display engine coupled to receive uncompressed object

data from the decompressor;
where
the display engine is coupled to the embedded computer;
and

the compressor and decompressor are implemented as
computer program instructions tangibly stored in the
program memory.

50. The system of claim 42 further comprising:

means coupled to the decompressor for displaying the
uncompressed object data; and

means for updating a pointer to indicate a next portion of
a display area to display such that when the pointer
intersects a non-empty region the decompressor
decompresses and outputs the compressed data associ-

5

10

15

20

25

30

35

40

45

50

35

60

65

40

ated with the non-empty region and when the pointer
does not intersect a non-empty region the decompressor
outputs background data.

51. A system for processing data objects each representing
display data for a page and each having a data type and a
location on the page, where the page is divided into bands,
the system comprising:

a memory;

a display list in the memory for each band of the page for
storing those portions of the object data found in the

band;

a divider coupled to the display list memory for dividing
the object data in each band into a plurality of non-
overlapping non-empty regions where each region con-
tains all or part of at least one data object and each
region has a location and a region type derived from the
data types of the object data in the region;

a plurality of compression mechanisms and decompres-
sion mechanisms, where each compression mechanism
has an associated decompression mechanism;

a compressor that selects one of the compression mecha-
nisms for each of the non-empty regions according to
the corresponding region type, uses the selected com-
pression mechanism to compress the object data found

in the region, thereby producing compressed object
data, and stores compressed object data in the memory;

a decompressor coupled to the memory that decompresses
compressed object data to produce uncompressed
object data by applying to the compressed object data
a decompression mechanism associated with the com-
pression mechanism used to create the compressed
object data; and

a monitor coupled to the compressor. decompressor, and
memory for detecting when the memory 1s becoming
full and triggering the decompression of previously
compressed object data and the recompression thereof
to free up space in the memory.

52. The system of claim 51 further comprising:

a rasterizer coupled to the display list memory to rasterize
the data objects to produce bitmaps stored in the

non-empty regions; and
a raster output device display engine coupled to receive
uncompressed object data;

where the compression mechanisms operate on bitmaps to
produce compressed bitmap object data; and

the decompression mechanisms operate on compressed
bitmap object data to produce uncompressed bitmap
object data for the raster output device display engine.

53. The system of claim 52 further comprising:

means for updating a pointer to indicate a next portion of

a band to output to the raster output device such that
when the pointer intersects a non-empty region the
decompressor decompresses the compressed data asso-
ciated with the non-empty region and outputs it, and
when the pointer does not intersect a non-empty region
the decompressor outputs background data.

54. A method for processing data objects each represent-
ing display data for a display area and having a data type and
a location in the display area, the method comprising the
steps of:

(a) receiving the data objects;

(b) storing the data objects in a display list associated with

the display area;

(¢) dividing the display area into a plurality of non-

overlapping non-empty regions, each region including

5.638.498

41

one or more data objects or portions of data objects and
each region having a location and a region type derived
from the data types of the data objects and portions of
data objects in the region;

(d) providing a plurality of compression mechanisms and
decompression mechanisms, where each compression

mechanism has an associated decompression mecha-
nism;

() compressing the object data in each non-empty region
by selecting one of the compression mechanisms
according to the corresponding region type and com-
pressing the object data, thereby producing compressed
object data;

(f) storing the compressed object data in a memory;

(g) decompressing the compressed object data by select-
ing a decompression mechanism associated with the
compression mechanism used to create the compressed
object data and decompressing the compressed object
data to produce uncompressed object data; and,

(h) monitoring to detect when the memory is becoming
full and triggering the decompression of previously
compressed object data and the recompression thereof
to free up space in the memory.

55. The method of claim 54 further comprising the steps

of:

combining a plurality of regions of uncompressed object
data into a combined region of object data when the
memory is becoming full; and

compressing the object data in the resulting combined

region to free up space in the memory.

56. The method of claim 55 wherein regions are combined
when a cost of combining the objects, determined by the
separation between the regions, is under a predetermined
threshold.

57. The method of claim 56 wherein the cost of combining
is determined by the amount of background data that is
included in a combined resulting region as compared to the
amount of object data included in the regions that were to be
combined.

58. A method for processing data objects each represent-
ing display data for a display area and having a data type and
a location in the display area, the method comprising the
steps of:

receiving the data objects;
establishing in the display area a plurality of non-
overlapping bands;

dividing any data objects that span more than one band
into multiple data objects that are each located in only
one band;

10

15

20

25

30

35

45

50

42

establishing for each band a display list associated with
the band;

storing the data objects located in a band in the display list
associated with the band;

dividing each band into a plurality of non-overlapping
non-empty regions each having a location and a region
type derived from the data types of the data objects in
the region;

providing a plurality of compression mechanisms and
decompression mechanisms, where each compression
mechanism has an associated decompression mecha-
nism;

compressing a first band of data objects by selecting one
of the compression mechanisms for each non-empty
region in the first band according to the corresponding

region type and using the selected compression mecha-
nism to compress the data objects in the region, thereby
producing compressed data objects;

storing the compressed data objects in a memory;

compressing and storing the remaining bands in the
display area by applying to them the preceding two
steps, respectively;

decompressing each band of compressed data objects by
selecting for each compressed data object a decompres-
sion mechanism associated with the compression
mechanism used to create the compressed data object
and decompressing it to produce an uncompressed data
object; and

monitoring to detect when the memory is becoming full
and triggering the decompression of previously com-
pressed data objects and the recompression thereof to
free up space in the memory.

59. The method of claim 58 further comprising the steps

sending the uncompressed data objects to an output
display; and
determining where an oufput scan line intersects the

regions of a band such that the compressed regions are
decompressed when the scan line intersects the regions.
60. The method of claim 58 further comprising the step of:

sending the uncompressed data objects to an output
display; and

outputting background display data for portions of the
page not covered by uncompressed data objects.

- I . - -

	Front Page
	Drawings
	Specification
	Claims

