United States Patent [

Yu
[54] VIRTUAL NETWORK MECHANISM TO
ACCESS WELL KNOWN PORT
APPLICATION PROGRAMS RUNNING ON A
SINGLE HOST SYSTEM
[75] Inventor: Kin C. Yu. Burlington, Mass.
[73] Assignee: Bull HN Information Systems Inc.,
Billerica, Mass.
[21] Appl. No.: 473,476
[22] Filed: Jun. 7, 1995
[51] Int. CL® . GO6F 13/00; GOO6F 15/163;
GOG6F 15/177
[52] U.S. CL 395/500; 395/200.02; 395/200.2;
364/242.94; 364/242.95; 364/242.96; 364/DIG. 1;
370/254; 340/825.52
[58] Field of Search ... 395/182.09, 200,
395/200.02, 200.13, 200.2, 500, 413; 370/60,
60.1, 94.1, 85.14, 94.3; 340/825.52, 825.07
[56] References Cited
U.S. PATENT DOCUMENTS
4,677,588 6/1987 Benjamin et al.ccceeunene. 395/200.02
4,851,088 7/1989 Trottier et al.cervvvnneernes 395/200.01
4,897,874 1/1990 Lidinsky et al.ccocccrvreinrennnacicen 380/3
4,922.486 5/1990 Lidinsky et al. coeoeereeremrecennne 370/60
5,163,131 11/1992 Row et al.ccceerreneranennscenenens 395/200
5271,010 12/1993 Miyake et al. ...ccccenrnenicrinens 370/94.1
5313454 5/1994 Bustini et al.coovenrennnnncieenesens 370/13
5,321,813 6/1994 McMillen et al.c.ceeeneen. 395/182.09
5,444,702 8/1995 Burnett et al.ccocenveeeeeecene. 370/60.1
5,453,980 9/1995 Van Engelshovenceennin 370/60.1
OTHER PUBLICATIONS

Dalpee et al., “Beyond RPC: The Virtual Network,” IEEE,
1992, pp. 41-57.

Johann et al., “The Design of a Real Time Communication
NW for Parallel Processing,” IEEE, 1990, pp. 229-237.

EMULATED SYSTEM (ES)

ES FTIF

US005636371A
(111 Patent Number: 5,636,371
451 Date of Patent: Jun. 3, 1997

Misuzawa et al., “Virtual Private NW Control Syst. Con-
cept,” IEEE, pp. 137-141.

Gopal et al.,, “Distributed Implementation of Realtime
Resource Counters,” IEEE, 1991, pp. 415-425.

Primary Examiner—Kevin Tesh

Assistant Examiner—Thai Pham

Attorney, Agent, or Firm—Faith F. Driscoll; John S.
Solakian

[57] ABSTRACT

A local host data processing system operating under the
control of a local host operating system includes compo-

nents of a hosted operating system. The host operating
system further include a TCP/IP network protocol stack

which couples to the communications facilities of the host
system connected to a local area network for communicating
with a number of remote host systems. Host and hosted
operating systems share the same TCP/IP network protocol
stack. A virtual network mechanism is configured within the
local host system to be operatively coupled to the host
network protocol stack and provide access to well-known
port application programs. When so configured, the mecha-
nism functions as another LAN to which the hosted oper-
ating system is attached. The mechanism transforms the
well-known port identifier of each inbound packet into a
non-well-known port identifier in addition to other station
address identifier fields. It then redirects the transformed
packet back to the IP layer of the stack for transfer to the
appropriate well-known port application program of the
hosted operating system. It reverses this operation for each
reply packet which is also redirected back to the IP layer for
forwarding to the remote system. This eliminates the need to
specify additional protocol stacks and to provide additional
communication hardware facilities for handling multiple
instances of well-known port applications programs.

20 Claims, 15 Drawing Sheets

SERVER

| ESSOCKET!
INTERFACE!

o
e g e

HOST SYSTEM SPACE _—l
/91 /?5
ES SOCKET UNIX FTP
HANDLER SERVER

VIRTUAL LAN

ETH. NETWORK
INTERFACE

100-4
VIRTUAL
HOST

| ETHERNET
>~ NETWORK -,
INTERFACE

i /2[}

\ 10
54 —

REMOTE HOST TALKS TO FTP SERVER IN ES

REMOTE
HOST
4

(1) MITIATES THE CONNECTION PACKET

(2) VIRNET MECH MAPS AND ROQUTES PACKET TO ES FTP SERVER
(3] ES FTP SERVER RESPONSE PACKET

(4) VIARNET MECH REMAPS AND SENDS PACKET 7O REMOTE HOST

U.S. Patent Jun. 3, 1997 Sheet 1 of 15 5,636,371

LisTener |~ 280 FILE 27
MODULE MANAGEMENT
28
|

|
|
I
|
I
| 282 SCB
| ﬁ
8
:' | | SOCKET '
|| |MoNiTOR I EMULATED SYSTEM
| (ES) EXECUTIVE
|] PADNE 284 | 'SERVICE
| COMPONENTS
| _I—.l
l
SOCKET
LIBRARY
286
| —
| |
| 73 :
l el |
USER : INTERPRETER e LATOR :
MCL MONITOR CALL I
LEVEL : UNIT (EMCU) ']
62 | | | |
I o ________________J
EEXL - _
68 - 102 VNET
TABLES &
54 STRUCTURES
]
70 VEI%EJ%%K 100
KERNEL N
OPERATING PROCESS MECHANISM
SYSTEM MANAGER (VNET)
LEVEL (KPM)
64
HARDWARE 58b
LEVEL 58a | MEMORY

56

Jun. 3, 1997 Sheet 2 of 15

U.S. Patent

+EMULATOR 80
el e s . e e s te e e — — . — — — — — — — —_— — s
FROM FIG. 1A 30 ES & HOST SYSTEMS
SHARED MEMORY
SPACE 40
LISTENER TASK 36 38
——— } 32 -"»'-ﬁ‘ -"‘-’

88 KV
MEMORY
1 SOFTWARE QUEUED
1 ACTIVE QUEUE INTEREACE
(SAQ) MQI
o) 84
oo T e -
s et
4 IRBs, IORBs
I — "'9';]
| SOCKET 941 Dvnamic .91 E—
| |CONTROL SERVER lEMuL. | ,
TABLE HANDLER | socKeT |- PsEupo
| (OSH) | SERVER DEVICE DRIVER
l (PSDD)
HOST SYSTEM
| ~ SPACE
L ———1 L75
I S%"gl,;DET SOCKET
| Pnocsss! SERVER !
— \]
HOST
SOCKETS
99 LIBRARY

KERNEL 1/O
SERVICES
(KIOS)

TCP/IP
NETWORK PROTOCOL
STACK FACILITY

ETHERNET LAN

58d TOKENDI?[NG
=5
HOST SYSTEM
- PHYSICAL 5:;“35 E

RESOURCES

U.S. Patent Jun. 3, 1997

22 ES ftp
SERVER

ES SOCKET
INTERFACE

284~ SOCKET MCL
HANDLER

Sheet 3 of 15

5,636,371

HOST SYSTEM SPACE
91 75
ES SOCKET

HANDLER

UNIX ftp
SERVER

TCP LAYER ' |
"
IP LAYER

84

58d
100 100-2
o VIRTUAL BRNET
ETH. NETWORK ETHE
INTERFACE
VIRTUAL .
LAN
LAN
18
20

VIRTUAL 100-4
HOST

54

FIGURE 2

REMOTE HOST

5,636,371

Sheet 4 of 15

Jun. 3, 1997

U.S. Patent

T|||_||||.|

€ JHNOI4

el

IWVHA Ezmm:pmllv_ SINVHL D14193dS

AHOMLIIN-H.1S

WNSIDIHD v1vg | H3OVAH | H3aVaH | H3avaH
JDOV4HIINI LINHaH1T | VLV dol di L3INH3IHLI

H3AV1 3HVMAHVYH
LINYEH1T

HIAVT FOVAHILNI
MHOMLIN 1L3NH3H1d

Ge 0¢ 4.
ddAy "1534 119 8¥ 13NH3H13 % S13AMOVd di
HAAav 30HNOS 118 8¢ 1LINY3IH13)
d44ddv3iH | d43dVdH _
ViV
ddady "1S30 119 2€ LINH3 1N
1030104d
dadVv 304dNOS 1189 2€ LINHELNI % THOdSNVHL

444av3iH

H3AV1dOl

SWVY3HLS

1HO0d 1530 401 119 91 |
140d 30HNOS 401 119 9} HO 3I9VSSIIN

VivQ _ vivd _ vivd _

H3AVT TdNHIN

HdAV1 NOILYOI'lddV

HIAVT LINI0S

H3AV]
NOILVOI1ddVY

WSINVHO3IW
NHOMLEN
- TIVNLYEIA

H3AH3S
- did

001

U.S. Patent Jun. 3, 1997 Sheet 5 of 15

TO/FROM IP LAYER

100-2

FROM CONFIG
COMPONENT IP INTERFACE COMPONENT

100-6

5,636,371

RECEIVE COMPONENT
(PROCESSES
INCOMING PACKET)

INITIALIZATION
COMPONENT

100-4 © PACKET \ ORIGINATED PACKET ORIGINATED
FROM \ REMOTE FROM LOCAL HOST

ICMP ECHO
PROCESSING
COMPONENT

[- - TNy T 1
| 100-82 - SAVE COMPONENT ||| | RETRIEVE COMPONENT | 100-12a |
| (SAVE PACKET | (RETRIEVES SAVE O
| P ADDRESSES) IP ADDRESS & |
| TCP SRC/DSTPORT) ||| TCP SRC/DST PORT) |
| | | I
: L[LoCAL MAPPING 100-12b |
] COMPONENT |
| REMOTEMAPPING |!!| (REFORMATS THE | 100-12 |
| COMPONENT | 1| PACKET WITH ABOVE ~|
| (REFORMATS THE |] INFO) I
l PACKET IP ADDR. N |
| &TCPPORTSWITH || = — — "~ | OUTBOUND COMPONE}
| MAPPED OUTBOUND COMPONENT
| ADDRESSES AND
l PORTS) PACKET OUTPUT
| COMPONENT 100-14
|

(INVOKES KERNEL
SERVICE ROUTINE TO

SEND THIS PACKET
BACK TO LOCAL

IP LAYER)

VIRTUAL NETWORK MECHANISM 100

FIGURE 4

5,636,371

Sheet 6 of 15

Jun. 3, 1997

U.S. Patent

G 34dNdid

JHUNLONYLS 319VL INIITD

-

140d NOLLVNILS3d
d31 IN3I'TO

140d
304dNOS dO1 IN3I1O

SS3HAAV di LN3JI'O

SOVI4d LN3IMD

L —

LLI
P
<
b
wl
an
O
e

¢0S
INNOO HANIL

JHNLONYLS 0140S dA

SS3HAav di
LSOH TVYNLHIA

SS3HAAV di
1SOH TvOO01

HILINIOd 319VL INIIND

INNOD LN3MD
A1V1S
SHVY14 3A

INVYN 4l

WOOdHY 1ONHLS

5,636,371

Sheet 7 of 15

Jun. 3, 1997

U.S. Patent

PZ "Jid NOILONNA

0£9 ONNOANI IMOANI
FLON3Y -

3. "OId
NOILONN

¢(1SOH
41 0W34H

d0 Tvo0T

NO4d4

aNnog.Lno

INOANH Vo0
029

¢C9
ddl

ONISSd00Hd

OHO3 dNDI
WHO4Hd4d

é
1020104d

di
V1o

¢ di HOA
ddALddH13

919

13XIVd 40HQd ON

219 019

NOILLVIIdIH3A

809 LINIVd 431 ANV di

0 3dAL LNdNI anid

NOILONN 3DIAH3S
TANYHIN INOANI 909

YINISS3I304Hd
d4AdV3H LINHIHL3

d3AVT dl OL

9 34NOId

H3AVY1 di WOH

L3N0V IARDIY [N oo

NOILONNL 1Nd1NO
INOANI 509

(as % el "SHI4)
NOLLYH3dO

NOILVZITVILINI

WHO4H3dd ¢09

SHOLVINAL
dNidvis dvo

009

U.S. Patent

700

- 702

704

Jun. 3, 1997

SETUP ve SOFT
STRUCTURE ELEMENTS
(FIG. 5)

INITIALIZE CLIENT
TABLE ENTRY POINTER

(FIG. 5)

BUILD & INITIALIZE THE
VIRTUAL HOST IFNET
STRUCTURE WITH THE
ADDRESSES OF THE
INTERFACE FUNCTIONS
OUTPUT(), I0CTL() &
RESET()

Sheet 8 of 15

CALLIF_ATTACH () TO
ADD THE VIRTUAL HOST
IFNET STRUCTURE TO
SYSTEM WIDE NETWORK
LIST

TURN ON TIMER ()
TO DELETE STALE

CLIENT TABLE ENTRIES

FIGURE 7a

5,636,371

706

708

U.S. Patent Jun. 3, 1997 Sheet 9 of 15 5,636,371

I0CTL

720
IOCTL COMMAND
DECODE
SIOCSIFADDR / SIOCSIFFLAGS

721 (| STORE THE LOCAL HOST

IP ADDRESS IN
THE ve_SOFTC
STRUCTURE

730

SET IFNET IF_FLAG

TO IFF RUNNING

722 (| COMPUTE THE VIRTUAL
HOST IP ADDRESS @

& SAVE IN THE ve_
SOFTC STRUCTURE

724 SET IF_FLAGS

TO IFF_UP IN IFNET
STRUCTURE

FIGURE 7b

U.S. Patent Jun. 3, 1997 Sheet 10 of 15 5,636,371
struct ifnet 1 .
‘char *if name; /*name, e.g. "en" or "lo"*/
short if unit; /*subunit for lower level software*/
u_long if mtu; /* maximum transmission unit*/
long if flags /* up/down, broadcast, etc. */
short if_timer /* time til if watchdog timer called*/
int if_metrnic /* routing metric (external only) */
struct ifaddr *if_addrlist; /*linked list of addresses per if */
struct ifquene < '

struct mbuf *ifq tail;
int ofg_g;em,

int ifq maxlen;
int ifq_drops;

¢ if_snd; /*output queue*/
/* procedure handles */
int (*if init) (); /* init routine */
int (*if output) () /* output routine (enqueue) */
int (*if_start) () /* initiate output routine */
int (*if done) () /* output complete routine */
int (*if 1octl) () /¥ ioct] routine */
int (*if reset)) /* bus reset routine */
Int (*if watchdog) () /* timer routine */
/*generic interface statistics */
int 1f 1packets; /*packets received on interface */
int if ierrors; /* input errors on interface */
int if opackets; /* packets sent on interface */
int if collisions; /¥ collisions on csma interfaces */

/*end statistics */
struct ifnet *if_next;

u char if type; /* ethernet, token ring, etc, */

u_char if addrlen; /* media address length */

u char if hdrlen; /* media header length */

u_char if index; /* numeric abbreviation for this if */
/*more statistics here to avoid recompiling netstat */

struct timeval if last change; /* last updated */

int if ibytes; /* total number of octets received */

int if obytes; /* total number of octets sent */

int if imcasts; /* packets received via multicast */

int if omcasts; /* packets sent via multicast */

int if iqdrops; /* dropped on input, this interface */

int if noproto; /* destined for unsupported protocol */

int if_baudrate; /* linespeed */

FIGURE 7c

U.S. Patent

772

770

768

766

CALL KERNEL
FIND_INPUT_TYPE
() TO SEND PACKET

TO THE LOCAL IP
LAYER

SET TCP STATE
AND REST TIMER
FOR THIS CLIENT

Jun. 3, 1997

Sheet 11 of 15

INBOUND 630
FUNCTION

752

SEARCH CLIENT
TABLE FOR THIS
PACKET

/ 753

ALLOCATE A
TABLE ENTRY
FOR THIS
CLIENT

OVERWRITE THE

SAVE CLIENT'S

IP dst ADDRESS IP ADDRESS &
WITH THE LOCAL TCP SRC AND
HOST IP ADDRESS DST PORTS IN

THIS ENTRY

OVERWRITE THE
|P SRC ADDRESS 760

WITH THE VIRTUAL
HOST IP ADDRESS

CALCULATE THE
THE NEW TCP
CHECKSUM WORD

MAP INDEX TO

CLIENT TABLE
ENTRY IS MAP AS
TCP SRC PORT #

CALCULATE THE 262
NEW iP CHECK
SUM WORD

OVERWRITE THE
TCP DST WITH 764
THE MAPPED

PORT #

FIGURE 7d

5,636,371

754

756

5,636,371

Sheet 12 of 15

Jun. 3, 1997

U.S. Patent

9/ 44N
VLVd TVYNOILdO NV HIAVY3H dO1L
v.iva
(ANV 31} SNOILJO
13S440 INIDHN LI1g-91 . WNSHITHI
din™ d3al 118-9¢
| wns i
A V HLIONI
3ZIS MOONIM Lig-9 (N|NjL|HIMX S118 9 H3qv3IH
:_BI-.: ! > m w 0 Dm>mmmlm_u_ .—.—.Wn?
. 41S|H{d|V X W Ho :-L
H3gnnN
INTWOGITIMONIIY
118-Z€ Xae Yy}
HIGWNN
JONINDIS LIFG-ZE
bas U}

HIGWNN LHO - HIAWNN LEOd
NOILVNILSIQ Lig 91 . JOHNOS Lig-9}
uodp™yj uods™)

It 3t Si

D

13IMIVd di

vivad

(ANY d4i) SNOLLAO

isp di ss3HAaaQy
dI NOILYNILS3J 118-2¢

215 ~di SS3IHAAQY
di 30HNOS Lig-2¢

wnsya di

uaj di s0} di

HLONI1 V101
4> 91 G}

JOIAHIS 40 JdAL | HIDNIT H3aVIH

A

ddy iy d

WNSHOIHIO HAGVIH 103010Hd JAIT O1 3NILL
jjo~d1 jasyo , Py d
INIWOVHL ONV SOVId ! NOILLVYIIZILN3A|

A
NOISH3IA

It} a

WNSMIIAHD
3LVINDTvO3H (9)

1HOdS Ui < LHOd
dJ.L TVYNLHIA
Hodp™Y) ¢

1LHOd d21 TWNLHIA
3OV id3Y (5)

3T9V.L LN3ITD NI 'SON
1HOd 1SAd% JHS 401

JAYS (b)

WNSHI3HD
3LV IND1vO3Y (€)

——— IS Jd] &

SS3HAAV
dl TYNLYIA
ISp di

<+ SS3IHAQY
TvO0T di
32V 1d3H (T)

318VL ANIINO

NI S35S3HAAV
1S3% OHS di

JAVS (1)

13AXJVd GNNOSNI

U.S. Patent Jun. 3, 1997

CALL KERNEL

98 J FIND_INPUT_TYPE ()

TO SEND THIS
PACKET TO THE

LOCAL IP LAYER

296 ADJUST THE TCP
STATE AND RESET
TIMER FOR THIS
CLIENT

794 CALCULATE THE
NEW TCP HEADER
CHECKSUM WORD

OVERWRITE THE
TCP
DST PORT # WITH

THE SAVE CLIENT
DST PORT #

792

FIGURE 7f

Sheet 13 of 15 5,636,371

622
OUTBOUND
FUNCTION

CONVERT THE TCP
DST PORT # INTO

CLIENT TABLE

SLOT ENTRTY

780

USE THE SLOT TO 792

LOCATE THE CLIENT
SAVE INFO

OVERWRITE THE IP
DST ADDRESS W
SAVE IP ADDRESS

784

OVERWRITE THE IP

SRC ADDRESS WITH
THE VIRTUAL IP
ADDRESS

786

CALCULATE THE 788
NEW IP CHECKSUM
WORD

OVERWRITE THE 790
TCP
SRC PORT # WITH
THE SAVE CLIENT
SRC PORT #

5,636,371

Sheet 14 of 15

Jun. 3, 1997

U.S. Patent

b/ 34NDI4

ViVd TYNOILJO GNV H3AaV3H doL

V.ivd@

s e — e —

(ANY 4d1) SNOLLAO

13S440 INIDHN 119-91 WNSHIAHI

dam dJl 1189} NNSHOIHD
o wns ™y} J1VIND1vI3d (9)

HLON3IT

3IZIS MOGNIM L1G-91 NlL 1D (s118 9) H3AVv3H
WM Yy AlS oY Q3A43S3Y ua- -
. S|H vin X} Jo uy pods Yy« 1Sp dOL

uodp Tyl 4 oIS dJ1

H3IgWNN Q3aAvsS (S)
INIWOATTMONMIOV k

118-Z€ o W) 378v.L NOYHH
H3annN ‘SON 1HOd
FON3IND3S L18-2¢ 1SQ% DHS dOL GIAVS
bas™y} JAIIH13IM (+)

HIGWNN 1HOd HIEWNN 1H0d

NOILYNILSIA L1g 9L JOHNOS 1i8-91

podp 'y uods™y)

iE 9, Si 0
13MOVd dl
vivaQ
{ANV 31) SNOI1L4O
Isp~di sSSaHAQY
di NOLLYNLLS3AA 1i8-2¢
ois~d1 SS3IHAQY A WNSMNIIHD
RINSYO di ddi M d 015~ 4| &= 18P
WNSXOIHO HIAVIH 700010H4d | 3AITOL3NLL ep 1 < 915
| jo-dn 135440, pi—d a3Avs (2)
INIWOVHL ANV SOV ! NOLLYDIHLNEQI |

= - - SSIAHAQY
uaf~di soydt Iy d . 150 % OHS dl G3AVS
HLON3T IVLiOL IDIAHIS 40 IdAL | HLONI T HIAVIH | NOISHIA JAZIHITH (1)

] § 0

13¥9vd aNNO8LNO

U.S. Patent Jun. 3, 1997 Sheet 15 of 15 5,636,371

EMULATED SYSTEM (ES) HOST SYSTEM SPACE
91 75

22\| ESFTP ES SOCKET | | UNIXFTP
SERVER HANDLER SERVER

ES SOCKET!

INTERFACE,

/)
@

IP LAYER

I
284

SOCKET

MCL 99

HANDLER

100 100-2
— VIRTUAL — i ETHERNET

ETH. NETWORK , - NETWORK -\
INTERFACE 4 INTERFACE

VIRTUAL LAN \\ ' _
(8)--4
- \ LA
\
\
\

HOST

REMOTE
10 HOST

REMOTE HOST TALKS TO FTP SERVER IN ES

N
100-4
VIRTUAL 18
20

54

(1) INITIATES THE CONNECTION PACKET

(2) VIRNET MECH MAPS AND ROUTES PACKET TO ES FTP SERVER
(3) ES FTP SERVER RESPONSE PACKET

(4) VIRNET MECH REMAPS AND SENDS PACKET TO REMOTE HOST

FIGURE 8

3,636,371

1

VIRTUAL NETWORK MECHANISM TO
ACCESS WELL KNOWN PORT
APPLICATION PROGRAMS RUNNING ON A
SINGLE HOST SYSTEM

RELATED PATENT APPLICATIONS

1. The patent application of Richard S. Bianchi, Dennis R.
Flynn, Marcia T. Fogelgren, Richard A. Lemay, Mary E.
Toyell and William E. Woods entitled, “Executing Programs
of a First System on a Second System,” filed on Sep. 28,
1993 bearing Ser. No. 08/128.456 which is assigned to the

same assignee as this patent application.

2. The patent application of Kin C. Yu and John L. Curley
entitled “Sockets Application Program Mechanism for Pro-
prietary Based Application Programs Running in an Emu-
lation Environment”, filed on Mar. 30, 1995, bearing Ser.
No. 08/413,333 which is assigned to the same assignee as
this patent application.

BACKGROUND OF THE INVENTION

1. Field of Use

The present invention generally relates to methods and

mechanisms for conducting internetwork communications.
More particularly, the present invention relates to methods

and mechanisms used by a computer system which executes
application programs originally developed to run on another
computer system and provides network facilities to carry out
communications over a network with other computer sys-
tems.

2. Related Art

With the advent of open system platforms which operate
under the control of versions of the UNIX operating system,
it becomes more and more desirable to be able to efficiently
run application programs developed for earlier computer
systems, such as proprietary based systems on such open
systems without having to rewrite or port such application
programs. A computer system which accommodates such
application programs is described in related copending
patent application of Richard S. Bianchi, Dennis R. Flynn,
Marcia T. Fogelgren, Richard A. Lemay, Mary E. Tovell and
William E. Woods entitled, “Executing Programs of a First
System on a Second System”.

Generally, such application programs are required to
operate in conjunction with and communicate with other
computer systems over internetworks. Many of these com-
puter systems utilized standard communication network
protocols, such as TCP/IP, which are normally implemented
as part of the computer system’s operating system (i.e.
kernel). Also, such computer systems generally support
multiuser environments in which it was possible for more
than one user process at a time to be using such networking
facilities. To implement this, the communication protocol
implementation required the adoption of a method for iden-
tifying the data associated with each user process. That is,
when a client process wanted to contact a server process,
such as FTP or Telenet, the client process must have a way
of identifying the server process that it wants to use. In
TCP/IP, if the client process knows the 32 bit Internet
address of the host computer on which the server resides, it
can contact that host. But, the client process must still have
some way of identifying that particular server process.

To solve this problem, the TCP protocol defined a group
of well-known ports or well-known addresses which identity
the well-known services that a host computer can provide.
For example, most TCP/IP implementations provide a file

10

15

20

235

30

35

40

45

50

33

65

2

transfer server named FTP that a client process can utilize to
transfer a file via a network to another computer system. The

16 bit integer port established for FTP is 21 (decimal). Thus,
every TCP/IP implementation that supports FIP, must

assign the well-known port of 21 (decimal) to that server.

While this solved the problem of identifying well-known

services, the utilization of this convention creates problems
where a computer system which implements TCP/IP and
supports FIP is required to run multiple well-known port
multiple application programs associated with different
operating systems components which share a common host
communications protocol stack. Here, the well-known appli-
cation programs associated with the different operating
system components, such as those of an emulator and host
system are both required to utilize the same identical well-
known ports in identifying like application program ser-
vices. This gives rise to a naming conflict between the
different application program services.

Relative to problems relating to process migration, one
author has observed that support for process migration is a
characteristic that is increasingly important. Protocols such

as OSL X.25 and TCP/IP that use such machine addresses to
identify processes make migration difficult because a pro-
cess cannot take its address with it when it moves. The

author describes the use of a new custom protocol called a
Fast Local Interact Protocol (FLIP) and an architecture

which permits servers to migrate o new machines without
requiring any manual reconfiguration, such as TCP/IP
requires. For further information regarding this protocol,
reference may be made to a section 14.5 entitled *“Commu-
nication in Amoeba” of the text entitled ‘“Modern Operating
Systems” by Andrew S. Tanenbaum published by Prentice-
Hall, Inc., copyright 1992. One problem noted relative to
this solution is that the new protocol requires considerable
changes to be made to a host system. Hence, this approach
is not practical where it is essential that the host computer
system’s operating system remain intact.

Another approach which has been considered is to pro-
vide duplicate communication facilities wherein a separate
TCP/IP protocol stack and separate hardware facilities are
provided for servicing the network demands of two distinct
sets of well-known port application programs. While this
solution may be satisfactory in terms of eliminating the
naming conflict, it would create considerable processing
delays causing application programs executing under con-
trol of an emulator to run too slow resulting in decreased
overall system performance. Also, this approach is too costly
in terms of system resources and is unable to take direct
advantage of existing host facilities.

Accordingly, it is a primary object of the present invention
to provide a method and system which enables application
programs running in under control of different operating
system components sharing a common communications
protocol stack to utilize well-known ports for identitying
like protocol application program services.

It is another object of the present invention to provide a
method and system for executing application programs
which share a common communications protocol stack to
utilize well-known port addresses for designating well-
known application programs accessible by client application
programs on a remote host system which is transparent to the
remote system and requires minimal change to the host
system thereby facilitating debugging, modifying and main-
taining of such application programs.

SUMMARY OF THE INVENTION

The above and other objects of the present invention are
achieved in a preferred embodiment of the virtual network

3,636,371

3

mechanism of the present invention which operates under
the control of a host operating system, as for example, an
enhanced version of the UNIX operating system running on
a local host computer system which connects to a local area
network (LAN) or internetwork for communicating with a
number of remote host systems using a standard communi-
cations protocol. In the preferred embodiment, the host
system also includes the components of a hosted operating
system components, such as for example, an emulator.

The host operating system further includes a communi-
cations network protocol stack which in the preferred
embodiment corresponds to a host TCP/IP protocol stack.
Both the hosted and host application programs share the
single protocol stack. The virtual network mechanism of the
present invention resolves the naming conflict arising from
the use of multiple instances of well-known port application
programs being run by the hosted and host operating sys-
tems. In the preterred embodiment, each remote host com-
puter system which communicates with the host system of
the present invention via the internetwork is configured
either statically or dynamically to have the local host system
function as a “gateway” (a host system that connects two
difterent networks) wherein the host system causes packets
to be routed from the internetwork (heterogeneous networks
connected together) to “another network” according to the
network identifier information contained in the network
address.

The mechanism of the present invention is configured
within the host operating system as a separate network
interface which couples to the network protocol stack just as
“another physical network”. This allows the mechanism to
make use of the standard internetwork gateway functionality
associated with such communication networks. The IP layer
routes each packet addressed to the hosted system to the
virtual network mechanism as if it were another network
(l.e. as if the packets were being transferred from one
network to another network through an internetwork
gateway).

The virtual network mechanism contains a mapping com-
ponent which maps the different IP address portions in a
predetermined manner. The mechanism then reintroduces
the packet containing the mapped IP address onto the
interface of the IP module just as if it had been received from
the other network. In greater detail, the IP destination
address 1s mapped to now identify the host system in lieu of
the hosted system and to replace the “well-known” port
number with non-well-known port identifier of the services
application program/server (e.g. FTP application server).
Additionally, the mapping unit substitutes a virtual address
for the IP source address of the requesting client application
program on the remote host system so that any reply packets
provided by the application services server in response to the
request are automatically directed back to the virtual net-
work mechanism.

For each reply packet received, the mechanism
substitutes/restores the appropriate IP source and destination
address portions in the IP address and reintroduces the
packet onto the network interface as if it had been received
from the other network. The IP stack layer now directs the
reply packets back to the requesting client application pro-
gram on the remote host computer in a transparent manner.
This ensures that the sharing of the host system communi-
cation protocol stack remains completely undetectable to
client programs running on the remote system.

The present invention eliminates the need to communicate
through additional protocol stacks or to provide additional

10

15

20

25

30

35

40

45

50

535

65

4

communication hardware facilities. This in turn enhances
overall system performance as well as eliminating the need
for having to allocate additional system resources (e.g.
mMmemory).

While the preferred embodiment of the present invention
1s described in terms of an emulator environment, its teach-
ings can be generally applied to systems which share a single
protocol stack on the same host system. For example, it may
be desirable to have multiple processing units run ditferent
copies of the same operating system and share the same
protocol stack. Also, it may be equally desirable to have
different operating systems running on the same host system
share the same protocol stack.

Also, it will be noted that the teachings of the present
invention are not limited to requiring that the other system
or party to the communications, typically an executing client
program, be located in a physically separate computer
system. The communications could take place between the
host system and one of the hosted systems or between two
hosted systems.

The above objects and advantages of the present invention
will be better understood from the following description
when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a host system which
incorporates the method and virtual network mechanism of

the present invention.

FIG. 2 is a simplified system block diagram illustrating
the use of the virtual network of the present invention in an
internetwork.

FIG. 3 is a diagram illustrating the positioning of the
virtual network mechanism within a layered communication
network, according to the teachings of the present invention.

FIG. 4 is a block diagram of the virtual network mecha-
nism of the present invention.

FIG. 5 illustrates in greater detail, the different structures
utilized by the virtual network mechanism of the present
invention.

FIGS. 6, 7a through 7¢ and 8 are flow diagrams and
associated data structures used in describing the operation of
the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FI1G. 1 is a block diagram of a host system 54 which
incorporates the virtual network mechanism of the present
invention. As shown, the system 54 includes a hardware
platform 56 which contains the hardware elements such as
a central processing unit 584, a main memory 386 and a
number of input/output peripheral devices 58¢ and a com-
munications facility such as an Ethernet local area network
(LAN) 584 for connecting system 34 to other processing
systems via standard communication network facilities.

The central processing unit (CPU) represented by block
58ais areduced instruction set (RISC) based processing unit
which takes the form of the RS6000 microprocessor manu-
factured by IBM Corporation. As seen from FIG. 1, hard-
ware platform including processing unit S8a operates under
the control of an enhanced version of the UNIX™ operating
system such as the AIX™ operating system. Portions of
physical memory represented by MEM block 38b are illus-
trated in terms of the layered construction. As shown,
memory is divided into two basic levels, a user Ievel and an
operating system level. The user level is divided into emu-

5,636,371

<

lated system (ES) and host shared memory space and host or
an operating system kernel native memory space. The shared
memory space contains the ES executive level 16 which
includes a plurality of executive program tasks 30 spawned
by ES executive services components of block 28 for
executing ES TCP services application programs/servers 22
and system administrator programs 24.

In the preferred embodiment, the well known port appli-
cation programs, such as for example, TCP application
programs provide FTP and Telenet services to client pro-
grams. As well-known in the art, telenet service application
program allows an interactive user on a client system to start
a login session on a remote system wherein the client
process passes the user’s keystrokes to the server process on
the remote system. The FTP services application program
permits the transfer of files from one system to another and
provides a rich set of features and options, such as user
authentication, data conversion, directory listings etc. In
operation, the interactive user invokes an FTP client process
on the local system. The client process establishes a con-

nection with an FTP server process on the remote system
using TCP. The FTP program establishes two connections
between the client and server processes, one for control
information and the other for the data being transferred. The

interactive user is prompted for access information on the
remote system and the files then can be transferred in both
directions.

In the emulated system, each task 30 utilizes a plurality of
data control structures, such as a task control block (TCB)

structure 32, an indirect request block (IRB) structure 36, an
input/output request block (IORB) structure 38 and a
resource control table (RCT) structure 40. The task control
block (TCB) structure 32 contains information pertaining to
the state of execution of the associated task as well as
pointers to 1nterrupt save areas for storing hardware param-
eters related to the task. The indirect request block ORB)
structure 36 contains information defining the operation
requested by an associated task and includes pointers iden-
tifying the task and its associated task control block (TCB)
and a pointer to the associated IORB structure.

The input/output request block (IORB) structure 38 is

used as the standard means of requesting a physical I/O

service. It contains information such as a logical resource
number (LRN) that identifies the I/O device being addressed
as well as the location and size of the buffer to be used for
the transfer and the specific function (operation) requested.
The resource control table (RCT) structure 40 contains
information describing the resources, such as its character-
istics or information regarding the tasks or requests being
executed by a corresponding resource as well as pointers to
its associated task control block (TCB) structure.

Additionally, two other structures depicted in FIG. 1 are
a group control block (GCB) structure and a user control
block structure of block 29. The GCB structure contains
information required to define and control the operations of
a specific task group which defines a named set of one or
more tasks with a common set of resources within which a
user and system function must operate. Each group has a two
character name (e.g., $L, $S) by which the group is uniquely
known to the system. The GCB structure includes informa-
tion identifying the Iead task whose execution spawns all
other tasks required for executing group programs. As
indicated, the GCB structure includes a number of user
control blocks (UCB), each of which contains information
defining the user’s personality such as user node
identification, user group id within a node, user task id
within group, user person id and pointer information to
directories to which the user has access.

10

15

20

25

30

33

40

45

30

55

65

6

As shown, the emulated system utilizes a further data
structure corresponding to system control block (SCB)
structure 27. This data structure is created at system startup
and contains information defining system resources and
pointers to the different task groups established by the
system represented by a corresponding number of group
control blocks in the system. For further information regard-
ing such structures and their relationships to each other,
reference may be made to U.S. Pat. No. 5,111,384 and the
publication entitled “HVS PLUS Systems Concepts” pub-
lished by Bull HN Information Systems Inc., Order No.
HE(03-01.

As indicated in FIG. 1, the shared memory space further
includes a memory queued interface (MQI) represented by
block 84 which provides a form of interprocess communi-
cation mechanism and a software active queue (SAQ) of
block 88. SAQ block 88 represents a data structure used to
provide the path by which the results of the operations
performed by the kernel level components are passed back
or returned by the host processes to the requesting emulated
system user level tasks 30 being executed. Thus, it can be
viewed as functioning as an output stage of MQI 84. This
data structure is similar to data structures which are used by
the emulated system operating system..

MOQI block 84 is a semaphore data structure which takes
the form of a single linked list controlled by semaphores
through a set of routines which are executed by the various
host processes operating within different levels or layers that
want to communicate with each other. Its routines are used
to manage queues within the pseudo device drivers 74 and
the software active queue 88.

Executive Services Components 28

As seen in FIG. 1, the executive services components 28
of executive layer 16 includes a plurality of components or
facilities which are equivalent to those facilities normally
included in emulated system. The emulated system is a

multiprogrammed multiprocessor system. The facilities
illustrated in FIG. 1 include a listener module 280, a file

management facility 282, a socket monitor call command
handler unit 284, and an ES socket library 286 which are
arranged as shown. The listener module 280 is responsible
for monitoring the operations of terminals configured for
login and for initiating user tasks in response to user
commands. As indicated in FIG. 1, listener module 280 runs
as a task 30 with its own set of unique data structures.

The listener module 280 is able to consult a profiles file
containing user specific registration information such as user
id, login id and password requirements tabulated by the
system administrator for all registered users. The listener
module 280 checks the user profile when monitoring the
privileges and/or restrictions given to each user. The file
management facility 282 includes the conventional shared
data structures and set of routines normally provided to
perform functions that access such data structures to control
the synchronization of concurrent processes or tasks in
addition to performing various system services or functions.
That is. the facility responds to system service monitor calls
identifying the types of services requested (e.g. creating or
deleting files, reading or writing records or blocks in files)
which result in the specified system services being executed
by the emulated system on behalf of executing user appli-
cation programs.

A monitor call unit (not shown) receives monitor calls
from the interpreter component 72 which are in turn to be
executed interpretively using the ES executive service com-
ponents of block 28. A command handler unit (not shown)

5,636,371

7

contains the routines that respond to user commands entered
via a terminal or program. In response to such commands,

the command handler unit routines invoke the appropriate
tasks for executing such commands.

The ES components involved in handling socket opera-
tions include an ES socket command handler unit 284 and

ES socket library 286. The ES socket library 286 is con-
structed to provide the same socket application program
interface (API) as provided in the emulated system. This
interface is described in detail in the manual entitled,

“GCOS 6 HVYS TCP/TP SOCKET API FOR C USERS”,
published by Bull HN Information Systems, Inc., copyright
1993, Order No. RD89-00.

The ES socket command handler unit 284 contains a
plurality of routines which operate to convert HVS/ES
socket calls into the appropriate low level request input/
output (RQIO) monitor calls accompanied by IORBs created
by mapping/translating the socket library calls into the
corresponding socket function codes. As described in detail
herein, the IORBs are forwarded to the main socket server
component by the EMCU via the MQI interface. The main
socket server component then issues the appropriate host
(AIX) socket calls to the host system socket facilities.

Emulator level layer 68

As indicated in FIG. 1, the next layer within the user level
is the emulator executive level 68. This level includes
certain components present in the emulated system which
have been transformed into new mechanisms which appear
to the remaining unchanged components to operate as the
original unchanged components of the emulated system. At
the same time, these new mechanisms appear to the com-
ponents of the kernel level 64 as native components with
which the host system is accustomed to operate. As shown,
the components include the interpreter 72, an emulator
monitor call unit (EMCU) 73, dynamic server handier
(DSH), main socket server component 98, a number of child
socket processes 96 and a socket control table 94 operatively
coupled together as shown.

As indicated in FIG. 1, the emulator executive level 68
further includes a plurality of pseudo devices drivers
(PSDD) 74 for each input/output device or type of input/
output device which is required to be emulated by host
system 54. For example, the pseudo device drivers 74 will
include PSDDs for terminals, disk drivers, tape drivers,
displays and for certain communication devices.

For a more detailed discussion of other aspects of the
SAQ 88, MQI block 84, PSDD 74 and other emulator

components, reference may be made to the related patent
application.

The interpreter 72 successively fetches the instructions of
an emulated system application program, categorizes each
instruction and executes it interpretively through sequences
of RISC instructions which allows CPU 58a, MEM 5856 and
other elements of host system 54 to emulate the operations
of corresponding elements of the emulated system. The
interpreter 72 includes a monitor call (MCL) table contain-
ing information for each possible monitor call which it
utilizes to determine whether to trap or send an ES monitor
call to the ES executive services components 28 for execu-
tion of the instruction or to make an emulator call to EMCU
73 for execution of the instruction through the services of an
appropriate C language routine (server). The EMCU 73 is
responsible for acquiring from the host system 54, the
necessary memory and other resources, for initializing the
emulated system data structures and invoking interpreter 72
and the various server processes. Both the interpreter 72 and
EMCU 73 run as host processes. |

10

15

20

25

30

35

40

45

50

35

65

8

As viewed by the host system, the ES service components
28 and tasks 30 being executed on behalf of the application
programs, the interpreter 72 and EMCU 73 are executed in
the system 54 of FIG. 1 as a single process (emulator) 80
wherein such process corresponds to one or more user
processes as defined by the conventions of the host operating
system being run on host system 54. Thus, it 15 possible to
have multiple instances of the emulated system concurrently
emulated on host system 54.

The dynamic server handler (DSH) 92 is created by
EMCU 73 during system initialization. The server 92 com-
municates with emulated system processes through MQI 84
as indicated in FIG. 1. The lower level main socket server 98
and socket control table 94 are dynamically created by
higher level server 92 for carrying socket operations accord-
ing to the present invention. The main socket server 98
creates child socket processes as a function of the type of
socket operation to be performed and manages such child
processes through socket control table 94. Ali of the servers
operate as root and therefore have super user privileges with
access to any file within the host system S4. The server 92
includes mechanisms specifically designed for validating
security at the user level in conjunction with the execution
of dual decor commands and functions.

For the purpose of the present invention, the components
92 through 98 collectively can be viewed as a socket server
for emulator 80 which is used to communicate over the host
system socket layer. It will also be noted that the level 62
also includes the different host TCP application service
programs 75 which provide TCP and Telnet services. These
application services programs/servers are represented by
block 75 in FIG. 1 and also communicate over the same host
system socket layer and share the same TCP/IP network
protocol stack facility 99.

Operating System/Kernel Level

The operating system/kernel level 64 includes the stan-
dard mechanisms and components normally included within
the host operating system. As shown, level 64 includes a
kernel process manager component 70 and a number of host
kernel I/0 services (KIOS) processes 66 for each pseudo
device driver (PSDD) 74 which is to be emulated by the host
system. Additionally, in the preferred embodiment of host
system 54, level 64 is assumed to contain the standard utility
programs, shell, editors, compilers, etc. and libraries (e.g.,
I/O libraries, open, close) which are accessed in the host user
mode. For further information regarding the use of such
arrangements, reference may be made to publications of the
IBM Corporation describing the AIX operating system.

In the preferred embodiment, the kernel/operating system
level 64 further includes as an interprocess communications
facility, an implementation of “sockets” which includes a
host sockets library 97 for storing a plurality oi socket
subroutines and network library subroutines and a TCP/IP
network protocol stack facility 99 arranged as shown. In the
preferred embodiment, the stack facility 99 connects to
Ethernet network driver software included within Kkernel
level 64 (not shown) which communicates with the Ethernet
LLAN 58d.

As indicated in the system of FIG. 1, as in the case of the
AIX operating system, the socket subroutines contained in
host sockets library 97 serve as the application program
interface (API) for TCP/IP. This API provides three types of
communications services which use different components of
TCP/IP. These are reliable stream delivery, connectionless
datagram delivery and raw socket delivery. The preferred
embodiment uses reliable stream delivery communication

5,636,371

9

services. For further information regarding sockets, refer-
ence may be made to various well-known publications and
texts such as publications of IBM Corporation describing the
AIX Version 3.2 for RISC System/6000 and the text entitled
“UNIX System V Release 4: An Introduction for New and
Experienced Users”, published by Osborn McGraw-Hill,
Copyright 1990 by American Telephone and Telegraph
Company.
Virtual Network Mechanism

According to the teachings of the present invention, the
operating system level 64 also includes a virtual network
(VNET) 14 mechanism 100 which operatively couples to the
TCP/IP network protocol stack facility 99 in the same
manner as the Ethernet network interface associated with the
Ethernet network driver and Ethernet LAN 38d couples to
factlity 99 as explained in detail herein. The VNET mecha-
nism 100 also couples to a number of table structures
represented by block 102 located in host sysiem memory
which are used to process client requests received via
facility 99 directed to the virtual host system/hosted system.

FIG. 2—Simplified Network Block Diagram

FIG. 2 is a simplified block diagram of a portion of a
internetwork system 10 which discloses in greater detail,
how the VNET mechanism 100 of the present invention is
incorporated into the host system of FIG. 1. As seen from the
Figure, only the components relevant to describing the
teachings of the present invention are depicted in FIG. 2. As
indicated, the VNET mechanism 100 functionally represents
emulator 80 which corresponds to the system being emu-
lated (i.e., the hosted system). In the preferred embodiment,
virtual host system connects to a local area network which
corresponds to the virtual LAN of block 100. As described
herein, the network structure of the emulated system in

terms of IP address is incorporated into the host system 54
by configuring the virtual network mechanism 100 into the
host system as described herein.

As shown, the mechanism 100 of the preferred embodi-
ment includes a virtual ethernet network interface portion
100-2. In many respects, this interface is functionally similar
to the Ethernet network interface labeled 58d connected to
the physical local area network (LAN) 18. In addition to the
Ethernet LAN, the interface 58d includes the standard
software routines (e.g. drivers) which provide a uniform
interface to the Internet Protocol (IP) network layer. Thus,
the interface performs all of the necessary communications
between the IP layer and the physical LAN normally through
an appropriate physical device handler. For the purposes of
the present invention, the sottware portion of the Ethernet
network interface 584 may take the form of the AIX Net-
work Interface Driver(s) described in standard IBM publi-
cations.

As described later herein, the virtual Ethernet network
interface 100-2 is also constructed to incorporate the same
functionality as included in the network interface software
of block 584. In the case of an Ethernet LAN consisting of
host machines which use the TCP/IP protocols, such as
shown in FIG. 2, there are two types of addresses. One is the
32 bit Internet address and the other is the 48 bit Ethernet
address. Typically, Ethernet addresses are assigned by the
manufacturer of the interface board and are all unique. To
determine the Ethernet address which corresponds the host
system having a particular IP address, an Internet Address
Resolution Protocol (ARP) 1s used wherein a host is allowed
to broadcast a special packet on the Ethernet that asks the
host with a specified IP address to respond with its Ethernet
address. The broadcasting host system then can store the

10

15

20

25

30

35

40

45

30

55

65

10

response and maintain the mapping between the IP address
and the Ethernet address for all future packets designating
that IP address.

Relative to gateways, it is the IP layer/module that handles
routing through the internetwork. The IP layer provides a
connectionless and unreliable delivery system. It is connec-

tionless because it considers each IP packet independent of
all others. Any association between packets is provided by

the upper TCP layer. Every IP packet contains the source
address and destination address as discussed herein so that

each packet can be delivered and routed independently. The
IP layer is unreliable because it does not guarantee that IP
packets are delivered or that they are delivered correctly.
The IP layer computes and verifies its checksum. This allows
it to verified that the fields that it needs to examine and
process. When an IP header is found in error, it is discarded,

with the assumption that a higher layer protocol will retrans-
mit the packet. If' the IP packets arrive at a host or gateway

so fast that they are discarded, the IP module sends an
Internet Control Message Protocol (ICMP) source quench

message to the original source informing that system that the
data is arriving too fast.
The present invention makes use of the routing capabili-

ties of the IP module. A gateway determines the route of a
packet by consulting a network routing table. In TCP/IP,
routing can be one of two types. The first type is static
routing which uses manual input to update the routing table.
The second type is dynamic routing which uses routing
daemons to update the routing table automatically when new
information is received. Therefore, when the host system 26
desires to communicate with the virtual network mechanism
100, it utilizes a route command which allows a user on host
system 20 to make manual entries into the network routing
tables. In the preferred embodiment, a host system route
command is used to statically configure a gateway for the
virtual host system 100-4 connected to the virtual LAN of
virtual network mechanism 100 to which the user on host

system 20 wants to connect. The route command has the
following format: route add -net network_ address
gateway__address. When the operating system is rebooted,
the gateways must be configured again. For a static or
permanent configuration, gateways can be configured via the
operating system configuration management.

As shown in FIG. 2, the LAN 18 in addition to connecting
to host system 54 also connects to another host system 20.
When the virtual network mechanism 100 is configured into
the system, it is viewed by the host system 54 as another
network since it is constructed to have its own separate
network interface. Each IP address includes a network ID
field and a host ID. As indicated above, host systems which
attach to two or more networks are “gateways”. That is, a
gateway has two or more network interfaces, one for each
network with which it communicates regardless of network
type.

A gateway receives packets from other hosts and gate-
ways for delivery to the hosts on the local network and also
route packets from one network to another. Since each IP
address includes a network ID and a host ID, gateways can
easily extract the network ID field from the IP address and
route IP packets based solely on the network ID. Since
packets are routed according to the destination network and
not according to destination host, a gateway need only to
know the location of other networks, and does not need to
know the location of every host system on an internetwork.
Thus, the destination network takes care of sending the
packet to the destination host.

Therefore, when host system 20 adds the virtual network
IP address to its network routing table, the same routing

5,636,371

11

information is also passed to host system 54 through static
or dynamic routing and entered into the network routing
tables utilized by the IP module of the host system 34 on
which the virtual network mechanism 100 resides.
Accordingly, as described later herein, the IP module auto-
matically routes those IP packets/designating the virtual
LAN to virtual network mechanism 109.

FIG. 3—Virtual Network Mechanism Location

FIG. 3 illustrates in diagrammatic form, the positioning of
the virtual network mechanism 100 according to the present
invention, relative to the TCP/IP conceptual layered orga-
nization. As indicated in FIG. 3. the VNET mechanism 100
directly couples to the IP layer so that it looks like another
network interface to the host operating system TCP/IP
protocol stack. The application layer is the level at which the
TCP/IP application programs oOr user processes operate/
reside. The several application programs provided by almost
every TCP/IP implementation include FTP and Telnet which
were discussed above.

The socket layer is the first kernel layer and it provides an
application program interface (API) to the TCP/IP commu-
nications protocol. Each TCP/IP application program
(process) is defined by the IP address of the host system on
which it runs and the port number through which it com-
municates with TCP/IP. Sockets are used to establish com-
munications. A socket is the pair of numbers which zniquely
identifies each application. More specifically, a socket 1is
defined by an IP address and port number. As discussed
above, the Telnet and FTP application programs use the
same port number in all TCP/IP implementations. Those
“assigned” port numbers are called “well-known ports™ and
the standard application programs are called “well-known
services”. Thus, the socket layer is said to support the
concept of reserved ports in the Internet domain wherein
standard Internet application programs are assigned well-
known ports

The TCP or transport layer provides a connection oriented

reliable full duplex byte stream service to an application
program. The TCP module contains the necessary logic to

provide a reliable virtual circuit for a user process. It handles

the establishment and termination of connections between
processes, the sequencing of data that might be received out

of order, the end to end reliability (checksums, posttive
acknowledgments, timeouts) and the end to end flow con-

trol. TCP uses 16 bit integer port numbers for identifying the
data associated with each user process.

As discussed above, the IP layer provides the packet
delivery service for the TCP layer and computes and verifies
its checksum. The IP layer uses 32 bit integer IP addresses
for identifying the networks and host computers on the
internet.

The network interface layer passes frames between physi-
cally connected hosts and is responsible for link/media
access control. The hardware or physical layer provides the
physical connectivity. In the preferred embodiment, as dis-
cussed above, the network and hardware layers are imple-
mented to conform to Ethernet LAN requirements and are
hence labeled with the prefix “Ethernet”. Obviously, these
layers could be made to conform to Token-Ring or FDDI as
well as other types of physical networks.

Also, FIG. 3 illustrates the type of data flow taking place
between the different layers. More specifically, the figure
shows the addition of control (header) information, termed
encapsulation, by the different layer modules when data
being sent by a TCP application program to another host
system.

10

15

20

25

30

35

40

45

50

55

63

12

FIG. 4—Well-Known Port Virtual Network Mechanism
Block Diagram

FIG. 4 illustrates the various parts of the Virtual Network
Mechanism 100. As shown, the mechanism 100 includes the
components 100-2 through 100-14 which operatively con-
nect as shown. The IP interface component block 100-2
represents the various interface routines utilized by the
virtual host system In the preferred embodiment, the inter-
face table structure 100-2 defines an Ethernet interface as the
physical interface. For the purpose of the present invention,
the interface 100-2 conforms to the type of network interface
utilized within the AIX operating system. Generally, this
type of interface accepts output packet of a specified maxi-
mum length, and provides input packets received from its
medium to higher level routines.

Pata Structures

As explained herein, the virtual host system is represented
by a set of control data structures which include an ifnet
structure, an ve,;softc structure, and client table structure.
The ifnet structure for the network interface defines a queue
or network interface table for such interface which is used by
the IP module routing software code to locate the interface.
It contains control information defining the type of interface,
its properties, routines and status statistics as described
herein below. The ifnet structure has the format indicated in
FIG. 7¢. The functions of the ifnet structure include loading
and initializing, communicating with the IP network layer,
communicating with device handler software, translating an
IP address to a hardware address for the undetlying device
driver software, handling ifnet specific ioctl calls and ter-
minating and unloading. The present invention makes use of
this same type of network structure mechanism utilized by
the host operating system for a physical network interface
unit which eliminates the need to infroduce any additional
network structures or software to be associated with the
virtual network mechanism 100.

As indicated in FIG. 7c¢, the ifnet structure contains a
number of different fields, only some of which are utilized
by the virtual network mechanism 100. These include a
name field (if _name) which identifies the interface, inter-
face property fields such as the flags field (1i__tlags) which
is used to. indicate the state of the interface/virtual host
system (e.g. an IFF__UP state indicating that the interface/
virtual host is up, an IFF_ RUNNING state indicating that
the interface/virtual host is running which allocates
resources), an ifaddr structure which contains information
about one interface address which is a pointer to a linked list
of addresses used by the IP module to locate all of the
network interfaces of a given address family on the host
system (e.g. Ethernet interface 58d), interface routines fields
which identify the different routines used by an attached
interface (e.g. if__init, if output, if_ioctl) and interface
statistics fields

In addition to the ifnet structure, the mechanism 100 of
the present invention utilizes two unique data structures. The
first structure designated ve__softc depicted in FIG. 5 is used
to represent the virtual host system. The second structure
designated client table also depicted in FIG. 5 is used by the
virtual host system to process requests received from a
remotely located client process.

As seen from FIG. 5, the ve_ softc structure includes a
number of different fields and structure designated struct
arpcom through virtual IP address. The structure arpcom
defines a network common structure which is shared by the
mechanism 100 and the so-called address resolution code
which can be viewed as standard. The if name field is used

5,636,371

13

to define the interface name/virtual host system while the
ve_flags field 1s used for storing a private flag. The state
field defines the state of the virtual host system while the
client__count field defines the number of different client
processes 1n the table. The client table pointer field defines
the address of the first client table as indicated in FIG. S. The
local IP address field is used for storing a commonly used
local host IP address values while the virtual IP address field
is used for storing virtual host IP address values.

As indicated in FIG. 5, the client table data structure
includes the fields tcp__state through timer count. The tcp__
state field defines the virtual operational state of the client
table relative to processing a given client request by the TCP
module. The client_ flags field is used for storing informa-
tion pertaining to the state of the table entry (e.g. available=
CLIENT_EMPTY=00, in use=CLIENT_INUSE=0,
closing=CLIENT__ENDING=02). The client IP address
field is used for storing the client IP address while the client
tcp src port field is used for storing the client TCP source
port number. The client tcp dst port field is used for storing
the client TCP destination port number. Lastly, the timer
count field is used for storing a timer count value indicating
the number of minutes which have .elapsed since there was
a client request from the particular remote client process.
This used to remove entries assigned to client processes
which have been rendered inactive.

Continuing on with the description of FIG. 4, it is seen
that incoming packets are applied to an input receive com-
ponent 100-6 which determines the type (i.e., ICMP or TCP
protocol type message) and the source of packet message
being received and forwards it to the appropriate component
for processing. More specifically, if the packet 1s an ICMP
message packet such as an echo message used by the
Internet Control Message Protocol, it is forwarded to ICMP
echo processing component 100-16. If the packet is an
Ethernet type message packet, it is forwarded to either
inbound component 100-8 or outbound component 100-12
as a function of which source originated the packet. The
ICMP component is included in order to respond to ping
inquiries. |

The component 100-8 processes inbound tcp packets
originated from a remote host system while outbound com-
ponent 100-12 processes outbound tcp packets originated
from the virtual local host system. As indicated, the inbound
component 100-8 contains the routines of block 100-84
which save the packet IP address, TCP source and destina-
tion port numbers. It also includes the routines of block
100-80 which create a set of mapped TCP source and
destination ports according to the present invention which
are used to reformat the IP address and TCP ports resulting
in forwarding the packet to the appropriate emulated system
TCP application program (e.g. ftp, telenet etc.). The out-
bound component 100-12 contains the routines of block
100-12a which retrieve the appropriate previously stored
original remote host IP address and TCP source and desti-
nation port values. These values are used by the routines of
block 100-12H to reformat the packet for rerouting the
packet back to the remote host system 20.

As indicated in FIG. 4, both inbound component 100-8
and outbound component 100-12 forward each packet to
output component 100-14. Component 100-14 includes rou-
tine (FIND__INPUT__TYPE) which invokes a kernel ser-

vice routine for sending each such packet back to the local
host network interface.

The initialization component 100-4 includes a number of
routines for performing the operations required for initial-

10

15

20

25

30

33

45

50

35

65

14

izing the virtual network mechanism 100 and its associated
control structures inet, ve_softc and client table control
structures.

DESCRIPTION OF OPERATION

With reference to FIGS. 1 through 8, the operation of the
preferred embodiment of the virtual network mechanism
100 of the present invention will now be described. By way
of example, it is assumed that a client user process running
on the remote host system 20 of FIG. 2 wants to utilize the
emulated system FTP services application program 22 run-
ning on host system 34. In accordance with the teachings of
the present invention, host system 54 1s configured to have
a network interface attached to the IP layer which corre-
sponds to virtual network mechanism 100. When so
configured, the virtual network mechanism 100 will have the
local host IP address and its own virtual IP address.

By way of example, it will be assumed that the IP address
of the local host system has the value 215.65.43.1 wherein
the value “215.65.43 designates the network address of the
virtual LLAN and the value “1” designates the address of the
local host system connected to the virtual LAN. It will be
appreciated that the values selected could have any numeri-
cal value as long as they are selected according to the
standard internetwork conventions. That is, just as in any

network, each connection point or node must be assigned an
IP address. Accordingly, the emulated system/virtnal host

100-4 running the TCP application program which shown as
connecting the virtual LAN must also be assigned its own IP
address. By way of example, it is assumed that the emulated
system/virtual host 100-4 has an IP address value of
“215.65.43.2” wherein the value “215.65.43” again desig-
nates the network address of the virtual LAN and the value
“2” designates the virtual host address of the emulated
system/virtual host 100-4 which connects to the virtual
LAN.

It will be appreciated that host system 54 which connects
to “real” LAN 18 also has its own IP address which is
assumed to correspond to the value “123.45.6.7 while it is
assumed that the remote host system 20 has an IP address of
123.45.6.8. The value *123.45.6” corresponds to the net-
work address while the host address values “7” and “8”
designate host system 54 and remote host system 20 respec-
tively.

It can be seen that when so configured, system 54 can be
viewed as actually being connected to two separate and
distinct LANs. Therefore, when remote host system 20
wants to communicate with any application programs (e.g.
FTP, TELNET) of emulated system/virtual host 100-4 which
actually corresponds to ES components running under the
control of the operating system of host system 54, system 20
just has to configure the local host system 54 to function as
a “gateway”’ in the same way it would configure a host
system connected to a “real” LAN.

In the system of the preferred embodiment, configuring is
done by means of a “route add” command. More
specifically, a user configures the remote host system having
IP address 123.45.6.7 as a gateway or route for emulated
system/virtual host having IP address 215.65.43.2. In greater
detail, the route add command used to connect the virtual
host having IP address 215.65.43.2 would have the follow-
ing form: route add -net 215.65.43 123.45.6.7. Here, the
value “215.65.43” specifies a particular network address
argument (network__address) while the value “123.45.6.7”
specifies a particular gateway address parameter (gateway_
address). Once the route add command is executed, it

5,636,371

15

configures the static route for connecting to emulated system
application programs. As previously discussed, gateways
can be statically or dynamically configured in a manner with
is well-known 1n the art.

Additionally, the host system 54 must also configure the
IP address for virtual network mechanism 100. According to
the present invention, this may be done by means of a
specific directive “VIRNET” included in the hosted system
configuration file cim__X file. The VIRNET directive has the
following format: VIRNET ve0 [ctl__args] wherein the first
argument “ve0” specified the virtual network interface
mechanism 100 which has the value ve0. The remaining
arguments include an address, up and down arguments. The
“address” argument corresponds to either a host name or an
IP address in the standard dotted decimal notation. The
address used for this argument is assigned to the host side of
the virtual network interface mechanism 100. This address is
automatically incremented by one to create the IP address
for the emulated system/virtual host connected to the virtual
LAN on the other side of virtual network mechanism 100.
The “up” argument is used to activate the virtual network
interface mechanism 100 while the “down” argument is used
to deactivate the virtual network interface mechanism 100.

When the VIRNET directive 1s used in this example to
configure the virtual network mechanism, the directive
would have the following form: VIRNET ve0 215.65.43.1
up wherein the value “215.65.43.1” corresponds to the local
host IP address and “215.65.43.2” corresponds to the virtual

host IP and *“up” specifies the activation of the mechanism
100. The VIRNET directive is entered into the clm__x file

and is used for loading and configuring the virtual network
mechanism 100 software into the operating system kernel of

host system 3.

If the virtual network mechanism 100 is not configured
via the directive, it can be started from an operating system
command line using a special command which serves the
same function as the VIRNET directive. This command has
the format: hvx_ vecfg ve0 [ctl__args]|. The arguments cti__
args are the same as those of the VINET directive. The
command can be used at any time to activate the virtual
network mechanism 100 or change its parameters. In the
present example, the command used to configure mecha-
nism 100 has the following form: hvx_ vecfg ve0
215.65.43.1 up. The command configures and starts virtual
network mechanism 100 with an IP address of 215.65.43.1.
As previously mentioned, this address is automatically

incremented to establish the virtual host IP address of
215.43.2 for the emulated system ES.

Initialization

The above described configuration operations can be

assumed to take place as part of the loading and start up of
the emulator 80 of FIG. 1. Such operations are represented
by block 600 in the flow diagram of FIG. 6. The load
operation involves performing the required configuration
tasks, such as configuring the different TCP/IP application
programs (i.e. servers) and configuring the IP address for the
VNET mechanism 100 using the VIRNET directive
included in the clm__x file. Additionally, the route command
is used on the remote host to configure a gateway for the host
system 54 to which the remote host system is to be con-
nected. This completes the operations of block 600.

Next, the host system performs the initialization opera-
tions of block 602. These operations are shown in greater
detail in FIG. 7a. Referring to FIG. 7a, it 1s seen that host
system 54 first sets up the various elements of the ve_ soft
control structure 500 shown in FIG. 54 as indicated in block

10

15

20

25

30

35

40

45

50

35

63

16

700. That is, the appropriate parameter values are loaded
into the eight fields illustrated in FIG. Sa. More specifically
the fields are initialized as follows: the arpcom struct name
to the “ethernet comimon part”, the ve__flags, the state of the
interface to zero, the client_count value is set to zero
(maximum value=512 which is an arbitrary value), the client
table pointer value which specifies the location of the first
client table structure is set to zero, and the local IP and
virtual IP addresses are set to zero. Next, the host system
initializes the client table entry of FIG. 56 as indicated in
block 702. More specifically, the fields tcp__state through
timer count are initialized to zeros.

Next, as indicated in block 704, the host system 54 builds
the ifnet structure of FIG. 7¢ and 1nitializes its fields so that
it contains with the addresses of the interface functions/
routines (i.e. if__output, if_ioctl and if reset) utilized by
the virtual network mechanism 100. Additionally, the appro-
priate value designating the type of interface which is
“ethernct” in the present embodiment is also loaded into the
structure. Next, as indicated in block 706, the host system
calls the if _attach kernel services of the AIX network
interface device software layer which adds the virtual net-
work mechanism 100 as another network interface to the
system wide network interface list. That is, the configured
ifnet and ve__softc structures are properly registered. Also,
as indicated in block 708, the host system turns on the timer
function which provides an arbitrary value (e.g. 20 minute)
time interval to clean out stale client table enfries. This
completes this portion of the initialization sequence of block
602.

Next, as part of the initialization sequence, the host
system executes an ioctl command (i.e. SIOCSIFADDR) as
indicated in FIG. 7b. This command is used to set the
network interface address. As indicated in block 720, the
ioctl command adds the IP address (e.g. 215.65.43.1) to the
arpcom control structure. This local IP address which is used
for mapping, is saved in the local IP address portion of the
structure ve__softc of FIG. 5 as indicated in block 720. The
system also computes the network and host portions for the
virtual network mechanism 100, as indicated in block 722.

In the preferred embodiment, as discussed above, the
virtual host IP address is generated by adding one to the local
host IP address (i.e. 215.65.43.1). The resulting value (i.c.
215.65.43.2) is saved in the virtual IP address portion of the
control structure ve__softc of FIG. 5a. Next, as indicated in
block 724, the host system sets the IFF__UP flag of the
if flags field of the ifnet structure for the virtual network
mechanism 100 to a state which indicates that the interface
is “up”.

As seen form FIG. 7b, a second type of ioctl command
(i.e. SIOCSIFFLAGS) is executed which sets the interface
IFF__RUNNING flag to indicate that the interface is “run-
ning”. This enables the allocation of resources by the system
which places the virtual network mechanismm 100 in an
operative (running) state as indicated in block 730.

Referring to FIG. 6c¢, once initialization has been
completed, the virtual network mechanism 100 is ready to
receive packets fromremote system 20. As discussed above,
the remote system 20 sends packets to the host having IP
address 215.65.43.1 via the IP module of local host system
54 which operates as a “gateway”. That is, the IP module
receives each data packet and determines that the data
packet should be routed to the virtual network interface
mechanism 100 which has that IP address. That is, as
indicated in block 604, when the IP module of host system
54 determines the 1P address of the mechanism 100 via the

3,636,371

17

system network list, it invokes/calls the virtual network
mechanism’s output routine using the previously stored
output0 routine address (see block 704 of FIG. 7a). The IP
module includes in the call, all of the parameters of the
packet required for processing by mechanism 100 which

enables receipt of the packet by mechanism 100 as indicated
in block 605.

As indicated in block 606 of FIG. 6, the mechanism 100
processes the Ethernet header in a standard manner. Next, as
indicated in block 608, the mechanism 100 verifies the IP
and TCP packets to ensure that they have no errors. As
indicated in block 610, the mechanism 100 next tests the
protocol type value to determine what type of Ethernet
protocol is being used. If it is a specific type of Ethernet
protocol (i.e. has a value of 800), then the mechanism 100
next checks for the type of IP protocol by examining a type
field contained in the IP packet. If it is not the specific

Ethernet protocol, then the mechanism 100 drops the packet
as indicated in block 612.

As indicated in blocks 616 and 618, when the IP protocol
type field specifies ICMP, the mechanism 100 performs echo
processing wherein it echoes the packet and then calls the
kernel services function find__input__type(). This function
automatically deposits the packet into the IP module. When
the IP protocol type field specifies TCP, then the mechanism

100 determines if the packet originated from a local or
remote host system as indicated by block 620. When the

packet originates from a local host, mechanism 100 invokes
the outbound function as indicated in block 622. When the
packet originates from a remote host, mechanism 100
invokes the inbound function as indicated in block 630.

The inbound function is shown in greater detail in FIG.
74d. As indicated in block 752 of FIG. 7d, mechanism 100
searches the client table(s) for this packet. As discussed, this
involves searching up to 512 client tables to make certain
that the client/user exists (i.e. a client table was opened/
allocated for that particular client). If mechanism 100 deter-
mines that the client does not exist (per block 752), then
mechanism 100 allocates a table entry for the client as
indicated in block 754. More specifically, mechanism 100
establishes a client table entry for that client such as shown
in FIG. §b and increments the client_ count field by one. As
indicated in block 756, the mechanism 100 saves the 32 bit
client source IP address (ip__src), the 32 bit destination IP
address (ip__dst) and 16 bit TCP source port (th__sport) and
destination port (th__dport) numbers such as indicated in
FIG. 7e.

Next, as indicated in block 758, mechanism 100 over-
writes the destination IP address (ip__dst) with the value
obtained from the local IP address ficld previously stored in
the control structure ve__softc of FIG. 3a. Now, the packet
identifies the local host as the destination so that the packet
will be processed by the host IP module. Mechanism 100
then overwrites the source 1P address (ip_src) with the
value obtained from the virtual IP address field of control
structure ve__softc as indicated in block 760. This now
identifies mechanism 100 as the source of the packet so that
any response by the ES FTP services application server will
be returned back to mechanism 100 for rerouting back to the
original source, remote system 20. The mechanism 100 next
recalculates a new IP checksum word (ip__cksum) which is
overwritten into the IP packet header checksum field of FIG.
7e as indicated in block 762.

Next, mechanism 100 overwrites the “well-known” TCP
destination port number (th__dport) with the mapped port
number value as indicated in block 764. The mapped port

10

15

20

23

30

35

40

45

50

55

65

18

number value is a port number which identifies the ES FIP
application server 22 of FIG. 2. The mechanism 100 maps
the well-known port number into a non-well-known port
number value. The mapping is carried out in a relatively
simple matter. For example, the well-known port number
value “21” is changed to “7021”. It will be appreciated that
the ES FTP application server 22 will have been previously
configured to listen on port “7021” instead of the well-
known port “21”. This is done by entering the value “7021”
into the appropriate services file. It will be appreciated that
any value could have been used as the mapped value. For
tracking purposes, it is advantageous to use a value which
also contains the well-known port number value.

Next, as indicated in block 766, mechanism 100 maps the
index value obtained from the client table pointer ficld of
control structure ve__softc as the TCP source port number
(th__sport). The index value (e.g. ZERO initially) is used to
overwrite the th_ sport filed of the TCP header of the packet
as indicated in FIG. 7e. This virtual port number is used as
a temporary port number which provides an index associated
with the particular client/user table. Mechanism 100 is able
to use the virtual source port number as an index into the
client/user tables. This index number arrangement facilitates
packet processing by reducing the amount of search time in

locating the appropriate client information for the reply
packet.

Mechanism 100 then calculates a new TCP checksum as
indicated in block 768 and uses the sum to overwrite the
th__sum portion of the packet TCP header as indicated in
FIG. 7e. Next, mechanism 100 sets the tcp state filed to an
appropriate state in the client table structure which enables
mechanism 100 release the client table entry. Also, mecha-
nism 100 resets the timer count word to zero as indicated in
block 770. Following the completion of the operations of
block 770, mechanism 100 calls the kernel services find__
input__type0 function. The call includes all of the parameters
required for sending the modified packet to the host system

IP layer/module.

It will be noted that the only portions of the inbound
packet which are modified are the source IP address and
destination IP address as well as the TCP source and
destination port number values. The remaining portion of the
packet are maintained as the same. Mechanism 100 recal-
culates the checksums to reflect these modifications and
stores the new checksum values to the TCP and IP headers
of the packet. Because of the minimal changes made,
mechanism 100 is able to carry out these operations within
a minimum amount of time.

The host IP module upon receiving the mapped packet
from mechanism 100 determines form the source IP local
address that the packet is for host system 54. The IP module
processes the packet and send it to the TCP layer which
forwards the packet to the EX FTP application server 22 as
designated by virtual destination port number (th__dport)
which corresponds to the value “7021” in the example.

After the ES FTP application server 22 processes the
packet, it normally generates a response packet in a con-
ventional manner. This packet is also formatted as shown in
FIG. 7g which is the same as the format of FIG. 7e. Here,
the server 22 includes the same virtual source and destina-
tion port numbers in the packer’s TCP header in addition to
including the same source IP and destination IP addresses.
Since the server 22 is the source of the response packet, the
sets of values are reversed to indicate server 22 as the source
or sender of the response packet and mechanism 100 as the
destination or recipient of the response packet.

5,636,371

19

The host TCP/IP stack passes the response packet through
both the TCP and IP layers/modules for processing in a
conventional manner which results in the packet being
forwarded to mechanism 100 in accordance with the speci-
fied packet virtual IP destination address.

As indicated in FIG. 6, the IP module passes the packet by
invoking the output0 function in the same manner described
above. Mechanism 100 again performs the operations of
blocks 606 through 620. When mechanism 100 checks the
originator of the packet, as indicated in block 620, it
determines that the response packet is form local host
system 54. This causes mechanism 100 to invoke the out-
bound function of block 622. This function is shown in
greater detain in FIG. 7f.

Referring to this figure, as indicated in block 780, mecha-
nism 100 converts the virtual TCP destination port number
(th__dport) assumed initally to have the value of zero, into
the client table slot entry. It uses this value as an index to
obtain the previously saved client information (i.e. stored in
the allocated client table structure of FIG. 5b) as indicated
in block 782. In this example, the zero index value is used
to locate the associated client table structure. Mechanism
100 retrieves the saved client IP address stored in the client
table structure.

As indicated in block 784, mechanism 100 overwrites the
destination IP address (ip__dst) of the packet IP header with
the saved source IP address identifying the remote host
system 20 as the destination for the packet. Next, as indi-
cated in biock 786, mechanism 100 overwrites the source IP
address (ip__src) with the saved virtual IP address identify-
ing virtual network mechanism 100 as the source of the
packet so that subsequent packets will be routed through
mechanism 100. As indicated in block 788, mechanism 100

calculates a new IP checksum word and overwrites the
checksum into the IP header checksum portion (ip__cksum)

of the response packet.

Mechanism 100 then retrieves the saved client TCP
source (src) port and destination (dst) port numbers from the
client table structure of FIG. 5b. As indicated in block 790,
mechanism overwrites the TCP destination port number
information (th__dport) contained in the response packet’s
TCP header with the previously saved client source port
number. This change now identifies the remote host system
20 TCP layer as the destination for the response packet.
Next. as indicated in block 792, mechanism overwrites the
response packet’s TCP source port number information
(th__sport) contained in the packet’s TCP header with the
previously saved client destination port number value (client
TCP dst port). With this change, the response packet now
identifies the mechanism 100 as the source of the response
packet.

Again, as indicated in block 794, mechanism 100 calcu-
lates a new TCP header checksum word which is used to
overwrite the TCP checksum (th__sum) value contained in
the response packet TCP header as indicated in FIG. 7g.
Mechanism 100 adjusts the tcp__state value contained in the
client table structure of FIG. 5b as indicated in block 796. It
also resets to zero, the timer count word contained in the
client table structure. As indicated in block 798, mechanism
100 calls the kernel services function find__input__type(
which sends the response packet to the local host IP module.
The 1P module based upon the IP address automatically
routes the response packet to the remote host system 20 via
local area network 18.

Subsequent packets sent by the client application program
of remote host system 20 are automatically routed to mecha-

10

15

20

25

30

35

45

50

53

65

20

nism 100 which processes each packet through the inbound
function in the manner indicated in FIG. 7d. Since mecha-
nism 100 previously allocated a table entry to the remote
system client application program, the operation of block
754 1s omitted. Similarly, any packets returned by the ES
FTP application server 22 are processed by mechanism 100
through the outbound function in the manner indicated in

FIG. 7g.

If for any reason, the client application program fails to
send packets for a long period of time because of a line
disconnect or similar condition, mechanism 100 allows the
continued incrementing of the timer count word without
resetting same. Therefore, when mechanism 100 initiates a
scan of the client table structures, it detects that the timer
count word of the client table structure associated with the
client application program will have exceeded a predeter-
mined count indicating lack of activity. In such instances,
mechanism 100 deallocates or clears the client table struc-
ture entry thereby frecing up space and eliminating stale
entries.

FIG. 8 illustrates diagrammatically, the overall operation
of the mechanism of the present invention. As shown,
remote host system 20 initiates a connection with ES FI'P
application server 22 through a connection packet which is
indicated by the path labeled “1”. Next, mechanism 100

maps the connection packet and routes the packet to the
server 22 as indicated by the path labeled “2”. Any response
packets from server 22 are sent to mechanism 100 as
indicated by the path labeled “3”. Mechanism 100 remaps
each such response packet and sends it to the remote host

system 20 as indicated by the path labeled 4.

From FIG. 8 and the above descriptions, it is seen how the
mechanism of the present invention allows a plurality of
host system application programs sharing a single host
TCP/IP communications network stack to use the same
well-known port without having to make any changes in
client application programs. The mechanism of the present
invention by operating below the IP layer of the TCP/IP
communications network stack is able to take advantage of
the routing capabilities of the IP layer/module. This mini-
mizes the amount of software required to be added to the
host operating system facilities in incorporating the virtual
network mechanism of the present invention.

Those skilled in the art will appreciate that many changes
may be made to the preferred embodiment of the present
invention without departing form its teachings. For example,
the present invention could be utilized with other types of
communication protocols in addition than Ethernet, such as
token-ting, FDDI, etc.. Also, the present invention could
also utilize other types of mapping techniques to generate
the required virtual identifier information utilized in con-
junction with the forwarding of packets through the TCP/IP
network protocol stack. Other modifications of this type
relative to protocols, data structure formats, operating sys-
tem facilities/calls and the like will also occur to those
skilled in the art.

While in accordance with the provisions and statutes there
has been illustrated and described the best form of the
invention, certain changes may be made without departing
from the spirit of the invention as set forth in the appended
claims and that in some cases, certain features of the
invention may be used to advantage without a corresponding
use of other features.

5,636,371

21

What is claimed is:
1. A method which allows a local host system to share a

communications network software facility of the local host
system operating system between a number of data com-

munications application servers operating under the host
operating system and a corresponding number of data com-
munications application servers operating under compo-
nents of a hosted operating system running under control of
the local host operating system, the local host system being
coupled to at least one remote host system through a local
area network (LAN) and an internetwork, the network
software facility being coupled to a communications net-
work interface unit which includes interfacing hardware and
software for connecting the local host system to the LAN for
communicating with the remote host system using a stan-
dard communications network protocol which is character-
ized by assigning different station address identifier values
to each host system requiring that the local host system and
hosted operating system be assigned different station address
identifier values and well-known services function identifier
values to the different data communications application
servers associated with local host system and hosted oper-
ating systems so that servers performing the same service
function are assigned the same well-known services function
identifier value for directing incoming packets sent by the
remote host system to the appropriate application server,
said method comprising the steps of:

(a) configuring a virtual network mechanism within the
local host operating system to be operatively coupled to
the host operating system communication network soft-
ware facility and to function as if an another LAN
connected to a virtual host system running the hosted
operating system and operating as if it contained 1ts
own communications network software facility;

(b) mapping predetermined portions of each incoming
packet by the virtual network mechanism sent by the
remote host system and received from the local host
communications network software facility by (1)
changing the station address identifier value of each
incoming packet to specify the local host system as a
destination and the virtual network mechanism as a
source of the packet for returning any reply packet
thereto and (2) changing the well-known services iden-
tifier value to a virtual identifier value so that the
mapped incoming packet received from the virtual
network mechanism is directed by the host operating
system communications network software facility to
the appropriate communications application server of
the hosted operating system for processing; and;

(c) remapping the predetermined portions of each outgo-
ing reply packet sent by the hosted system communi-
cations application server through the communications
network software facility to the virtual network inter-
face mechanism by restoring the remote host station
address identifier and well-known service identifier
values so each outgoing reply packet sent by the virtual
network mechanism to the internetwork appears to the
remote host system as a reply packet to the communi-
cation between the remote host system and the hosted
system communications application server as if the
server had been reached through the LAN using the
originally sent station address assigned to the hosted
operating system and well-known services identifier
value.

2. The method of claim 1 wherein the virtual network

mechanism includes interfacing software similar to the
network interface unit for minimizing the amount of soft-

10

135

20

25

30

35

45

50

35

65

22

ware required to be added to the local host operating system
and for utilizing the network routing capabilities of the
communications network software facility.

3. The method of claim 2 wherein the communications
network software facility includes a TCP/IP protocol stack
containing TCP and IP layers and the virtual network
mechanism utilizes the network routing capabilities of the IP
layer.

4. The method of claim 1 wherein the standard commu-
nications network protocol is the TCP/IP protocol, the
station address identifier value corresponds to an IP address
containing IP source and IP destination addresses and the
well-known service function identifier value corresponds to
a TCP well-known port number value containing TCP
source and TCP destination port numbers.

5. The method of claim 1 wherein configuring step (a) of
the method includes the step of:

(d) performing an initialization operation by the virtual
network mechanism which setups and builds a prede-
termined types of control data structures for enabling
processing of each incoming and outgoing packet
through the interfacing software included in the virtual
network mechanism.

6. The method of claim 5 wherein the predetermined types
of control data structures includes a first structure which
defines the existence of the virtual network mechanism to
the network software facility and a second sttucture which
defines the virtual network mechanism.

7. The method of claim 6 wherein the first structure is an
interface network structure utilized by the host operating
system and the second structure is a software control struc-
ture which is used to manage packet processing for each of
the client application programs running on the remote host
system.

8. The method of claim 7 wherein the second structure
contains a predetermined number of fields, a first field for
storing the state of the virtual network mechanism, a second
field for maintaining a count of the number of different client
entries being managed by the virtual network mechanism,
third and fourth fields for storing the local host and virtual
host station address identifier values wherein the virtual host
station value is generated by performing an arithmetic
operation on the local host station address identifier value
and a fifth field for storing a client pointer value for
accessing the first client table structure generated by the
virtual network mechanism.

9. The method of claim 6 wherein the predetermined types
of control data structures includes a number of client table
structures, each client table structure being associated with
a different client application program of the remote host
system which has established communication with the local
host system.

10. The method of claim 9 wherein a new client table is
assigned by the virtual network mechanism each time a
connection packet is sent by a different client application
program running on the remote host system.

11. The method of claim 10 wherein the remote host
system establishes connection with the hosted operating
system data communication services application servers by
configuring the remote host to have the local host system
function as a “gateway” so that the local host system
communications network software facility automatically
routes incoming packets sent by the remote host system to
the virtual network mechanism.

12. The method of claim 10 wherein the client table
includes a predetermined number of fields, a first field for
storing the station address identifier value of the remote

5,636,371

23

system client application program, a second field defining
the operational state of the client table, third and fourth fields

for defining different client application program port iden-
tifier values and a fifth field for storing a timer count value
defining client application program activity.

13. The method of claim 1 wherein each mapping step of
the method of claim 1 further includes the step of:

(e) regenerating the checksum for each incoming and
outgoing packet for enabling the network software
facility of the local host system to correctly process
said each incoming and outgoing packet by standard
protocol procedures.

14. The method of claim 1 wherein the method further

includes the step of:

(f) saving the station address identifier value of the remote
host system and the well-known services identifier
value contained in each incoming packet in a client
table structure generated by the virtual network mecha-
nism which can be indexed through the virtual identi-
fier in response to having received an initial connection
packet from a client application program running on the
remote host system for enabling the subsequent map-
ping of each reply packet.

15. The method of claim 1 wherein the mapping step (a)
of the method includes the step of mapping the well-known
services identifier value to a non-well-known services iden-
tifier value containing the well-known services identifier
value.

16. The mechanism of claim 1S5 wherein each of said first
and second mapping components includes means for regen-
erating checksum for each inbound and outbound packet for
enabling the network software facility of the lock host
system to correctly process said each inbound and outbound
packet by standard protocol procedures.

17. A virtual network mechanism which allows a local
host system to share a communications network software
facility of the local host system operating system between a
number of data communications application servers operat-
ing under the host operating system and a corresponding
number of application servers operating under components
of a hosted operating system running under control of the
local host operating system, the local host system being
coupled to at least one remote host system through a local
area network (LAN) and an internetwork, the network
software facility being operatively coupled to a network
interface unit which includes interfacing hardware and a
software for connecting the local host system to the LAN for
communicating with the remote host system using a stan-

dard communications network protocol which is character-
ized by assigning different station address identifier values
to each host system such that the local host system and
hosted system are assigned different station addresses and
well-known services function identifier values to the difter-
ent data communications applications servers associated
with local host system and hosted operating systems so that
servers performing the same service function are assigned
the same well-known services function identifier value for
directing incoming communications data packets sent by the
remote host system to the appropriate communications
application server running on the hosted system, said
mechanism comprising:
(a) an interface component configured within the local
host operating system to operatively couple the virtual

10

15

20

25

30

35

40

45

50

35

24

network mechanism to the host operating system com-
munications network software facility as if an another
LLAN which connects to a virtual host system, the
interface component serving as the equivalent of the
components of the hosted operating system;

(b) a first mapping component coupled to the interface
component for mapping predetermined portions of
each incoming packet sent by the remote host system
and received from the interface component through the
local host communications network software facility so
that the station address identifier value of each incom-
ing packet is changed to specify the local host system
as a destination and the virtual network interface
mechanism as a source of the packet for receiving for
processing each reply packet sent by a hosted commu-
nications application server and the well-known ser-
vices identifier value is changed to a virtual identifier
value so that the packet is directed by the communi-
cations network software facility to the appropriate
communications application server of the hosted oper-
ating system for processing; and,

(c) a second mapping component for mapping the prede-
termined portions of each outgoing reply packet sent by
a hosted system communications application server to
the interface component by restoring the remote host
station address identifier and well-known service iden-
tifier values so each outgoing reply packet appears to
the remote host system as a reply packet to the com-
munication initiated by a client application program
running on the remote host system and the hosted
system communications application server as if the
server had been accessed through the LAN using the
station address assigned to the hosted system and
well-known service identifier value previously estab-
lished for designating that service function.

18. The mechanism of claim 17 wherein the mechanism
further includes an initialization component for setting up
and building predetermined types of control data structures
for enabling processing of each incoming and outgoing
packet received from the interface component.

19. The mechanism of claim 18 wherein the predeter-
mined types of structures include a first structure which
defines the existence of the virtual network mechanism to
the network software facility and a second structure which
defines the virtual host system.

20. The mechanism of claim 18 wherein the first structure

is an interface network structure utilized by the host oper-

ating system and the second structure is a software control
structure which is used to manage packet processing for
ecach of the client application programs running on the
remote host system, the software control structure contain-
ing a predetermined nuimber of fields, a first field for storing
the state of the virtual network mechanisin, a second field for
maintaining a count of the number of different client entries
being managed by the virtual network mechanism, third and
fourth fields for storing the local host and virtual host station
address identifier values wherein the virtual host station
value is generated by performing an arithmetic operation on
the local host station address identifier value and a fifth field
for storing a client pointer value for accessing the first client
table structure generated by the virtual network mechanism.

I S T T

	Front Page
	Drawings
	Specification
	Claims

